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Abstract

We consider the problem of finding a two-layer neural network with sigmoid, rectified
linear unit (ReLU), or binary step activation functions that “fits” a training data set as
accurately as possible as quantified by the training error; and study the following question:
does a low training error guarantee that the norm of the output layer (outer norm) itself is
small? We answer affirmatively this question for the case of non-negative output weights.
Using a simple covering number argument, we establish that under quite mild distributional
assumptions on the input/label pairs; any such network achieving a small training error on
polynomially many data necessarily has a well-controlled outer norm. Notably, our results
(a) have a polynomial (in d) sample complexity, (b) are independent of the number of hidden
units (which can potentially be very high), (c¢) are oblivious to the training algorithm; and
(d) require quite mild assumptions on the data (in particular the input vector X € R? need
not have independent coordinates). We then leverage our bounds to establish generalization
guarantees for such networks through fat-shattering dimension, a scale-sensitive measure
of the complexity class that the network architectures we investigate belong to. Notably,
our generalization bounds also have good sample complexity (polynomials in d with a low
degree), and are in fact near-linear for some important cases of interest.
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1 Introduction

Neural network (NN) architectures achieved a great deal of success in practice. An ever-growing
list of their applications includes image recognition [HZRS16], image classification [KSH12],
speech recognition [MDH11], natural language processing [CWO08], game playing [SSS*17] and
more. Despite this great empirical success, however, a rigorous understanding of these networks
is still an ongoing quest.

A common paradigm in classical statistics is that overparameterized models, that is, models
with more parameters than necessary, pick on the idiosyncrasies of the training data itself—
dubbed as overfitting; and as a consequence, tend to predict poorly on the unseen data—called
poor generalization. The aforementioned success of the NN architectures, however, stands in the
face of this conventional wisdom; and a growing body of recent literature, starting from [ZBH" 16],
has demonstrated exactly the opposite effect for a broad class of NN models: even though the
number of parameters, such as the number of hidden units (neurons), of a NN significantly ex-
ceeds the sample size, and a perfect (zero) in-training error is achieved (commonly called as
data interpolation); they still retain a good generalization ability. Some partial and certainly
very incomplete list of references to this point are found in [DZPS18, LL18, GLSS18, GAS'19,
BHMM19, ADH"19a]. Defying statistical intuition even further, it was established empirically
in [BHMM19] that beyond a certain point, increasing the number of parameters increases out of
sample accuracy.

Explaining this conundrum is arguably one of the most vexing current problems in the field of
theoretical machine learning. Standard Vapnik-Chervonenkis (VC) theory do not help explaining
the good generalization ability of overparameterized NN models, since the VC-dimension of these
networks grows (at least) linearly in the number of parameters [HLM17, BHLM19]. These
findings fueled significant research efforts aiming at understanding the generalization ability of
such networks. One such line of research is the algorithm-independent front; and is through the
lens of controlling the norm of the matrices carrying weights [NTS15, BFT17, LPRS17, GRS17,
DR17], PAC-Bayes theory [NBS17, NBMS17], and compression-based bounds [AGNZ18], among
others. A major drawback of these approaches, however, is that they require certain norm
constraints on the weights considered; therefore making their guarantees a posterior: in nature:
whether or not the weights of the NN are bounded (hence a good generalization holds) can be
determined only after the training process is complete. An alternative line of research (detailed
below) focuses on the end results of the algorithms, and potentially yields a priori guarantees: for
instance, relatively recently, Arora et al. gave in [ADH"19b] a priori guarantees for the solution
found by the gradient descent algorithm under random initialization.

A predominant explanation of the aforementioned phenomenon (that the overparameteriza-
tion does not hurt the generalization ability of the NN architectures) which has emerged recently
is based on the idea of self-regularization. Specifically, it is argued that even though there is an
abundance of parameter choices perfectly fitting (interpolating) the data (and thus achieving zero
in-training error); the algorithms used in training the models, such as the gradient descent and
its many variants such as stochastic gradient descent, mirror descent, etc., tend to find solutions
which are regularized according to some additional criteria, such as small norms, thus introduc-
ing algorithm dependent inductive bias. Namely, the algorithms implemented for minimizing
training error “prefer” certain kinds of solutions. The use of these solutions for model building
in particular is believed to result in low generalization errors. Thus a significant research effort



(as was partially mentioned above) was devoted to the analysis of the end results of the imple-
mentation of such algorithms. This line of research include the analysis of the end results of the
gradient descent [BG17, FCG19], stochastic gradient descent [HRS16, BGMSS17, LL18, CG19],
as well as the stochastic gradient Langevin dynamics [MWZZ18].

In this paper, we consider two-layer NN models (1)—also known as shallow architectures—
consisting of an arbitrary number m € N of hidden units and sigmoid, rectified linear unit
(ReLU), or binary step activations—activations that are arguably among the most popular
practical choices—and investigate the following question: to what extent a low training error
itself places a restriction on the weights of the learned NN? We take an algorithm-independent
route; and establish the following “picture”, under the assumption that the output weights
a=(a;:1<i<m)e€ R™ of the “learned” NN are non-negative. When the number N of train-
ing samples is at least an explicit (low-degree) polynomial function in d, N = d°®"), the norm
|lal|s of the output weights a € R7, of any NN model achieving a small training error is well-
controlled: ||a||; = O(1), with high probability over the training data set. In particular, for the
ReLU and step networks, we obtain a near-linear sample complexity bound, N = ©(dlogd) for
such a result to hold. Note that a condition such as the non-negativity of a; is necessary in a
strict sense for such a bound on ||al|;. Indeed, notice that by growing the width m arbitrarily and
appropriately choosing alternating signs for the new weights a;; one can introduce cancellations
and make ||a||; to explode; while keeping the training error unchanged.

Our results are established using elementary tools, in particular through an e-net argument
(Definition 1.2). Notably, our results (a) are independent of the number 7 of the hidden units
(which can potentially be quite large), (b) are oblivious to the way the training is done (that is,
independent of the choice of the training algorithm); and (c) are valid under quite mild distri-
butional assumptions on the input/label pairs (X,Y) € R? x R. In particular, the coordinates
of X need not be independent.

Moreover, a bounded outer norm for such network models implies a well-controlled fat-
shattering dimension (FSD) [Bar98]—a measure of the complexity of the model class achieving
a low training error. In Section 3, we leverage our outer norm bounds and the FSD to establish
generalization guarantees for the networks that we investigate. The current paper presents signif-
icantly strengthened versions and extensions of some results appeared in our preprint [EGKZ20].

Preliminaries

We commence this section with a list of notational convention that we follow throughout.

Notation. The set of reals, non-negative reals, and positive integers are denoted respectively
by R, R>p, and N. For any set S, |S| denotes its cardinality. For any N € N, [N] £ {1,2,..., N}.
For any v € R", its £, norm is denoted by ||v||,. For u,v € R, their Euclidean inner product is
denoted by u”v. For any r € R, exp(r) denotes e"; and In(r) denotes the logarithm of r base e.
For any “event” E; 1{E} = 1 when E is true; and 1{E} = 0 when E is false. SGM(z) denotes
the sigmoid activation function, 1/(1+ exp(—z)); ReLU(z) denotes the ReLU activation function,
max{z,0}; and Step(z) denotes the (binary) step activation, 1{z > 0}. X 4 N(0,%) if X is
a zero-mean multivariate normal vector with covariance ¥. A random variable U is symmetric

around zero if U and —U have the same distribution, that is U 2 _U. For any random variable



U, (if finite) its moment generating function (MGF) at s € R, E[exp(sU)], is denoted by My (s).
Finally, ©(:),0(+), O (-) are the standard asymptotic order notations.

Setup. A two-layer NN (a, W) € R™ x R™*? with m hidden units (neurons) computes, for

each X € R?,
Z a;o (w;‘-rX) . (1)

1<j<m

Here, o(-) is the activation; w; € R?, the j™ row of W, carries the weights of neuron j; and
a = (a;:1<j<m) e R" carries the output weights. |[|a||; is referred to as the outer norm.
We assume a; > 0 for j € []. This non-negativity assumption appears often in the theoretical
study of this model: see [GLM17, DKKZ20, LMZ20] for generic a € R%,; and [DL18, SS18,
ZYWG19, GKM18] for the case a; are equal to the same positive number.

Our study of NN models under the non-negativity assumption is also partly motivated from
an applied point of view, in that, non-negativity is inherent to many data sets appearing in prac-
tice, including audio data and data on muscular activity [SV17, Wik]| and allow interpretabil-
ity. Furthermore, non-negativity is also a commonly used assumption in the context of matrix
factorization, termed as the non-negative matriz factorization problem (NMF): given a matrix
M e R*™*™ with non-negative entries and an integer » > 1, the goal of the NMF is to find matrices
A e R and W € R™™ with non-negative entries such that the product AW is as “close” to M
as possible; as quantified, e.g., by the Frobenius norm. This problem is a fundamental problem
appearing in many practical applications, including information retrieval, document clustering,
image segmentation, demography and chemometrics, see [AGKM16] and the references therein.
Moreover, NMF is also related to the neural network models that we consider herein with a
non-negative activation o(-): observe that in the context of NN models we consider, given data
(X;,Y;), 1 <i < N, the goal of the learner is to find a (a, W) € R™ x R™*¢ such that ¥; and
a’o (WX;) are as close as possible, as quantified by the £, norm (here, o acts coordinate-wise
to the vector W X). See also [Gab19, Section 6] for a more rigorous connection between shallow
NN models, matrix factorization and message passing algorithms. In addition to its key role in
the NMF problem; the non-negativity was also argued as a natural assumption for representing
objects in the seminal papers by Lee and Seung [L.S99, LS01]; and also has roots in biology, in
particular in the context of neuronal firing rates, see [Hoy02], and the references therein.

In the sequel, d € N is reserved for the input dimension; and 7 € N is reserved for the number
of neurons. We consider herein two-layer NN models with sigmoid, SGM(z); rectified linear unit,
ReLU(z); and binary step, Step(x), activation functions. We refer to these as sigmoid, ReLU; and
step networks, respectively. The sigmoid and the ReLU are arguably among the most popular
practical choices. The step function, on the other hand, is one of the initial activations considered
in the NN literature, and is inspired from a biological point of view: it resembles the firing pattern
of a neuron, an initial motivation for studying NN architectures.

Given the data (X;,Y;) € R x R, 1 < i < N, consider the problem of finding a two-layer
NN (a, W) € R™ x R™*¢ which “fits” the data as accurately as possible. This is achieved by
solving the so-called empirical risk minimization problem, where the accuracy is quantified by
the training error

E(a,W)é% Z (Y}— Z a;jo (w;‘FXZ)> : (2)

1<i<N 1<j<m



One then runs a training algorithm, e.g., the gradient descent algorithm or one of its variants
(such as stochastic gradient descent or mirror descent), to find an (a, W) with a small £ (a, W).

Distributional assumption. We study the case where the input/label pairs (X;,Y;), 1 < i <
N, are i.i.d. samples of a distribution on R? x R (which is potentially unknown to the learner).
For our outer norm bounds, we assume that their distribution satisfies the following.

e We assume the input X € R? satisfies P (|| X||2 < Cd) > 1 —exp (—©(d)) for some constant,
C>0.

e We assume the label Y is such that E[|Y ] & M < oo.

Later in Section 3 when we study generalization guarantees, we consider a stronger assumption
on labels: we assume the labels Y are bounded, that is, for some M > 0, |Y| < M almost surely.

These assumptions are quite mild. For instance, X € R? need not have i.i.d.coordinates.
Moreover, most real data sets indeed have bounded labels [DZPS18]; and this bounded label
assumption is employed extensively in literature, see e.g. [GWZ19, ADH"19b, DLL"19, GK19,
LZA20]. Our next assumption regards the number N of samples.

Assumption 1.1. Throughout, we assume that the sample size N satisfies N < exp(cd) for
some ¢ > 0.

Assumption 1.1 is required for technical reasons: observe that since P (|| X;|2 > Cd) <
exp(—0(d)), it holds, by a union bound, that

P(IX]3 < Cd,1<i < N) > 1- Nexp(—0(d).

For this bound to be non-vacuous, N should at most be exp(cd) for a small enough ¢ > 0. This
assumption, again, is very benign due to obvious practical reasons. Moreover, it suffices to have
N > poly(d) for our results to hold.

Nets and Covering Numbers. The crux of our proofs is the so-called e—net argument [Ver10,

Verl8|. This (rather elementary) argument is also known as the covering number argument; and
has been employed extensively in the literature; including compressed sensing, machine learning
and probability theory.

Definition 1.2. Let € > 0. Given a metric space (X, p), a subset N, C X is called an e—net of
X if, for every x € X, there is a y € N such that p(x,y) < €. The smallest cardinality of such
an N, if finite, is called the covering number of X, denoted by N (X e).

The next result, verbatim from [Ver18, Corollary 4.2.13], is an upper bound on the covering
number of the Euclidean ball.

Theorem 1.3. Let By(0,R) = {x € R? : ||z||, < R}. Then for R >1 and any € >0

N (By(0,R),¢) < (3R/€)™.



Paper organization. The rest of the paper is organized as follows. Our main results on the
self-regularity of output weights are presented in Section 2. In particular, see Sections 2.1, 2.2,
and 2.3 for the cases of sigmoid, ReLU, and step networks, respectively. By leveraging our
outer norm bounds and employing earlier results on the fat shattering dimension, we establish
in Section 3 generalization guarantees. We outline several future directions in Section 4. Finally,
we present our proofs in Section 5.

2 Outer Norm Bounds

In this section, we establish the self-regularity of the output weights for the aforementioned
networks. That is, we establish that the outer norms of sigmoid, ReLU, and step networks with
non-negative output weights achieving a small training error (2) on polynomially many data is

0(1).

2.1 Self-Regularity for the Sigmoid Networks

Our first focus in on the sigmoid networks. This object, for each X € R?, computes the func-
tion (1) with o = SGM(-) = (1 + exp(—=z))~!. Our first main result establishes an outer norm
bound for this architecture.

Theorem 2.1. Let §, M,R > 0; and (X;,Y;) € R xR, i € [N] be i.i.d. data with E[|Y;]] =
M < oco; where N satisfies Assumption 1.1. For any m € N, define

S (i,6, R) = {<a, W) € Ry x K™ max [luylly < R, £(a,W) < 52} ,

where L (+) is defined in (2) with o(-) = SGM(-). Suppose, in addition, that the random variable
wT X € R is symmetric around zero for every w € RY. Then,

P (( e lally < 3(1+e)(8 + 2M)> > 1_(33\/@)‘1@@(—@(N))—Nexp(—@(d))—oN(1),
(3)

where S(6, R) £ oy S (M, 6, R).

Corollary 2.2. Let R = exp (do(l)). Then, under the assumptions of Theorem 2.1; it holds
w.h.p. that sup, wyese,r) llalli < 3(1+e)(6 +2M), provided N > d°W,

The proof of Theorem 2.1 is provided in Section 5.1.

Above, oy(1) is a function which depends only on the distribution of ¥ and N; and tends
to zero as N — oo. Several remarks are now in order. Theorem 2.1 states that any two-layer
sigmoid NN which (a) consists of internal weights w; bounded in norm by an exponentially large
(in d) quantity and non-negative output weights; and (b) achieves a small training error on a
sufficiently large data set, has a well-controlled outer norm. It is worth noting that Theorem 2.1
is oblivious to how the training is done: this result not only applies to the weights obtained, say,
via the gradient descent algorithm; but applies to any weights (subject to the aforementioned
assumptions) achieving a small training loss.



Moreover, the upper bound established in Theorem 2.1 is also oblivious to the number m
of the neurons of the NN used for fitting. In particular, adopting a teacher/student setting as
in [GAST19] where the input/label pairs (X;, Y;) are generated by a teacher NN; the output norm
of any student NN—which may potentially be significantly overparameterized with respect to the
teacher NN—is still well-controlled, provided the assumptions of Theorem 2.1 are satisfied. The
extra requirement that w? X is symmetric is quite mild: it holds for many data distributions,

e.g., for X Ll N(0,X) where X is an arbitrary positive semidefinite matrix.

The on(1) term is due to a certain high probability event &, see (10) in the proof. The
probability of this event is controlled through the weak law of large numbers; and the ox(1) term
can be improved explicitly (a) to O(1/N) if E[Y?] < oco; and (b) to exp(—O(N)) if Y; satisfy the
large deviations bounds (which holds, for instance, when the moment generating function of ¥;
exists in a neighbourhood around zero). Moreover, if Y is (almost surely) bounded (which holds
for real data sets, as noted earlier), then it can be dropped altogether.

Furthermore, Corollary 2.2—which follows immediately from Theorem 2.1—asserts that even
under the mild assumption R = exp (do(l)) (i.e., the weights w; are unbounded from a practical
perspective), Zj aj is still O(1), provided that that the number N of data is polynomial in d.

Moreover, an inspection of the proof of Theorem 2.1 reveals the following. The constant
3(1 + e) can be improved to any constant greater than four with slightly more work. Moreover,
the thesis of Theorem 2.1 still remains valid (with appropriately modified constants) for any non-
negative activation which is continuous at the origin and whose value at the origin is positive.
This includes the softplus activation In (1 + e®) [GBB11], the Gaussian activation, exp(—z?);
among others.

2.2 Self-Regularity for the ReLU Networks

Our next focus is on the ReLU networks. This object, for each input X € R?, computes the
function (1) with o(z) = ReLU(z) = max{z,0} = 1(z + |z]).

We first observe that the ReLU function is positive homogeneous: for any ¢ > 0 and z € R,
ReLU(cz) = c-ReLU(z). For this reason, we may assume, without loss of generality, that [|w,|]s =1
for 1 < 7 <'m. Indeed, if w; # 0, one can simply “push” its norm outside; whereas if w; = 0,
then one can replace it with any unit norm vector and set a; = 0 instead.

It is worth noting that since the ReLU case requires no explicit assumptions on ||wj||2, an
outer bound for this case is a somewhat stronger conclusion than an outer bound for the case of
sigmoid activation.

Equipped with this, we now present our next result.

Theorem 2.3. Let 6, M > 0; and (X;,Y;) € RIxR, i € [N] be i.i.d. data withE[|Y;|]] = M < oo;
where N satisfies Assumption 1.1. For any m € N, define

G (m,6) = { (0, W) € RZy x R™ ¢ |Juls = 1,1 < j < 75 £(a,W) <82},

where L () is defined in (2) with o(-) = ReLU(-). Suppose, in addition, that for Y, £ w'X, (a)
there exists a p* > 0 such that E[ReLU(Y,)| > p* for any w € By(0,1); and (b) for some s > 0,
M, (s) and Ms(s) are independent of d and are finite; where My(s) = SUDy,.lwls=1 My, (8) and



Ms(s) £ SUPyju|j,=1 My, (—5). Then,

) exp (—O(N))—Nexp (—O(d))—on(1),
(4)

P ( sup  |lally < 4(6 + 2M)(p,*)_1) >1
(a,W)€G(5)

[ 12vCd
”*

where G(8) £ Upen G (M, 6).

The proof of Theorem 2.3 is provided in Section 5.2.

In particular, it suffices to have a near-linear number of samples, N = ©(dlogd), to obtain a
good, uniform, control over ||al|;. As mentioned above, we managed to bypass the dependence
on the term R that appears in Theorem 2.1 by leveraging the fact that ReLU is a positive
homogenenous function.

Analogous to Theorem 2.1, the bound established in Theorem 2.3 is also oblivious to (a)
how the training is done, and (b) the number m of neurons. In particular, even potentially
overparameterized networks have a well-controlled outer norm; provided that they achieve a small
training error on a sufficient number N of data. The additional distributional requirements are
still mild. For instance, when X < A(0, I;), wTX < N(0,1) for any w with |Jw||s = 1; and p*
can be taken to be 1/4/27. The requirement (b) ensures the existence of the moment generating
function in a neighborhood around zero, hence the large deviations bounds are applicable. The
same remarks on ox(1) term following Theorem 2.1 also apply here: it can be improved to
O(1/N) or exp(—O(NN)) under slightly stronger assumptions on Y;.

2.3 Self-Regularity for the Step Networks

Our final focus is on the step networks. This object, for each X € R?, computes (1) with
o(z) = Step(z) = 1{z > 0}.

Like the ReLU case, Step(z) is also homogeneous: for every ¢ > 0, Step(cz) = Step(z). For
this reason, we assume, without loss of generality, |w;| =1,1 < j <m.

Theorem 2.4. Let §, M > 0; and (X;,Y;) € RExR, i € [N] bei.i.d. data withE[|Y;|] = M < oo;
where N satisfies Assumption 1.1. For any m € N, define

H(m,é) = {(a, W) € RTy x R flwyll, = 1,1 < j <y L(a,W) < 52},

with 2() as in (2) with o(-) = Step(-). Moreover, assume that for somen > 0, inf |y |,=1 P (wTX > n) >
n. Then,

6vCd

” > exp (—O(N)) — Nexp (—0O(d)) — on(1)

a,W)eH(9)

P ( sup  |ally < 2(6 + 2M)77_1> >1- (
(

where H(§) = H (M, 0).

meN

The proof of Theorem 2.4 is provided in Section 5.3.
Main remarks following Theorems 2.1 and 2.3—in particular, independence from m as well
as the training algorithm—apply here, as well.



The extra condition on the distribution ensures that the collection {P(wTX > n) : [|w|ls = 1}
is uniformly bounded away from zero. This is again quite mild, as demonstrated by the following
example. Suppose Y, = w? X is centered and equidistributed for w with ||w||; = 1. (Observe

that this is indeed the case, e.g. when X < N(0,1;).) Then as long as Var(Y,,) > 0 the extra
requirement per Theorem 2.4 is satisfied. Indeed, for this case P(Y,, > 0) > 0. Hence, using the
continuity of probabilities

P(Y, > 0) = P(w?'X > 0) = lim P (w'X >t) >0,
—00

one ensures the existence of such an 7. In the case where X LN (0, I), one can concretely take
n=0.3.

3 Generalization Guarantees via Outer Norm Bounds

3.1 The Learning Setting

In this section, we leverage the outer norm bounds we established in Theorems 2.1-2.4 to pro-
vide generalization guarantees for the neural network architectures having non-negative output
weights that we investigated.

Our approach is through a quantity called the fat-shattering dimension (FSD) of such net-
works introduced by Kearns and Schapire [KS94]. This quantity is essentially a scale-sensitive
measure of the complexity of the “class” (appropriately defined) that the network architecture be-
ing considered belongs to. We introduce the FSD formally in Definition 5.1 found in Section 5.4.
For more information on the FSD, we refer the interested reader to the original paper by Kearns
and Schapire [KS94]; as well as earlier papers by Bartlett, Long, and Williamson [BLW96], and
Bartlett [Bar98].

In what follows, we prove our promised generalization guarantee (Theorem 3.1 below) by
combining the prior results on the FSD of such networks with our outer norm bounds. Bartlett
provides in [Bar98] upper bounds on the FSD of certain function classes H. He then leverages
these bounds to give good generalization guarantees. One of the classes he studies is precisely
the class of two-layer NN with a bounded outer norm (as we do). In particular, he establishes
in [Bar98, Corollary 24] (which is restated as Theorem 5.2 below) that the class of two-layer
networks with bounded outer norm has a well-controlled FSD: informally, it has “low com-
plexity”. He then leverages the FSD bounds to devise good generalization guarantees for the
architectures that he investigates. It is worth noting, however, that he establishes this link in
the context of classification setting, Y € {£1}. Since we assume a; > 0, and the activations we
study are non-negative, this does not apply to our case: the outputs of the networks we study
are always non-negative. Nevertheless, we by-pass this by combining our outer norm bounds
(Theorems 2.1-2.4), Theorem 5.2, as well as building upon several other prior results tailored for
the regression setting.

We next recall the learning setting for convenience. Let D be a distribution on R¢ x R
for the input/label pairs (X,Y); and let (X;,Y;) ~ D, 1 < i < N, be the i.i.d.training data.
The goal of the learner is to find a NN (a, W) € R™ x R™*4 with m hidden units (neurons)
and activation o(-) which “explains” the data (X;,Y;), 1 < ¢ < N, as accurately as possible,
often by solving the empirical risk minimization problem, min, y L (a,W) (2). The “learned”
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network is then used for predicting the unseen data. The generalization ability of the “learned”
network (a, W) € R™ x R™*4 is quantified by the so-called generalization error (also known as
the population risk)

L(a,W) = Ex,y)p [(Y — Z a;o (wa))z]. (5)

1<j<m

Here, the expectation is taken w.r.t. to a fresh sample (X,Y) ~ D, which is independent of the
training data. The “gap”

E(a,W)—ﬁ(a,W)‘ = % Z (YQ— Z ajo (w;‘er)> —E(X,Y)ND[(Y— Z a;o (U)JTX))?

1<i<N 1<j<m 1<j<m

between the training error and the generalization error is called the generalization gap.

In what follows, we focus our attention on the generalization ability (5) of the learned networks
(a, W) that achieved a small training error, £ (a, W) < 6% (2), on a polynomial (in d) number of
data. The details of the training process (such as the algorithm used for training) are immaterial
to us; and our results apply to any NN (a, W) provided it achieved a small training error,
L(a,W) < 62

In this section, we also assume that the labels Y are bounded: D is such that for some M > 0,
Y| < M almost surely. This is necessary, as the prior results we employ from Haussler [Hau92]
and Bartlett, Long, and Williamson [BLW96] (in particular, see Theorem 5.4) apply only to the
case where the labels are bounded. For this reason, the oy (1) terms present in Theorems 2.1-2.3
disappear, see the remarks following each theorem.

3.2 The Generalization Guarantees

Equipped with our outer norm bounds (Theorems 2.1-2.4) and Theorem 5.2, we now establish
the promised generalization guarantees for the aforementioned networks whose output weights
a; are non-negative. To that end, let a, M, M, A > 0 be certain parameters (elaborated below);
and set

L _~
f(Oé,M,MaA)—IHQ a2

2 c-128%- MOAS - max{MA,2M}? In <128M3A3 max{MA, 2M}> (©)
Qa )

where ¢ > 0 is the absolute constant appearing in Theorem 5.2. Our result is as follows.

Theorem 3.1. Let a,6, M,R > 0, and (X;,Y;) € R¢ x R, 1 < i < N, be i.i.d. samples drawn
from an arbitrary distribution D on RY x R with |Y| < M almost surely; where N satisfies
Assumption 1.1. For the £ term defined in (6), set

2304 - N - A? - max{24, M}\ a’- N
64 - max{2A, M}?
(7

C(a, M, A, N) = exp <§(a,M,2,A)-d~1n2< >

(a) (Sigmoid Networks) Under the assumptions of Theorem 2.1, with probability at least
d
1— (o, M,3(1+e) (5 + 2M), N) — <3R\/C’d) exp (—O(N)) — N exp (—0(d))
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over (X;,Y;) ~ D, 1<i <N, it holds that

2
sup E(X,Y)ND (Y — Z CLjSGM (U};TX)> S o+ (52,

(a,W)€S(6,R) 1<j<m

provided
A% - max{A, M}?
2 -d
a

with A =3(1+e)(6 +2M). Here, S(6, R) is the set introduced in Theorem 2.1.

N >c-2%. and o < 2. A® max{A, M}

(b) (ReLU Networks) Under the assumptions of Theorem 2.3 and assuming additionally
p* = exp (o(d)), with probability at least

4/Cd(6 + 2M) N) - (12\/@

1-¢ (a, M, P " ) exp (—O(N)) — Nexp (—6(d)),

over (X;,Y;) ~ D, 1<i <N, it holds that

2
sup Eoxyyen [ (V= Y aReLU(w]X) | | <a+48*+e 0@,
(a,W)€G(9)

1<j<m
provided
A% - max{A, M}? J

N >c.22.
> o2

and o <2 A% max{A, M}

with A = @(Lﬂ. Here, G(8) is the set introduced in Theorem 2.3.

(c) (Step Networks) Under the assumptions of Theorem 2.4, with probability at least

¢ <a, M, %an)zv) - (@) exp (—O(N)) — N exp (—0(d))

over (X;,Y;) ~ D, 1<i <N, it holds that

’
sup  Exy)wp |'<Y - Z a;Step (w]TX)) < a+ 6%,
(9) [ J

(a,W)eH 1<j<m

provided

A5 - max{A, M}? p

N >c.22.

and o <2 A% max{A, M}
with A = M. Here, H(0) is the set introduced in Theorem 2.J.
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Theorem 3.1 is established by combining various individual results established in separate
works [Hau92, BLW96, ABDCBH97, Bar98| together with our outer norm bounds. See Sec-
tion 5.4 for its proof.

We next comment on the performance parameters appearing in Theorem 3.1. The param-
eter o controls the so-called generalization gap: the gap between the training error and the
generalization error. The parameter ¢ controls the training error: we study those (a, W) with
E(a, W) < 6%2. The parameter M is an (almost sure) upper bound on the labels; whereas R is
an (quite mild) upper bound on internal weights required for the technical reasons, only for the
case of sigmoid networks, see Theorem 2.1, Corollary 2.2; and the remarks following them.

The term ((a, M, A, N) is a probability term appearing in the uniform convergence result
(Proposition 5.3) that we employ. This proposition provides a control for the generalization gap
uniformly over all two-layer neural networks with bounded outer norm like we investigate herein.

It is worth noting that in the regime d — oo (which is a legitimate assumption for many
existing guarantees in the field of machine learning) and for N > d°W); ¢(a, M, A) = O(1)
(with respect to d), provided that A = O(1) like we establish earlier. Namely, this object
is simply a constant in d. Furthermore, while we made no attempts in simplifying it, it can
potentially be improved. In the sigmoid and step cases, the value of A that we consider is indeed
O(1). For the ReLU case, however, the situation is more involved; and a certain scaling which
makes A = poly(d) is necessary, as we elaborate soon. Soon in Section 3.3, we investigate the
probability term ((a, M, A, N) appearing in (7). We show that provided N is sufficiently large
(while remaining polynomial in d), the ¢ term behaves like exp (—do(l)), thus it is indeed 04(1).
Moreover, our analysis will also reveal that the dependence of N on d is quite mild; and is in
fact near-linear in some important cases of interest.

In particular, the probability term ((a, M, A, N) is 04(1) provided

Theorem 5.2 as well as the uniform generalization gap guarantee, Proposition 5.3, apply to
activations with a bounded output; whereas the output of ReLU is potentially unbounded. In
our proof, we bypass this by considering an auxiliary activation S-ReLU(-), which is a “saturated”
version of the ReLU. Specifically, we let S-ReLU(z) = 0 for z < 0, S-ReLU(z) = z for 0 < z < 1;
and S-ReLU(z) = 1 for z > 1. We then rescale w; to have ||w;|ls = 1/v/Cd and multiply
A by v/Cd (we therefore consider A = 4v/Cd(5 + 2M)/u*, v/Cd times the bound appearing
in Theorem 2.3). Note that this step is indeed valid due to the homogeneity of the ReLU
activation, see also Section 2.2. Since || X|]» < v/Cd with probability at least 1 — exp(—©(d))
and since |w] X| < 1 for |lw;ll. = 1/+/Cd and || X ||, < v/Cd by Cauchy-Schwarz inequality; the
output of this activation will, w.h.p., coincide with that of the ReLU activation. We then control
the difference between the generalization errors for a pair of two-layer neural networks having
the same architecture, the same number m € N of hidden units, the same weights (a, W); but
different activations (one with ReLU(+) and the other with S-ReLU(-)). This done by a conditioning
argument. See the proof for further details.

Similar to what we have noted previously for our outer norm bounds, Theorem 3.1 is also
oblivious to (a) how the training is done and (b) the number 7 of hidden units as long as a; > 0,
and £ (a, W) < 42 for the learned network. Moreover, similar to prior cases, the extra conditional
expectation requirement (30) is quite mild.

Our next focus is on the sample complexity required by Theorem 3.1. We show that they are
indeed polynomial in d. Furthermore for some very important cases, they are even near-linear.
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3.3 Sample Complexity Analysis

While the required sample complexity N can simply be inferred from Theorem 3.1, we spell out
the implied scaling analysis below for convenience. In what follows, all asymptotic notations are
w.r.t. the natural parameter d (namely the dimension) of the problem in the regime d — oo;
and our goal is to ensure that the corresponding probability term is 1 — 04(1) for an appropriate
function o04(1). (It is worth noting though that our bounds will be in fact much stronger, e.g.
1 — exp(—d°M).)

To that end, recall the term (6) with M = 2 appearing in Theorem 3.1:

2% . ¢ A% -max{A4, M}? 1 (211-A3-maX{A,M}>
-In :

E(a,M,2,A) = (8)

In2-a2 a

Sigmoid and Step Networks

First, the outer norm bounds we establish indicate A = O(1). Hence, the “A parameter”
considered in parts (a) and (c) of Theorem 3.1 are O(1). Moreover, M = O(1) (since it is not
sound for the real-valued label Y to grow with dimension d). Treating a as a constant in d,
we then obtain ¢(a, M, A) = O(1) for the term appearing in (8). Hence, in order to ensure
that the probability term ( appearing in (7) is 04(1), a necessary and sufficient condition is
N=Q (d In? N). We claim that it suffices to have

N =Q(dln’d). (9)
Indeed, if N satisfies (9), then provided N remains polynomial in d, N = poly(d), it holds that
In* N =0 (In*’d) = dIn* N =0 (dln’d) = O(N).

We now investigate the sample complexity required by the corresponding outer norm bounds for
the case of sigmoid and step networks.

Sigmoid networks. Note, in this case, that the dominant contribution to the probability
term appearing in Theorem 2.1/Theorem 3.1(a) (other than & term) is (3RvVCd)? exp(—©O(N)).
Suppose first that R = d where K = O(1) (namely R remains polynomial in d). Then

(3RVCd)* exp(—O(N)) = exp (—@(N) +d (K + %) Ind+ dln(3\/5)>
- exp(—@(N) +0(dlnd) + o(dln d)).

provided N = Q(d1nd), this bound is indeed 04(1). Taking the maximum between this and (9),
we obtain that it suffices to have N = Q(dIn® d), which is near-linear.
Suppose next that R = exp(d”), like in Corollary 2.2. Then provided K > 0,

(3RVCd)? exp(—O(N)) = exp(—@(N) +d® %dlnd + dln(3\/5)>
= exp(=O(N) + d* + o (1)),

Hence, provided N = Q(d¥+*1), this bound is indeed 04(1). Taking the maximum between this
and (9), we obtain that it suffices to have N = Q(d¥ "), which is polynomial in d.
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Step networks. Treating the distributional parameter n appearing in Theorem 2.4 /Theorem 2.3
as a constant in d, we have

exp (—O(N)) <@> = exp (—@(N) + %dlnd +dln <@>>

n n
=exp (—O(N) + O(dIlnd) + o(dInd)) .

Thus, provided N = Q(dInd), this bound is indeed o04(1). Taking the maximum between this
and (9), we obtain that it suffices to have N = Q(dIn® d), which, again, is near-linear.

ReLU Networks

The situtation is more involved for the case of ReLU networks. We first study the £ term (8).
Treating M, o, C, 6, u* = O(1) (in d),

¢ (a, M,2, 4‘@(Z+ 2M) \/8) — 0 (d'nd).

*

Hence,

c (a,M, 4\/@(;5*+ 2M),N> _ exp<@<d4 Ind-d- 1n2(Nd)) o <%>)

- exp<@<d5 ‘Ind - 1n2(Nd)) e %))

= exp(©(d* - Ind) ~ © (%))

where we used the fact In(Nd) = O(Ind) if N = poly(d). Thus, provided N = Q (d°In®d),
this bound is indeed o04(1). Inspecting next the term (12v/Cd/p*)%exp(—©(N)) appearing in
the probability bound, we observe as long as N = Q(dInd), this term is also o4(1). Taking the
maximum of these two, it suffices to have N = Q) (d6 In® d). This, again, is a polynomial in d;
albeit having a slightly worse degree (of six).

4 Conclusion and Future Directions

We have studied two-layer NN models with sigmoid, ReLU, and step activations; and established
that the outer norm of any such NN achieving a small training loss on a polynomially (in d)
many data and having non-negative output weights is well-controlled. Our results are indepen-
dent of the width m of the network and the training algorithm; and are valid under very mild
distributional assumptions on input/label pairs. We then leveraged the outer norm bounds we
established to obtain good generalization guarantees for the networks we investigated. Our gen-
eralization results are obtained by employing earlier results on the fat-shattering dimension of
such networks, and have good sample complexity bounds as we have discussed. In particular,
for certain important cases of interest, we obtain near-linear sample guarantees.
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We now provide future directions. As was already mentioned, our approach operates under
mild distributional requirements; and can potentially handle different distributions as well as
other activations, provided (rather natural) certain properties of these objects we leveraged
remain in place.

A very important question is to which extent our approach applies to deeper networks. In
what follows, we give a very brief argument demonstrating that for such an extension, one needs
much more stringent regularity assumptions on the internal weights. Consider, as an example,
a ReLU network with three hidden layers. Observe that the outputs of the neurons at the first
hidden layer are non-negative as ReLU(z) > 0 for all z € R. Let us now focus on its second hidden
layer, which takes weighted sums of the outputs of the first hidden layer. If all the weights in the
second layer are negative, then upon passing to ReLU, one obtains all zeroes, forcing the final
output to be zero. Now, let us assume, instead, that the weights of the second layer are such that
the input to the ReLU functions are positive, though arbitrarily close to zero (this can potentially
be achieved, e.g., by taking many small negative weights and few large positive weights in a way
that ensures proper cancellation). If this holds, then even if the outer norm, ||a||;, is very large,
one still obtains a bounded output at the end of the network. As demonstrated by this conceptual
example, one indeed needs more stringent assumptions on the internal weights so as to address
larger depth. At the present time, we are unable to have a complete resolution of necessary and
sufficient assumptions for addressing deeper architectures (while maintaining the position that
these assumptions must also be sound from a practical point of view).

Yet another important direction pertains to the non-negativity of the weights, and a crucial
question is whether this assumption can be relaxed. We now provide a brief argument demon-
strating that in full generality, this is not necessarily the case. Namely, strictly speaking, the
non-negativity assumption is necessary. We focus on the so-called “teacher/student” setting, a
setting that has been quite popular recently, see, e.g. [GAST19]. In this setting, given i.i.d. input
data X; € R?, 1 < i < N, a teacher network (a*, W*) € R™ x R™ *¢ with m* € N neurons
and activation o(-) generates the labels ¥;. That is, ¥; = >°,_;_,. ajo ((w))TX;). A student
network with an 7 € N number of hidden units (where 77 is not necessarily equal to m*) is then
“¢rained” by minimizing the objective function (2) on the data (X;,¥;), 1 < i < N; and the
resulting network is then used for predicting the unseen data. We now construct a wider student
network interpolating the data whose vector of output weights has arbitrarily large norm, by
introducing many cancellations. Fix z € N, a non-zero v € R?%; and v > 0. Construct a new
network (E, W) on m* + 2z neurons as follows. Set a; = a;f and W] = Wj* for 1 < j < m*. For
any m* +1 < j < m* 4 2z, set a; = v if j is even, and —v, if j is odd. At the same time, set
W, = v for m* +1 < j < m* +22. This network interpolates the data while |[al|; = ||a*||; + 2zv.
Hence, ||@||; can be made arbitrarily large by amplifying z and/or v > 0. In particular, in full
generality, such a non-negativity assumption is indeed necessary. It is worth noting, however,
that the example above is a somewhat tailored one involving many dependencies/cancellations.
It might still be possible to establish similar bounds for the case of potentially negative weights
under more stringent constraints on them which prevent such cancellations.
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5 Proofs

5.1 Proof of Theorem 2.1
Proof of Theorem 2.1. Observe that

P(&) > 1—on(1) for & 2 {3N |vi| < 2MN}, (10)

using the weak law of large numbers [Durl9, Thm 2.2.14]. Next, let (a, W) € S(J,R). Then
there exists an m € N such that (a,W) € S(m,d, R). Applying Cauchy-Schwarz inequal-
ity, Z1gi§N Y; — Zlgjgm a;SGM (w]TXZ)‘ < Né. Next, by the triangle inequality and the fact
> Yi] < 2MN on &,
> ajseM(w]X;) < N6+ 2M), (11)
1<i<N 1<j<m

on the event &. Now, let N, be an e—net for By(0, R), € > 0 to be tuned appropriately. Using
Theorem 1.3, one can ensure [N,| < (3R/e)?. Next, fix any @ € N, and set Z; = &7 X;,
1 <i < N. Since Z is symmetric, P(Z; > 0) = P(-Z; < 0) = P(Z; < 0), implying P(Z; > 0) >
Define now Z; £ 1{Z; > 0}. Since Z; “stochastically dominates” Bernoulli(1/2), we have
(Zl<z<NZ > N/3) > P(Binomial (N,1/2) > N/3) > 1 — exp (—O(NN)). The last inequality
is due to standard large deviations bounds. Taking a union bound over the net N, we obtain

'ﬁwli—t

P(&) >1— (3R/e)%exp (—O(N)), where & = GEN. {ZKKN 1 {@TXi > 0} > N/3} )
o (12)
Furthermore, another union bound over the data yields

P(&) > 1— Nexp(—0(d)), where & = {||X;[|2<Cd,1<i<N}. (13)

We now choose € = 1/\/@ We claim that on the event £ N &, it is the case that for every
w € By(0, R); ZKKN]l{wTXi > —1} > g Let w € By(0,R), and @ € N, be such that
lw—a||, < e = (Cd) /2. Using Cauchy-Schwarz inequality, |07 X; — wTX;| < [|X;|l2(Cd) /2 <
1, where ||X;||; < v/Cd due to the event & (13). In particular, if @7X; > 0, then wTX; > —1.
Hence ), ; y 1 {w"X; > -1} > 37, , v 1{@"X; >0} > 7. Using now the fact a; > 0, and

SGM(-) > 0 for the sigmoid activation, we arrive at

> a; ) sem(w]X;) zg SGM(—1)- ) a;. (14)

I<j<m - 1<i<N 1<j<n

We now combine the facts SGM(—1) = (1 + ¢e)~!, (11) and (14), to obtain that on the event
EoN&ENés,

> a; <3(1+e)(5+2M).

1<j<m
Since the event & N & N &; holds with probability at least 1 — (BR\/_) exp (—O(N)) —
Nexp (—0O(d)) — on(1) by a union bound, the proof is complete. O
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5.2 Proof of Theorem 2.3

Proof of Theorem 2.3. Recall from (10) the event & = {d>,...x [Yi] < 2M N} where P(&) >
1-— ON(]_). o

Let (a,W) € G(0). Then, for some m € N, (a,W) € G(m,¢). Using Cauchy-Schwarz
inequality and the triangle inequality like in the beginning of the proof of Theorem 2.1; we first
establish that on the event &, the following holds:

> ) aRelU (w]X;) < N(5+2M). (15)

1<i<N 1<j<m

Next, let N. be a e—net for B3(0,1), ¢ > 0 to be tuned. Using Theorem 1.3, one can ensure
V.| < (3/€)?. Fix any @ € N.. Consider theii.d. random variables Y5; = ReLU (07 X;), i € [N].
The condition (b) on the distribution of Y3 ; ensures that a large deviations bound is applicable.
This, together with the condition (a) yield P (Z1<1<NY > 1y,*N) >1—exp(—O(N)). Due
to the distributional assumption, the lower bound is uniform in @ € N.

Taking now a union bound over @ € N, we obtain P(€;) > 1 — (3/¢)?exp (—O(N)) where
& & GEN, {Zl<z<N ReLU( X) > p,*N} Another union bound over data X;, 1 <i < N,

yields that P(Sz) >1- N exp (—0(d)) where & = {||X;||2 < Cd,1 <i< N}.

Choose € = 4\/7, and assume in the remainder that we are on the event £ N&;. Next, observe
that ReLU is 1—Lipschitz: |[ReLU(z) — ReLU(y)| = ‘%le - %'y“ < |z—yl|, using triangle inequality

twice. Now, fix any w € By(0,1). Let w € N, be the member of the net closest to w. Using
the Lipschitz property, and the Cauchy-Schwarz, we obtain ‘ReLU( TX) — RelU (ATX)‘ <

W X; — 07 X;| < |lw— @, - || Xills < &. Consequently, ReLU (w”X;) > ReLU (@7X;) — £°.

Summing this over 1 <¢ < N, we have >, ., ReLU (wTXi) > cien ReLU( X) ”TN >
”T*N. Using a; > 0, we obtain by taking w; in place of w:

”*
Z a; Y RelU(w]X;) > =N Z_aj. (16)
1<5<m 1<i<N 1<j<m

Combining (15) and (16), we obtain that on the event & N & N &Es,

> a; <45 +2M) (p)

1<j<m

d
Since the event & N & N & holds with probability at least 1 — <12\/Cd(p,*)‘1) exp (—O(N)) —
Nexp (—©(d)) — on(1) via a union bound, we complete the proof. O

5.3 Proof of Theorem 2.4

Proof of Theorem 2.4. The proof is quite similar to that of the proof of Theorems 2.1/ 2.3, and
is provided for completeness.

Again, recall from (10) the event & = {3,y [Yi| < 2M N} where P(&) > 1 — on(1).
Then, take an (a,W) € H(d). There exists an m € N such that (a,W) € H(m,d). Using
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again Cauchy-Schwarz inequality and the triangle inequality like in the beginning of the proof of
Theorems 2.1/ 2.3; we have that on the event &, the following holds:

Z Y, — Z a;Step (w]TXi) < N§¢.

1<i<N 1<j<m
This, together with (a) the fact that the labels are bounded, |Y;| < M; and (b) the triangle
inequality; then yields
Z Z a;jStep (w;eri) <N+ M). (17)
I<i<N 1<j<m
Let AV, be an e—net for By(0, 1), where € > 0 to be tuned appropriately. Using Theorem 1.3, one
can ensure |[N;| < (3/¢)4.

Next, fix any @ € N,; and set Z; = 1 {@w”X; > n}, 1 <i < N (where we drop the dependence
of Z; on w for convenience). Evidently, Z; is an i.i.d. collection of Bernoulli random variables,
with E[Z;] > n (due to the assumption on the distribution of X'). Hence, using standard concen-
tration results, P (3, ,.y Zi > Nn/2) > 1—exp (—O(N)). Moreover, the lower bound is, again,
uniform in @ via an exact same stochastic domination argument, like in the proof of Theorem 2.1.

Taking now a union bound over the net N,

P(£1) > 1— (3/€)*exp (—O(N)), where & = [ { > 1{a"X; > n} an/2}. (18)

weN. (1<i<N
Furthermore, another union bound over data, 1 < i < N, yields
P(&) > 1— Nexp(—0O(d)), where & = {||X;|5<Cd,1<i<N}. (19)

We now choose € = 2\/"@; and assume in the remainder that we are on the event & N &,.

Fix any w € B(0,1); and let @ € N, be such that ||w — W]z < 555 Using Cauchy-Schwarz

inequality, |07 X; — wTX;| < |lw — @|2]| Xi]|2 < n/2, for every i € [N], since the event we are on
is a subset of & in (19). Observe now that {@?7X > n} C {wTX > n/2}. Thus, on the event
&1 N &y, it holds that

. H{w'Xi=n/2b> ) 1{@"X; = n/2} > Nn/2.

1<i<N 1<i<N

Since w € By(0, 1) is arbitrary, and Step(w? X;) = 1 if wT X; > n/2 > 0, we arrive at
g a; g Step (w] X;) > N g a;. (20)
— J . J = 9 — J
1<j<m 1<<N 1<j<m

We now combine (17) and (20) to arrive at the conclusion that on the event & N &, it holds

> a; <25+ Mt

1<j<m

Finally, we combine (18) (with e = 2\/”@) and (19) via a union bound; and arrive at the conclusion

that P(&; N &) > 1 — (6\/@. (77)_1>dexp (—O(N)) — Nexp (—0(d)) — on(1). This concludes

the proof.
O
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5.4 Proof of Theorem 3.1

In this section, we establish Theorem 3.1. We build upon earlier results by Bartlett [Bar98] and
Bartlett, Long, and Williamson [BLW96]. For the results we cite from the latter, the numbers
recorded below are from the version accessed at http://phillong.info/publications/fatshat.pdf!.

The FSD of the Networks with a Bounded Outer Norm. We now recall the definition
of the fat-shattering dimension (FSD), verbatim from [Bar98], for convenience.

Definition 5.1. Let X be an input space, H be a class of real-valued functions defined on X
(that is, H consists of functions f : X — R). Fiz a v > 0, which is a certain scale parameter.
We say that a sequence (x1,Za,...,&y) of m points from X is y-shattered by H if there is an
r=(ry,...,rm) € R™ such that, for allb = (by,...,by) € {—1,1}™ there is an h € H satisfying
(h(z;) — r;)b; > . Define the fat-shattering dimension of H as the function

FSDy(y) £ max{m : H ~y-shatters some z € Xm}. (21)

We next record the following result.

Theorem 5.2. [Bar98, Corollary 24] Let M > 0, and 0 : R — [-M/2, M /2] be a non-
decreasing function. Define a class F of functions on R? by

Fé{XHO'(U}TX—Fwo) :wERd,woeR}
and let
H(A)é{ Z Cljf]‘ ZmEN,f]‘ GF,“GHl SA}

1<j<m
where A > 1. Then for every v < MA,

FSDg(4)(7) <

cM2A%d (MA)
5 In
Y Y
for some universal constant ¢ > 0.

Here a = (a; : 1 < j <) € R™ is the vector of output weights, ||al|; is the outer norm; and
v > 0 is a certain scale parameter. Observe that H(A) is precisely the class of two-layer NN with
activation function o(-) whose outer norm is at most A. Per Theorem 5.2, the FSD of the class
of two-layer networks with bounded outer norm is upper bounded by an explicit quantity.

Some Extra Notation on Covering Numbers. We next introduce several quantities ver-

batim from [BLW96]. Let W be an arbitrary set, and f : W — R be any function. For any
w = (wy,...,wy) € WV, denote by f|, the N-tuple (f(w;), f(ws),...,f(wx)) € R¥. For a
class C of functions f : W — R, let C|,, C RY denotes the set

Clo 2 {f|w L f ec} - {(f(wl),...,f(wN)) . f ec} CRV. (22)

1Gee the archived version at http://web.archive.org/web/20200921180645/http://phillong.info/publications/fats}
if the link above is expired.
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Next, recall the covering numbers from Definition 1.2. Throughout this section, and in
particular the proof of Theorem 3.1, we take the metric p appearing in Definition 1.2 to be the
normalized ¢; distance: for any w,w € RV, set

1
p(w,w) = N Z |w; — w;].

1<i<N

For any U C RN, denote by N (e,U) the covering number of U (at scale €) with respect to the
metric p above. That is, M (e, U) is the cardinality of the smallest A, C U (if finite) such that for
every w € U, there exists a @ € N, with p(w, @) = £ >, ;o5 |wi — @;] < €. (It is worth noting
that here we flipped the order of arguments in A/ appearing in Definition 1.2. The rationale for
this is to be consistent with the notation of Bartlett et al. [BLW96].)

Throughout this section, we often consider the following special case of N'(-,-): we employ
N(+,C|y,) for appropriate classes C of functions where w is an element of the Euclidean space RY
for some N.

We now establish the following proposition which provides a control for the generalization
gap uniformly over all two-layer NN models with bounded outer norm.

Proposition 5.3. Let M, M, A > 0; 0 : R — [-M/2, M /2] be a non-decreasing activation
function; and D be an arbitrary distribution on R? x R for the input/label pairs (X,Y) where
Y| < M almost surely. Recall the class H(A) of two-layer neural networks with activation o and
outer norm at most A from Theorem 5.2; and let (X;,Y;), 1 < i < N, be i.i.d. samples drawn
from D. Then for any o > 0, with probability at least

5T6NM>A? max{MA,2M}\ @’ N
64 max{MA,2M}?

1—4dexp <§(a,]\4,/\/l,A)~d-1n2 (

(07

over the draw of the training data (X;,Y;), 1 <i < N, it holds that

1 2 2
Sup |5 Z (SO(Xi)—Yi) —E(X,Y)ND[(SO(X)—Y> ] <,
peH(A) 1<i<N
provided
646 A 2M )2
N > 64 128c . MATmA{IMA, 2M)

a2
Here, ¢, > 0 are absolute constants, the term £ is introduced in (6) and the expectation is taken
with respect to a fresh sample (X,Y) ~ D independent of (X;,Y;), 1 <i < N.

It is worth noting that while we made no attempts for simplifying the constants appearing
throughout Proposition 5.3, we believe that they can be improved.

Proof of Proposition 5.3. We first provide a result established originally in [Hau92, Theorem 3,p. 107].

Theorem 5.4. Let X, Y be sets; G be a PH-permissible class of [0, T|-valued functions defined
on Z 2 X xY where T € R", and P be any distribution on Z. Suppose Z;; 1 < i < N, are
i.1.d. samples from P. Then for any o > 0, with probability at least

1—4<sup N(%,G

2€Z2N

z)) -exp (—a’N/64T7)
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over data Z;, 1 <1i < N, it holds that

1
_ ) <
igg N E 9(Z;) = Ez.pl9(Z)]| < q,

1<i<N

where Elg(Z)] is taken with respect to a fresh sample (namely a sample drawn from P, and
independent of Z;).

The version we record above is verbatim from [BLW96, Theorem 13]. (The parameters M
and m in [BLWO96] are replaced, respectively, with the parameters 7" and N above.)

Here, PH-permissible refers to a rather mild measurability constraint?, see [Hau92, Sec-
tion 9.2]. The precise details of this technicality are immaterial to us; and it is satisfied for
our purposes. Moreover, N (-, -) is the covering numbers quantity defined above.

In what follows, we take X = R? Y = [0, M] (recall that the labels are bounded almost
surely by M) thus Z = R? x [0, M] and we set P to simply be D, the distribution from which
the data are drawn. We then set

G2 {(p(X)-Y): X € RLY € [0, M], () € H(A)}, (23)

and take T to be max{MA,2M}?> (see below, in particular (26)). This is nothing but the ¢,
error obtained for predicting the label Y with ¢(X), with X being the input and ¢(-) being the
“predictor”.

Upon inserting these parameters in Theorem 5.4, we obtain immediately

1 2
sup 1y > (‘P(Xi) - Yi) — Ex,y)~p [(w(X) - Y)z] <a (24)
peH(4) |V STy
with probability at least
o} a’N
1—4 — . _ 9
(;}%N (356 )> P < 64 max{MA4, 2M}2> (25)

over data Z; = (X;,Y;) ~ D, 1 < i < N. Above, we used the facts (a) |[Y| < M almost
surely; and (b) for any ¢ € H(A), it is the case p(X) = >, ;a0 (wIX) (for an m € N
and w; € R?, 1 < j < 7), where ||a]|; < A and sup,. |o(z)| < M/2. These together with the
triangle inequality yield

~MA/2 < p(X) < MA/2 and —M <Y < M.

Hence,
~max{MA/2, M} < p(X),Y < max{MA/2, M} = (p(X)~Y) <max{MA,2M}"

thus 7" can be taken as
T = max{MA,2M}*. (26)

We next study covering number quantity sup,. oy N (a/16, G|.) appearing in (25). For this, we
rely on the following result taken verbatim from [BLW96, Lemma 17].

2The letters H and P stand, respectively, for Haussler and Pollard—who gave a preliminary version of Theo-
rem 5.4.
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Lemma 5.5. Let X be a set, and F be a set of functions from X to [0,1]. Then for any ¢ > 0
and any N € N, ifa <0 and b > 1, we have

Here, ;(z,y) = (f(z) —y)* lp = {{; : f € F}, and for z = (21, ..., 2n) (where z; = (z;,4:)),

sup N (e, (Lr)

ze(X x[a,b))N

z) < sup N(L,F

zeXN 3|b_a|

(te), = {(zf(xi,y,.)i’ 1<i< N) . fe F}

which is the notation introduced in (22) with C := ¢ and w := z.
We take F' = H(A) and {r = G to arrive at

sup N <1g6’ G (27)

ZGZZN

a
) = x;ﬂ‘;};m/\/ (32MAmax{MA, oy (A”’”) ‘
Here, in addition to inserting a//16, we also rescaled € so as to reflect the fact that the functions in
H(A) take values in [0, M A]. (While all the bounds established by Bartlett et al. in [BLW96] as-
sume the output space to be [0, 1], they extend in a straightforward manner to any output spaces
of form [L, U] by rescaling corresponding parameters. This is already noted in the beginning
of [BLW96, Section 6].)
We next record yet another result by Bartlett et al. [BLW96, Corollary 16].

Lemma 5.6. Let F be a class of [0, 1]-valued functions defined on X, 0 < € < 1/2 and 2N >
FSDg(e/4). Then,
2 , ON
sup N (¢, Fl;) < exp | —FSDg(e/4)In* — ),
zeXN In2 €

where the quantity FSDg(-) stands for the fat-shattering dimension introduced in (21).

(While we again skip the proof of this lemma, it is worth noting that it is obtained by
combining two earlier results by Alon et al. [ABDCBH97, Lemmas 14,15].)

Taking now X = R? and F = H(A); rescaling € to t55; and then plugging
a

T 32MA max{MA, 2M}

€

as in (27), we obtain

sup N

xE(Rd)QN

(32MA ma:{MA, 2MY’ H(4) |’”>

a BT6N M2 A2 max{MA, 2M}
< —FSD ln® | |
= <ln2 SDrca) <128M2A2maX{MA’ 2M}> ' < >>

) (28)

We finally apply Theorem 5.2 above to upper bound the FSD term appearing in (28). Provided

(07

< MA < 128 M3A43 A 2M
DS AME AT max{ MA, 201 = MA & a S 1M max{ MA, 2M}
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it holds that

a
FSDgr(a) <128M2A2 max{MA, 2M}>
2 A6 46 2 343
< 128%c MO A° max{ MA,2M} i 1o <128./\/l A’ max{MA, 2M}> (29)

a2

(07

where ¢ > 0 is the absolute constant appearing in Theorem 5.2.
Finally, combining the chain of equations (25), (27), (28), and (29), we complete the proof. [

We finally provide a technical lemma to be used in the proof for the ReLU case.

Lemma 5.7. Suppose that the distribution of X € R¢ satisfies the assumptions of Theorem 2.5.
Then,
A(d) 2 sup EUwTXf 1 {||X]2 > Cd}} < exp(—@(d)). (30)
weRA:||w||2=1/v/Cd

The scaling ||w||2 = 1/v/Cd is required for technical reasons for the proof of the part (b) of
Theorem 3.1.

Proof of Lemma 5.7. Define

Md) 2 sup E[\wTXf 1{|IX|2 > Cd}]
wER?:||w||2=1
Clearly A(d) = CdA(d). Since C' = O(1), it suffices to prove A(d) < exp (—O(d)).
Next, fix a w € R? with ||w||, = 1. Observe that using the inequality e > 1 + x, we obtain

e X | rwTX > r‘wTX , forany r >0.

Using the chain of inequalities
8 (at +b%) >4 (a® +0%)° > (a+b)*,
both due to Cauchy-Schwarz, we thus obtain
%(64erX 4 e—4erX> > ‘wTXr'
Now, take r = s/4 and then take the expectation of both sides to obtain

2048
54

where M (s) and M>(s) are defined in Theorem 2.3. Thus,

(M(s) + Mo(s)) > EHwTXm, (31)

E“wTXf 1 {||X2 > (Jd}]2 < EHwTXHE[]l {I1x2 > C’d}2] (32)
- EHwTXm]P’<||X||§ > Cd) (33)
< D8 (Mi(s) + Ma(5)) - exp(~0()) (34)
< exp<—®(d)), (35)
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where (32) uses Cauchy-Schwarz inequality; (33) uses the fact E[1{F}?] = P(E) valid for any
event F; (34) uses (31) and the fact P (|| X3 > Cd) < exp(—©(d)); and finally (35) uses the
condition (b) on the distribution of X stated in Theorem 2.3. Taking square roots and taking
the supremum over all ||wl||; = 1, we obtain A(d) < exp(—©(d)); establishing Lemma 5.7. O

Having established Proposition 5.3 and Lemma 5.7, we now complete the proof of Theo-
rem 3.1.

Proof of Theorem 3.1. Throughout the proof, we assume that N is a sufficiently large polynomial
in d and satisfies Assumption 1.1. Moreover, since the labels are bounded, |Y'| < M almost surely,
the on(1) terms in Theorems 2.1-2.4 disappear, as noted previously.

For the case of sigmoid and step activations, M can be taken as 2. Thus, for the £ term
appearing in Proposition 5.3, we simply employ £(a, M, 2, A).

Part (a). Define the class

S(6,R) = {X =Y a;S6M (w] X) : (a, W) € (5, R)} ,

1<j<m

where S§(0, R) is introduced in Theorem 2.1. Note, by the definition of S(d, R), that

sup E(a, W)= sup — Z ( Z a]SGM Z)2> < 62

(a,W)€S(6,R) (a,W)eS(4,R) 1<z<N 1<j<m

Applying Theorem 2.1, we find that provided N > poly(d), S(§, R) C H(A) with probability
bounded by (3), where H(A) is the class defined in Theorem 5.2 with o(-) = SGM(-) and A =
3(1+e)(0+2M).

Finally, we (a) set M = 2 in Proposition 5.3; (b) then consider &(a, M,2, A); and (c) set
C(a, M, A, N) as in (7). Combining now Theorem 2.1 and Proposition 5.3 via a union bound, we
establish the desired conclusion.

Part (b). As the output of the ReLU is not bounded, the situation is more involved.
First, recall from Theorem 2.3 the sets

g(m)é{(a,W)eR?oxRM:lle||2=1,1§jgm,f(a,W>§62} and G(5) £ | G(m,9).

By Theorem 2.3, it holds that with probability bounded by (4), for any (a, W) € G(6), ||a|; <
4(6 + 2M)(p*)~t. Using the homogeneity of the ReLU activation, we instead rescale w; by
1/+/Cd; and consider throughout the sets

G(m, o) & {(a, W) € R xR |lwjll = ——, j € [m], £ (a, W) < 52} and G(8) £ | J 6(m,9).

1
v Cd a meN
(36)
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Then, with probability at least

d
12v/Cd
1- ( e ) exp (—O(N)) — Nexp (-6(d)), (37)
it holds that
4vCd(6 +2M
sup ol < A H2M) (39)
(a,W)€G(9) i
We now define an activation function, which is a “saturated” version of the ReLU:
0 <0
S-RelU(z) £{z 0<z<1. (39)
1 >1

Next, using a union bound over data (X;,Y;), 1 <i < N,
P(IX[3 < Cd,1<i < N) > 1~ Nexp(-0(d).

Hence by Cauchy-Schwarz inequality,

P sup  |wTX;| <1,1<i< N | >1-Nexp(-0(d)).
wlle=—A

Consequently, w.p. at least 1 — N exp(—©(d)) over (X;,Y;); it holds that for all (a, W) € G(6)

2 2
% > (Yi— > a;RelU (wa,)) :% > (Yi— > a;S-RelU (ijXi)) <82

1<i<N 1<j<m 1<i<N 1<j<m
(40)
Define next the class
G(6) = {X — Z a;S-ReLU (w] X) : (a, W) € 5(5)} . (41)
1<j<m

Note that, this set consists of all two-layer neural networks with (a) activation S-ReLU(:), the
saturated version of ReLU(-); and (b) weights trained on the ReLU(-) network.

By Theorem 2.3 and (38), we find that provided N > poly(d), G(§) C H(A) with probability
given by (37), where H(A) is the class defined in Theorem 5.2 with o(-) = S-ReLU(:) and
A=4y/Cd(6 +2M)/p*.

Observe that S-ReLU is a non-decreasing activation with bounded range. Hence, Proposi-
tion 5.3 applies: one can simply take M = 2. We now apply Proposition 5.3 with M = 2, and
A = 4y/Cd(5 + 2M)(p*)~" as in (38). Combining the probability bound (37) and the one in
Proposition 5.3 by a union bound, we find that for every a > 0, with probability at least

- (a, o 4@S*+ 2M),N> - (12;/?1

) exp (—O(N)) — Nexp (-6(d)) (42)
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(where ¢ is introduced in (7)) over training data (X;,Y;), 1 <4 < N, it holds that

<«

— Y

~ Z (Y;— (XZ))2 — Ex y)~p [(Y — SO(X)>2}

I<i<N

for the class G(§) introduced in (41). Recalling also (40) which holds with probability 1 —
N exp(—06(d)), we conclude that

2
sup  Exy)p (Y — ) a;8-RelU (wj X )) < a+ 6%, (43)
(a,W)€G () 1<j<m

with probability at least

- (a, o 4\/@(;5*+ 2M),N> - (12;/*07

) exp (—O(N)) — 2N exp (—O(d)).  (44)

We next fix an (a, W) € 5(5), and study the quantity

2 2
Aa, W) & |Exy)p (Y— Z a;ReLU (ijX)) — Ex,y)wp (Y— Z a;S-ReLU (wa))

1<j<m 1<j<m
(45)
This quantity is nothing but the difference of generalization errors between two networks of same
architecture, same number 7 of hidden units and same weights (a, W); but different activations,
ReLU(-) and S-ReLU(:).
For convenience, denote

osr(X) = Z a;jS-ReLU (w;‘-FX) and @gr(X) = Z ajReLU (w;er).

1<j<m 1<j<m

In what follows, we employ the simple observation that since a; > 0 and 0 < S-ReLU(z) < 1,

0 < psr(X) < |lalls-
Suppressing the subscript (X,Y) ~ D from the expectations, we have

Ala,W) = [E[(Y = ¢sa(X)] - E[(Y = ¢r(X))’]| (46)
= |E[2Y pr(X) — 2V psr(X)] + E [psr(X)* — pr(X)?] (47)
< |[E[2Y0a(X) — 2V psn(X)]| + [E [psa(X)? ~ ¢n(X)?] (48)
<E|[[2Yen(X) - 2V psr(X) || +E||0sn(X)* = er(X)?|]. (49)

Above, (46) follows by the definition of A(a, W) per (45); (47) follows after simple algebra; (48)
follows by the triangle inequality; and (49) follows by the Jensen’s inequality.
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We next study two individual terms appearing in (49) separately, while keeping in mind that
(a, W) € G(6) implies a; > 0 for 1 < j < and ||wj||s = 1/vCd for 1 < j < m. We have

E| |2V pa(X) — 2V psr(X)|| < 2ME[[0r(X) - ¢sr(X)|| (50)
= 2M (E[or(X) - psr(X)||I1X1I3 < Cd|P (IX |} < Ca)) (51)

+2M (E[|or(X) - psn(0)|1{ X8 > Cd}] (52)

< 2ME[|pa(X) — psr(X)[1{1X]3 > Cd}] (53)

< 2M (E[pr(X)1{ X[ > Ca}| + E[psr(x)1{1 X > Ca}])

(54)

< 2Me D fay (VAW@) +1). (55)

Here, (50) uses the fact |Y| < M almost surely; (52) is by the law of total expectation; (53) uses
the fact that on the event ||X||2 < Od, pr(X) = psr(X) since ||wj|ls = 1/v/Cd; (54) uses the
triangle inequality; and finally (55) uses the facts 0 < S-ReLU(z) < 1 for every z, a; > 0 for
every 1 < j < m; ReLU(z) < |z|; and

EijTX‘]l{HXH% > Cd}] < \/EHw;-.FX‘z]l{HXH% > Cd}].E[ﬂ{uxng > Cd}] < 0D /3(d)

using Lemma 5.7 and Cauchy-Schwarz inequality. Here, A\(d) is the function defined in (30).
We now study the second term in (49). Observe that

E||psn(X)? = or(X)|| = E|[psa(X)? = or(X)?| |IX]I3 < Cd|B (X[} < Ca) (56)
+E||psa(X)? — or(X)*[1{|IX|}} > Cd}| (57)
= [ |osa(X)* - er(X)*[1{|IX| > Ca}] (58)
<(Bose(X)1{1X |3 > ca}] +E[en(x?1{|1X[3 > Ca}]) (59)
< (e—c"(d) a2+ Y a§E[ReLU (wfx)21{||X||§ > CdH (60)

1<j<m

+2 Z ajlahE[ReLU (w] X) ReLU (w], X) ]l{||X||§ > C’d}])
1<j1<j2<m
(61)
<D (a4 Md) D @ +2d) D aa) (62)
1<5<m 1<j1<je<m
= ¢=O@|[af?(\(d) +1). (63)

Indeed, (57) is again by the law of total expectation; (58) uses the fact that on || X3 < C4d,
osr(X) = pr(X) since ||wjlls = 1/VCd; (59) uses triangle inequality; (61) is obtained by
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opening the parantheses while using a; > 0, 0 < S-ReLU(z) < 1; (62) uses the fact a; > 0,
Lemma 5.7 as well as the Cauchy-Schwarz inequality

E[Rew (w” X) ReLU (w”. X) 11{||X||§ > C’dH < \/E[ReLU2 (w? X) 11{||X||§ > CdH x

\/ﬂ:«::[ReLu’2 (wI X) 1{||X||§ > Cd}]
< A(d),

since ReLU(z) < |z|. Finally, (63) is obtained by just noticing that for a; > 0,

2
lall} = ( Z aj) = Z a?+2 Z aj,aj,.

1<j<m 1<j<m 1<j1<j2<m

We now combine (55) and (63) to upper bound the right hand side of (49) and arrive at
Ala, W) < 2Me=®Dally (/A(d) +1) +e~®D allf (A(d) +1).
Since ||al|y < 4v/Cd(8 + 2M)/p* on G(6) as recorded in (38), we obtain

sup  Ala, W) < e ©@ <8M‘@(i+ 2M)\/3( Md) + 1) | 1660 J:fM)Zd()\(d) + 1)
7 ("

(a,W)€G(9)
(64)
Recall that A(d) < exp(—0(d)) by (30). Note that as long as M,C,§, u* = exp(o(d)) as well,
the term on the right hand side of (64) is e=©(@),
We finally combine (43), (45); and (64) to obtain

2
sup  Exyyep [|Y — Z ajReLU (w]TX) <a+8*+e 0@
(a,W)€G(9) 1<j<m
with probability at least

4/Cd(5 + 2M) N) - (12\/061
) [1/* ) [1/*

d
1-¢ (a, M ) exp (=O(N)) — 2N exp (-O(d)),
as shown in (44). This concludes the proof of Part (b).

Part (c). This is quite similar to Part (a).
Define the class

H(5) = {X — Z a;Step (w] X) : (a,W) € ’H((S)}

1<j<m
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where #(0) is introduced in Theorem 2.4. Note, by definition, that

sup E(a,W): sup % Z (Yi— Z a;jStep (w;‘-FXi)z) < 62

(a,W)eH(5) (a,W)eH(5)

1<i<N 1<j<m

Applying Theorem 2.4, we find that provided N > poly(d), H(4) C H(A) w.h.p. , where H(A)
is the class defined in Theorem 5.2 with o(-) = Step(-) and A = 2(§ + 2M) /n.

Like in the previous case, we then (a) set M = 2 in Proposition 5.3; (b) then let &(a, M, 2)
to be &(a, M,2,A); and (c) set ((a, M, A,N) as in (7). Combining now Theorem 2.4 and
Proposition 5.3 via a union bound, we establish the desired conclusion. O
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