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Abstract. Paired multi-modality medical images, can provide comple-
mentary information to help physicians make more reasonable decisions
than single modality medical images. But they are difficult to gener-
ate due to multiple factors in practice (e.g., time, cost, radiation dose).
To address these problems, multi-modality medical image translation has
aroused increasing research interest recently. However, the existing works
mainly focus on translation effect of a whole image instead of a critical
target area or Region of Interest (ROI), e.g., organ and so on. This leads
to poor-quality translation of the localized target area which becomes
blurry, deformed or even with extra unreasonable textures. In this paper,
we propose a novel target-aware generative adversarial network called
TarGAN, which is a generic multi-modality medical image translation
model capable of (1) learning multi-modality medical image translation
without relying on paired data, (2) enhancing quality of target area gen-
eration with the help of target area labels. The generator of TarGAN
jointly learns mapping at two levels simultaneously — whole image trans-
lation mapping and target area translation mapping. These two map-
pings are interrelated through a proposed crossing loss. The experiments
on both quantitative measures and qualitative evaluations demonstrate
that TarGAN outperforms the state-of-the-art methods in all cases. Sub-
sequent segmentation task is conducted to demonstrate effectiveness of
synthetic images generated by TarGAN in a real-world application. Our
code is available at https://github.com /2165998 /TarGAN.
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1 Introduction

Medical imaging, a powerful diagnostic and research tool creating visual rep-
resentations of anatomy, has been widely available for disease diagnosis and
surgery planning [2]. In current clinical practice, Computed Tomography (CT)
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and Magnetic Resonance Imaging (MRI) are most commonly used. Since CT
and multiple MR imaging modalities provide complementary information, an
effective integration of these different modalities can help physicians make more
informative decisions.

Since it is difficult and costly to obtain paired multi-modality images in
clinical practice, there is a growing demand for developing multi-modality image
translations to assist clinical diagnosis and treatment [17].

Existing works can be categorized into two types. One is crossing-modality
medical image translation between two modalities, which has scalability issues
to the increasing number of modalities [18,19], since these methods have to train
n(n — 1) generator models in order to learn all mappings between n modalities.
The other is multi-modality image translation [1,7,16,17]. In this category, some
methods [7,17] rely on paired data, which is hard to acquire in clinical reality.
Other methods [1,16] can learn from unpaired data, however, they tend to lead
to deformation in target area without prior knowledge, as concluded by Zhang et
al. [19]. As demonstrated in Figure 1, the state-of-the-art multi-modality image
translation methods give rise to poor quality local translations. The translated
target area (For example, Liver, in red curves) is blurry, deformed or perturbed
with redundant unreasonable textures. Comparing to them, our method can not
only perform whole image translation in competitive quality but also achieve
significantly better local translation for the target area.

StarGAN CSGAN ReMIC Our method

Fig. 1. Translation results (CT to Tlw) of different methods are shown here. The
target area (i.e., liver) is contoured in red.

To address the above issues, we present a novel unified general-purpose multi-
modality medical image translation method named “Target-Aware Generative
Adversarial Networks” (TarGAN). We incorporate target labels to enable the
generator to focus on local translation of target area. The generator has two
input-output streams. One stream translates a whole image from source modal-
ity to target modality, the other focuses on translating a target area. In partic-
ular, we combine the cycle-consistency loss [21] and the backbone of StarGAN
[1] to learn the generator, which enables our model to scale up to modality in-
crease without relying on paired data. Then, the untraceable constraint [20] is
employed to further improve translation quality of synthetic images. To avoid
the deformation of output images caused by untraceable constraint, we construct
a shape-consistency loss [3] with an auxiliary network, namely shape controller.
We further propose a novel crossing loss to allow the generator to focus on the
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target area when translating the whole image to target modality. Trained in an
end-to-end fashion, TarGAN can not only accomplish multi-modality translation
but also properly retain the target area information in the synthetic images.

Overall, the contributions of this work are: (1) We propose TarGAN to
generate multi-modality medical images with high-quality local translation on
target areas by integrating global and local mappings with a crossing loss. (2)
We show qualitative and quantitative performance evaluations on multi-modality
medical image translation tasks with CHAOS2019 dataset [12], demonstrating
our method’s superiority over the state-of-the-art methods. (3) We further use
the synthetic images generated from TarGAN to improve the performance of
a segmentation task, which indicates that the synthetic images generated by
TarGAN achieve the improvement by enriching the information of source images.
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(a) Generator structure of TarGAN (b) TarGAN

Fig. 2. The illustration of TarGAN. As in (b), TarGAN consists of four modules (G,
S, Dz, D;). The generator G translates a source whole image =, and a source target
area image 7s to a target whole image x; and a target area image r:. The detailed
structure of G is shown in (a). The shape controller S preserves the invariance of
anatomy structures. The discriminators D, and D, distinguish whether a whole image
and its target area are real or fake and determine which modalities the source images
come from.

2 Methods

2.1 Proposed framework

Given an image x, from source modality s and its corresponding target area
label y, we specify a target area image rs which only contains the target area by
binarization operation y - ;. Given any target modality ¢, our goal is to train a
single generator G that can translate any input image x, of source modality s to
the corresponding output image z; of target modality ¢, and translate the input
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target area image 1y of source modality s to the corresponding output target
area image r; of target modality ¢ simultaneously, denoted as G(xs,7s,t) —
(x4, 7). Figure 2 illustrates the architecture of TarGAN, which is composed of
four modules described below.

To achieve the aforementioned goal, we design a double input-output streams
generator G consisting of a shared middle block and two pairs of encoder-
decoder. Combining with the shared middle block, both encoder-decoder pairs
translate an input image into an output image of the target modality t. One
stream’s input is the whole image x, and the other’s input only includes the
target area rg. The shared middle block is designed to implicitly enable G to
focus on target area in whole image translation. Note that target area label y of
T is not available in test phase, so the input block Encoder, and output block
Decoder, are not used at that time.

Given a synthetic image z; or r; from G, the shape controller S generates
a binary mask which can represent the foreground area of the synthetic image.

Lastly, we use two discriminators denoted as D, and D,. corresponding
to two output streams of G. The probability distributions inferred by D, distin-
guish whether the whole image is real or fake, and determine which modality the
whole image comes from. Similarly, the D, distinguish whether the target area
image is real or fake, and to determine which modality the target area image
comes from.

2.2 Training objectives

Adversarial loss. To minimize the difference between the distributions of gen-
erated images and real images, we define the adversarial loss as

£adv,m = Exs [log Dsrc,m(xs)] + Ezt [lOg(l - DSTC,JL’(',L‘t)”a
Eadv,r - Ers [log Dsrc,r(rs)} + ]Em [log(l - Dsrc,r(rt))]~

Here, Dy, and Dg,.._, represent the probability distributions of real or fake
over input whole images and target area images.

(1)

Modality classification loss. To assign the generated image to their target
modality ¢, we impose the modality classification loss on G, D, and D,.. The loss
consists of two terms: modality classification loss of real images which is used

to optimize D, and D,., denoted as Ele,(x /)7 and modality classification loss of

fake images which is used to optimize G, denoted as Ef Is_(2/7)" In addition, to
eliminate synthetic images’ style features from source modalities, the untraceable

constraint [20] is combined into L7, ./, as:

sz = Ea, s[~10g Ders_z(s|zs)] + Ay Eq, o [~log Dclsfr(s/‘xt)}v

2)
e = By, o108 Dy (sl72)] + A Eryw[—log D (8hr)).

Here, D.s_, and D._, represent the probability distributions over modality
labels and input images. s’ indicates whether an input image is fake, and is
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translated from a source modality s [20]. Besides, we define Ef Is_(z/r) 85
£l o =B, [-log Des_o(tlze)], L1, . =By, i[~log Dus_r(tlr)].  (3)

Shape consistency loss. Since the untraceable constraint can affect the shape
of anatomy structures in synthetic images by causing structure deformation, we
correct it by adding a shape consistency loss [3] to G with shape controller S as

Lshape.x = Eq, e [[|b" — S(ﬂ?t)Hg], Lshape_r = Ey, or[|[0" — S(Tt)”%}, (4)

where b* and 0" are the binarizations (with 1 indicating foreground pixels and 0
otherwise) of x5 and 75. .S constrains G to focus on the multi-modality mapping
in a content area.

Reconstruction loss. To allow G to preserve the modality-invariant charac-
teristics of the whole image x, and its target area image rs, we employ a cycle
consistency loss [21] as

Lrec,x = Ews,z [Hx.s - .13;”1], ‘CT'ec,r = Em,ré[

’
s

Irs = rilhl. ()

Note that z/ and r, are from G(xt,7:,s). Given the paired synthetic image
(2, r¢) and the source modality s, G tries to reconstruct the input images (xs, 7).

Crossing loss. To enforce G to focus on a target area when generating a whole
image ¢, we directly regularize G with a crossing loss defined as

Leross = Baproylllze -y —rilh], (6)

where y is the target area label corresponding to zs. By minimizing the crossing
loss, G can jointly learn from double input-output streams and share information
between them.

Complete objective. By combining the proposed losses together, our complete
objective functions are as follows:

‘CD(m/r) = _‘Cadvf(r/r) + )‘le 5215,(z/r)7 (7)

Lo = £adv,(m/r) + Afls ‘Czls,(:p/r) + Arec ‘C'r‘ec,(:r/r) + Across £crossing7 (8)
ﬁG,S = [’shape,(a;/r)v (9)

where A7, )\fls’ Arecs Aeross and A, (Egs. (2)) are hyperparameters to control

the relative importance of each loss.
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Table 1. Quantitative evaluations on synthetic images of different methods. (1 denotes
higher is better, while | denotes lower is better)

FID| S-score(%)1
CcT Tiw | T2w | CT | Tlw | T2w
StarGAN [1]] 0.0488 | 0.1179 | 0.2615 | 42.89 | 29.23 | 42.17
CSGAN [19]]0.0484 | 0.1396 | 0.4819 | 56.72 | 45.67 | 69.09
ReMIC [16] |0.0912 | 0.1151 | 0.5925 | 51.03 | 32.00 | 69.58
Our method |0.0418(0.0985|0.2431(57.13(65.79(/69.63

Method

3 Experiments and results

3.1 Settings

Dataset. We use 20 patients’ data in each modality (CT, T1-weighted and
T2-weighted). They are from the Combined Healthy Abdominal Organ Seg-
mentation (CHAOS) Challenge [11]. Detailed imaging parameters are shown in
supplementary material. We resize all slices as 256 x 256 uniformly. 50% data
from each modality are randomly selected as training data, while the rest as test
data. Because CT scans only have liver labels, we set liver as the target area.

Baseline methods. Translation results comparisons are conducted against the
state-of-the-art translation methods, StarGAN [1], CSGAN [19] and ReMIC [10].
Note that we implement an unsupervised ReMIC because of the lack of ground-
truth images.

Target segmentation performances are also evaluated against the above meth-
ods. We train and test models using only real images of each modality, denoted as
Single. We use the mean results of two segmentation models of each modality
from CSGAN and use the segmentation model G4 from ReMIC. As for Star-
GAN and TarGAN, inspired by ‘image enrichment’ [5], we extend every single
modality to multiple modalities and concatenate multiple modalities within each
sample, as [CT] — [CT, synthetic T1w, synthetic T2w].

Evaluation metrics. In the translation tasks, due to the lack of ground-truth
images, we can not use the common metrics like PSNR, SSIM, etc. So we evaluate
both the visual quality and the integrity of target area structures of generated
images using Frechét inception distance (FID) [6] and segmentation score (S-
score) [19]. We compute FID and S-score for each modality and report their
average values. The details on above metrics are further described in supple-
mentary material.

In the segmentation tasks, dice coefficient (DICE) and relative absolute
volume difference (RAVD) are used as metrics. We compute each metric on
every modality, and report their average values and standard deviations.
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Implementation details. We use U-net [15] as the backbone of G and S. In G,
only half of the channels are used for every skip connection. As for D, and D,.,
we implement the backbone with PatchGAN [9]. Details of above networks are
included in the supplementary material. All the liver segmentation experiments
are conducted with nnU-Net [8] except CSGAN and ReMIC.

To stabilize the training process, we adopt Wasserstein GAN loss with a
gradient penalty [4,14] using Ay, = 10 and two-timescale update rule (TTUR)
[6] for G and D. The learning rates for G, S are set to 10~%, while that of D is set
t0 3x 1074 We set A%y, = 1, A, =1, Adpee = 1, Aeross = 50 and A, = 0.01. The
batch size and training epoch are set to 4 and 50, respectively. We use the Adam
optimizer [13] with momentum parameters $; = 0.5 and Sz = 0.9. All images
are normalized to [—1,1] prior to the training and test. We use exponential
moving averages over parameters [10] of G during test, with a decay of 0.999.
Our implementation is trained on an NVIDIA GTX 2080Ti with PyTorch.

Fig. 3. Multi-modality medical image translation results. Red boxes highlight the re-
dundant textures, and blue boxes indicate the deformed structures.

3.2 Results and analyses

Image Translation. Figure 3 shows qualitative results on each pair of modal
image translation. As shown, StarGAN fails to translate image from CT to Tlw
and produces many artifacts in MRI to CT translation. CSGAN sometimes adds
redundant textures (marked by the red boxes) in the target area while retaining
the shape of target. ReMIC tends to generate relatively realistic synthetic images
while deforming the structure of target area in most cases (marked by the blue
boxes). Comparing to above methods, TarGAN generates translation results in
higher visual quality and properly preserves the target structures. Facilitated by
the proposed crossing loss, TarGAN can jointly learn the mappings of the target
area and the whole image among different modalities, and further make G focus
on the target areas to improve their quality. Furthermore, as shown in Table
1, TarGAN outperforms all the baselines in terms of FID and S-score, which
suggests TarGAN produces the most realistic medical images, and the target
area integrity of synthetic images derived from TarGAN is significantly better.
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Table 2. Liver segmentation results (mean £ standard deviation) on different medical

modalities.
DICE (%) 1 RAVD (%)

Method CT Tiw Tow CT Tiw Tow
Single 96.29+0.74 | 93.53+2.43 | 89.24+8.18 | 3.31+1.80 | 3.81+3.49 |11.68+14.37
StarGAN [1]] 96.6540.34 | 92.7141.66 | 86.3844.95 | 3.07+1.53 | 5.4042.87 | 15.7149.85
CSGAN [19]| 96.0842.05 | 87.4745.97 | 86.35:6.29 | 4.47+3.94 |15.74+14.18| 8.23+8.55
ReMIC [16] | 93.8141.43 | 86.3348.50 | 82.704.36 | 5.33+3.55 | 8.06+8.80 | 10.6246.80
Our method |97.06+0.62(94.0242.00/90.94+6.28|2.33+1.60| 3.50+1.82 | 9.92+11.17

Liver segmentation. The quantitative segmentation results are shown in Table
2. Our method achieves better performance than all other methods on most of the
metrics. This suggests TarGAN can not only generate realistic images for every
modality, but also properly retain liver structure in synthetic images. The high-
quality local translation for the target areas plays a key role in the improvement
of liver segmentation performance. By jointly learning from real and synthetic
images, the segmentation models can incorporate more information on the liver
areas within each sample.

Ablation test. We conduct an ablation test to validate effectiveness of different
parts of TarGAN in terms of preserving target area information. For ease of pre-
sentation, we denote shape controller, target area translation mapping
and crossing loss as S, T and C, respectively. As shown in Table 3, TarGAN
without (w/o0) S, T, C is closely similar to StarGAN except using our im-
plementation. The proposed crossing loss plays a key role in TarGAN, which
increases the mean of S-score from TarGAN w/o C 51.03% to 64.18%.

Table 3. Ablation study on different components of TarGAN. Note that TarGAN
w/o S, T and TarGAN w/o T don’t exist, since T is the premise of C.

S-score(%)
Method CT [ Tiw | T2w |Mean
TarGAN w/o S, T, C| 30.64 | 35.05 | 67.45 | 44.38
TarGAN w/o S,C 39.78129.96 | 67.47 | 45.74
TarGAN w/o T, C 37.42138.33 | 68.85 | 48.20
TarGAN w/o C 43.00 | 38.83 | 71.27 | 51.03
TarGAN w/o S 56.69 | 59.37 (71.89] 62.65
TarGAN 57.13|65.79|69.63 |64.18
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4 Conclusion

In this paper, we propose a novel general-purpose method TarGAN to mainly
address two challenges in multi-modality medical image translation: learning
multi-modality medical image translation without relying on paired data, and
improving the quality of local translation on target area. A novel translation
mapping mechanism is introduced to enhance the target area quality during gen-
erating the whole image. Additionally, by using the shape controller to alleviate
the deformation problem caused by the untraceable constraint and combining a
novel crossing loss in generator G, TarGAN addresses both challenges within a
unified framework. Both the quantitative and qualitative evaluations show the
superiority of TarGAN in comparison with the state-of-the-art methods. We
further conduct a segmentation task to demonstrate effectiveness of synthetic
images generated by TarGAN in a real application.
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