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Abstract

Attention has been an important mechanism for both
humans and computer vision systems. While state-of-the-
art models to predict attention focus on estimating a static
probabilistic saliency map with free-viewing behavior, real-
life scenarios are filled with tasks of varying types and com-
plexities, and visual exploration is a temporal process that
contributes to task performance. To bridge the gap, we con-
duct a first study to understand and predict the temporal se-
quences of eye fixations (a.k.a. scanpaths) during perform-
ing general tasks, and examine how scanpaths affect task
performance. We present a new deep reinforcement learn-
ing method to predict scanpaths leading to different perfor-
mances in visual question answering. Conditioned on a task
guidance map, the proposed model learns question-specific
attention patterns to generate scanpaths. It addresses the
exposure bias in scanpath prediction with self-critical se-
quence training and designs a Consistency-Divergence loss
to generate distinguishable scanpaths between correct and
incorrect answers. The proposed model not only accurately
predicts the spatio-temporal patterns of human behavior in
visual question answering, such as fixation position, dura-
tion, and order, but also generalizes to free-viewing and vi-
sual search tasks, achieving human-level performance in all
tasks and significantly outperforming the state of the art.

1. Introduction

Visual attention plays an essential role in everyday tasks.
While existing works focus on stimulus-driven attention
with free-viewing behavior, underlying daily tasks is an-
other form of attention, i.e., task-driven attention, that se-
lects task-relevant information to make a decision or to ac-
complish a task. Besides, beyond the static saliency map
that highlights the relative importance of a visual input, tem-
poral sequences of eye fixations encode a more comprehen-
sive and natural representation of attention. Understand-
ing and predicting visual scanpaths in general tasks will not
only shed light on the decision-making process but also be
a useful tool for a variety of computer vision applications.

Image Question: Is the vase the same color as the scarf?

Incorrect Answer: failed

Correct Answer: no

Figure 1. Visual scanpaths of humans can reveal their decision-
making strategies and explain their performance. Those who pay
attention to relevant visual cues can achieve high levels of task per-
formance. This example compares the scanpaths of people who
succeed or fail to answer a question, where the dots represent fix-
ations. The number and radius indicate the fixation order and du-
ration, respectively. The blue and red dots indicate the beginning
and the end of the scanpath, respectively.

Task-driven visual scanpaths reflect the visual explo-
ration to accomplish the task, which also strongly correlates
with task performance. As an example (Fig. 1), to answer
the question “Is the vase the same color as the scarf?” while
exploring the scene, humans need to actively explore the
scene and search for the vase and the scarf. While looking
at the right places at the right time would usually lead to
correct answers (Fig. 1, middle), failing to do so may result
in incorrect answers (Fig. 1, right).

As a step toward understanding and modeling general
task-driven attention, we propose a novel deep reinforce-
ment learning method leveraging task guidance as an im-
portant modality to predict the visual exploration behav-
ior of humans performing general tasks. We first intro-
duce a task guidance map to specify task-relevant image
regions. The map is designed and demonstrated to gener-
alize across tasks. To address the exposure bias that arises
between training- and test-time contexts, we introduce a re-
inforcement learning method that directly optimizes non-
differentiable test-time evaluation metrics [14]. To differ-
entiate eye-movement patterns that lead to different perfor-
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mances, we further introduce a novel loss function to ac-
count for the consistency and divergence between correct
and incorrect scanpaths.

Our work has three distinctions from previous scanpath
prediction studies: (1) While state-of-the-art scanpath pre-
diction studies focus on free-viewing [4, 5, 13, 40] or well-
structured tasks such as visual search [52], this paper for
the first time studies the complex scanpath patterns in gen-
eral decision-making tasks, and investigates the correlation
of scanpaths and performances in this context. (2) Scanpath
prediction has not been as popular (compared with saliency
prediction) or achieved excellent performance (compared
with humans), partly due to the exposure bias — the discrep-
ancy between training-time and test-time contexts. Here
we close the gap using self-critical sequence training in
the reinforcement learning method, leading to significantly
boosted performance that is better than humans. (3) We go
beyond a single task and design a new mechanism to encode
general task-relevant information that is easily adaptable to
other tasks with varying nature and levels of complexity.
The proposed method has been demonstrated by three tasks
with human-level performance.

In sum, this work makes the following contributions:

1. We develop a deep reinforcement learning model to
understand and predict scanpaths in the general task-
driven context with visual question answering (VQA).
Task performance is for the first time taken into ac-
count to predict scanpaths.

2. We propose to explicitly integrate attention maps from
task-specific deep neural network models, allowing the
encoding of task-relevant information as well as pro-
viding an alternative to measure the interpretability of
task-specific models through analyzing model vs. hu-
man attention.

3. To address the discrepancy between training and test-
ing that may have limited the development of scanpath
prediction methods, we apply self-critical sequence
training to directly optimize non-differentiable evalu-
ation metrics. We further introduce a novel loss func-
tion to learn discriminative features and differentiate
correct and incorrect scanpaths.

4. The proposed method significantly outperforms the
state-of-the-art and shows human-level performance
on three tasks: VQA, free-viewing, and visual search,
demonstrating the generalizability of the method.

2. Related Work

Scanpath prediction. To precisely predict where humans
look is not trivial, as eye movements are governed by sev-
eral confounding factors [9]. Existing attention models ei-
ther generate a saliency map where fixations can be sam-
pled based on probability distribution and a winner-take-
all strategy [11, 24, 25, 26, 45], or predict a sequence

of fixations by modeling their spatio-temporal complex-
ity [4, 5,8, 13,22, 31, 34,40, 41,43, 46, 47, 49]. Our work
is mostly related to the recent studies of task-driven atten-
tion [52]. Instead of studying structured vision tasks such
as visual search [52], we aim to address a broader scope of
general tasks. We use VQA as an example due to its gener-
ality and complexity, while further demonstrating the gen-
eralizability and flexibility of our method by adapting it for
other tasks with various levels of complexity. To the best of
our knowledge, our method is the first scanpath prediction
method that successfully predicts human eye-movement be-
havior in the VQA task, and we further take the correctness
of answers into account. Our model not only approaches
human-level accuracy in the VQA task but is also highly
generalizable across different tasks and datasets.

Human and machine attention in VQA. A unique char-
acteristic of our work is the explicit integration of machine
attention in the prediction of human scanpaths. With the
rapid development of deep neural networks, the attention
mechanism has become an essential component for im-
proving the performance and explainability of VQA mod-
els [12, 28, 44]. However, due to their intrinsic differences,
machine attention disagrees with human attention in many
cases [44]. To study the relationship between human at-
tention and machine attention, Chen et al. [12] and Jiang et
al. [28] have developed datasets and computational methods
to measure, model, and comparatively analyze the attention
maps of humans and VQA models. While these analyses
focus on the spatial difference of attention between correct
and incorrect answers, our method generates individual fix-
ations to study how people maintain and shift their attention
which also encodes temporal information such as durations
and orders. With the explicit incorporation of machine at-
tention, our method also provides an alternative to measure
the interpretability of VQA models based on their effective-
ness in guiding scanpath prediction.

Reinforcement learning in attention prediction. A plau-
sible approach to human attention prediction is reinforce-
ment learning [27, 35, 36]. Early studies consider selec-
tive attention as a Markov decision process [0, 42] that can
be optimized using policy iteration and a predefined reward
function [27, 35, 36]. Recent scanpath prediction meth-
ods [33, 51, 52] adopt inverse reinforcement learning [, 3]
to automatically learn the unknown reward function from
humans’ eye-movement behavior. Although these methods
are promising, there is still a significant performance gap
between scanpath prediction models and humans. We hy-
pothesize that the performance gap is mainly caused by the
exposure bias that commonly exists in sequence prediction
tasks [38]. Exposure bias indicates the contextual discrep-
ancy between the training and test settings. In scanpath
prediction studies, many evaluation metrics are based on
non-differentiable sequence comparison algorithms. Thus
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Figure 2. Overview of the proposed scanpath prediction network.

most computational methods are only able to use conven-
tional cross-entropy or saliency evaluation metrics for train-
ing, leading to the discrepancy between training-time and
test-time contexts. In this work, we adopt self-critical se-
quence training (SCST) [38] to address this bias by di-
rectly optimizing the non-differentiable test-time metrics.
Leveraging the effectiveness of SCST, we further introduce
a Consistency-Divergence loss to learn the differences be-
tween correct and incorrect scanpaths.

3. Method

We develop a deep reinforcement learning model to
study and predict complex scanpath patterns in general
decision-making tasks, while taking the task performance
into account. This section presents the architecture of the
proposed network and the machine learning methods to
train the network with correct and incorrect scanpaths. Key
technical novelties include the creation of a task guidance
map to dynamically guide the prediction of fixation posi-
tions and durations, a reinforcement learning method with
self-critical sequence training to address the exposure bias,
and a novel Consistency-Divergence loss to learn the differ-
ences between correct and incorrect scanpaths.

3.1. Network Architecture

Where humans look during the VQA task is largely de-
pendent on the input question. Existing task-driven atten-
tion models use a one-hot vector [52] or language embed-
dings [28] to encode the task input. These encoding meth-
ods provide semantic guidance to the model, to generate
task-dependent outputs, but do not spatially align the task
semantics with the visual contents. Differently, we com-
pute a general task guidance map to highlight task-relevant
image regions. This task guidance map is designed to be
easily adaptable for other tasks. For example, it can be an
all-zero matrix for predicting scanpaths in the free-viewing
task, or object detection masks can be used to provide task
guidance in visual search. In this section, we summarize
our method with the general VQA task.

As shown in Fig. 2, we design a neural network model
to dynamically generate a sequence of fixation positions
and durations. A memory module and an attention mech-
anism are developed to selectively memorize and recall
task-relevant visual information. Specifically, given an im-
age and a question, our goal is to generate a sequence
of fixations positions y = {y1, 42, - ,yr} and durations
T = {m,72, -+, 77} Ateach step t, the fixation position
y¢ is sampled from a predicted action map m;, and the fix-
ation duration 7; is sampled from a log-normal distribution
with two predicted parameters (p;,07). Besides, a scalar
output e; indicates the end of the scanpath. The specific
network design is as follows:

Inputs and task guidance. On the input side, we adopt a
CNN-based visual encoder [2 1] to extract visual features X
from the image. The influence of the question is represented
as a task guidance map highlighting task-relevant image re-
gions. Trained on large VQA datasets, machine attention
can better bridge the task semantics and visual contents by
highlighting task-relevant spatial regions that are important
for answering the question. Therefore, we guide the predic-
tion of eye fixations using the machine attention of an ex-
ternally trained VQA model [2, 12, 29, 37]. We preprocess
the VQA model’s attention into a 2D task guidance map Z
with its values normalized within the range of [0, 1].
Memory and attention. Answering complex questions re-
quires dynamically updated memory and attention mecha-
nisms to trace the reasoning process over time [ 12, 28]. The
memory is denoted as M; = {mg, m1,--- ,ms_1}, which
explicitly maintains all previously computed action maps,
as well as the task guidance map mg = Z. This memory as
a whole can be seen as a spatio-temporal attention volume.
By applying it to the visual features X, we can obtain the
memorized features X; = M; o X, where o indicates the
Hadamard product. The attention module recalls the most
relevant information from the memory, denoted as

Ry = fatt(Xt§9att), (D

where the 60,4 indicates learnable parameters. It computes
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a temporal attention vector indicating the dynamic impor-
tance of each historical time step [28], to determine what
to recall from the memory for the prediction of the current
fixation.

ConvLSTM and outputs. We design a ConvLSTM net-
work to simultaneously predict the distributions of fixation
positions and durations. The image features X and the re-
called features R; are fed into a ConvLSTM layer to encode
the spatio-temporal patterns of scanpaths. With its current
hidden state h;, the outputs are computed as

Py (atlari—1) = softmax(fa(he; 0a)), (2)
[MtvUtQ] = fT(ht;HT)a 3)

where f, and f indicate the output layers and 6, and .. are
learnable parameters. We use [my, e;] = pé(at|ai.t—1) to
represent the distribution of the actions including the action
maps m; and the end-of-scanpath indicator e;. Finally, we
sample the fixation point y; following the discrete probabil-
ity values in the action map m;, and sample the fixation du-
ration following the parametric function 74 ~ p7 (7|u¢, 02).
We model the duration distribution p] as a log-normal func-
tion following previous experimental studies [19, 32].

3.2. Objective

Scanpath prediction is a typical sequential learning task.

To address the discrepancy between training and testing
contexts in sequential learning, we propose to apply self-
critical sequence training (SCST) [38] to directly optimize
the non-differentiable evaluation metrics. We further intro-
duce a novel loss function to help differentiate correct and
incorrect scanpaths.
Supervised learning. It is widely used in sequential learn-
ing to minimize a maximum-likelihood loss at each step. In
our context, the objective is to jointly optimize the fixation
action a; and the duration 7:

T+1 T
L(0) = = logpf(af|at,_1;0)—A> _logp] (7|, %),
t=1 t=1

“)
where T is the length of the ground-truth fixations, a; and
7, are the ground-truth action (one-hot vector indicating the
fixation position or end of the scanpath) and fixation dura-
tion, respectively. The hyperparameter A balances the con-
tributions of the two loss terms. With this loss function,
we simultaneously train two networks with the correct and
incorrect scanpaths. They share most of their parameters,
except for the memory and output layers.

However, this objective function does not always pro-
duce the best results on the non-differentiable metrics for
scanpath evaluation. This discrepancy between training and
testing contexts has been observed in similar sequence gen-
eration tasks [2, 38]. To address this issue, we propose to

use SCST in scanpath prediction and optimize the network
based on test-time evaluation metrics.

Reinforcement learning with SCST. Specifically, in the
context of scanpath prediction, the objective is to minimize
the negative expected reward:

Lr(e) = _Ey,T[T(ya T)L (5)

where r(-,-) is a reward function (i.e., ScanMatch [14]),
while y and 7 indicate the sampled fixation positions and
durations, respectively. The main idea of SCST is to base-
line the REINFORCE algorithm with the reward achieved
by the current model under the corresponding evaluation
metric used at the test time [38]. To reduce the variance
of the gradient estimate and accelerate the training, for each
network, we compute the average rewards of k scanpaths
and use their mean reward as the corresponding baseline.
We denote their corresponding loss functions as L;" (6) and
L (0), respectively. Without loss of generality, in this pa-
per, we use the superscripts + and — to distinguish the no-
tations for correct and incorrect scanpaths, respectively.
Consistency-Divergence loss. The level of difference be-
tween correct and incorrect scanpaths is image-specific, so
it is difficult to distinguish them by directly learning from
the data. We combine the SCST objective with a novel
Consistency-Divergence loss (CDL) to explicitly quantify
the consistency and divergence of human scanpaths and
force the model predictions to resemble such statistics.
Specifically, given the correct and incorrect ground-truth
scanpaths, we first compute their within-group similarity
rit i, and the between-group similarity 77 cen» DY
averaging the pair-wise evaluation scores within and be-
tween the correct and incorrect groups. The differences
A’I“*+ = r::/iJlrhin - TI;ketween and Ar*™ = r;kv;hin - r;etween mea-
sure the consistency of scanpaths within each group com-
pared with the diversity between the two groups. Intuitively,
high within-group similarity and low between-group simi-
larity suggest that the differences between correct and in-
correct scanpaths are more distinguishable. Similarly, we
can evaluate the predicted scanpaths in the same way to
obtain Art(y,7T) and Ar~(y,T). The objective of the
proposed CDL is to let Ar™(y, 7) approximate Ar*+ and
Ar~(y,T) approximate Ar*~, so that the differences be-
tween the predicted scanpaths are similar to those of the
ground-truth. Therefore, the CDL is computed as

Len(0) = Ey 7 [|ArF (y, T) — A ]
+ Ey,T UAT— (y7 T) —Ar” H )

Finally, we define the total loss as a linear combination
of the negative expected reward and the CDL (6):

L/(Q) = Lf(@) + L, (9) + ’}/LCD(G). @)

(6)

The hyperparameter ~ balances the contribution of the loss
terms in the policy gradient update stage [48].
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4. Experiments

We evaluate the proposed method with extensive exper-
iments. Our quantitative and qualitative results demon-
strate the performance and generalizability of the proposed
method, sheding light on some interesting research ques-
tions about scanpath prediction.

4.1. Experiment Settings

Dataset. We conduct our experiments mainly on the AiR
dataset [12]. It consists of images and questions selected
from the balanced validation set of GQA [23] and provides
the eye-tracking data collected from 20 participants who an-
swer the questions. Each question is answered by 10 dif-
ferent participants, and their eye-tracking data are associ-
ated with their answers. The numbers of fixations in the
recorded scanpaths are similar between the correct answers
(10.12 4+ 0.99) and the incorrect answers (10.27 £ 1.54).
Their spatial priors are also highly similar. These similari-
ties ensure that models do not differentiate between correct
scanpaths and incorrect scanpaths based on their prior dis-
tributions. We randomly split this dataset into a training set
of 1137 questions, a validation set of 142 questions, and a
test set of 143 questions. The proportion of correct answers
are balanced among these subsets.

Evaluation metrics. To evaluate the models, we generate
10 correct/incorrect scanpaths with each model and com-
pare them with the corresponding ground-truth scanpaths
using a combination of four evaluation metrics: The Scan-
Match [14, 39] measures scanpath similarity based on the
Needleman-Wunsch algorithm [7]. It has been commonly
used to evaluate scanpath prediction models due to its ro-
bustness to the substantial noise inherent in the scanpaths.
The MultiMatch [17] is a multidimensional evaluation met-
ric, composed of five similarity measures regarding shape,
direction, length, position, and duration. The String-Edit
Distance (SED) [10, 20] is a dissimilarity measure that con-
verts scanpaths into strings by associating each image re-
gion with a character. The Scaled Time-Delay Embedding
(STDE) [46] measures the average of the minimum Eu-
clidean distances of each sub-sequence of the compared
scanpaths. For SED and STDE, we report the mean and
best evaluation scores. While the mean scores are the av-
erages of all subjects, the best scores are computed based
on the most similar human scanpath [18]. These comple-
mentary evaluation metrics provide a comprehensive view
of the prediction results.

Implementation details. We use ResNet-50 [21] to encode
the visual features and use AiR [12] VQA model to compute
the task guidance maps. The object-based attention weights
are converted to spatial maps by computing a weighted aver-
age of their bounding box masks [12]. The resolution of the
input image is 240 x 320. We discrete the fixation position
into a 30 x 40 action map. In supervised learning, we train

our model using the Adam [30] optimizer with learning rate
10~* and weight decay 5 x 10~°. To avoid the divergence
of loss, we also adopt the warmup strategy [53] followed
by a linear decay of the learning rates. In reinforcement
learning, we also use the Adam [30] optimizer with linearly
decayed learning rates starting at 5x 10~ and weight decay
5 x 107°. In SCST, we sample k = 5 different scanpaths
for the correct and incorrect answers, respectively. The re-
ward function is defined as the harmonic average of the two
ScanMatch scores, one with duration and the other with-
out. Our implementation of the ScanMatch metric in train-
ing and evaluation follows [14, 39].The hyperparameters A
and +y are empirically set to 1.0 and 2.0, respectively, based
on the validation set performance.

4.2. Are the predicted scanpaths plausible?

We first evaluate how well the predicted scanpaths simu-
late human behavior. Since we are the first to predict scan-
paths in the VQA task, for a fair comparison, we customize
the most relevant deep-learning-based scanpath prediction
models (i.e., SaltiNet [5], PathGAN [4], and IOR-ROI [40]),
by combining the BERT embedding [16] of the question
with the visual features and jointly predicting the correct
and incorrect scanpaths. Following [40, 52], we measure
human performance by computing the inter-observer agree-
ments within the correct and incorrect groups, respectively.
For each image, we measure the similarity of every pair of
human scanpaths from the same group and compute their
mean values.

Tab. 1 reports the quantitative results of the compared
methods. Our method significantly improves the prediction
of both fixation positions and durations. It outperforms the
other methods on 9.5/11 metrics by a substantial margin.
For example, its ScanMatch scores are over 84% (correct)
and 69% (incorrect) higher than the state-of-the-art meth-
ods. It even outperforms humans on 6.5/11 metrics.

Fig. 3 presents qualitative examples of the predicted
scanpaths. While the state-of-the-art models look at salient
objects in general, our predicted scanpaths align better with
task-related objects and the human eye-movement behav-
ior regarding fixation positions, durations, and orders. Note
that subtle differences of scanpaths can determine the cor-
rectness of answers: the incorrect scanpaths consistently
miss important objects (i.e., phone and knives).

Note that besides our significant performance boost in
predicting correct scanpaths, our method is also effective in
predicting scanpaths that lead to incorrect answers thus to
be avoided. We find that incorrect scanpaths are less con-
sistent compared with correct ones (also corroborated with
Human scores), possibly due to the variety of factors that
may lead to an incorrect decision. Yet with the task guid-
ance and the novel CDL loss, our method can capture the
subtle differences between the correct and incorrect scan-
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ScanMatch 1 MultiMatch 1 SED | STDE 1

Method
w/oDur.  w/Dur. Vector Direction Length Position Duration Mean Best Mean  Best
Human 0.421 0.391 0.945 0.747 0.938 0.879 0.522 7.836 4804 0.867 00918
uma 0.375 0.358 0.938 0.734 0.929 0.851 0.526 8.611 6.406 0.841 0.895
SaltiNet [3] 0.112 0.130 0.933 0.676 0.930 0.696 0.504 10.620 9.264 0.729 0.765
’ 0.120 0.138 0.930 0.676 0.926 0.696 0.506 10.650 9.750 0.734 0.754
PathGAN [4] 0.210 0.212 0.940 0.637 0.937 0.806 0.589 8.658 6.535 0.832 0.862
0.221 0.218 0.937 0.637 0.927 0.821 0.612 9.071 7.750 0.844 0.861
TOR-ROI [40] 0.171 0.202 0918 0.724 0.908 0.782 0.570 9210 7332 0.791 0.818
0.198 0.216 0917 0.737 0.905 0.793 0.590 9.177 7945 0.801 0.817
Ours 0.394 0.391 0.950 0.717 0.933 0.879 0.615 7.523 5701 0.869 0.893
‘ 0.365 0.368 0.946 0.705 0.930 0.864 0.632 7955 6.772 0.856 0.877

Table 1. Scanpath prediction results on the AiR dataset (VQA). In each panel, the first row indicates the correct scanpaths and the second
row indicates the incorrect scanpaths. The best results are highlighted in bold. Underlines indicate scores above human performance.

paths, and learn discriminative features relevant to answer
correctness to successfully predict both correct and incor-
rect scanpaths.

4.3. What contributes to the model’s performance?

Our proposed method has three major technical con-
tributions: VQA model attention as the task guidance
(TG), SCST to address the exposure gap, and the novel
Consistency-Divergence loss (CDL). To demonstrate the
contribution of each component, we incrementally apply

Question: What is the
device on top of the
nightstand made of wood?
Answer: phone

Question: Are there
both knives and
spoons in the picture?
Answer: yes

Correct Incorrect Correct Incorrect

SaltiNet

PathGAN

IOR-ROI

Figure 3. Examples of the predicted scanpaths. Each column com-
pares the prediction results and human scanpaths given specific
answer correctness. The number and radius indicate the fixation
order and duration, respectively. The blue and red dots indicate
the beginning and the end of the scanpath, respectively.

them to a baseline (i.e., a task-ignorant supervised-learning
variant of our method). As shown in Tab. 2, each compo-
nent helps predict both correct and incorrect scanpaths. In
particular, though TG results in relatively minor improve-
ments by itself (under supervised learning), it plays a more
important role in reinforcement learning with SCST. This
observation suggests that SCST can help the model to make
better use of the task input to fixate task-relevant regions.
Finally, using the new CDL loss together with SCST opti-
mizes the within-group and between-group consistencies of
the correct and incorrect scanpaths, thus further increasing
the model performance.

4.4. What do the predicted scanpaths fixate?

To investigate how the predicted scanpaths fixate differ-
ent objects, we align the fixation positions with the ground-
truth object annotations provided by the GQA dataset [23].
We segment each image into three regions: 1) Region of
Interest (ROI) is composed of all the objects in the ques-
tions and answers; 2) Non-ROI is composed of the other
annotated objects that are not included in the ROI; 3) Back-
ground is the empty regions without object annotations. For
each compared model, we compute the percentage of fixa-
tions in each region. As shown in Tab. 3, in general, higher-
performance models generate more fixations in the ROL
Our proposed techniques (i.e., TG, SCST, CDL) improve
the accuracy of fixating task-relevant objects, allowing our
method to perform significantly better than the state-of-the-
art methods [4, 5, 40]. The percentage of fixations to ROI
of our full model is similar to that of humans. Besides, hu-
mans’ correct scanpaths fixate the ROI more frequently than
the incorrect ones, showing the correlation between their at-
tention allocation and task performance. Our method repli-
cates this correlation, while the compared methods fail to
do so. The proposed techniques allow our model to learn
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Method ScanMatch 1 MultiMatch 1 SED | STDE 1
TG SCST CDL w/oDur. w/Dur. Vector Direction Length Position Duration Mean Best Mean Best
0.290 0.323  0.927 0.719 0914 0.845 0.537 8.539 6.829 0.838 0.858
0.280 0.310  0.920 0.713 0.909 0.831 0.544 8.797 7.667 0.827 0.845
v 0.296 0.329  0.927 0.719 0914 0.849 0.533 8.438 6.733 0.841 0.862
0.288 0317  0.922 0.717 0.910 0.837 0.546 8.749 7.682 0.831 0.850
v 0.360 0.363  0.948 0.705 0.930 0.865 0.612 7.752 5961 0.860 0.885
0.350 0.350  0.943 0.704 0.925 0.852 0.627 8.013 6.818 0.850 0.871
v v 0.369 0.370  0.949 0.713 0.933 0.869 0.605 7.741 5982 0.860 0.883
0.350 0.352 0.944 0.716 0.927 0.856 0.616 8.066 6.946 0.849 0.870
v v 0.385 0.383  0.949 0.714 0.932 0.876 0.614 7.569 5736 0.867 0.891
0.348 0.354  0.945 0.703 0.928 0.855 0.620 8.011 6.796 0.849 0.873
v v v 0.394 0.391  0.950 0.717 0.933 0.879 0.615 7.523 5701 0.869 0.893
0.365 0.368  0.946 0.705 0.930 0.864 0.632 7955 6.772 0.856 0.877

Table 2. Ablation study of TG, SCST and CDL on the AiR dataset. In each panel, the first row indicates the correct scanpaths and the
second row indicates the incorrect scanpaths. The best results are highlighted in bold.

Fixations Position %

Method
ROI1T Non-ROI| Background |
Human 2643 6748 6.09
2060 7192 6.48
. 417 77.88 17.95
SaltiNet [5] 3.96 78.49 17.55
7.82 8434 7.83
PathGAN 4] 55 86.10 6.73
9.14 82.99 7.87
TOR-ROT[40] 9.79 82.53 7.67
Ours 2504 69.70 5.26
233 7227 5.40

Table 3. Percentage of fixations in ROI, non-ROI, and background.
In each panel, the first row indicates the correct scanpaths and the
second row indicates the incorrect scanpaths.

more discriminative features and better distinguish correct
and incorrect scanpaths.

4.5. Which VQA model is the most effective?

The explicit use of VQA models in our method allows us
to evaluate and visualize VQA models from a human atten-
tion’s perspective, which has not been explored before. We
evaluate the effectiveness of four VQA models: AiR [12],
UpDown [2], HAN [37] and MLB [29]. Fig. 4 compares
their VQA accuracy on the GQA (test-dev) dataset, ma-
chine attention accuracy (AiR-E [12]), and the scanpath
prediction performance (ScanMatch w/ duration). As can
be seen, both the machine attention accuracy and VQA ac-
curacy are positively correlated with the scanpath predic-

AiR

<
~

o
w
o

UpDown

g
[
3

MLB HAN
Correct

Incorrect

I
i
(=)}

ScanMatch (w/ duration)
=) =)
w (98]
W -3

<
W
=

0.46 0.48 0.5 0.52

VQA Accuracy

0.54 0.56

Figure 4. Comparison of VQA models’ answer accuracy, scanpath
accuracy, and machine attention accuracy (bubble size).

tion performance. Object-based attention maps tend to be
more accurate and provide better task guidance: AiR [12]
achieves the best performance, thanks to its explicit atten-
tion supervision with the ground-truth object annotations.
UpDown [2] computes implicitly supervised object-based
attention, achieving lower performances in scanpath pre-
diction. HAN [37] relies on attention ground-truth from
a specific group of questions [15], which leads to lower
performances and difficulties to generalize. MLB [29] is
based on image features, so its spatial attention maps may
not highlight objects, leading to the lowest performances.
In sum, our method suggests that a well-designed machine
attention mechanism not only improves the performance of
VQA models but also benefits human attention prediction.
It also enables further correlational studies between human
and machine attention mechanisms.
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ScanMatch 1 MultiMatch 1 SED | STDE 1

Method

w/oDur.  w/Dur. Vector Direction Length Position Duration Mean Best Mean  Best
Human 0.390 0.386 0.941 0.695 0.931 0.851 0.621 7.486 5.001 0.844 0.906
Itti et al. [26] 0.211 0.088 0.824 0.653 0.763 0.685 0.415 8701 6.529 0.714 0.757
SGC [41] 0.211 - 0.906 0.658 0.870 0.717 - 8.422 6.194 0.771 0.837
Wang et al. [40] 0.151 - 0.857 0.641 0.801 0.625 - 9.051 7.129 0.682 0.739
Le Meur et al. [34] 0.228 - 0.864 0.657 0.831 0.701 - 8573 6.536 0.739 0.788
STAR-FC [49] 0.204 - 0.920 0.662 0.900 0.668 - 8393 6314 0.751 0.828
SaltiNet [5] 0.169 0.142 0.868 0.647 0.840 0.655 0.566 8.948 7.001 0.706 0.763
PathGAN [4] 0.077 0.079 0.919 0.572 0.905 0.511 0.678 9.414 7.677 0.611 0.691
IOR-ROI [40] 0.267 0.265 0.891 0.709 0.860 0.759 0.634 8.180 6.003 0.789 0.844
Ours 0.383 0.377 0.943 0.651 0.924 0.847 0.684 7.155 4.579 0.852 0.905

Table 4. Performances on the OSIE dataset (free-viewing). The best results are highlighted in bold. Underlines indicate scores above

human performance.

hod ScanMatch 1 MultiMatch 1 SED | STDE 1
Metho

w/oDur. w/Dur. Vector Direction Length Position Duration Mean Best Mean  Best
Human 0.526 0.490 0.944 0.755 0.934 0.913 0.685 2.181 0359 0920 0974
SaltiNet [5] 0.199 0.127 0.909 0.546 0.907 0.740 0.551 4.037 2742 0.759 0.829
PathGAN [4] 0.277 0.198 0.930 0.561 0.926 0.839 0.604 2.820 1.694 0.847 0.901
IOR-ROI [40] 0.316 0.274 0.919 0.665 0.907 0.834 0.586 4384 2595 0.846 0.896
IRL [52] 0.403 - 0.904 0.630 0.887 0.825 - 2734 1.002 0.898 0.952
Ours 0.554 0.510 0.941 0.706 0.927 0.914 0.721 1.852 0.484 0.923 0.965

Table 5. Performances on the COCO-Search18 dataset (visual search). The best results are highlighted in bold. Underlines indicate scores

above human performance.

4.6. Does the proposed method generalize?

Our method can generalize across tasks with different
complexities. Similar to what we observe in the VQA task,
results in the free-viewing and visual search tasks also show
a significant performance boost, achieving a human-level
performance. First, for the free-viewing task (i.e., task guid-
ance and CDL are not applicable), we conduct experiments
on the OSIE dataset [50] following the settings of Sun et
al. [40]. Tab. 4 shows that our method significantly out-
performs the state-of-the-art methods [4, 5, 26, 34, 40, 41,

, 491 on 10/11 metrics with over 42% higher ScanMatch
scores. Next, we conduct experiments on COCO-Search18,
a visual search dataset [52], using a CenterNet [54] detec-
tor to detect the search targets and generate the task guid-
ance maps. As shown in Tab. 5, our method outperforms
the state-of-the-art approaches [4, 5, 40, 52] by a large mar-
gin and reaches human-level performance on 6/11 metrics.
Particularly, our ScanMatch scores are over 37% better than
the state-of-the-art [52] and over 5.3% better than humans.
These overwhelming performances demonstrate the robust-
ness and generalizability of our method in different task set-
tings.

5. Conclusion

We propose the first model for predicting human scan-
paths during visual question answering. By explicitly inte-
grating a task guidance map, the model learns to predict a
sequence of task-driven scanpaths that lead to correct or in-
correct answers. To address the exposure bias, we propose
an SCST approach that optimizes the model based on scan-
path evaluation metrics and a Consistency-Divergence loss
to distinguish between correct and incorrect scanpaths. Our
method significantly outperforms the state-of-the-art meth-
ods on multiple datasets and tasks. Our experiments suggest
that our model can predict human-like scanpaths and reveal
the critical fixation patterns that determine the task perfor-
mance. The improved performance of human scanpath pre-
diction will push forward the research on task-driven atten-
tion and advance a wide range of applications in the devel-
opment of intelligent robots, automatic design and advertis-
ing systems, human-computer interaction systems, and di-
agnostic tools for mental healthcare.
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