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Because of the importance of graph workloads and the lim-
itations of CPUs/GPUs, many graph processing accelerators
have been proposed. The basic approach of prior accelerators
is to focus on a single graph algorithm variant (eg. bulk-
synchronous + slicing). While helpful for specialization, this
leaves performance potential from flexibility on the table
and also complicates understanding the relationship between
graph types, workloads, algorithms, and specialization.

In this work, we explore the value of flexibility in graph
processing accelerators. First, we identify a taxonomy of key
algorithm variants. Then we develop a template architecture
(PolyGraph) that is flexible across these variants while being
able to modularly integrate specialization features for each.

Overall we find that flexibility in graph acceleration is
critical. If only one variant can be supported, asynchronous-
updates/priority-vertex-scheduling/graph-slicing is the best
design, achieving 1.93× speedup over the best-performing ac-
celerator, GraphPulse. However, static flexibility per-workload
can further improve performance by 2.71×. With dynamic
flexibility per-phase, performance further improves by up to
50%.

I. INTRODUCTION

Graphs are fundamental data structures in data mining, nav-
igation, social networks and AI. Graph processing workloads
are challenging for traditional architectures (CPUs/GPUs) due
to data-dependent memory access, reuse, and parallelism.
However, these workloads present many specialization oppor-
tunities: commutative updates, a resilience to performing work
in an arbitrary order, and repetitive structure in memory access
and computation. This implies large advantages for special-
ization, either with CPU offload engines [18,19,28,29,52] or
accelerators [1,2,12,16,32,49,50,54,61].

Yet these designs generally make strong assumptions about
certain aspects of graph processing for simplicity, which can
limit their ability to generalize. This includes assuming a
certain input graph type (eg. high vs. low diameter), workload
property (eg. order resilience, frontier density), and most im-
portantly for this work: fundamental graph algorithm variants.

These variants dramatically affect the tradeoff between
throughput and work-efficiency1: 1. Update Visibility: granu-
larity when graph updates become visible, 2. Vertex Schedul-
ing: the fine-grain scheduling policy for vertex updates, 3.

1Work-efficiency is the work-required by the optimized sequential execution
(in terms of edges processed) over the work performed in parallel execution.
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Fig. 2: Work-efficiency and Throughput Tradeoffs

Slice Scheduling: whether and how the graph working set is
controlled, and 4. Update Direction: Whether vertices update
their own or neighbors’ properties (pull/push). Each variant
has profoundly different implications on hardware, and these
implications can vary by graph and workload type.

Most prior graph-accelerators have each focused on one al-
gorithm variant (see Figure 1). Because each algorithm variant
causes different tradeoffs in work-efficiency, locality/memory-
efficiency, and load balance, different accelerators end up
performing well for different workloads and input graphs.
Figure 2 shows the throughput (in giga-traversed edges per
second - GTEPS) versus work-efficiency measured by our
model of these accelerators. Performance is a product of work-
efficiency and throughput, so we also show equi-performance
curves in this figure. Our insight is that we can optimize
performance by having the flexibility to use the right algorithm
variant for the right graph and workload (or even workload
phase).



Selecting the right variant is simple; the challenge is to
design an architecture with sufficient algorithm/architecture
flexibility, and little performance, area, and power over-
head. This flexibility requires supporting different granularity
tasks (synchronous vs asynchronous updates), fine-grain task
scheduling, flexibly controlling the working set, and having
flexibility for different data structures.

Approach: Our design augments prior efficient decoupled-
spatial accelerators [11,23,31,34,55], which can support gen-
eral data-structures and suit both memory-intensive (eg.
Breadth-first Search (BFS)) and compute-intensive workloads
(eg. Graph Convolutional Networks (GCN)). The fundamental
limitation of existing decoupled-spatial accelerators is the lack
of support for fine-grain data-dependent parallelism (ie. task
parallelism). To solve this, we developed a novel execution
model, called Taskflow, that integrates task abstractions and
data-dependent scheduling as first-order primitives within a
dataflow program representation.

Integrating this flexible hardware and variant combina-
tions required solving several challenges. First, integrating
asynchronous variants with sliced execution required new
mechanisms for deciding when to switch slices and how to
orchestrate data during slice transition. Next, because tasks can
be short lived due to pipelined dataflow execution, we needed
to develop a high-throughput task scheduler. Also, because we
relied on a mesh interconnect (for scalability and high local
bandwidth), a new multi-level spatial partitioning scheme was
critical to ensure locality and balanced load.

Our accelerator – PolyGraph – combines the above mech-
anisms in a programmable multicore specialized for many
variants of graph processing, and is well-suited for other
workloads with dynamic parallelism and large working sets.

Evaluation and Results: We evaluated PolyGraph with cycle-
level simulation, supporting a design space of architectures
with features encompassing many prior works [1,32,50]. We
evaluated traditional and ML-based graph workloads (Table I),
on graphs with up to 1.5 billion edges. The best algorithm-
specific PolyGraph design (PG-singleAlg) is 16.79× (up to
275× for high diameter graphs) faster than a Titan V GPU.
More importantly, we find that flexibility is critical. By stat-
ically choosing the best algorithm variant, we gain 2.71×
speedup. Dynamic flexibility provides 1.09× further speedup.

Contributions:
• Idea of flexibly supporting and dynamically switching

between specialized graph processing algorithm variants.
• Flexible “taskflow” execution model, integrating dynamic

task parallelism and pipelined dataflow execution.
• Novel µarchitectural support for pipelined task creation

and scheduling, leveraging properties of graph algorithms.
• Broad and detailed comparison of prior graph accelerators.
• Insights into the relationships between graph types, work-

loads, algorithm variants, and architecture techniques.

Paper Org.: We first give background on key workload/graph
properties (§II). We then discuss a taxonomy of algorithm
variants (§III). We develop a unified program IR for these vari-
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(c) Logical execution of slices over time
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9:       Chose vertex v

11: new_prop = vert_prop[v]+edge_wgt[v->w]

13: if vert_prop[w]-new_prop[w] > 0 then
14: vert_prop[w] = new_prop[w]
15: add w to active_set

10:    for all outgoing vertices w: do

7:   for all spatial slices s in t: do in parallel

8:     while any active vertex active_set[t][s]

2: vert_prop[V_init] = 0 # initialize vertex prop
3: active_set[T][S] = {} # initialize active sets
4: add V_init to active_set 
5: while any active slice left
6:   Choose temporal slice t

1: procedure CALC_SHORTEST_PATH(GRAPH=(V,E,
   T:Temporal Slices (optional); S:Spatial Slices))

9:       Chose vertex v

11: new_prop = vert_prop[v]+edge_wgt[v->w]

13: if vert_prop[w]-new_prop[w] > 0 then
14: vert_prop[w] = new_prop[w]
15: add w to active_set

10:    for all outgoing vertices w: do

7:   for all spatial slices s in t: do in parallel

8:     while any active vertex active_set[t][s]

2: vert_prop[V_init] = 0 # initialize vertex prop
3: active_set[T][S] = {} # initialize active sets
4: add V_init to active_set 
5: while any active slice left
6:   Choose temporal slice t

1: procedure CALC_SHORTEST_PATH(GRAPH=(V,E,
   T:Temporal Slices (optional); S:Spatial Slices))

Fig. 3: Algorithm (SSSP) and Mapping to Arch. Template

ants (§IV), and describe the support within PolyGraph (§V),
as well as our novel spatial partitioning (§VI). Finally, we
evaluate and discuss related work (§VII,VIII,IX).

II. GRAPH ACCELERATION BACKGROUND

Here we describe our computational paradigm, mapping to
a template architecture, and key graph/workload properties.

A. Vertex-centric, Sliced Graph Execution Model

In vertex-centric graph execution [17,25,26,38,42,48], a
user-defined function is executed over vertices. This function
accesses properties from adjacent vertices and/or edges, and
execution continues until these properties have converged.

Preprocessing the graph can offer better spatial and/or tem-
poral locality. Commonly, the graph is divided into temporal
slices (or T-slices) which fit into on-chip memory. Further
preprocessing may divide the graph among cores for load-
balance or locality; these are spatial slices (S-slices).

Example: Shortest Path (SSSP): Figure 3(a) shows an exam-
ple code (SSSP) written in this model. An active list is main-
tained for each temporal and spatial slice. After initialization,



Priority Vertex comp. Vertex update Prop(B)
SSSP [39] dist src dist+edge wgt min(dist,dst dist) 4B
BFS [39] depth src depth+1 min(depth,dst depth) 4B
CC [39] comp. ID - min(src id,dst id) 4B
PR [47] res/deg src res*α/src deg new res+dst res 2x4B
CF [58] grad f(src prop.dst prop) new vec+dst vec 32x4B
GCN-Inf [22] - matrix-mult src vec+dst vec 128x4B

TABLE I: Graph Workloads (Prop: vertex prop. size).
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Fig. 4: Graph Data Structures

the algorithm iterates over all active temporal slices until no
vertex is active. Within each temporal slice, the corresponding
spatial slices execute concurrently (see Figure 3(c)). Within
each spatial slice, the vertices are scheduled iteratively. Each
vertex execution updates its neighbor’s vertex properties. If
the destination’s vertex property is changed, it is activated2.

Different graph workloads can be implemented by changing:
1. initial active vertices, 2. the function computed for each
vertex, 3. the update function for the destination vertex. An
optional characteristic is a priority hint for vertex scheduling
(see Figure 3(c), Line 11). Examples are shown in Table I.

Figure 3(b) shows a high-level decoupled-spatial template
architecture, colored to indicate the relationship between algo-
rithm and accelerator. The temporal-slice scheduler chooses a
T-slice in each coarse graph phase. The spatial slices (S-slices)
are executed in parallel across all cores. A task scheduler picks
a vertex to execute at each step, and the per-vertex computation
(lines 10-15) is mapped to the address generator and compute
unit. Atomic updates to vertex properties (lines 13-14) are
enforced using conflict detection and stalling.

Graph Data-structures: Figure 4 overviews the essential
data structures. A vertex-list stores the first edge index for
each vertex. Edges are stored contiguously in the edge list,
containing a destination vertex id (and optional edge weight).
Each vertex has a property which the algorithm computes.
The active list data structure, and whether we double buffer
the vertex properties, depends on the algorithm variant (§III).

B. Key Workload/Graph Properties

Graph Property: Diameter: is the largest distance between
two vertices. Uniform-degree graphs (eg. roads) have a simi-
lar/low number of edges-per-vertex, and thus a high diameter.
Oppositely, power-law graphs (eg. social networks) have low
diameter, as some vertices are highly connected.

Workload Property: Order Sensitivity: Many graph work-
loads are iterative and converging. This converging nature
tends to make such workloads functionally resilient to the
order in which computation occurs. However, some of these

2This describes the push-based update direction. For pull, the incoming
edges are used to update the vertex’s own property.
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Fig. 5: Key Variants of Graph Processing Algorithms

workloads may require a different amount of work depending
on the order tasks are performed; ie. their work-efficiency
is order-sensitive. For example, in a shortest path algorithm,
exploring a farther away vertex before a near vertex can lead
to redundant work, because the distance of the farther vertices
may be updated if a shorter path is found. Sensitivity varies
with workload. Breadth-first search (BFS), is less sensitive as
many paths are of equal depth, making it less likely to find
a wrong path. Non-converging workload like GCN is order
insensitive.

Workload Property: Frontier Density: Dense frontier work-
loads like PR, CF usually have more than 50% active vertices
while sparse frontier workloads (eg. SSSP, BFS) require much
fewer. In general, sparse frontier workloads require fewer
passes through the graph until convergence.

III. GRAPH ALGORITHM TAXONOMY

To systematically study the value of flexibility, we create a
taxonomy of four key dimensions and discuss tradeoffs.

Update Visibility: defines when writes become visible to other
computations, and hence this affects the granularity at which
new tasks are created. Writes may become visible after one
pass through the graph (graph-synchronous), after each slice
(slice-synchronous)3, or immediately (asynchronous). Barriers
are used to synchronize update propagation in synchronous
variants. Figure 5(a) visualizes dependences in a slice-based
execution of graph processing (blue boxes are graph slices
which fit in on-chip memory). The figure shows how the
dependence distance shrinks (red arrows) moving from syn-
chronous to asynchronous.

Tradeoffs: While synchronous algorithms naturally provide
sequential consistency of vertex updates, fast implementations
of asynchronous variants do not lock neighboring vertices,
and hence do not provide sequential consistency of tasks.
While many converging workloads do not require this, some
workloads may not be expressible or converge slower (eg.
ALS [25]). Also, barriers in synchronous variants can be a
high overhead when the work between them is low (eg. due
to few active vertices).

3Graph/slice synchronous are bulk-synchronous [41] at different granularity.



Vertex Scheduling: defines the processing order for active
vertices, relevant for asynchronous variants. Figure 5(b) de-
picts the variants for shortest path: Locality order: To improve
the vertex access locality, schedule by vertex-id. Creation or-
der: Schedule vertices in the order they are activated (breadth-
first in the figure). Work-efficiency order: Schedule vertices in
an order which reduces redundant work (by distance in the
figure). Section II-B explains the intuition. Table I lists the
priority metric for each workload.

Tradeoffs: When active vertices are accessed in their storage
order, spatial locality enables high memory bandwidth; How-
ever, this costs work-efficiency, as it requires critical updates
to be delayed. Creation order requires simple FIFO logic,
while Work-efficiency order requires dynamic sorting. Note
that distributed ordering is sufficient [47].

Temporal Slicing: defines whether the working set may be
limited to a predefined slice of all graph vertices. Slices are
determined during offline partitioning and are generally sized
to fit on-chip memory. Updates to data outside the current slice
are deferred, and an explicit phase is required to switch slices
(combined with barriers in synchronous variant). Slices can
be scheduled in different orders, forming new variants. Fig-
ure 5(c) depicts each: Round-robin: iterate through all slices.
Locality: similar, but repeatedly process each slice. Work-
efficiency: prioritize slices whose properties change most [51].
In the example, slice 1 is chosen second, as its properties
changed most (v1 and v2).

Tradeoffs: Non-sliced avoids barriers and slice-switching
data movement, which is costly if there are few active vertices.
Slicing can also harm the optimal ordering by restricting the
scheduling scope. The key benefit of temporal-slicing is more
effective on-chip memory use. Locality scheduling improves
intra-slice reuse but may delay cross-slice updates. Sliced-
work-efficiency ordering optimizes for work-efficiency with-
out requiring hardware support for fine-grained scheduling.

Update Direction: defines whether a task updates its own
property (pull/remote read), or whether a task updates its
neighbor’s properties (push/remote atomic update).

Tradeoffs: Push reduces communication bandwidth by us-
ing one-way communications (push updates to neighbors)
and efficient multicast [5], rather than the remote memory
requests in pull. The request latency is hidden due to the
access reordering potential of push. Finally, pull often requires
more work while reading all incoming edges of each active
vertex. However, there are techniques that optimize pull by
eliminating edge accesses based on vertex convergence [3,60]:
their effectiveness depends on prefetching capability.

Notation: We use a two-letter shorthand (sometimes ex-
panded) to denote each variant combination (Figure 6). By
default we assume push; we notate pull with an explicit suffix.

Summary: Table II summarizes the throughput (lacks syn-
chronization or improves locality) or work-efficiency benefit
(reduces update latency or has priority ordering); it also shows
which graph type and #active-vertices it is best suited for.

Sg,Ss, Ac,Al,Aw N, Tr,Tl,Tw

Update Visibility
S: Synchronous, A: Asynchronous

Temporal Slicing
N: Non T-sliced, T: Temporal Sliced

× 
Sync. Granularity

G: Graph, S: Slice

Vertex Order
C: Creation, L: Local, W: Work Eff.

Temporal-Slice Order
R: Rnd-Robin, L: Local, W: Work Eff.

Fig. 6: Shorthand for Algorithm Variants
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TABLE II: Algorithm Variant Tradeoffs

IV. UNIFIED GRAPH PROCESSING REPRESENTATION

To support variants efficiently on a unified hardware, we
need a program representation that is flexible, fast, and is spe-
cialized for graph workloads. Because of their different needs,
we develop separate approaches for the data-plane (pipelined
task execution) and the control plane (slice scheduling).

A. Data plane Representation: Taskflow

Three major requirements drive taskflow’s design: 1. Need
for fully pipelined execution of per-vertex computation. 2.
Need to support data-dependent creation of new tasks, in-
cluding programmatically specifying and updating the priority
ordering. 3. Need for streaming/memory reuse.

Taskflow satisfies these requirements by augmenting a
dataflow model with first-class support for priority ordered
tasks. In taskflow, a task is invoked by its type t and input
arguments: <t,args>. We use a type rather than a function,
because graph workloads typically only require 2 or 3 tasks
types, and this makes supporting reconfigurable hardware
straightforward. Each task type is defined by a graph of
compute, memory and task nodes:
• Compute nodes: are passive, and may maintain a single

state item. This enables them to be mapped to systolic-like
fabrics [9,11,15,31,34] for high efficiency.

• Memory nodes: represent decoupled patterns of memory
access, called streams [7,11,21,31,44,45]. Stream param-
eters can either be constant (set at stream creation) or
dynamic (consumed from another node with a FIFO inter-
face). Figure 7(a) defines stream parameters and behaviors.

• Task nodes: represent arguments, and are ingress and
egress points of the graph. An instance of a task is started
by providing a value to each of the ingress task nodes,
and a task is created when values arrive at all egress task
nodes.

Atomics: Shared-memory atomics are critical due to the need
for correct handling of memory conflicts on vertex updates. In
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taskflow, a memory stream can be marked as “read-modify-
write” (RMW) and will be atomic. See example in Figure 7(a).

Priority Scheduling and Coalescing: One task argument may
be designated at compile time as the task’s priority. The parent
task computes the priority prior to task creation, and this serves
as a hint to schedule tasks with higher priority first.

Another task argument indicates the ID, which is unique for
all active tasks. The ID generally is the vertex id, and may be
used for task coalescing and sliced execution. When two tasks
with the same ID are created, this is treated as an update to the
priority of the original task, and the two tasks are “coalesced”
into one higher priority task. The upper bits of the ID indicate
the task’s T-slice and S-slice. Tasks are deferred until their
T-slice is active and are scheduled at their S-slice core.

Taskflow Examples: Figure 7(b) shows an example taskflow
graph for SSSP, implemented as Asyncwork−e f f . This workload
has two tasks, each associated with different vertex data:
Task type 1 iterates over outgoing edges of a source vertex
to compute distances, and creates a type 2 task for each
destination vertex to carry out distance updates. The ID of
task 1 and 2 is the vertex-ID of source and destination vertices
respectively, and they execute on the core corresponding to
the ID. Type 1 tasks are prioritized by vertex distance for
work-efficiency. Type 2 tasks also check if the vertex should
become active, and if so, a new type 1 task will be created.
The number of task 1 invocations is accumulated in a shared
memory location to identify slice-switching (see §IV-B).

In GCN, graph aggregation is synchronous, while matrix-
vector multiply is asynchronous – this enables overlapping
the memory-intense aggregation tasks with compute-intensive
matrix multiply. Here, task 1 is coarse-grained, and iterates
over all vertices (in a slice), and a single task node trigger
creates many cycles of work. It pushes source vector features
to task 2 to aggregate them together for incoming edges of
each vertex. Aggregation (task 2) asynchronously triggers a
matrix-vector multiply (task 3) when aggregation is complete

(identified using node done). Note that this overlap splits
matrix-matrix into multiple matrix-vector computations: this
prevents the broadcast of weight matrix. To localize the traffic
for weight responses, we duplicate weight matrix at each core
(this is low overhead: only consumes 3% of scratch space).

Taskflow Flexibility Summary: Synchronous variants
(Sgraph,Sslice) use coarse grain tasks that pass through the
(per graph/per slice) active list. Asynchrony is supported with
explicit fine-grain tasks, optionally with priority hint argument.

B. Slice Scheduling Interface and Operation

The responsibility of the temporal slice scheduler is to
configure on-chip memory, decide which slice to execute next,
and manage data/task orchestration. The slice scheduler is
invoked infrequently, and can be executed on a simple control
core with limited extensions for data pinning operations. The
slice scheduler also has a mechanism for creating initial tasks.

Data Pinning: Depending on the algorithm variant, we may
know which data we want to most reuse. For eg. for syn-
chronous non-sliced (SgN), edges have large reuse distance,
but vertices with high-degree are reused many times. In sliced-
locality variants, edges are also reused, to a lesser extent. To
help the slice-scheduler optimize for reuse, we provide the
slice scheduler an interface to pin a range of data to the on-chip
memory at a particular offset, essentially reserving a portion of
the cache (eg. pin the region of vertex properties that have high
reuse). Non-pinned data is treated like normal cache access.

Slice Switching for Asynchronous Variants: The decision of
when to switch slices for asynchronous variants is a tradeoff
between work-efficiency (switch sooner) and reuse (switch
later). To explain, information at the slice’s boundary becomes
“stale” over time, as it may depend on an inactive slice’s
execution, thus hurting work-efficiency. It is impossible to
calculate “staleness”, as it depends on the future execution.
Therefore, we approximate it by counting the number of vertex
updates, and switch slices when these exceed a threshold.
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When switching slices, the slice scheduler gives all cores a
highest priority stop task, which disallows any new tasks to be
issued and it may also perform the slice transition as explained
below.

Slice Preprocessing: Slices are preprocessed to keep all edges
(and hence updates) within each slice. This is accomplished
by creating a mirror vertex for any cross-slice edge in the
destination slice, and removing the original cross-slice edge
from the source slice. For example, if edge A→B crosses a
slice, then a mirror vertex for A would be created in B’s slice.
Mirror A retains the edge A→B, while this is removed in the
original vertex A (in A’s slice). The mirror vertices properties
are only updated during slice transition, as explained next.

Slice Transition: Figure 8 shows how data is orchestrated
during slice transition. Two slices are shown, and only one may
reside in on-chip memory at a time. Main memory contains
the graph vertex properties, pending tasks for each slice, and
a copy of each mirror vertex. Transition works as follows:
Step 1. Stream in cross-slice vertex properties (eg. vertex 10,
K), and scatter to their S-slice core; compare old and new
properties to see which vertices changed. If such a property
changed, a new task is created in the destination slice by
pushing the task’s arguments to that slice’s pending tasks list
(10, K to slice 2).
Step 2. Meanwhile, the updated cross-slice vertex properties
are stored in the copy of mirror vertex properties. Also, the
current slice’s pending tasks and updated vertex properties are
streamed to memory.
Step 3. In parallel with step 2, using double buffering, vertex
properties in the next slice are streamed to pinned memory.
Step 4. Stream next slice’s pending tasks from main memory.

C. Scheduling of Algorithm Variants

Quantitative Motivation: Figure 9 shows the fine-grained
effective throughput (normalized to work-efficiency) over time
for several algorithm variants. Time on the x-axis is normal-
ized to the percentage of total execution time, as time-scales
vary significantly between variants. Notice that the highest
performance variant changes during the execution:
Low Diameter Graph (lj): For order-sensitive SSSP (SP in
figures), Asyncwork-eff dominates due to work-efficiency gains,
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while for less order-sensitive BFS, both Asyncwork-eff and
Syncgraph are similar. The sliced versions improve on-chip
hit rate, however switching to non-sliced at beginning/ending
iterations has significant potential.
High Diameter Graph (USW): Since high diameter graphs
have only a few vertices active in each iteration, synchro-
nization overhead is critical. Therefore, Asyncwork-effNo-slice
consistently dominates.
Dense frontier workloads (pr,cf): For PageRank, there is a ten-
sion between memory efficiency due to high active vertices and
work-efficiency due to order sensitivity. Therefore, Slicesync
balances tradeoffs and is optimal. For CF, Asyncwork-effTlocality
is optimal in initial iterations, however Asyncwork-effNo-slice
dominates in the later iterations when #active vertices are low.

We found that switching between synchronous/asyn-
chronous hurts work-efficiency, as they proceed differently:
asynchronous leaves many vertices active because it focuses on
high priority vertices, while synchronous conservatively tries
to complete the work for all active vertices in every iteration.

Heuristics for Algorithm Variant Scheduling: Figure 10
shows how we decide the algorithm variant. For slicing, the
effective throughput depends on whether the work during
phase is sufficient to hide barrier overhead. This work can
be approximated from active vertices – for example, non-
sliced outperforms at the beginning and end of the algorithm,
as active vertices are fewer (Figure 10, lj). For uniform
graph (rdUSE), non-sliced consistently outperforms as active
vertices are low due to their high diameter. Therefore, our
algorithm switches to non-sliced when number of active ver-
tices are below a threshold. In the update visibility dimension,



the decision depends on the workload characteristics. Asyn-
chronous versions are preferred for order-sensitive workloads
(See Figure 10, sp). Dense frontier algorithms (those with
usually >50% active vertices) have high inherent spatial
locality, so Slicesync is preferred, as it is memory efficient
while maintaining moderate work-efficiency. We also propose
a flexible multi-level spatial partitioning that can optimize for
load and locality depending on the workload and graph type
(details explained in §VI). Note that the scheduling decisions
may change depending on hardware parameters, as we discuss
in Section VIIIE.

Variant Transition: Variant selection is performed after a
single round of graph/slice in Sg/Ss, or after every 100k
cycles for asynchronous variants (long enough to amortize
the latency of switching). To transition, given the algorithm
variant, the control core will: 1. initialize data-structures and
configure taskflow graph, and 2. perform pinning operations.
If a dynamic switch is invoked, on-chip memories are flushed,
and taskflow may require reconfiguration. The pending tasks
are managed as during slice transition data orchestration.

V. POLYGRAPH HARDWARE IMPLEMENTATION

PolyGraph is a multicore decoupled-spatial accelerator con-
nected by 2D triple mesh networks4, overviewed in Figure 11.

The data plane is comprised of all modules besides the con-
trol core, and is responsible for executing taskflow graphs. The
decoupled execution of memory/compute is similar to prior
decoupled-spatial accelerators: memory nodes are maintained
on stream address generators, and accesses are decoupled to
hide memory latency. A Softbrain-like CGRA [31] executes
compute nodes in pipelined fashion. Between the stream
controller and CGRA are several “ports” or FIFOs, providing
latency insensitive communication. The novel aspect is task
management: A priority-ordered task queue holds waiting
tasks. Task nodes define how incoming task arguments from
the queue are consumed by the stream controller to perform
memory requests for new tasks.

The basic operation is as follows: If the stream controller
can accept a new task, the task queue will issue the highest-
priority task. The stream controller will issue memory requests
from memory nodes of any active task. The CGRA will
pipeline the computation of any compute nodes. The CGRA
can also create new tasks by forwarding data to output ports
designated for task creation, and these are consumed by the
task management hardware. Tasks may be triggered remotely
to perform processing near data. Initial tasks may be created
by the control core, by explicitly pushing task arguments to
the task creation ports.

The task management unit enables high-throughput
priority-ordered task dispatch. This is critical, as many tasks
are short-lived. Therefore, the requests of multiple tasks should
be pipelined. The task unit also coalesces superfluous tasks
at high throughput (for priority update), by maintaining a

4Multiple networks enable efficient scalar remote accesses.
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bitvector of in-flight tasks IDs. Tasks can overflow the task
queue, which is handled by an overflow protocol.

Finally, slice scheduling is implemented on core 0’s control
core (a simple inorder core). The PolyGraph cores com-
municate with the slice scheduler through shared memory
atomics to coordinate at phase completion. The slice scheduler
orchestrates data when switching slices and may initiate a stop
task on remote cores to prevent any new tasks to be issued.

A. Task Hardware Details

Task Queue and Priority Scheduling: A task argument buffer
maintains the arguments of each task instance before their
execution. Statically, it is split into the number of task types
and each partition is configured to the size of its corresponding
task type arguments. The task argument pointers to ready tasks
(ie. whose all arguments are available) are stored in the task
scheduler. Note that we use the priority task scheduler (de-
scribed next) only for graph access tasks and FIFO scheduling
for others (eg. vertex update).

Our task scheduler uses a pipelined hardware-based
heap [6], where each memory bank represents a level in the
priority heap. Push/pop operations move nodes across levels,
locking in a hand-over-hand fashion. This implies a throughput
of one enqueue-dequeue operation every two cycles. For low
degree graphs, this throughput is insufficient. Therefore, we
use multiple priority-heaps per core, and alternate between
them. This implies imperfect ordering, because two consecu-
tive highest-priority elements could be in the same queue. In
practice this does not significantly hurt work efficiency.

Overflow and Reserved Entries: If the task queue is full,
new tasks will overflow into a buffer in main memory (32kB
is sufficient). This buffer is drained to the queue as entries
are freed, and the priority then is re-calculated by using the
updated vertex prop. Re-calculation is required as the priority
might have been updated due to coalescing.

Overflow unfortunately disrupts the priority order, and can
hurt work-efficiency due to delaying a high priority task. To
mitigate, we reserve some task queue entries for latent high-
priority tasks (eg. 32 for 256 sized queue). During overflow,
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a new task is allocated a reserved entry if it is equal/higher
priority than the current highest-priority task.

Task Coalescing: To reduce active tasks, we allow coalescing
of tasks with the same ID. We implement this with an SRAM
bitvector, where each bit corresponds to a task ID. A set bit
means the corresponding task is present in the overflow buffer,
and this will prevent task insertion for that ID.

For graph processing, task ID corresponds to vertex id. We
size the bitvector to be 32 kB, as this covers the maximum
vertices in temporally sliced variants. For non-sliced, Poly-
Graph only coalesces the first 32K vertex id. This is sufficient
in practice, as the partitioner can simply move critical high-
degree vertices to the beginning of the vertex list.

B. Memory Architecture

Shared Memory: Our on-chip memory is a shared address-
partitioned cache, with multiple banks per PolyGraph core.
Each cache bank has a region translation unit that maintains
the mapping of virtual address ranges to the pinned addresses.

Data-structure pinning is supported similar to prior buffer-
in-NUCA techniques [8]. When the slice-scheduler in core 0
pins a memory region, the region translation unit in all cores
are sent the base/bound of the region, along with an offset.
This causes some of the sets of the cache to be set aside for
pinned data. The core will generate requests for that region
and send an acknowledgment when complete. Subsequent
memory requests check the range registers to determine if
they are to be mapped to the cache or pinned region. Pinning
a new data-structure flushes all cache regions in the newly
pinned addresses. Re-pinning is only required during transition
between variants: this happens at most twice (when active
vertices go above or below a threshold), thus the overhead
is low compared to the 10s/100s of slice switchings.

Atomic Updates: When update requests are received from
the local core or the network, they are pushed to the pending
atomic requests queue at its corresponding bank. The conflict
check logic uses a small CAM (8 entries, to cover atomic
latency) to detect and delay aliasing requests.

VI. SPATIAL PARTITIONING

While offline partitioning is common for creating temporal-
slices, we find that spatial partitioning makes the mesh-based

GPU Graphcnd. GraphPls Ozdal Chronos PG
[10] SgTr [16] AwTl [35] AcN [32] AwN [1] (ours)

Compute GP104 SIMT-16 ASIC D-flow ASIC CGRA
$+Spad 14.5MB 32MB 32MB 32MB 32MB 32MB
FP Unit 5120 1024 1024 1024 1024 1024
Mem GB/s 652 512 512 512 512 512
Net. type Bus XBAR XBAR XBAR 3 mesh
Net. radix - 128 128 5 core/8 mem

TABLE III: Architecture Characteristics of Baselines

Graphs Vertices Edges Dia Structure #T-Slices

A
ll orkut 3M 106.3M 9 Power-law 1/2

LiveJournal 4.8M 68.9M 16 Power-law 2/4
twitter 41.6M 1.4B 9 Power-law 5/10

Se
ar

ch indoChina 7.4M 194M 200 Random 2
rdUSE 3.5M 8.7M 2897 Uniform 1
rdUSW 6.3M 15.2M 10206 Uniform 2

cf big-mlens 0.2M 2.5M 5 Power-law 2
mlens 82k 10M 5 Power-law 1

gc
n pubmed 0.02M 0.09M 9 Power-law 2

cora 2.7k 10k 20 Power-law 1

TABLE IV: Input Graphs (Left column is the domain. PR requires
double #T-slices; #T-slices for CF/GCN depends on feature size.)

network highly effective, as we describe next.
Spatial partitioning introduces a tradeoff between locality

and load balance. Naively clustering connected vertices will
reduce network traffic, but may hurt load balance, especially
for sparse frontier workloads. We explain with a simple grid-
graph5 in Figure 12, but observations apply more broadly.
In Figure 12(a), we use clustering-only for creating S-slices;
the dotted red lines show the progression of a sparse frontier
workload like BFS. What we can observe is that the frontier in
several iterations is limited to a single slice (allocated in one
core); hence, this strategy has extremely poor load balance.

Multi-level Scheme: Figure 12(b) visually shows our pro-
posed ”multi-level” slicing scheme that respects both load
balance and locality. First, the graph is split into many small
clusters of fixed size to preserve locality, then these clusters
are distributed equally among cores for balanced load. To
implement, we use a simple bounded-depth first search (with
depth=8) to find small clusters (of a parameterizable size), then
distribute these round-robin to different S-slices. It requires
O(V) time.

Note the effect is proportional to the number of active
vertices, hence high diameter graphs prefer load balanced
multi-level as active vertices is usually low across iterations.
For low diameter, larger clusters are helpful for locality.

VII. METHODOLOGY

PolyGraph Power/Area: We prototyped PolyGraph by ex-
tending DSAGEN [46] with task scheduling hardware, and
extended the stream-dataflow [31] ISA as described. We
synthesized PolyGraph cores and NoC at 1GHz, with a 28nm
UMC library. We used Cacti 7.0 [30] for modeling eDRAM.

Baseline Architectures: For reference, we use a 24-core SKL
CPU and GAP benchmarks [4]. For CF and GCN (unavailable

5Grid-graphs are somewhat representative of common road networks.
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Fig. 13: Algorithm Variant Performance Analysis

in GAP), we used Graphmat [39] and Gunrock [43] respec-
tively. We evaluated Gunrock [43] graph processing library on
a Titan V GPU. Gunrock does not implement CC/CF, so we
calculate GPU means without these workloads.

For performance modeling across variants, we developed
a custom cycle-level modular simulator. Main memory is
modeled using DRAMSim2 [36]. Accelerator configurations
are in Table III, and have similar memory capacity, bandwidth,
and max throughput. We assume preprocessing is done offline
and reused across queries. Note that both temporal partitioning
(chunk-based Gemini [59]) and spatial partitioning are O(V).

For fairness and consistency with our simulation framework,
we make the following provisions for prior accelerators: For
Graphicionado [16], we did not implement capacity optimiza-
tions like extended graph slicing and coarsened edge table. For
Ozdal [32], we bypassed the sequential consistency module;
it is not required on our workloads. For Chronos [1], we
modeled priority-order speculative execution with their no-
rollback optimization. Since SLOT requires a single read-write
object per task, we implemented the pull variant; this allows
vertex granularity tasks instead of fine-grained edge tasks in
push. We used PolyGraph’s NoC, as Chronos is FPGA-based.
For GraphPulse [35], we model their task coalescing, but for
consistency with our simulator, we used distributed scheduling.

For Polygraph (PG) we evaluate: 1. PG-singleAlg: fixed-
variant configuration that provides the best geomean speedup.
2. PG-multiAlg: Here flexibility is incrementally added for
per-workload (static) and per-phase (dynamic).

Datasets: Table IV summarizes input graphs. For SSSP on
unweighted graphs, random weights are assigned from [1:256).
Due to prohibitive simulation times of exploration, we evaluate
large graphs (twitter, rdUSW) only for overall performance.

Workloads: Table I lists the evaluated workloads. For graph-
based machine learning workloads, PR and CF, we optimize
for convergence by choosing a different learning rate for each
algorithm variant (higher for asynchronous variants). For GCN
inference, we only implement the graph synchronous variant,
as asynchronous benefits are minimal due to GCN’s non-
converging behavior.

VIII. EVALUATION

Our objective is to evaluate how much and which kinds of
flexibility are useful, across graph and workload types. First,
we analyze algorithm variants (§VIII-A) and compare against
prior accelerators (§VIII-B). Then, we discuss sensitivity to
algorithm and hardware parameters. (§VIII-C,§VIII-D).

A. Algorithm Variants Performance Comparison

Figure 13 compares strong algorithm variants – those
which perform well on at least one workload/graph type –
in terms of throughput and work-efficiency. Overall, we find
that asynchronous-sliced, AwTl, is the optimal variant (3.72×
geomean speedup over typical SgTr), while static flexibility
can further improve by 1.29× for high diameter graphs6.
High Diameter Graphs: For ordered workloads like SSSP,
high diameter graphs are highly sensitive to asynchrony and
priority ordering, as it helps to identify more useful paths.
Therefore, the speedups over Syncgraph is high. Among vertex-
scheduling schemes, Asynccreation/Asynclocality provides only
modest work-efficiency. In addition, the synchronization over-
heads of synchronous variants (eg. Sg, Ss) or slicing (eg. AwT),
significantly hurt high diameter graphs. Overall, (AwNo-slice)
performs best/similar for all scenarios.
Low Diameter Graphs: With priority ordering, the or-
dered workloads see work-efficiency benefits (sp.orkut,
sp.lj). Since low diameter graphs have significant reuse
due to power-law degree distribution, slicing greatly improves
performance. The synchronization overhead is minimal due to
many active vertices in each iteration. For PageRank, which
has a dense frontier, SyncsliceT-slicerobin provides speedups
through memory efficiency. Overall SyncsliceT-slicerobin and,
Asyncwork-effT-slicerobin are sufficient.
Vector Workloads: With asynchrony, collaborative filtering
sees high gains, however priority scheduling is not required.
For bmlens, the graph does not fit on-chip, and non-sliced is
better as cross-slice updates are more critical here. Moreover,
large vertex properties have high spatial locality that reduces
cache miss overhead.

Less Competitive Variants: We generally find that with suf-
ficient hardware for priority-order asynchronous scheduling,
synchronous with sliced-work-efficiency is not competitive. It

6The overall potential is even higher for larger graphs, discussed in §VIII-B.
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also does not improve performance for asynchronous variants,
as they require less iterations due to dynamic task creation.

Finally, the best pull variant, SgTrPull with break opti-
mization [3], consistently performs worse due to pipeline
stalls waiting on random reads and work-efficiency loss from
accessing all incoming edges irrespective of whether they are
active. It is only competitive with its push counterpart for the
USE graph, as it is 1. undirected: so no/less extra computation,
2. easy-to-partition: random reads are mostly local.

Work-efficiency vs Throughput for Algorithm-Variants:
Figure 15 further explains the workload and graph type trade-
offs. Slicing improves memory efficiency for low diameter
graphs, while Aw helps in improving work-efficiency for order-
sensitive workloads. Since high diameter graphs are regular,
No-slice is superior as it achieves high hit rate while both
avoiding barrier overheads and optimizing for work-efficiency.
For dense frontier workloads, slice synchronous balances
memory and work-efficiency. For the vector workload, CF,
memory efficiency is implicitly high, thus asynchronous vari-
ants dominate due to faster convergence.

B. Comparison to Prior Accelerators

Figure 14 shows the overall comparison. PG-statMultiAlg
allows variant flexibility at the workload level, and PG-
dynMultiAlg enables dynamic switching. Overall, PolyGraph
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Fig. 16: Cumulative Speedup of Novel Features
outperforms CPU by 105.7× and GPU by 49.4×. Over the
fastest prior accelerator, GraphPulse, it achieves 5.7× speedup.
High Diameter Graphs: PolyGraph achieves work-efficiency-
proportional gains over Gunrock’s Syncgraph GPU version.
Even through Chronos and Ozdal use non-sliced implemen-
tations, they also use the inefficient pull variant. For the USW
graph that does not fit in on-chip memory, GraphPulse and
PG-singleAlg lose due to slicing overheads of switching time
and work-efficiency loss due to delayed cross-slice vertices. A
non-sliced variant can avoid these overheads.
Low Diameter Graphs: For order-sensitive SSSP and PR, PG-
singleAlg gains work-efficiency due to vertex scheduling and
slicing significantly improving hit rate. Since BFS and CC are
less order-sensitive, PG-singleAlg behaves similar to Graphi-
cionado. However, dynamic switching improves performance
(eg. bfs.lj,bfs.tw).
Vector Workloads: For GCN, accelerators provide high
speedup, as they support efficient broadcast of weight ma-
trices, while GPU is bottlenecked by the unified cache band-
width [43]. PolyGraph gets about 25% speedup by overlapping
the communication-intensive aggregation and computation-
intensive multiplication tasks. CF gains work-efficiency with
synchrony and throughput with switching to the non-sliced
variant in later iterations.

Novel Features: Figure 16 shows the cumulative speedup
of each novel features over an asynchronous-push accelera-
tor. In general, slicing significantly improves memory effi-
ciency on low diameter graphs (okt,lj), while it causes
slowdown in high diameter graphs due to work-efficiency
loss (bfs.indo). Task coalescing particularly benefits low
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Fig. 18: Slice Switch Heuristics (C: cross-slice vert., E: edges/slice)

diameter graphs by eliminating superfluous updates to high
degree vertices. The locality optimized multi-level partitioning
with a fixed cluster size provides 20% benefit. For BFS.USE,
multi-level is worse than naive partitioning because load is the
primary bottleneck when locality is available. Thus, optimal
cluster size depends on the input.

C. Algorithm Sensitivity

Dynamic Switching Heuristic: Figure 17 shows the results
of dynamic switching, with the heuristic described in §IV-C.

Here, we compare performance as we sweep the switch-
ing threshold of active vertices. The initial variant is
the single-variant-optimal (AwTl). For low diameter graphs
(lj,okt,mlens), performance improves to some point due
to avoiding slice-switch overheads (up to 28% here); after this
point performance reduces due to low memory efficiency of
non-sliced. The effect is more dominant on non-computation
intensive workloads like BFS. For high diameter graphs, the
speedup plateaus, as non-sliced can achieve similar memory
efficiency; thus, static flexibility is sufficient for them. Overall,
dynamic switching helps primarily low diameter graphs.

Slice Switching Heuristic: Figure 18 compares slice switch-
ing heuristics on order-sensitive workloads7. “No tasks” repre-
sents switching when no outstanding tasks are left; it is either
worse performance (sp.indo,bfs.indo) or does not con-
verge (sp.use,sp.lj). Low diameter graphs (okt,lj,
mlens) prefer a larger threshold because their clustered struc-
ture allows higher ratio of intra-slice vs inter-slice updates.
High diameter graphs (use,indo) are highly sensitive to
delayed updates and prefer to switch earlier. Note that for
larger high diameter graphs, the work-efficiency loss still

7Note that since okt,USE fits in PolyGraph’s on-chip memory, we reduced
the on-chip memory size to half to make this experiment interesting.
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dominates, and no-slicing wins if flexibility is available. We
chose the edge-based heuristic, with a slicing threshold of
0.25*E for high diameter graphs and 1*E for low diameter
graphs.

Spatial Partitioning: Figure 19 evaluates the multi-level
spatial partitioning policy for different cluster sizes (on AwTl
variant)8. The results suggest small clusters optimize for
dynamic load balance, while larger clusters improve locality.
SSSP has higher computation intensity, and is thus more
bottlenecked by locality than load balance; hence larger cluster
sizes are better. BFS prefers smaller cluster sizes as memory
level parallelism is more critical due to its low computation
intensity. The default cluster size is 128; we use 16k for
low diameter graphs (except BFS). Overall, flexible multi-
level spatial partitioning provides 40% performance gain over
conventional clustering.

Per Data-structure Reuse: Figure 20 shows the per-phase ac-
cess frequency of edge and vertex data-structures for a subset
of interesting variants. The access counts are averaged for a
single phase for synchronous or 100k cycles for asynchronous.
In general, vertices are more critical to cache on-chip because
they have higher reuse and also require finer-grained random
accesses. Although edge reuse is also significant because
of iterating over a single slice multiple times (T-slicelocality
variants), we found that caching edges is not always beneficial.
This is because it reduces vertex slice size too much, which
hurts work-efficiency. Finally, the vertex list data-structure
has similar access behavior as vertex prop, therefore we pin
vertex prop and vertex list on-chip for sliced variants.

8We do not evaluate this for CF, GCN because, due to their large vertex
properties, their maximum cluster size is too small.
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D. Hardware Sensitivity

In this section, we discuss the performance sensitivity of
graph algorithm variants to hardware resources. Note ordered
workloads are geomean of SSSP, PR and CF and unordered
include BFS and CC. We discuss GCN separately.

PolyGraph Scaling: With 2x cores (and 2x memory band-
width), the performance scales well (limited by available
parallelism) as shown in Figure 21(a). Even though low
diameter graphs are highly sensitive to memory bandwidth,
scaling on unordered workloads is limited by parallelism
while ordered workloads suffer due to loss in work-efficiency
with larger network latency. Since high diameter graphs are
easy-to-partition, they ensure high hit rate and thus reduced
dependence on memory bandwidth. AwN high_dia case
shows performance loss with more cores: this is because larger
working set means higher sensitivity to factors affecting work-
efficiency, like larger network latency for 32 cores.

Network bandwidth: Figure 21(b) sweeps over scalar net-
work bandwidth. The sliced variants of low diameter graphs
have good on-chip memory locality, and are bottlenecked by
network bandwidth. For high diameter graphs, both sliced/non-
sliced variants achieve high hit rate and memory locality.
Therefore, sliced variants are bottlenecked by load imbalance
due to frequent synchronization, while for non-sliced, work-
efficiency is proportional to the network bandwidth.

On-chip memory size: Figure 22 shows the performance
sensitivity to on-chip memory size: this is a proxy for scaling
up graph-size (more slices required and more cache pressure),
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Fig. 22: Sensitivity to Memory Size

Area (mm2) Power (mW)
Control Cores 0.053 11.5
Priority Task Queue 0.05 15.86
Task Coalescer 0.05 3.4
on-chip mem+ctrl 4.15 25.64
CGRA (4x5) 0.21 80
8x8 8-byte crossbar 0.002 1.92

1 PG-Core 4.51 138.3
4x4 32 byte mesh (1) 0.2 44.7
4x4 8 byte mesh (3) 0.2 34.22

PG Total 72.56 2292.12

TABLE V: Area and Power breakdown for PG-flex (28nm)

while using a consistent input. The data is presented for
specific input graphs as the saturation point depends on the
ratio of graph and on-chip memory size. For ordered work-
loads, a larger memory size improves work-efficiency with
lesser cross-slice edges while reducing the required number
of barriers. The latter is a small factor, as can be seen for
unordered cases. Ordered.rdUSW AwN is an exception
where performance degrades with larger on-chip memory; this
happens because a larger working set may cause cores to
become too unsynchronized, hurting working efficiency.

GCN Sensitivity: When doubling core count, GCN’s perfor-
mance scales by 1.9×, with little loss due to load imbalance
in aggregation phase. For scaling network bandwidth, GCN
improves linearly up to 64-byte bandwidth, after which com-
putation becomes the bottleneck. For scaling down on-chip
memory, only if we scale down to 4MB does the memory
bandwidth become the bottleneck; this happens with 7 slices,
since our GCN’s graphs require maximum 28 MB.

Area Tradeoffs: Table V shows PolyGraph’s area breakdown.
It occupies 72.56mm2, with eDRAM consuming 91.1% of the
total area. Compared to Graphicionado, PolyGraph is similar
area with 84% power due to using a mesh instead of a crossbar.

Figure 23 compares accelerator speedup and area. Overall,
PolyGraph has similar area as Graphicionado while achieving
7.2× speedup due to its optimizations and flexibility. We
also examine area tradeoffs for PolyGraph by removing the
components that consume significant area (eliminating certain
variant options). Without caches, memory flexibility is not
available, hurting high diameter graphs. Without a priority
queue, the gains on order-sensitive workloads is reduced. With
no dynamic tasks, SsTr is the best variant, as it provides
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some work-efficiency by conveying updates sooner, with high
memory efficiency of locality scheduling.

IX. ADDITIONAL RELATED WORK

Figure VI categorizes prior work by variant. All variant
combinations are supported by PolyGraph.

Graph Frameworks with Flexibility: While some software
graph frameworks focus on a single algorithm variant (eg.
GraphMat [39]: SgN), several others allow certain amount
of flexibility in their programming model. For example,
Galois [33] provides optional support for scheduling vertex
buckets by a data-dependent priority (Minnow [52] provides
hardware support for CPUs). Salvador et. al. [37] studies the
interaction of update direction and memory coherence/consis-
tency models for GPUs, and demonstrates the usefulness of
flexibility. We further show the usefulness of flexibility across
dimensions of update visibility and vertex/slice scheduling.

Powergraph [14] supports both synchronous and asyn-
chronous variants. Powerswitch [48] adds heuristics to switch
between sync/async dynamically, which we find is not effec-
tive for accelerators. X-Stream is “edge-centric”, where edges
are streamed without sparse access through vertex indices.
Even though edge-centric can be supported by PolyGraph, we
did not consider it as it is incompatible with key optimizations
like priority ordering and vertex-based dynamic tasks.

Graph Taxonomies: McCune et al. classified distributed
graph frameworks [27]. Lenharth’s taxonomy [24] identifies
factors that impact graph execution: (topology, synchronicity,
reordering, graph operators). These works do not consider
hardware specialization or slicing.

Hardware Accelerators: Graphicionado [16] accelerates
push-based synchronous variant. GraphDyns [50] adds dy-
namic work-distribution. Ozdal et. al. supports sequential
consistency in its asynchronous graph processing ASIC tem-
plate [32]. Our evaluated workloads do not require sequential
consistency guarantees for correctness; only CF may converge
faster with consistency [25].

Digraph [56] is a multi-GPU system for asynchronous
graph processing. Chronos [1] is the only prior asynchronous
accelerator that supports fine-grained priority scheduling. Sev-
eral designs exploit multiple HMC nodes (eg. Tesseract [2]).
GraphP [54] extends Tesseract with a two-phase programming
model enabling efficient partitioning. GraphQ [61] has a
hybrid execution model; asynchronous within each HMC.

Non-sliced(N) Temporally-sliced (T)

Syncgraph(Sg) Tesseract [2] Graphicionado [16] (Trobin)
GraphMat* [39] GraphDyns [50] (Trobin)

Syncslice(Ss) GraphQ* [61] (Trobin)
GraphABCD* [51] (Twork−e f f )

Asynclocal (Al ) Ozdal [32] GraphPulse [35] (Tlocality)
Giraph* [17]

Asynccreat.(Ac) Graphlab* [25]
AsyncWork(Aw) Chronos [1] Digraph* [56] (Twork−e f f )

Galois* [33]
Minnow [52]

TABLE VI: Prior Works in Taxonomy (*software frameworks)

DepGraph [57] combines updates across frequently ac-
cessed paths, reducing re-execution overhead. This is an
alternative way of improving work-efficiency.

Graph Spatial Locality Techniques: Graph preprocessing
is employed to improve spatial locality [13,20,40], which is
especially useful if graphs are executed in locality/vertex order.
HATS [28] is a CPU offload accelerator which dynamically
discovers graph locality. Polymer [53] explores spatial place-
ment and replication of vertices in a distributed system.

X. CONCLUSION

This work studies the value of flexibility in graph processing
accelerators by systematically analyzing codesign tradeoffs
along graph algorithm variants. Broadly, we find that flexibility
is essential for even a modest range of graph workloads.
Specifically, we find that both synchronous/asynchronous and
priority-based/locality-based vertex scheduling are critical for
balancing work-efficiency and locality. Also, dynamically
switching between sliced/non-sliced variants across workload
phases enabled further specialization for low diameter graphs.

To support all algorithm variants with accelerator-level
performance, including novel combinations, we developed
extensions to a dataflow model which embeds first-class prim-
itives for dynamic parallelism and designed a specialized task
management and memory system. The principles developed
here may be helpful in broader workloads requiring fine-grain
task scheduling and management of large working sets.
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