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Abstract—Electromigration (EM) analysis for complicated in-
terconnects requires the solving of partial differential equations,
which is expensive. In this paper, we propose a fast transient
hydrostatic stress analysis for EM failure assessment for multi-
segment interconnects using generative adversarial networks
(GANs). Our work is inspired by the image synthesis and
feature of generative deep neural networks. The stress evaluation
of multi-segment interconnects, modeled by partial differential
equations, can be viewed as time-varying 2D-images-to-image
problem where the input is the multi-segment interconnects
topology with current densities and the output is the EM stress
distribution in those wire segments at the given aging time.
We show that the conditional GAN can be exploited to attend
the temporal dynamics for modeling the time-varying dynamic
systems like stress evolution over time. The resulting algorithm,
called EM-GAN, can quickly give accurate stress distribution
of a general multi-segment wire tree for a given aging time,
which is important for full-chip fast EM failure assessment.
Our experimental results show that the EM-GAN shows 6.6%
averaged error compared to COMSOL simulation results with
orders of magnitude speedup. It also delivers 8.3× speedup over
state-of-the-art analytic based EM analysis solver.

I. INTRODUCTION

Electromigration (EM) is a primary long-term reliability
concern for copper-based back-end-of-the-line interconnects
used in modern semiconductor chips. As predicted by Interna-
tional Technology Roadmap for Semiconductors (ITRS), EM
is projected to only get worse in future technology nodes [1].
This, as with many other reliability effects, is due to the contin-
ued trend of feature-size reduction and rapid integration which
ultimately affects the critical sizes for the EM failure process.
EM-related aging and reliability will become worse for current
7nm and below technologies. As a result, it is crucial to ensure
the reliability of the very large scale integration (VLSI) chips
during their projected lifetimes.

Due to its growing importance, considerable recent research
has focused on fast EM analysis techniques. It is well accepted
that existing Black and Blech-based EM models [2], [3] are
overly conservative and can only work for single wire seg-
ment [4], [5]. Recently, a number of physics-based EM model
and analysis techniques have been proposed [6]–[18]. At the
center of those methods is to solve partial differential equation
(called Korhonen’s equation) of stress in the confined metal
wire segments in a general interconnect tree [19]. Although
many numerical approaches such as finite method [12], [13],
finite element methods [6], [15] and analytic or semi-analytic
solutions [9], [11], [14], [16], [17] were proposed, these
methods still suffer the high computing costs or can only apply
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to some special cases, which hinder this applications for full-
chip EM validation and signoff analysis.

On the other hand, deep neural networks (DNN) have
propelled an evolution in machine learning fields and redefined
many existing applications with new human-level AI capabil-
ities. DNNs such as convolution neural networks (CNN) have
recently been applied to many cognitive applications such as
visual object recognition, object detection, speech recognition,
natural language understanding, and etc. due to dramatic ac-
curacy improvements in those tasks [20]. Recently, generative
adversarial networks (GAN) [21] gained much traction as it
can learn features (latent representation) without extensively
annotated training data. The representations learned by GANs
may be used in a variety of applications, including image
synthesis, semantic image editing, style transfer, image super-
resolution, and classification etc.

Recently GAN-based methods have been applied for VLSI
physical designs such as generation of the various noise maps
to facility the IR-drop noise sensor placement [22], for layout
lithography analysis [23] and sub-resolution assist feature gen-
eration [24], for analog layout well generation [25]. However,
the proposed GAN-based design and analysis techniques are
mainly targeted for the statistical and static image generations
(analysis). Less works have been explored to learn the time-
series data. GAN models actually are not only limited to static
image generation. Recently GAN models have been modified
to preserve the temporal dynamics as demonstrated in recent
work for time-series GAN, called TimeGAN [26], in which
additional auxiliary networks called embedding and recovery
are added to learn the temporal information of data. Also
recently study shows one can use recurrent neutral networks
(RNN), which is more suitable for time series modeling, for
both generator and discriminator for missing value imputation
for multivariate time series data [27] and time series data
augmentation [28].

In this work, we propose data-driven fast transient hy-
drostatic stress analysis technique for EM failure assessment
of multi-segment interconnects by exploiting the conditional
GAN models. We show that we time variable can be treated as
continuous conditions for GAN to learn the temporal dynamics
in the EM stress evolution analysis. The new contributions are
as follows:

1. We first show that EM analysis, modeled by partial
differential equations, can be viewed as 2D image to
image transforming process. Then we propose to explore
the conditional GAN structure in which the input images,
which are the multi-segment interconnects topology with
current densities, are treated as conditions.

2. To learn the temporal dynamics in the transient EM
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analysis, we further explore the conditional GAN struc-
tures to use time variable as the continuous condition
for generator and discriminator. We show such time-
conditional GAN works well for time-varying stress
modeling.

3. Different hyper parameters of GAN were studied and
compared. We use current densities of wire segment and
aging time as the conditions for the conditional GAN.
The resulting EM-GAN can quickly give accurate stress
distribution of any multi-segment wires for a given aging
time.

4. Our experimental results show that the EM-GAN has
6.6% averaged error compared to COMSOL [29] simu-
lation results with orders of magnitude speedup. It also
delivers 8.3× speedup over recently proposed state-of-
the-art analytic based EM analysis solver [17].

This paper is organized as follows: Section II gives the basic
background of EM problem and existing solutions. Section III
presents the proposed GAN solver for the EM-induced stress
distribution. Section IV presents the numerical results and
some related discussions. Finally section V concludes this
paper.

II. PRELIMINARIES FOR TRANSIENT EM ANALYSIS

EM is the process of metal atoms migrating along the direc-
tion of the applied electric field in confined metal interconnect
wires due to the momentum transfer between the conducting
electrons and lattice atoms. Under EM, the aforementioned
momentum transfer leads to the buildup of hydrostatic stress
in the confined metal wires. When this stress reaches a critical
level, the aforementioned migration of atoms is initiated. Over
time, this migration leaves behind a depletion of atoms (or
void) at the cathode terminal of the wire and an accumulation
of atoms (or hillock) at the anode terminal. This eventually
leads to failure due to an open or short circuit respectively.

Traditionally, the industry standard model to predicting the
time-to-failure (TTF) under EM are based on empirical or
statistical models, the most well known of which are Black’s
equation [2] and Blech’s limit [3]. However those models
have been shown to be overly conservative, applicable only to
single wire segment, and therefore lead to unnecessary over-
design with large overheads [5]. To mitigate this problem, EM
modeling starts with the first principles of stress physics in
the confined metal wires start to gain many tractions [18].
Such physics-based EM modeling analysis is centering around
solving the partial differential equation with blocked terminal
boundary conditions for general multi-segment interconnects
as shown in Fig. 1.

Fig. 1: Multi-segment wire with EM stress distribution
Specifically, we assume that a general interconnect

wire has n nodes, including p interior junction nodes
xr ∈ {xr1, xr2, ..., xrp} and q block terminals xb ∈

{xb1, xb2, ..., xbq}. Then the Korhonen’s PDE [19] for the
nucleation phase can be written in following multi-segment
format:

∂σij(x, t)

∂t
=

∂

∂x

[
κij(

∂σij(x, t)

∂x
+Gij)

]
, t > 0;

BC : σij1(xi, t) = σij2(xi, t), t > 0;

BC :
∑
ij

wijκij(
∂σij(x, t)

∂x

∣∣∣∣
x=xr

+Gij) · nr = 0, t > 0

BC : κij(
∂σij(x, t)

∂x

∣∣∣∣
x=xb

+Gij) = 0, t > 0;

IC : σij(x, 0) = σij,T

(1)

where σ(x, t) is the hydrostatic stress for branch ij from nodes
i and j, nr represents the unit inward normal direction of the
interior junction node r on branch ij, the value of which is
+1 for right direction and −1 for left direction of branch with

assumption of xi < xj , G = Eq∗
Ω is the EM driving force,

w is the width of the branch, and κ = DaBΩ/kBT is the
diffusivity of stress. E is the electric field, q∗ is the effective
charge. Da = D0 exp(

−Ea

kBT
), which is the effective atomic

diffusion coefficient. D0 is the pre-exponential factor, B is
the effective bulk elasticity modulus, Ω is the atomic lattice
volume, kB is the Boltzmann’s constant, T is the absolute
temperature, Ea is the EM activation energy. σT is the initial
thermal-induced residual stress in each wire segment.

In general, numerical approaches such as finite difference,
finite element based approaches are required to solve the
PDE in (1), which are expensive and time consuming. The
recently proposed semi-analytic solutions can still be expen-
sive as the eigenvalues have to be computed by numerical
approaches [14], [17].

III. THE PROPOSED DATA-DRIVEN FAST EM SOLVER:
EM-GAN

A. Data preparation

For machine learning based approaches, one crucial aspect
is sufficient training data. For our GAN-based EM stress
estimation, the input data are interconnect topologies with
various current densities in different wire segments while the
output is the evolution of the EM-induced stress distribution
across all wire segments. The proposed EM-GAN is trained to
model the transformation scheme between these two datasets.
In what follows, we present the details of the training data and
how we preprocess and map them into the domain that can be
leveraged by GAN-based model.

To achieve the abundance of training data, we randomly
generated 2500 different topologies of multi-segment intercon-
nects. Each of them has different number of wire segments
with random widths, lengths and current densities. These
generated topologies with current densities are then fed into
COMSOL (an off-the-shelf finite element method (FEM)
solver). For each input, COMSOL produces a series of stress
distributions which reflects the stress evolution along the aging
time. The data acquisition process is illustrated in Fig. 2a. The
time-step between two adjacent results can be adjusted to get
the best trade-off between accuracy and performance.

These data are all saved in numerical format, and as stated
in Section I, to leverage the GAN model, we have to transform
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Fig. 2: Illustration of training data: (a) Raw data acquisition for

training dataset (b) Input: A design with wire segments filled

with current densities (c) Output: Evolution of EM-induced

stress distribution along 10 aging years.

them into image domain so that the problem is simplified as
an image-to-image task.

• Input: Every interconnects topology is composed of
rectangular wire segments with random sizes. When
generating the topologies, we set the bound for both x-
and y-dimension to 256 μm, and the resolution of the
wire segments is set to 1 μm. With such configuration,
we can easily project the topology onto a 256 × 256
grid, which can also be seen as a single-channel image
as is shown in Fig. 2b. We note that such configuration
does not restrict our work to only small-size intercon-
nects, as in real cases, bulk interconnect system may
be divided into small pieces with partitioning algorithms
for parallel calculation. The proposed EM-GAN is used
as the solver for small partitions and the results can be
synthesized back to form the final results for the original
bulk interconnect system. Another input is the current
density which is generated by applying random current
sources to the interconnects. In each topology, current
density varies drastically among different wire segments
but is equally and uniformly distributed within the same
segment. To combine these two inputs into a single image,
we fill every wire segment with its current density and
the resulting single-channel image is shown in Fig. 2b. In
this work, we refer to every combined input of topology
and current density as a design.

• Output: The results we get from COMSOL for each
design are a time-series of gradually changing stress
distributions. In this work, the maximum aging time is
set to 10th year and we reserve 10 results from 1st to
10th year for training purpose. Similar with the raw data

of current densities, the stress distributions are also saved
in numerical format, such that they can also be combined
with topologies. The combined result is referred to as a
stress map in this work. The combination process together
with the resulting stress maps at 1st, 5th and 10th aging
years are illustrated in Fig. 2c. Each stress map can
also be seen as a single-channel image with the same
256× 256 size as the input design. The difference is that
each pixel in stress maps represents stress value in the
corresponding 1 μm2 area and for each input design, there
are 10 resulting stress maps.

Feeding all 2500 randomly generated designs into COM-
SOL results in 25000 stress distributions, which are then
organized into a training dataset with 2500 pairs of (Input :
1 design, Output : 10 stress maps) samples. The 1-to-10
relationship within each data pair implies that a single input
multiple output (SIMO) model is required while traditional
GANs are only capable of single input single output (SISO)
modeling. The technique we use to overcome this barrier will
be detailed in Section III-B3.

1 year

Input:

EM-GAN

Output:

Aging Time

A/m2

1st year

Pa

10th year

Fig. 3: EM-GAN models the stress estimation as an image-to-

image task

Now that both input and output are transformed into image
domain, a GAN-based model can be leveraged to solve the
proposed problem as an image-to-image task as illustrated in
Fig. 3. However, there are still some preprocessing needed
before the data can really be fed into the model. Since there
is only one channel in the image, the figures shown in Fig. 2
are depicted as heat-maps in which the colors are only for
visualization purpose. Pixels in a typical color image usually
have red-green-blue channels and the values are limited to
the range of 0 to 255, which is not the case in our dataset.
Pixels in design and stress map are filled with real values
of current density and stress separately. In this work, both
current density and stress can range drastically from magnitude
of −109 to 109. The positive sign here denotes the direction
toward right and up, and vice versa. It is commonly accepted
that values around zero are more numerically stable for neural
networks, and thus, we have to scale our dataset down to such
range. In this work, we rescale all samples to zero mean and
unit standard deviation using data standardization method. All
values are squeezed into the range of -7 to 7 with the majority
of which around zero.

B. CGAN-based current density to EM stress transformation

1) The current density image to EM stress image trans-
formation: We first show that we can view the PDE solving
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process for a multi-segment wire shown in Fig. 1 as image
synthesis process, in which the DNN can automatically extract
features reflecting the physics-law of stress evolution in the
confined metal wire. Then we can use the DNN network to
map the input images of interconnect wires with stressing
current to the stress distributions of wire segment for any given
aging time.

2) Review of GANs: Generative Adversarial Networks
(GANs), are widely used generative models which consist
of two neural networks: (1) A Generator G which is trained
to produce real-like data which mimics the samples in the
training set and, (2) a discriminator D that takes either real
or fake data as input and aims to discriminate between them.
The input of G is usually random noise z which follows a
certain distribution and thus, the generated output is also a
random sample extracted from the distribution of fake data.
The training of GAN requires both G and D to be trained
simultaneously in an alternative fashion and the final goal
is to let the distribution of fake data overlaps with that of
the training set. The output of D measures the similarity be-
tween these two distributions and usually the Jensen-Shannon
Divergence is employed as the measurement. To reduce the
randomness in the generated data, Conditional GAN (CGAN)
was created to provide a certain extent of control on the output
of G. CGAN is a variant of GAN which introduces additional
condition input so that the fake data distribution is conditioned
on it. CGANs have been widely used as conditional generation
method and are at the forefront of a wide-range of applications.

3) Time Dependent Architecture: GANs are designed for
static applications where single input always lead to a single
output. However, as is shown in Section II, our dataset consists
of 2500 pairs of (1 design → 10 stress maps) samples, which
requires the model to be able to generate a sequence of stress
distributions across all the aging years using only one design
as input. To overcome the barrier between traditional GAN
and the time-dependent data, we propose the EM-GAN, which
is a CGAN-based model with the capability of time-variant
output synthesis.

There are some recent studies trying to preserve the tem-
poral dynamics through modifications of GAN architecture.
In TimeGAN [26], additional auxiliary networks called em-
bedding and recovery are added to learn the temporal in-
formation of data. Other researches employ recurrent neutral
network (RNN), which is a natural architecture for time series
modeling, in both generator and discriminator for time series
data augmentation [28] and missing value imputation for
multivariate time series data [27]. These existing works mostly
deal with simulated or size-limited synthetic data, in which
employing RNNs will not cause too much overhead. However,
in this work, we are dealing with a time-dependent image
synthesis problem where both input and output are of quite
large sizes (256 × 256 pixels). Such large data throughput
results in a heavy model and integrating it recursively in a
RNN-like architecture will lead to a bulky network that can
be expressed as

p (z, 0)
G
→ p (ŷ1 | z)

p (z, ŷ1:t−1)
G
→ p (ŷt | z, ŷ1:t−1)

(2)

where z is a random design, G the generator model, and
ŷt the estimated stress distribution produced at the tth time-
step which is conditioned on both design and history results.

This is not a practical architecture due to the significant
computational overhead it would introduce in both training
and inference. Additionally, considering the fact that EM-
induced stress continuously evolves over 10 years, such a
large time range further impedes the employment of RNN
which otherwise would produce numerous intermediate results
at each time-step before the final aging year is reached. In real
cases, designers only care about whether the interconnects is
able to last before the chip lifetime is reached, which implies
that getting only the stress result at the specified aging year
is enough. The intermediate results are only needed when a
wire failure is spotted and further investigation into the stress
evolution is required.

Basing on these observations, we propose the EM-GAN
illustrated in Fig. 4 which employs a CGAN as the backbone.
The design z is taken as one input and another input is the
explicitly specified aging year t which serves as the time
condition. Compared with the sequential network in (2), EM-
GAN is simplified to directly map the design to the stress
map at the conditioned aging year with no intermediate result
generated. If Additionally stress-induced failure is found in
the stress map, a backward investigation can be conducted by
changing the input aging year to previous time-steps, such that
the detailed evolution of the stress map can be gathered and
analyzed.

With such a time-conditioned architecture, a single design
can be projected onto multiple stress maps by varying the
time condition input. The proposed EM-GAN model can be
expressed as

p (z, t)
G
→ p (ŷ | z, t) (3)

where z is a random design, t the specified aging year, G
the generator network, and ŷ the stress map estimated by the
generator conditioned on time t.

4) EM-GAN Architecture: As is shown in in Fig. 4, the
generator G of EM-GAN takes the design image imgdes ∈
R

256×256×1 and the aging year t ∈ R as input. The scaler
value t is expanded into R

256×256×1 through channel-wise
duplication, such that imgdes and t can be concatenated
element-wise into a two-channel image x with the size of
256× 256× 2. It is then taken as the real input of the
generator G. The architecture we employed for G is an
encoder-decoder network which is widely used in image-to-
image applications. In such a network, the input x is first
downsampled through a series of convolutional layers until
a bottleneck layer in which the extracted latent features are
saved. These features may contain various abstract information
such as physics-law and temporal dependancy. The rest part
of G leverages the extracted features and generates the stress
map by upsampling them through transposed convolutional
layers. A drawback of this encoder-decoder network is that
all information passes through the narrow bottleneck layer in
the middle which is not necessary. In this work, both input
design and output stress map share the same topology of
interconnects, and the extraction and reconstruction of such
geometric information leads to excessive overhead in both
computation and bandwidth. To make the model focus solely
on the processing of temporal and physical features, we add
skip connections between the encoder and the decoder as is
shown in Fig. 4. With such configuration, The bottleneck
layer is bypassed and the geometric information is passed
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through the shortcuts directly from encoder to decoder. Skip
connections can greatly improve the output accuracy which
will be discussed in detail in Section IV-C.

G

G(x)

y D

D(x,y)

D(x,G(x))

Gradients

Skip Connections

Encoder

Bottleneck

Decoder

Gradients

G(x)

Real

Fake

Condition

Real
Stress Map

Generated
Stress Map

Generated
Stress Map

Inputs

Topology with 
current density

Real value for 
the aging time

Duplication

Expansion

Channel

Concatenation

x

Fig. 4: EM-GAN framework for stress estimation

The output stress map of the generator is denoted as G(x)
and is referred to as fake stress map in this work. In the
training process, either a fake G(x) or a real stress map y from
the training set is fed into the discriminator D together with
its corresponding design and aging time x. The discriminator
will then judge whether the stress map is real according to
the given x. The output of the discriminator is a scalar score
which is denoted as D(G(x),x) or D(y,x) depending on
which stress map, fake or real, was inputed. It reflects how
confident the discriminator is that the stress map its being fed
is a real one.

The key idea of the EM-GAN model is to let the generator
learn the mapping method from the distribution of designs with
aging year to that of the real stress maps. Such transformation
is achieved by progressively training the generator according
to the gradients back propagated from the loss which is based
on the output of the discriminator. The generator and the
discriminator are trained simultaneously but with opposite
training objectives. The training goal of the discriminator is to
minimize D(G(x),x) and maximize D(y,x), which can be
expressed as

max
D
{Ex,y[D(y,x)]− Ex[D(G(x),x)]−

λgpEx̂[(‖∇x̂D(x̂,x))‖2 − 1)2]}
(4)

where Ex,y[D(y,x)] is the average score given by the
discriminator to real stress maps, while Ex[D(G(x),x)] is the
average score given to the fake ones. These two terms together
confine the discriminator to be more confident in telling apart
the real input from the fake ones. The last term in (4) is
the gradient penalty adopted from WGAN-GP [30], which
maintains the 1-Lipschitz continuity of the discriminator. x̂
is interpolation between the generated EM stress image and
its ground truth, and λgp is the hyperparameter which controls
the weight of gradient penalty.

On the contrary, the training objective of the generator is
to produce real-like stress maps so that the discriminator is
deceived to give high scores to the fake inputs. Since the
generator has no influence on the scores given to the real
samples, term D(y,x) is discarded in its objective function
which can be shown as

min
G
{Ex[−D(G(x),x)] + λL2 · Ex,y[‖y −G(x)‖2]} (5)

where only term Ex[D(G(x),x)] is reserved. We also
add the average L2-norm Ex,y[‖y − G(x)‖2] here to further
improve the objective function according to [31] in which λL2

controls its weight. Introducing L2-norm into the loss function
Skip connections improves the quality of generated stress
maps which will also be discussed in detail in Section IV-C.

In both (4) and (5), we adopted the Wasserstein dis-
tance as the measure of difference between distributions of
real and fake stress maps. Compared to the conventional
Jensen–Shannon Divergence, Wasserstein distance provides
higher convergence possibility and stability in the training
process. The detailed architectures of both generator and
discriminator in the proposed EM-GAN are illustrated in Fig. 5.

(a)

(b)

Fig. 5: The architecture of the neural networks in the proposed

EM-GAN: (a) generator (b) discriminator.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we present the experimental results showing
both the accuracy and speed of our proposed EM-GAN model
for time dependent EM stress estimation.

Our model is implemented in Python basing on Tensor-
Flow(1.14.0) library [32] which is an open-source machine
learning platform. As is detailed in Section IV-C, we have a
dataset containing 2500 pairs of (1 design → 10 stress maps),
and to train EM-GAN, a random selection of 15% is set aside
for testing purpose and the remaining 85% forms the training
set. To accommodate the dataset to the input layer of EM-
GAN, each 1-to-10 data pair is reorganized into 10 samples of
(design with aging year → stress map). During the training
process, all samples are randomly permuted at the beginning
of every epoch.

We run the training for 15 epochs on a Linux server with 2
Xeon E5-2698v2 2.3GHz processors and Nvidia Titan X GPU.
The cudnn library is used to accelerate the training process on
GPU. To employ mini-batch stochastic gradient descent(SGD),
we set the batch size to 8 and solve it with the RMSProp
optimizer. The learning rate of the optimizer is 0.0001, where
the decay, momentum and epsilon parameters are set to 0.9, 0
and 10−10 respectively. The weight of the L2-norm distance
λL2 is set to 100.

A. Accuracy of EM Stress Map Estimation

Once the EM-GAN model is trained, only the generator
part is preserved which serves as the generative model. It can
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take any multi-segment interconnects topology with current
densities as input and produce an estimated stress map at
the specified aging year. To evaluate the estimation error of
the trained model, we compare the estimated stress maps
against the real ones which serve as ground truth here. We
employ the root-mean-square error(RMSE) and the normalized
RMSE(NRMSE) given in (6) and (7) as the metrics of error.

RMSE =

√∑
(x,y)∈S [σ(x, y)− σ′(x, y)]2

|S|
(6)

NRMSE =
RMSE

σmax − σmin

(7)

where σ and σ′ are the real and generated stress map
respectively. S is the set containing all pixels that are on the
interconnects and |S| denotes the number of elements in S.
σmax and σmin are the maximum and minimum stress values
in the ground truth stress map respectively.

The accuracy evaluation is conducted on the test set with
375 designs that were set aside during the training process.
The random generation of designs in both training and test
set guarantees that there is no overlap of either topology or
current densities between these two datasets. It means that all
samples used for evaluation are unseen and completely new
to the trained EM-GAN, which makes the testing more close
to real applications. When EM-GAN is employed to estimate
stress distribution for a real design, it is merely possible that
the given topology or current density is identical to any design
that is from the training set. The model has to extrapolate what
it learned on the training set to unseen cases, which is exactly
what we are testing in this evaluation experiment.

For each of the 375 designs used for testing, it is fed into
the generator of EM-GAN together with 10 scalars represent-
ing 1st to 10th aging years, and the results of which are
10 stress maps showing the evolution of EM-induced stress
distribution. Comparing all 3750 generated stress maps against
their corresponding ground truth (real stress maps derived
from COMSOL), EM-GAN achieves an average RMSE of 0.13
GPa and NRMSE of 6.6%. Considering the large numerical
range (usually several GPa and 4 GPa in this work) that
typical EM stresses vary in, such accuracy is beyond enough
for EM failure assessment such as critical wire identification.
Some testing results are visualized in Fig. 8. Two designs are
randomly picked from the test set and the estimated stress
maps at 1st, 4th, 7th and 10th aging years are shown together
with the ground truth as comparison.

B. Speed of Inference

In what follows, we provide a comparison of speed between
our EM-GAN and the state-of-the-art work [17] on EM stress
analysis. We set up the problem as a large multi-segment
interconnects design that can be divided into 528 smaller
designs with dimensions of 256 × 256 μm2. We randomly
generated them using same method as we did when generating
the training dataset. The number of interconnect branches in
each design ranges from 5 to 79. Both EM-GAN and the [17]
method were run to estimate the EM stress distribution for all
528 designs at the 10th aging year. The tests were run on the
same server and the accumulated time cost on all 528 designs
are plotted in Fig. 6.

Although [17] yields more accurate results which agree
well with the solution of COMSOL, EM-GAN demonstrates

Fig. 6: Comparison of EM stress estimation speed between

state-of-the-art and EM-GAN.

8.3× speedup over [17]. The total time cost of EM-GAN
and [17] are 37.86s and 4.58s respectively. For [17], the
time cost of each stress map prediction varies from 0.49s to
0.003s depending on the number of branches involved in the
input design. However, for our EM-GAN, any given design is
taken as a whole image with same dimensions. The inference
is essentially an image transformation process dealing with
fixed number of pixels regardless of how many wire segments
are actually involved in the input design. That is to say,
the inference time of EM-GAN is invariant to the varying
number of interconnect branches, which makes it much more
competent in doing estimation for large scale designs and has
a better scalability.

C. Analysis of Loss and Skip Connections

As described in Section III-B4, EM-GAN employs skip
connections in the generator to bypass the bottleneck layer
and conveys the geometric information directly from the
encoder to the decoder. Another technique we used to improve
the estimation accuracy is adding L2-norm error in the loss
function of generator. To analyze whether and how these
modifications helps to improve the results, we trained two
modified EM-GAN models. We controlled the most part of the
architecture in both modified models remain the same as EM-
GAN. The only exception is that one model removed the L2-
norm from the objective function and the other one discarded
all skip connections.

Both modified models are trained for 15 epochs on the same
server and are tested using the same test set as above. The
result turns out that both modified models suffered degradation
in the accuracy of output. Specifically, model without L2-norm
loss reached an average NRMSE of 8.4% and the error is even
worse at 15.2% for the other model with no skip connection.
Also, compared to modified models, EM-GAN performs better
in terms of standard deviation, maximum and minimum errors
as is shown in Table I. In Fig. 7, we randomly pick one design
and show the inference results generated by all three models
along with their corresponding ground truth for comparison.

We first analyze the influence of skip connections. As shown
in the results above, models with skip connections outperform
the one without it by a significant margin. Employing a con-
ventional encoder-decoder architecture means that the network
has to process both geometric and physics information from
the input. This is completely unnecessary in this work since
the input design and the output stress map share exactly the
same geometric information, i.e. the interconnects topology.
The extra work added to the network occupies both compu-
tational and spacial resources that could have been used for
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the extraction of more meaningful latent features. The skip
connections mitigate this problem by introducing shortcuts for
the topology information to be directly passed from the input
side to the output side. It alleviates the workload of the main
network and spares more bandwidth for latent information
flow, which then helps increase the output accuracy.

Fig. 7: Comparison of inference results between different

models and the ground truth.

TABLE I: Statistics of NRMSE for EM-GAN and modified

models on testing set.

Metrics
EM-GAN

(Skip, L2-norm)
w/o Skip,
L2-norm

Skip,
w/o L2-norm

Mean 6.6% 15.2% 8.4%

Standard
Deviation

1.2% 2.1% 2.1%

Max 12.9% 24.6% 18.4%

Min 3.1% 9.8% 3.8%

The influence of L2-norm loss on the result accuracy is
not as large as the skip connection, but still, the removal
of it degenerates the NRMSE from 6.6% to 8.4%. As is
shown in Fig. 7, the stress map generated by EM-GAN is
slightly closer to the ground truth than the model without
L2-norm. Aside from the improvement in result accuracy, a
more significant impact the L2-norm brings to EM-GAN is
actually the speedup of training process. The modified model
without L2-norm converges much slower than EM-GAN. This
is a reasonable phenomenon since L2-norm is manually added
to the objective function as a prior knowledge from human. It
helps to guide the training process towards a partially defined
target especially at the early stages of the training process.

The loss function is two folds, one is dynamically deter-
mined by the other part of the model itself, i.e. the discrimi-
nator, and the second one is a predefined goal, i.e. the L2-norm
distance.At the very early stages of the training process, when
both discriminator and generator are not well trained yet, using
the loss defined by the discriminator to guide the training is
more like a random walk.

the model with L2-norm has a much faster converging speed
in the training process and is always closer to the ground truth
than the one without L2-norm. It is a reasonable result that the

L2-norm helps the model as a prior knowledge. At the very
beginning of training process, both discriminator and generator
are not well trained and the discriminator is not able to provide
useful guidance to the generator. This is where L2-norm can
complement the discriminator and provide the generator with a
meaningful learning direction. In our experiment, adding the
L2-norm accelerates the convergence speed by 2× and also
leads to a better inference accuracy.

V. CONCLUSION

In this paper, we have proposed a GAN-based fast transient
hydrostatic stress analysis for EM failure assessment for multi-
segment interconnects. In our approach, we treat this tradi-
tional numerical PDE solving problem as time-varying 2D-
image-to-image problem where the input is the multi-segment
interconnects topology with current densities and the output is
the EM stress distribution in those wire segments at the given
aging time. We randomly generated the training set and trained
the model with the COMSOL simulation results. Different
hyperparameters of GAN were studied and compared. After
the training process, the proposed EM-GAN model is tested
against 375 unseen multi-segment interconnects designs and
achieved high accuracy with an average error of 6.6%. It also
showed 8.3× speedup over recently proposed state of the art
analytic based EM analysis solver.
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