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Abstract

We propose a model-based reinforcement learning approach for maximizing the power output of wind turbines (WTs).
The optimal control of wind turbines majorly uses the maximum power point tracking (MPPT) strategy for sequential
decision-making that can be modeled as a Markov decision process (MDP). In the literature, the continuous control
variables are typically discretized to cope with the curse of dimensionality in traditional dynamic programming
methods. To provide more accurate prediction, we formulate the problem into a continuous state space, continuous
action space MDP by utilizing the function approximation in reinforcement learning. The commonly used pitch angle
and torque are considered as control variables, which are regarded as the system state along with some other
uncontrollable variables proven to affect the power output. Computational studies of real data are used to demonstrate
that the proposed method outperforms the existing methods in the literature in obtaining the optimal power output.
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1. Introduction

Wind energy is considered as a promising alternative energy source because it is renewable, cost-effective, and
environmental friendly [1]. The capability of wind power as a competitive energy source is evidenced by its drastic
growth. From 2001 to 2018, the cumulative capacity of installed wind power worldwide has grown from 24GW to
591GW. More than S0GW wind capacity has been installed annually since 2014, according to the Global Wind Energy
Council [2]. Along with the rapid growth of wind energy capacity, there is also a growth in the size and power output
of a single wind turbine. The utility-scale wind turbines, starting from a height of 24 meters and 50kW of output, have
become as large as 114-meter high and SGW of power output [3], which has been motivated by the economic
advantages of large wind turbines. The growing size of wind turbines makes this industry highly capital-sensitive, in
which a small fraction of the decrease in power output and operation time could lead to significant monetary loss.
With the average price of electricity assumed to be around $0.1 per kWh [4], even 1% energy loss on a 100MW wind
turbine is estimated to reduce the annual revenue by $307,500 [3].

In such a capital-intensive industry, owners of large wind turbines can benefit greatly by optimizing operation and
maintenance of wind turbines. Actually, megawatt-scale wind turbines with variable speed become particularly
attractive due to their cost-effectiveness stemming from their operation that can be actively controlled [5]. The optimal
control of wind turbines majorly uses the maximum power point tracking (MPPT) to directly increase the power output
when the wind profile deviates from the standard point. To extend the total service life of wind turbines, the structural
load reduction is implemented to help reduce the productivity loss caused by the maintenance.

Different modeling and optimization algorithms have been used in MPPT with various control variables. The
estimation of power output adopts the linear regression with polynomial features and time-series models such as
Kalman filter [6]. With the deployment of supervisory control and data acquisition (SCADA) system [7], modern
data-driving techniques such as artificial neural networks (ANN) have also been utilized [8]. The generator torque is
the main control variable in MPPT research as it is directly related to the power generated, while the pitch angle is
also adjusted to capture the maximal amount of wind power under a changing wind profile [9]. In most optimization
models, the output power is maximized at a single time point, which is less practical due to the time lag between the
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observation of signals and the optimization decision-making. Moreover, such algorithms fail to take into account the
correlation between consecutive control decisions, which makes it difficult to incorporate the constraints of the
maximum changing rate of control variables.

As a sequential decision-making task, MPPT of wind turbines can naturally fit into the model of Markov decision
processes (MDPs). For discrete and small state and action spaces, the linear programming and dynamic programming
(DP) solutions to such MDP problems were developed in the early years [10]. The DP methods use a table to represent
all state values (or state-action values) and are thus called tabular methods. The DP methods suffer a lot from the curse
of dimensionality that makes them unable to handle large, high-dimensional or continuous state and action sets.
Recently, researchers approached the MPPT problem as an MDP by discretizing a control variable (i.e., turbine
rotating speed) in order to fit in the tabular Q learning, which inevitably introduces the discretization error [11].

In this research, we aim to maximize the WT power output under the stochastic wind profile by formulating the
problem as a continuous state space, continuous action space Markov decision process, without discretizing the
variables. Instead, the curse of dimensionality of DP methods is overcome by utilizing the function approximation in
reinforcement learning. Reinforcement learning is a modern MDP solving process that approaches large MDPs when
exact methods become infeasible. As an important technique in reinforcement learning, function approximation uses
a function to approximate state values or state-action values, and bootstrap from previous approximated value
functions to carry out DP iterations. In this research, we explore different function approximations on the Q-function,
with an aim to find the optimal control rule with undiscounted reward and infinite horizon. A fitted Q iteration
algorithm is used in the framework of off-policy reinforcement learning.

2. Physical Mechanisms of Wind Turbines
Wind turbines generate the electrical power by capturing the wind power. The wind power that can be extracted by a
wind turbine is generally given by [3, 8, 13]

P = PyinaCp(A, B) = 3 pR*v3C,(A, B) (1)

where P,inq 1s the theoretical wind power available to a turbine, p is the air density, R is the rotor radius, and v is the
wind speed before passing the rotor. C,(4, ) is the power coefficient that evaluates the proportion of available wind
power captured by the wind turbine, which is a nonlinear function of blade pitch angle § and the tip-speed ratio 4 =
w-R/v where w, the rotational speed of the rotor [8].

The function C,, is turbine specific that can be estimated by field experiments and/or specialized simulation. It usually
has a maximum value at the optimal blade pitch angle 8" and tip-speed ratio A", which are provided for each specific
turbine. Therefore, the power from a wind turbine can be controlled by the rotor speed w,, in addition to the blade
pitch angle f.

3. Methodology
The optimal control problems of wind turbines can be approached by using reinforcement learning techniques, where
the problem is formulated as a Markov decision process.

3.1. MDP and Reinforcement Learning

A stationary MDP is characterized by a quintuple {T, S, A, p(‘|s, a), 1(s, a)} consisting of the set of decision epochs
T, a state space S, an action space A under state s, a stochastic transition function p, and a reward function r [14]. In
each decision epoch, an action available for the current state s is selected and an instant reward r(s, a) is received. The
probability distribution of the next state p(:|s, a) completely depends on the current state and action, which is a core
assumption of MDPs.

In an MDP model, a controller or agent seeks to find a policy m: S — A that maximizes a certain value criterion related
to the reward. A commonly used criterion is the expected total discounted reward

Ja(s) = lim Lo Ely*r(se. m(se))lso = s], ()
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where y is the discount factor. When the reward represents a revenue, it is proper to choose y as the reciprocal of the
risk-free rate. Such a discounted reward is referred to as the value function, or the V-function, of the state s under the
policy 7, denoted by v.(s). The goal of MDP is to find an optimal policy 7 such that

VUi (8) = v,(s) Vs € S, m. ?3)

In most cases, we write v;{s) as v«(s) for brevity. The value function under the optimal policy should satisfy the
Bellman optimality equation, a central property of MDPs [11]:

v.(s) = max Yo, p(s', 7ls, A)[r + yv.(s]. “

In general, the optimization problem using the V-function is computationally intractable, unless an explicit model is
assumed. The machine learning approach usually does not make any assumption about models. Instead, the problem
is typically tackled using the state-action value function, or the O-function defined as

qn(s,a) = ,11_{{310 Yt E[y'r(sum(s)Iso = s,a0 = al. (5)
The Bellman optimality equation characterizes the optimal g~ when an optimal control policy z* is achieved [11]:
q.(s) = g p(s',7ls, @) [r +y max q.(s", a’)]. ©)
Here ¢+is defined similarly as v..

3.2. State Space
In the WT operation problem, the state space includes the physical states that can be measured and controlled and the
exogenous states that can be measured but are uncontrollable.

The physical control variables collected from the wind turbine typically include rotor speed, rotor torque, generator
speed, generator torque, and blade pitch angle. Based on the physical mechanisms of wind turbines discussed in
Section 2, we take the pitch angle and generator torque as control variables. Most literature chose the variable of
generator torque, which can then control the rotor speed, the rotor torque, and the power production. The exogenous
uncontrollable variables are mainly the wind speed and wind direction, which influence the power output.

Therefore the state of our MDP model is s = (s1, 52, 53, s4) where 51 denotes the pitch angle measured in degrees, 55 is
the generator torque in Nm, s3 is the average wind speed in m/s, and s4 is the corrected absolute wind direction in
degrees.

3.3. Action Space

For the two main control variables, the pitch angle and generator torque, the action space is defined by the change of
pitch angle and torque, a = (aj, a2), where a; and a, represent the change of pitch angle in degrees and the change of
torque in Nms, respectively.

3.4. Reward Functions
MPPT aims to maximize the power output in the long term. Therefore, for each action, the reward is measured by the
average power output generated in the next epoch. The reward function maps the state space to a real value.

For wind turbine control, it is not practical to change the generator torque constantly in time, since it can cause the
machine subject to unnecessary stress. Therefore, we consider that the control action is taken at discrete time, e.g.,
every hour, every day.

3.5. Model-based Off-Policy Reinforcement Learning for Maximizing Average Reward
As both state space and action space are continuous, we consider using function approximation in reinforcement
learning, where the Q-function is approximated. One of the most straightforward algorithms to handle this scenario is
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the fitted Q iteration algorithm [15]. In the fitted Q iteration, the approximation function can be in any form and is an
approximation of the state-action value function Qa(s, a): SXA — R.

The algorithm assumes a greedy policy, given a training set (s;, ai, 13, 8’j) for i = 1,..., N. In each iteration, we first
estimate the Q function for each training quadruple from the current approximation according to Bellman equation

q; < 1y + ymaxQa(s';, a). (7
a€cA
Then we update the function approximation with the new estimated Q function value for the training set
0 < mein Zé\]:lL(Qa(si:ai; 9)1 qi): (8)

where y is the discount factor, 6 denotes the parameters of the Q function approximation, and L is a loss function such
as the squared error loss.

The algorithm is able to find the policy that maximizes /% (s) in (2) [15]. In the discounted case with infinite horizon,
the algorithm converges to the optimal policy that is a stationary point of the Bellman equation for qualified models.
The detailed conditions are described in [16].

Our aim is to maximize the long-term average reward without the existence of the discount factor, which is defined
as [16]

RE(s) = lim - S, E[y'r(se, n(s))lso = s]. ©
The relationship between J%(s) and R (s) is given by [12]
JE(s) = 7= RE(s). (10)

Hence, we can do the fitted Q iteration according to (10) to reach the optimal policy and calculate the optimal long-
term average reward.

4. Empirical and Simulation Studies

4.1. Data Description

The wind turbine considered in this research is Senvion MM82 2.0SMW wind turbine [16]. From its technical
specifications, we are able to obtain s3 € (3.5, 25) that indicates the wind speed to lie between the cut-in wind speed
and the cut-out wind speed [17]. However, the ranges for other variables are not specified in the technical
specifications and can be estimated from historical data. The estimated ranges are s; € [—1, 40], 52 € [0, 6000] and s4
€ [0, 360]. The ranges of action a; and a, are specified according to the current state to make sure that the next state
lies in the normal range.

The data we analyze in this research was collected at La Haute Borne wind farm located in Meuse, France by ENGIE
[17]. The SCADA data were obtained from wind turbines R80721, R80711, R80790, and R80736 since 2013. Due to
the storage and IO limit, we are able to access the maximum, minimum, and average values of signals in 10-minute
intervals, although the original data were collected at a higher frequency.

In wind turbine operations, it is not practical to make real-time decisions that constantly change the control variable,
due to the relatively slow reaction of the electronic and mechanic components of wind turbines. In this research, we
take the average value in a one-hour interval as the observed value for each variable at each decision epoch.

4.2. Model Selection

To explore the predictability of different models, we first use the state-action pairs as predictors to estimate the power
output at the next time step. The mean absolute error and the maximum absolute error are used to measure the accuracy
of the models, presented in Table 1.
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Table 1: Mean absolute error and maximum absolute error of predictors

Model Mean Absolute Error Maximum Absolute Error
Linear 9.14 50.54
Quadratic 6.89 69.07
Random Forest 6.01 101.89

We compare our results from different models to the results in [8]. All the models in Table 1 provide fine estimators
in terms of the mean absolute error. Hence, we decide to choose the linear model for its simplicity and the lowest
overfitting according to the maximum absolute error.

4.3. Fitted-Q Iteration Results

As the sum of absolute change in g; the convergence threshold does not exceed 1,000. When y = 0.6, the estimated
long-term average reward is 1,145kW; and when y = 0.8, the estimated long-term average reward is 1,140kW, which
is about 730kW on average per step higher than the observed average reward. The optimal action is always maximizing
the pitch angle (40) and generator torque (6000), which is a natural optimal condition for a linear model. The
impractical action values could be the result of our training samples that were taken from the real operation process
with a strong positive correlation among wind speed, generator torque, and power output.

To avoid the strong correlation among the variables, we conducted an experiment in which only the pitch angle is
taken as the control variable. In this experiment, the quadratic regression was used for function approximation, while
other parameters remain the same. Figure 1 shows how the optimal pitch angle changes with the wind direction, as
the results of optimal control for maximizing the long-term average reward to be 507kW. In Figure 1, the x-axis
denotes the decision epochs and the y-axis is the degrees of angle.
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Figure 1: A snapshot of the changes in the optimal pitch angle along with the wind direction

5. Discussion and Conclusions
In this research, we maximize the power output of wind turbines under the stochastic wind profile by formulating the
problem as a continuous state space, continuous action space Markov decision process. The curse of dimensionality
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of DP methods is overcome by utilizing the function approximation in reinforcement learning, since exact methods
become infeasible for the large MDPs. In the computational studies using real data, we conducted preliminary research
by applying the fitted-Q iteration algorithm to the MPPT task of wind turbines. With the MDP formulation, the
consecutive decision-making and control delay are embedded in the model and we can further generalize it to online
version with policy gradient techniques [16]. Instead of the linear model, more complex models can be used such as
non-linear models, supervised learning, or a neural network method.

Moreover, the optimization over O, can lead to impractical action values, which could be the result of our training
samples that were taken from the real operation process with a strong positive correlation among wind speed, generator
torque, and power output. This hypothesis has been validated in our experiment by excluding the generator torque in
control variables. To incorporate a dependent control variable such as the generator torque, we will carry out data
augmentation over data points with large generator torque values. In this situation, from a data science point of view,
we should first improve the model for Q,. Modern artificial neural network models could be promising for function
approximation.
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