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Abstract

Existing explainable and explicit visual reasoning meth-
ods only perform reasoning based on visual evidence but do
not take into account knowledge beyond what is in the vi-
sual scene. To addresses the knowledge gap between visual
reasoning methods and the semantic complexity of real-
world images, we present the first explicit visual reasoning
method that incorporates external knowledge and models
high-order relational attention for improved generalizabil-
ity and explainability. Specifically, we propose a knowledge
incorporation network that explicitly creates and includes
new graph nodes for entities and predicates from external
knowledge bases to enrich the semantics of the scene graph
used in explicit reasoning. We then create a novel Graph-
Relate module to perform high-order relational attention on
the enriched scene graph. By explicitly introducing struc-
tured external knowledge and high-order relational atten-
tion, our method demonstrates significant generalizability
and explainability over the state-of-the-art visual reasoning
approaches on the GOA and VQAv2 datasets.

1. Introduction

Visual question answering (VQA) aims to answer nat-
ural language questions about a visual scene. It is a chal-
lenging task requiring a deep understanding of both vision
and language inputs, as well as knowledge to answer open-
ended questions. While deep neural networks (DNNs) are
extraordinarily powerful, most DNN-based VQA methods
are black boxes driven by superficial correlations between
questions and answers [2]. These models are therefore lim-
ited in making inferences or generalizations. They also
fall short in explaining their decision-making process, espe-
cially with complex questions requiring multiple reasoning
steps to answer. The lack of generalizability or explainabil-
ity in DNN models slows down their applications in many
domains, such as healthcare, security, and finance.

Recent studies aim to address these problems by rep-
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Figure 1. Explicit visual reasoning methods often fail when the
observation does not provide sufficient knowledge. Our method
addresses this problem by generating scene graphs with explicit
knowledge incorporation (e.g., suit-over-shirt) and inferring high-
order relations (e.g., man-wearing-suit-over-shirt) with a novel
G-Relate neural module.

resenting the visual information as a structured scene
graph [24] or converting the question into a program of ex-
ecutable neural modules [11, 12]. These explainable and
explicit reasoning models have achieved remarkable perfor-
mances on synthetic scenes and questions [14]. However,
due to the complexity of real-world images and questions,
they are still far from satisfactory when tested on more gen-
eral VQA datasets [5, 13]. These data-driven methods de-
pend on the accuracy and completeness of the detected ob-
jects and their relations, and are ignorant of commonsense
or other useful knowledge beyond visual observations. For
example, as shown in Fig. 1, to answer the question “Is the
man to the right of the hammer wearing a shirt?” visual
reasoning models need to detect the shirt and attend to it if
it exists. The reasoning task in this example is challenging
as the shirt is undetectable from the scene. On the other
hand, humans can easily integrate the observation that “the
man is wearing a suit” and the commonsense knowledge
that “suits are commonly dressed over shirts”, to infer the
high-order relation between man and shirt. In this work, to
achieve generalizability and explainability in visual reason-
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ing, we propose an explainable and explicit visual reasoning
method based on knowledge incorporation and high-order
relational attention. It depicts two major advantages over
existing approaches:

First, existing visual reasoning studies either implicitly
embed external knowledge as language features [12, 24] or
propagate information from external knowledge graphs into
a scene graph with static topology [32], which is not able
to address undetected objects or missing concepts from the
visual scene. Differently, in this work, we explicitly incor-
porate commonsense knowledge from an external knowl-
edge graph into the scene graph by adding entities and pred-
icates as new nodes. As shown in Fig. 1, with our proposed
method, the external relations shirt-under-suit and suit-over-
shirt can be added to the scene graph to enrich the scene
graph. This enriched scene graph offers richer semantics
enabling generalizable and explainable reasoning.

Second, existing methods depend on the detected binary
relations but lack a mechanism to infer high-order relations
between distant nodes in the scene graph. For example,
as shown in Fig. 1, existing neural module networks can-
not reason correctly with first-order Relate modules, be-
cause either no direct relations are detected between man
and shirt or the question does not specify both (e.g., wearing
and over) relations. We address this challenge by design-
ing a novel Graph-Relate module that enables high-order
relational reasoning. Despite there is no direct relation be-
tween man and shirt, G-Relate can infer the probability of
man-wearing-shirt based on the two direct relations man-
wearing-suit and suit-over-shirt. This allows our model to ef-
ficiently transfer attention to non-adjacent graph nodes and
answer the question correctly.

We summarize the contributions of this work as follows:

1. We propose the first explicit visual reasoning model
that leverages external knowledge and neural modules to
achieve generalizability and explainability.

2. We design a Knowledge Incorporation Network (KI-
Net) that explicitly incorporates external knowledge as ad-
ditional nodes and edges into a scene graph to provide rich
semantics for reasoning.

3. We design a Graph-Relate module that achieves high-
order relational attention based on the scene graph topology
and semantics.

4. Our method outperforms state-of-the-art explicit rea-
soning methods on the GQA [13] and VQAv2 [5] datasets,
suggesting its superior generalizability and explainability.

2. Related Work

Scene graphs. Scene graphs have been pervasively adopted
in various vision tasks, such as image captioning [8, 30, 31]
and VQA [7, 24, 26]. A high-quality scene graph can accu-
rately and reliably describe the visual contents of an im-
age, and an incomplete or incorrect scene graph can de-

grade the performance of tasks of interest. To generate
more accurate scene graphs, several studies have implic-
itly included external knowledge by representing knowl-
edge as language features [28, 29, 33] or subject-predicate-
object triplets [1]. Wu et al. [29] directly embeds exter-
nal knowledge into language features and incorporates them
with visual features. Gu et al. [9] queries class-wise rela-
tions by matching detected objects to classes in Concept-
Net [19]. Zareian et al. [32] applies Graph Convolutional
Networks [17] to propagate information across the scene
graph and external knowledge graph. These methods only
refine the features of graph nodes but not the graph topol-
ogy, which cannot address issues about undetected objects
or external concepts. Differently, by explicitly adding graph
nodes for external entities and predicates, our method ex-
pands scene graphs to include richer semantics until the de-
sired amount of external knowledge is incorporated. More
importantly, it allows neural modules to be directly exe-
cuted on these additional graph nodes, bridging the research
gap of explainable visual reasoning with knowledge.
Explainable and explicit visual reasoning. Our method
is related to a series of explainable and explicit reasoning
methods [4, 10, 11, 12, 15, 20, 24]. Due to the remarkable
learning ability of deep neural networks, end-to-end VQA
models can easily learn the dataset bias without reason-
ing [14]. To address this problem, recent studies have devel-
oped composite reasoning models, by designing and execut-
ing neural modules based on image features [4, 10, 15, 20]
or scene graphs [12, 24]. Recently, Shi et al. [24] pro-
poses eXplainable and eXplicit Neural Modules (XNMs)
that not only achieve 100% accuracy on the CLEVR [14]
dataset but also allow to explicitly trace the attention shift
in the scene graph following the reasoning progress. Sim-
ilarly, Neural State Machine (NSM) [12] predicts a prob-
abilistic graph and performs sequential reasoning over the
graph with more generic modules. Our method differen-
tiates itself from these related studies by introducing ex-
ternal knowledge and high-order relational attention. Our
proposed Graph-Relate module propagates attention to non-
adjacent nodes in the scene graph, enabling the efficient in-
ference of high-order relations.

3. Approach

For the first time, we conduct explainable and explicit vi-
sual reasoning by leveraging scene graphs, external knowl-
edge, and neural modules. Our method first creates an
enriched scene graph by explicitly incorporating external
knowledge and then executes a program of neural modules
generated from the question. Fig. 2 highlights the two nov-
elties of our method, including a Knowledge Incorporation
Network (KI-Net) that explicitly incorporates entities and
predicates from the external knowledge graph to the scene
graph, and a Graph-Relate (G-Relate) module that infers
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Figure 2. Overview of our proposed method. Our main contributions, the Knowledge Incorporation Network (KI-Net) and the Graph-Relate
(G-Relate) module, are highlighted in yellow. Red nodes indicate the current attention.

high-order relations based on the enriched scene graph.

3.1. Knowledge Incorporation Network

Neural module networks are typically trained on datasets
containing a specific set of semantics [ 13, 14], which makes
them difficult to generalize and scale to a broader scope of
knowledge. The proposed KI-Net aims to support explicit
reasoning with richer semantics and allows the neural mod-
ules to trace the reasoning process beyond the visual ob-
servation. It is designed to explicitly incorporate external
knowledge as scene graph nodes (see Fig. 3): Based on the
topology of the external knowledge graph, it first performs
topological extension to incorporate external relations into
the scene graph (e.g., man-wearing-shirt and man-wearing-
helmet in Fig. 3, by explicitly adding new candidate entities
shirt and helmet to the scene graph). Then, taking the vi-
sual and semantic features into account, it performs seman-
tic refinement to selectively discard the candidate entities
with low relevance to the visual observation (e.g., the shirt
in Fig. 3). The KI-Net results in an enriched scene graph
that allows the neural modules to perform explicit reasoning
on the incorporated semantics. It is supervised with ground-
truth scene graph annotations using a cross-entropy loss.
Scene graph and knowledge graph. The KI-Net operates
on an initial scene graph Gs = (Vs,Ps,Es) and an ex-
ternal knowledge graph Gx = (Vix,Px,Ex). The scene
graph consists of entity nodes (i.e., object instances, de-
noted as Vgs) and predicate nodes (i.e., relations or interac-
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tions between entities, denoted as Pg) detected from the im-
age. The knowledge graph consists of class nodes (i.e., gen-
eral concepts, denoted as Vi) and predicates (i.e., relations
between concepts, denoted as Px) acquired from exter-
nal knowledge bases. Both graphs can connect entities or
classes with multiple predicates. They organize relations
between entities or classes as a set of subject-predicate-
object triplets, in which £s and £k contain directed edges
linking from a subject to a predicate or from a predicate to
an object. Each node is associated with a dj-dimensional
feature vector. Node features of the scene graph are initial-
ized with regional features of the detected objects [3], while
those of the knowledge graph are initialized with word em-
beddings [22]. The visual and external node features are
fused with message passing following the GB-Net [32].

Topological extension. Based on the semantic matching
between scene entities and external classes and the graph
topology, we propose candidate entities to be added to the
scene graph. First, each existing entity e € Vs in the scene
graph is bridged with a class node g(e) € Vi with the
same semantic meaning (i.e., the highest feature similarity
above a threshold €.;5). The bridging forms message pass-
ing paths between the scene graph and the knowledge graph.
Next, we create candidate entity nodes to allow knowledge
about unobserved but directly related concepts to be added
to the scene graph. Let d(-,-) denote the minimum num-
ber of predicates between a pair of input entities. We add
a candidate entity ¢’ along with its adjacent predicates p’

o0



External Knowledge

<snow-derive-snowboard>
<man-wearing-shirt>
<man-wearing-helmet>
<snowboard-locationOf-helmet>

| Topological Extension |

Scene Graph *

A\ g : ____________

_________________________________

Knowledge Graph

Helmet

| Semantic Refinement |

H

snowboard

Triplets
<snow-under-snowboard>
<man-wearing-helmet>
<snowboard-locationOf-helmet>

v

| Cross Entropy Loss |

Do O v

|\ _ , Candidate Entity

= = = Bridge

—> Predicate

Figure 3. The knowledge incorporation process.

connecting to entity e if

Jee Vs, dlg(e).g(e) = 1.
Finally, the features of ¢’ and p’ are directly copied from
the corresponding nodes in the knowledge graph, and entity
node ¢’ is bridged with its class node g(e’) as they share
the same features. This topological extension ensures that
the candidate entities (e.g., shirt and helmet in the scene
graph of Fig. 3) are directly related to the visual observation
(e.g., man in Fig. 3) and semantically consistent with cor-
responding classes (e.g., Shirt and Helmet in the knowledge
graph of Fig. 3). It builds abundant connections between the
scene graph and the knowledge graph, so that their features
can be jointly considered to compute the relevance between
the new entities and the observed scene context.
Semantic refinement. The candidate entities have been
added to the scene graph based on the knowledge graph
topology, but their semantic relevance with the observed
scene context is unknown. Therefore, we perform semantic
refinement to maintain a compact scene graph while incor-
porating the most relevant external knowledge. To achieve
this goal, with message passing, we compute a relevance
matrix M measuring the feature relevance between differ-
ent entities. The relevance weights in the matrix M are
jointly decided by the visual features and the semantics
from external knowledge.

D
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Given two adjacent nodes v;, v; € VsUPsUViUPx and
their features h;, h;, the message passing is implemented as
a Graph Attention Network [27]:

(bij = SOftmaX_/\[(vi)(7711']')7 3
hi= Y dihy, @)

N(vi)

where NV (v;) denotes the set of adjacent nodes of v;. The
message passing results in the updated features h, for each
node v;, and a relevance matrix M contains all the pair-
wise relevance scores m;;. We repeat this message passing
K gar times to thoroughly propagate the features.

With the computed relevance matrix M, a candidate en-
tity €” is discarded when the sum of the top-K, relevance
scores between ¢” and its adjacent nodes are smaller than a
threshold ¢,. All its adjacent predicate nodes are also dis-
carded. Finally, we remove all bridges and obtain an en-
riched scene graph with only the relevant nodes incorpo-
rated from the external knowledge graph. The topological
extension and semantic refinement can be performed itera-
tively depending on the amount of knowledge required.

3.2. Reasoning with Neural Modules

Neural module networks are a class of reasoning meth-
ods that achieve explainable reasoning by composing and
executing a set of handcrafted neural modules on top of im-
age features [4, 10, 15, 20] or scene graphs [12, 24]. Recent
neural module networks [24] have achieved perfect accu-
racy on synthetic visual reasoning datasets [14], but their
generalization to semantically-rich real-world images is still
an unsolved problem. Our KI-Net has generated an en-
riched scene graph with a broader scope of semantics, al-
lowing explainable reasoning methods to generalize beyond
the scope of training data. In this section, we focus on intro-
ducing the novel G-Relate module that can infer high-order
relations by shifting attention to non-adjacent graph nodes.

To perform explicit reasoning on the enriched scene
graph, we design three categories of neural modules: atten-
tion, logic, and output. These neural modules are grounded
on four meta-types of atom modules that can represent all
the question types in VQA datasets [5]. The attention mod-
ules compute the relative importance of different image
contents (e.g., image features or scene graph nodes) during
the reasoning process, which are essential to the answering
of many questions. Attend computes the attention weights
of entities based on their features, and G-Relate shifts at-
tention to other related entities through a queried predicate.
Besides the two attention modules, logic modules (i.e., And,
Or, and Not) perform logical operations based on the at-
tention weights, and output modules (i.e., Compare, Count,
Exist, Choose, Describe, and Verify) compute output fea-
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Modules  Category Operation
Attend  Attention a = softmax(MLP(h, q))
G-Relate  Attention a,h,q — a’ (see Equ. (5))
Or Logic a’ = min(a', a?)
And Logic a’ = max(a', a?)
Not Logic ad=1-a
Compare  Output h’ = MLP(h' — h?)
Count Output h’ = MLP(sum(a))
Exist Output h’ = MLP(sum(a))
Choose Output  h’ = softmax(MLP(q))W (a o h)
Describe ~ Output k' = softmax(MLP(q))W (a o h)
Verify Output k' = softmax(MLP(q))W (a o h)

Table 1. Our neural modules. MLP(+) indicates a multi-layer per-
ceptron consisting of several fully-connected and ReLU layers,
and W is a matrix of learnable weights. The parameters a, h,
and q indicate attention, features, and query, respectively.

tures according to different question types. Tab. 1 summa-
rizes the specific neural modules and their implementations.
The three categories of neural modules are composed into
a program to reason over the enriched scene graph. Taking
both the graph topology and rich semantics into account,
the neural program can explicitly trace the attention over
the reasoning process to infer the answer.

Graph-Relate module. In neural module studies, relational
inference is commonly implemented by reallocating atten-
tion considering the relevance to a predicate query [12].
Existing methods [24] either only shift attention between
adjacent scene graph nodes, or learn a transfer matrix to
propagate attention across all nodes regardless of the graph
topology. In complex scene graphs, as the numbers of en-
tities and predicates increase, high-order attention becomes
a critical need that the existing neural modules cannot han-
dle. For example, to answer the question “What is the phone
on?”, attention should be transferred from phone to both
the adjacent entity table and the non-adjacent entity coffee
(see Fig. 4). The features of coffee provide extra informa-
tion about the table type. With first-order relate module,
transferring attention to coffee is rather difficult, because no
direct relation between phone and coffee can be extracted
from the inputs. To address this challenge, we design a
Graph-Relate module to infer high-order relations in the
enriched scene graph, so that attention can be transferred
along a path of relations to reach a distant entity.

Given the attention a computed by the previous mod-
ules in the neural program, the G-Relate module computes
a transfer matrix W, to propagate the attention over the
scene graph. With this transfer matrix, the attention of the
graph can be updated as:

a’ =norm(Wa), (5)

where norm(-) casts all attention weights of entity nodes

Question: What is the phone on?
Answer: coffee table

&
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leftof
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Figure 4. An example of attention transfer along different paths
of high-order relations. Red nodes indicate the current attention,
and red arrows indicate different paths to transfer attention from
phone to coffee.

into [0, 1] using a softmax function.

The transfer matrix W, can be computed in various
ways. For example, in XNM [24], the encoded query g
and the edge features h;; are processed with a MLP to
compute the transfer matrix. The edge features come from
either the first-order ground-truth relations or the concate-
nation of two adjacent entity features. Differently, our G-
Relate module considers high-order composite relations in
the scene graph: we extract all possible relation paths U4;; =
{U1,Us,--- ,Un} connecting between e; and e; (within
a maximum length L). For example (see Fig. 4), we ex-
tract two paths that describe the composite relation between
coffee and phone: coffee-locationOf-cup-rightOf-phone and
coffee-locationOf-cup-on-table-under-phone.  Both paths
consist of a set of first-order relations and contribute to the
high-order relations between both entities. The transfer ma-
trix is computed by considering different situations based
on the topological distance l;; = d(e;, e;) between the enti-
ties e; and e; (i.e., the number of predicates along the path).

Formally, we compute the transfer weights w;; between
entities e; and e; based on predicate features and graph

topology:

softmax/(¢,)( max (MLP(hy,q))), l; =1
7 Uk€Uq;
Wij = Z H Wab, 1< lv] < L
Uk€Uij (€a,er)EU
0, lij > L
(6)

where hj, represents the features of the k-th predicate be-
tween entities e; and e;, and wg, is the weight between ad-
jacent entities e, and e;. The transfer weights of first-order
relations (i.e., l;; = 1) are computed directly based on the
relevance between the predicate features and the query. A
high transfer weight indicates that the predicate features
are closely related to the query, and vise versa. Different
from XNM, our graph structure allows multiple predicates
to connect between two entities, and here we adopt their
maximum weight. To measure the transfer weights of high-
order relations (1 < [;; < L), we compute the product of
the first-order transfer weights along each path and linearly
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combine them across multiple paths. We store the computed
transfer weights w;; into the relation matrix W, and up-
date the attention at each entity node by propagating these
weights across the whole graph. This process is integrated
into the end-to-end training of neural modules.

4. Experiments and Results

We demonstrate our method with experiments on the
GQA [13] and VQAV2 [5] datasets. Our method outper-
forms the state-of-the-art explicit reasoning methods, sug-
gesting its superior ability to generate neural modules to
explicitly reason over the enriched scene graph. Qualitative
examples show that the complex reasoning process can be
completely traced across multiple graph nodes. Our results
also demonstrate the superior performance and generaliz-
ability of KI-Net on scene graph generation thanks to the
incorporated external knowledge.

4.1. Implementation Details

Datasets. We conduct an extensive set of experiments to
evaluate the proposed method on two VQA datasets: The
GQA [13] dataset is a visual reasoning and compositional
VQA dataset offering questions and answers about various
real-world images. We conduct experiments on its balanced
subset that includes 1.7M questions. The VQAv2 [5] dataset
is particularly designed to test the generalizability of VQA
models, which consists of 1.1M questions, each annotated
with 10 ground-truth answers. These two datasets maintain
a large size of versatile questions and rich annotations of the
scene structure (e.g., ground truth scene graph) and reason-
ing process (e.g., semantic structure of question).

Scene graph and knowledge graph. We generate ini-
tial scene graphs with a VCTree [25] trained on Visual
Genome [18]. To generate an external knowledge graph,
we extract relations from three knowledge bases: Concept-
Net [19], WordNet [21], and Visual Genome [18]. We ini-
tialize class nodes based on the nouns in the vocabulary of
the training set. From ConceptNet and WordNet, we re-
trieve the first-order relations and add the corresponding
classes and predicates to the knowledge graph. From the
Visual Genome dataset, for each subject-object pair, we in-
clude the top-3 predicates according to their frequency of
occurrence. For both the scene graph and the knowledge
graph, the feature dimension is set to dj, = 300.

KI-Net training. Our KI-Net is trained on the GQA dataset
using its ground-truth scene graphs. The KI-Net parameters
are optimized with Adam optimizer [16] at a learning rate of
10~* and a weight decay rate of 10~%. We bridge entity and
class nodes with top feature similarity and empirically set
the feature similarity threshold e¢.;; = 0.7 following [32].
For the message passing, we set the number of iterations
Kgar = 3. We set the parameters K, = 3 and ¢, = 0.8 to
limit the size of the enriched scene graph. Ablation studies

of the hyper-parameters are reported in the Supplementary
Materials.

Neural program generation and training. We convert the
input question into a program of neural modules follow-
ing StackNMN [10]. The question is first converted into
a sequence of T' = 4 feature vectors (with dimensionality
ds = 300) using a bi-directional LSTM [23]. At each step
t, we generate textual parameters g, and weight parame-
ters w; using several layers of MLP in a time-dependent
manner. The textual parameters are used as queries and the
weight parameters are used for soft module selection. We
feed the output features of the program into a softmax layer
to predict the answer. The neural modules are trained by
minimizing the cross-entropy loss of the predicted proba-
bilities for the top 3000 answers. We use the Adam opti-
mizer with a learning rate of 10~* and a decay rate of 1074,
The training process is approximately 20 epochs with early
stopping based on validation accuracy. We set the max path
length L = 3 to balance computational complexity and per-
formance. Ablation studies of the hyper-parameters are re-
ported in the Supplementary Materials.

Model evaluation and comparison. We compare our
method with state-of-the-art neural module methods. While
XNM [24] and NSM [12] are graph-based explicit reason-
ing models, StackNMN [10] and N2NMN [ 1] are based on
image features. For a fair comparison, all compared mod-
els are trained and evaluated under the same settings, except
that N2NMN requires ground truth layout policies to super-
vise the generation of neural programs.

4.2. Model Performance

Comparison with the state of the art. As shown in Tab. 2,
our method achieves a 64.21% overall accuracy on the GQA
test-dev dataset [13] and a 67.32% overall accuracy on the
VQAV2 validation dataset [5], outperforming the state-of-
the-art neural module models on both datasets. Our method
also ranks the top regarding answer consistency, validity,
and plausibility, while achieving the second-best distribu-
tion score. Among the compared models, NSM performs
the second best thanks to its specifically designed state tran-
sition function that can be trained end-to-end to represent all
possible neural modules. This end-to-end learning of neural
modules improves the model performance at the expense of
interpretability, as the semantic meaning of the learned neu-
ral modules is unclear.

It is noteworthy that our method shows a considerable
improvement in the plausibility metric. The plausibility
measures whether objects are described with a general level
of world-knowledge (e.g., the color of an apple can be red or
green, but not blue). The higher plausibility score demon-
strates that our method can effectively reason about com-
monsense knowledge based on the enriched scene graph.
Comparison with the baselines. Tab. 2 compares three
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hod GQA test-dev VQAV2 val
Metho
Binary Open Consistency Validity Plausibility Distribution Overall Yes/No Number Other Overall

N2NMN [11] 74.68  41.33 87.78 96.03 84.15 6.07 56.97 77.54 4038 5639  63.28
StackNMN [10] 7592 4321 86.41 96.30 84.29 5.69 58.55 79.28 41.06 5643  64.09
XNM [24] 76.88 4324 88.24 96.21 84.92 5.81 59.01 79.92 41.16  57.12  64.70
NSM [12] 78.94  49.25 93.25 96.41 84.28 37 63.17 79.77 4175 5940  65.77
Baseline I 7397 4128 85.24 96.17 83.85 6.13 56.61 77.65 4129  57.82 64.11
Baseline II (G-Relate) 7622 43.31 88.25 96.12 84.71 5.48 58.74 79.80 4097 5873 6538
Baseline IIT (KI-Net) ~ 77.79  45.60 89.31 96.21 85.77 5.72 60.69 79.64 4289  59.71  65.98
Ours 81.02 49.36 93.81 96.84 86.31 4.41 64.21 81.92 4316 6047 67.32

Table 2. Quantitative results on the GQA and VQAv2 datasets. The best results are highlighted in bold.

baseline models to evaluate the effectiveness of the pro-
posed KI-Net and G-Relate. Baseline I replaces G-
Relate with a basic Relate module following the XNM
method [24], and performs reasoning without external
knowledge incorporation. Baseline II (G-Relate) only uses
G-Relate to infer high-order relations, and Baseline III (KI-
Net) only uses KI-Net to incorporate knowledge. The re-
sults suggest that KI-Net and G-Relate can independently
improve the VQA performance on both datasets. Alto-
gether, they achieve total improvements of 7.6% on GQA
and 3.2% on VQAV2, better than the sum of their inde-
pendent improvements. This observation suggests that G-
Relate is more effective on the enriched scene graph struc-
ture by resolving its semantic complexity. In particular, by
improving the scene graph and attention transfer, KI-Net
and G-Relate allow the attention to be more efficiently and
accurately allocated to the correct nodes. As a result, our
method significantly improves the accuracy of answers to
attention-sensitive questions (e.g., yes/no questions). For
further analyses of the attention distribution, please refer to
the Supplementary Materials.

Qualitative results. Fig. 5 presents qualitative examples
and key relations incorporated from external knowledge that

Image:
Question: Which room is it? Are there both cheese and salad?
Answers: GT: Bedroom  Ours: Bedroom GT: Yes Ours: Yes
XNM: Indoors  StackNMN: Indoors  XNM: No StackNMN: No
NSM: Indoors  N2NMN: Indoors NSM: No N2NMN: No
Knowledge: bed-locationOf-bedroom pizza-has-cheese
Neural Attend[room], Describe[name] Attend[cheese], Attend[salad],
Modules: And, Exist

help the reasoning model to predict the correct answer. As
shown in the examples, our method predicts more accurate
answers than the state-of-the-art methods. With the help of
multi-source external knowledge, our method is more gen-
eralizable to questions with out-of-domain knowledge and
answers more specifically and correctly to open questions
(see Fig. 5a) and binary questions (see Fig. 5b-d). The per-
formance improvement comes from the explicitly incorpo-
rated entities and predicates that allow the reasoning pro-
cess to attend to these nodes and infer the correct answer.
For example, in Fig. 5a-b, our method answers correctly
because it can explicitly allocate attention to the incorpo-
rated entities (i.e., bedroom and cheese). These examples
also demonstrate the importance of reasoning with high-
order relations. Since the entities (i.e., pole, propeller, and
aircraft, see Fig. 5c-d) are added from the external knowl-
edge, it is not possible to directly generate multiple first-
order Relate modules from the questions. Instead, our G-
Relate can propagate attention directly along the high-order
relation paths (e.g., man-in-ski-requiring-pole in Fig. 5c¢ and
aircraft-has-airplane-has-propellers in Fig. 5d). These ex-
amples demonstrate the collaboration between KI-Net and
G-Relate that improves the overall reasoning performance

(c) @

Is the man holding ski poles? Are there any propellers on the aircraft?

GT: Yes Ours: Yes GT: Yes Ours: Yes
XNM: No StackNMN: No XNM: No StackNMN: No
NSM: No N2NMN: No NSM: No N2NMN: No

ski-requiring-pole airplane-typeOf-aircraft

propellers-partOf-airplane

Attend[man], G-Relate[hold],
Attend[pole], Exist

Attend[aircraft], G-Relate[on],
Attend[propeller], Exist

Figure 5. Qualitative examples of our method with the incorporated knowledge and the generated neural modules. Highlighted entities and

predicates are incorporated from external knowledge.
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Method mR@50 mR@100 R@50 R@100
GB-Net [32] 6.1 6.9 25.5 29.8
KI-Net 6.2 7.3 25.7 30.6
Improvement 0.1 0.4 0.2 0.8

Table 3. Comparison between KI-Net and GB-Net on the VQAv2
validation set.

and model explainability.

4.3. Evaluation of Scene Graphs

To further demonstrate the effectiveness of KI-Net, we
evaluate the enriched scene graphs on the VQAv2 dataset.
We measure the quality of scene graphs with the Recall
(R@50, R@100) and mean Recall (mR @50, mR @100) fol-
lowing the common practice [6]. The R@K measures how
many ground-truth relations are hit in the top K predictions,
and mR @K balances the uneven distribution of relations by
measuring the average R@K across all relations.
Effectiveness of explicit knowledge incorporation. We
compare KI-Net with GB-Net [32], a state-of-the-art scene
graph generation model that implicitly distills semantic fea-
tures from the external knowledge graph without adding
graph nodes. In this experiment, both GB-Net and KI-
Net are based on the same initial scene graph and external
knowledge graph. Tab. 3 shows that the explicit incorpo-
ration of relevant entities and predicates allows KI-Net to
generate better scene graphs on all metrics. Its performance
gain over the GB-Net is more significant on the R@ 100 and
mR100 metrics. This suggests that the less confident pre-
dictions of the original scene graph benefit the most from
the KI-Net, due to the incorporated external relations.
Comparison of knowledge bases. To demonstrate the
ability of KI-Net on the inclusion of multiple knowl-
edge sources for the generation of enriched scene graphs,
we compare the effectiveness of WordNet [21], Concept-
Net [19], Visual Genome [ 18] or a combination of all three.
Tab. 4 shows that the KI-Net can significantly improve the
quality of the scene graph even with only one external
knowledge base. With a combination of all three, KI-Net
achieves the highest accuracy in scan-path generation, de-
spite the semantic similarity of the knowledge bases and the
training of KI-Net on the VQAv2.0 dataset.

4.4. Generalization across neural module networks

To validate the generalizability of the proposed KI-Net,
we apply state-of-the-art graph-based neural module net-
works (i.e., NSM [12] and XNM [24]) to the same scene
graphs and compare their performances before and after
knowledge incorporation. Specifically, since the NSM and
XNM methods are based on different scene graph struc-
tures, for a fair comparison, we customize them to run on
the same initial scene graph (i.e., VCTree [25]) and the en-

Knowledge Base mR@50 mR@100 R@50 R@100

None 5.5 6.7 253 28.9
WordNet [21] 5.9 7.0 25.4 30.2
ConceptNet [19] 6.1 72 25.5 30.1
Visual Genome [ 8] 6.0 72 25.6 30.4
All 6.2 7.3 25.7 30.6

Table 4. KI-Net performances with different knowledge bases on
the VQAV2 validation set. The best results are highlighted in bold.

Accuracy
Method
w/o KI-Net  w/ KI-Net Improvement
NSM [12] 63.41 63.68 0.27
XNM [24] 64.89 65.93 1.04
Ours 65.38 67.32 1.94

Table 5. Generalization results of KI-Net to other neural module
networks on the VQAv2 validation set.

riched scene graph (i.e., with KI-Net) as ours. As shown in
Tab. 5, our KI-Net is generalizable to many neural module
methods. It effectively enriches the scene graphs with rele-
vant semantics and improves the accuracy of answers. Due
to its more general neural module design, NSM is less sensi-
tive to the quality improvement of scene graphs. Therefore,
KI-Net is the least effective working with NSM. Similar to
our method, XNM offers a set of explicitly defined neural
modules, but it can only transfer attention along first-order
relations. Therefore, with XNM, the enriched scene graph
has a moderate level of effect on the VQA accuracy. Com-
pared with NSM and XNM, our novel G-Relate module can
better leverage the rich semantics in the scene graph and
obtain a more significant performance improvement.

5. Conclusion

In this paper, we address the generalizability and ex-
plainability of visual reasoning by introducing an explain-
able and explicit visual reasoning method that emphasizes
the explicit integration of external knowledge and high-
order relational attention. It consists of a novel Knowl-
edge Incorporation Network (KI-Net) that explicitly incor-
porates new entities and predicates to enrich the semantics
of scene graphs, and a Graph-Relate (G-Relate) module to
infer high-order relations. With these novel contributions, it
can answer general questions about real-world images with
both generalizability and explainability. Our method out-
performs the state-of-the-art visual reasoning approaches on
the GQA and VQAv2 datasets.
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