
Runtime Long-Term Reliability Management Using Stochastic
Computing in Deep Neural Networks

Yibo Liu∗, Shuyuan Yu∗, Shaoyi Peng∗, Sheldon X.-D. Tan∗
∗ Department of Electrical and Computer Engineering, University of California, Riverside, CA 92521, stan@ece.ucr.edu

Abstract—In this paper, we propose a new dynamic reliability tech-
nique using an accuracy-reconfigurable stochastic computing (ARSC)
framework for deep learning computing. Unlike the conventional stochas-
tic computing that conducts design time accuracy power/energy trade-off,
the new ARSC design can adjust the bit-width of the data in run time.
Hence, the ARSC can mitigate the long-term aging effects by slowing
the system clock frequency, while maintaining the inference throughput
by reducing the data bit-width at a small cost of accuracy. We show
how to implement the recently proposed counter-based SC multiplication
and bit-width reduction on a layer-wise quantization scheme for CNN
networks with dynamic fixed-point data. We validate an ARSC-based
five-layer convolutional neural network designs for the MNIST dataset
based on Vivado HLS with constraints from Xilinx Zynq-7000 family
xc7z045 platform. Experimental results show that new ARSC DNN can
sufficiently compensate the NBTI induced aging effects in 10 years with
marginal classification accuracy loss while maintaining or even exceeding
the pre-aging computing throughput. At the same time, the proposed
ARSC computing framework also reduces the active power consumption
due to the frequency scaling, which can further improve system reliability
due to the reduced temperature.

Experimental results show that new ARSC DNN can sufficiently
compensate the NBTI induced aging effects in 10 years with marginal
classification accuracy loss while maintaining or even exceeding the pre-
aging computing throughput. At the same time, the proposed ARSC
computing framework also reduces the active power consumption due
to large frequency scaling, which can further improve system reliability
due to the reduced temperature.

I. INTRODUCTION

One of the critical paradigm changes for today’s emerging com-
puting workloads, such as deep learning, computer vision, imaging,
and audio processing, is that accurate computing becomes less critical
since those applications are much more error-tolerant with analog-like
outputs for human interaction. As a result, accuracy can be traded
off to improve hardware footprint and power/energy efficiencies
via approximate computing. One crucial approach for approximate
computing is by means of stochastic computing (SC), which presents
the value as the signal probability in a bit-stream instead of the
traditional binary number [1]. Now SC is shown to have better
error resilience, progressive trade-off among performance, accuracy,
and energy, as well as cheap implementation of complex arithmetic
operations.

Today’s digital systems are built on less reliable devices and
less robust interconnects as technology node advances. The major
reliability effects for VLSI chips include Bias Temperature Instability
(BTI), hot carrier injection (HCI) for CMOS devices, electromigration
(EM) and time-dependent dielectric breakdown (TDDB) for inter-
connects and dielectrics, which are the primary consideration for the
aging effects [2], [3]. We show the estimated BTI aging impacts
on a counter-based SC multiplier’s maximum frequency based on
the Nangate 45 nm degradation-aware standard cell library from
Karlsruhe Institute of Technology (KIT) [4] in Fig. 1. Those aging
and long-term reliability effects are getting worse with shrinking
feature sizes, and future chips will show signs of aging much faster
than the previous generations [5]. To mitigate the increasing reliability
and resiliency problems, traditional long-term reliability and aging
analysis mainly focus on the reliability optimization at the design
time of the system and physical level [6]. Recently using less accurate
computing to compensate for the NBTI-induced long-term aging

effects has been proposed [7]. However, this method targets at the
design time so that sufficient margins can be allocated in advance.

Fig. 1: The maximum working frequency decreases over years because
of aging based on the Nangate 45 nm degradation-aware standard cell
library from Karlsruhe Institute of Technology (KIT) [4].

On the other hand, stochastic computing has been emerging a
new computing paradigm due to its low-cost and error-resilient
features. One of the significant benefits for SC is that many arithmetic
operations, such as multiplication, can be simply implemented by an
AND operation (or XNOR gate for bipolar coding). Nowadays, SC
has been applied to error-correcting codes [8], image processing [9],
and recently deep neural networks (DNNs) [10]–[13].

Traditional SC, however, suffers long computing time and high
randomness of the stochastic numbers for accuracy. As a result,
many research works have been proposed to mitigate those short-
comings, such as high-quality random number generators (RNGs) that
exhibit zero or close to zero correlation, including low-discrepancy
sequences [14], bit scrambling methods [15], [16]. A more efficient
and accurate SC multiplier was recently proposed to partially mitigate
the traditional SC’s two mentioned problems [12]. Instead of using an
AND gate to multiplicate two bit-streams, the new multiplier counts
the number of ones in part of one bit-stream. And the length of the
bit-stream being counted depending on the value of the other bit-
stream. Furthermore, the bit-stream to be counted can be generated
in a deterministic way. As a result, the whole design is simplified into
two counters and a simple bit-stream generator. In this work, we call
this design counter-based SC multiplier (CBSC-Multiplier). CBSC-
Multiplier brings two significant benefits: first, it does not require
two bit-streams randomness anymore without accuracy loss. Second,
it can be faster than the traditional SC as it only counts parts of the
bit-stream, instead of the entire bit-stream.

Based on those observations, in this paper we propose a new
accuracy-reconfigurable stochastic computing (ARSC) framework for
dynamic VLSI systems reliability management. We focus on the deep
learning workloads and try to leverage the latest ARSC framework to
mitigate VLSI hardware’s long-term reliability issue due to several
degradation effects such as biased temperature instability (BTI) and
electromigration (EM). Our contributions are as follows:



• Unlike the existing works that carry out the design time
accuracy versus power/energy trade-off, the new stochastic com-
puting can adjust the data bit-width in the run time. Hence it
can accommodate the long-term aging effects by aggressively
slowing down the system clock frequencies while maintaining
the inference throughput by reducing the data bit-width.
• We show how the recently proposed CBSC multiplication

and bit-width reduction can be implemented on a layer-wise
quantization scheme for CNN networks with dynamic fixed-
point data.
• We design and validate an ARSC-based five layer convolutional

neural network design for MNIST dataset based on Vivado HLS
with constraints from Xilinx Zynq-7000 family FPGA platform.
• Experimental results show that new ARSC based DNN can

mitigate the long-term aging-induced effects using simple fre-
quency scaling while maintaining the inference throughput with
marginal classification accuracy loss. Specifically, we show that
one-bit precision reduction (which has negligible classification
accuracy loss) for input data can sufficiently compensate the
NBTI induced aging effects in 10 years while maintaining the
pre-aging computing throughput.
• The proposed ARSC computing framework also reduces the

active power consumption due to frequency scaling, which can
further improve system reliability due to the reduced tempera-
ture.

This paper is organized as follows: Section II reviews some related
works such as conventional SC, CBSC etc. Section III presented
the proposed ARSC concept for the DNN accelerator design so
that we can trade the accuracy to mitigate long-term reliability
issues. Section IV presents some implementation details on the FPGA
platform. Experimental results and discussion are summarized in
Section V. Section VI concludes this paper.

II. PRELIMIARIES

Many techniques have been proposed to address the high computa-
tional complexity of DNN networks [17]. Most of the existing meth-
ods mainly focus on design time trade-off between energy efficiency
or throughput and application accuracy at circuit, architecture, and
even system levels. Techniques includeing more energy-efficient data
flow, more efficient quantization, precision reduction/compression,
and weight pruning etc. have been proposed. However, fewer efforts
were investigated for run time accuracy-energy/throughput trade-off
for DNN applications. In this section, we briefly review CBSC, which
are the basis for the proposed work.

A. Conventional stochastic computing:

Stochastic computing (SC) provides an alternative way for arith-
metic operation when the exact results are not required. At the same
time, the SC-based hardware can be designed with much lower cost
and power compared to the conventional binary digital designs.

Fig. 2 shows the conventional SCmultiplier, where the value of
stochastic number, SN, is represented by a bit-stream, whose signal
probability, or frequency of bit ’1’, determines its value. Naturally,
the value is defined in the range [0, 1], called unipolar, or over [−1, 1]
called bipolar. For instance the number X represents 4/8 as we have
four ’1’ in the 8-bit bit-stream. One of the major benefits of SC is
that the multiplication can be simply implemented by an AND gate
as shown in Fig. 2.

To generate the random number for SC, stochastic number gener-
ator, SNG, which essentially converts a binary number to stochastic
number, takes an n-bit binary number and generates the random bit-
stream as shown in the bottom part of Fig. 2. The SNG is typically
implemented by n-bit linear feedback shift register (LFSR) and a
comparator, which generates ’1’ if the random number is less than
the input binary number, and ’0’ otherwise.

Fig. 2: Traditional SC number and multiplier.

For SC unipolar encoding, the multiplication can be done by AND
operation and for bipolar encoding, the multiplication is achieved by
XNOR operation [1], [18]. The addition can be simply done by a
multiplexer (MUX) [1], [18]. Finally, the resulting bit-stream can be
converted back to a binary number by using a counter (or up-down
counter for bipolar coding).

Due to its simple hardware implementation compared to the com-
mon arithmetic operations, SC is very low-cost and energy-efficient.
But the traditional SC, however, suffers from long latency and
inherent random fluctuation errors. The problems can be mitigated
by the recently proposed CBSC method mentioned below.

B. CBSC multiplication
Assume the bit-width is n for the given two binary numbers x

and w. The conventional SC multiplier using AND gate (for unipolar
encoding) will take 2n, which is the length of bit-stream of SN, cycles
to finish the computation. To improve this, Sim et al. in [12] proposed
the CBSC multiplier design shown in Fig. 3. The multiplier mainly
consists of two counters. The first counter counts the binary value of
the input w and the second counts the result of x·w. So the operation
only takes w ·2n cycles to finish, in which w < 1, which translates to
better performance than the conventional SC. One example is given
in Fig. 3. Also the stochastic number of input x can be generated
in a deterministic way without hurting the accuracy (actually more
accurate) compared to the conventional SC. As a result, such design
is more straightforward as we eliminate the two traditional SNGs
(typically using Linear Feedback Shift Registers) and AND gates in
exchange of a counter, which is much cheaper than SNG.

Fig. 3: (a) Conventional SC multiplier. (b) CBSC multiplier concept [12].

To generate the SN of x, which is a low-discrepancy bit-stream, the
authors proposed a deterministic way to do this. The method evenly
distributes the xi−1, i ∈ [1, n], which is the ith bit of x, based on
its binary weight 2i−1. For instance, if i = 3, then x2 will appear
4 times in the resulting SN bit-stream as shown in Fig. 3. Such a
stochastic number generation can be simplified and implemented by
an FSM and an MUX and the whole CBSC multiplication design is
shown in Fig. 4 [12].

But for our problem, we propose to use fixed-point numbers for
CBSC computing (more discussion on this later). The value of a SN
bit-stream is always between 0 to 1, hence the input is enlarged 2BW

times to become a fixed-point number before put into the multiplier.
Suppose the two fixed-point numbers are x = 13 and w = 9, then the
multiplication result is x · w = 117. Now if we use CBSC, we then



Fig. 4: Counter-Based SC Multiplier.

use the SNG in Fig. 4 to generate the SN and put 9 into the down
counter to perform the SC computing. The counting result is 8 based
on Fig. 3. Then the final multiplication result will be 8 · 24 = 128,
where 4 is the bit-width. Hence the CBSC computing essentially can
be viewed as

(x · w)CBSC = round(x · w

2BW
) · 2BW (1)

The CBSC will introduce the random error which depends on the
value of the result during the computing process. For signed CBSC
computing, the multiplication will become (x · w)CBSC = round(x ·
w/2BW−1) · 2BW−1.

III. PROPOSED DYNAMIC ARSC DEEP NEURAL NETWORKS

In this section, we present the proposed accuracy-reconfigurable
stochastic computing (ARSC) for the DNN accelerator design so that
we can trade the accuracy to mitigate the long-term reliability issues.
The main idea is to dynamically adjust the bit-width for multiplication
intensive convolutional computing to reduce the accuracy of the
computing progressively using SC.

At the same time, we also reduce the effective latency of the
computing logic so that we can compensate for the aging-induced
delay increases. As a result, even though the operating frequency
of the chip is reduced due to the aging effect, we are still able to
maintain the same throughput of the whole computing process as
required by the application.

A. ARSC architecture for the DNN application
The proposed DNN accelerator architecture with the ARSC-based

MAC units is displayed in Fig. 5. For the sake of demonstration,
we use a simple CNN network, which consists of 2 convolutional
(CONV) layers and 3 fully connected (FC) layers. The 5-layer
network is similar to the originally proposed LeNet [19]. Both CONV
layers utilize 5×5 convolutional kernels, followed by a max pooling
layer. The DNN accelerator uses dataflow optimization as the layer-
wise pipeline so that the clock interval of the DNN accelerator
depends on the hardware layer with the maximum interval. Note that
the computation bottleneck of the DNN network of the inference is
at the CONV layers, as CONV is computational intensive. Even with
5-bit precision, the CONV layer has longer operation intervals than
the FC layer.

The Fig. 6 illustrates the proposed ARSC MAC unit where the
input data elements are fetched from the Input Buffer and truncated
to the desired bit-width. Then the CBSC multiplier takes the input
data and weight element to implement SC multiplication [12]. Finally,

Fig. 5: The proposed DNN accelerator architecture with the ARSC-based
MAC unit

Fig. 6: The proposed ARSC-based MAC unit

add the current multiplication product to the corresponding location
in the Output Buffer. The proposed dynamic accuracy reconfiguration
function of the ARSC module is enabled by adjusting the input data
truncation bit-width before the SC multiplier.

For an N -bit input data including a sign bit, we need an x-bit
selection signal to indicate how many bits to keep for the N -bit
input data, in which x=dlog2(states− 1)e. The state represents the
number of all possible CBSC bit-width selections. For example, in
our design, the CBSC multiplier is designed to work from 8-bit to
5-bit configurations. Hence the states=4 and x=2 will be enough
to distinguish these four states. The truncation here keeps the sign
bit and truncate the least significant bits from the right side, which
is compatible with the bit-width based progressive SC computing
scheme.

At the end of ARSC multiplication, we add back the sign bit to the
result and add 0 at the end of the output number by left shifting the
multiplication result. These make the result have the same bit-width
as the input data, which keeps the data bit-width consistent among
different layers.

An N -bit signed binary number will be converted to a 2N−1 bits
SN bit-stream. Since the computation load of CBSC is proportional
to the SN bit-stream length, a one-bit truncation in binary number
will cut down half of the SN bit-stream length. The significant SN
bit-stream length reduction effectively reduces the computing latency,
thus mitigating the aging effects induced frequency degradation.

Note that our CBSC multiplier should only deal with uni-polar
number multiplication within [0, 1] range. We use the dynamic fixed-



point datatype in the DNN accelerator, so we do not need to do any
scaling or other adjustments to the CBSC input data. However, we
need to left-shift the result to convert it back to the dynamic fixed-
point datatype before putting the result into the output buffer. When
we truncate more bits from the input data, the resulting error from
the CBSC multiplier will be larger. Still use the example in Fig. 3, if
the original input data is 9/16 and 13/16, truncate 1 bit will change
the input value to 4/8 and 6/8, which increase the computation error.
However, from the DNN application perspective, such errors may not
lead to significant accuracy loss as shown in the experimental section.

The leftmost bit of data is the sign bit. We keep the sign bits for
all the weights wj and input feature data xi to perform an XOR
operation to determine the sign bit of the result obtained from the
CBSC multiplier. Then we add back the sign bit to the result at the
end of ARSC multiplication.

From Fig. 4, we know that the computation time of the CBSC
multiplication is proportional to the weight wj . If we perform the
convolution multiplication in parallel with all weight elements in the
kernel, the computation time depends on the largest weight element.
To mitigate this problem, we follow a similar idea of BISC based
matrix vector multiplier (MVM) as [12]: We change the convolution
loop order so that the multiplication operations that use the same
weight element should carry out simultaneously, which is shown
in Fig. 6. This contrasts with the conventional method where the
products of the input feature map xi and the filter kernel wj are
summed up at once to obtain the output element.

B. Dynamic fixed-point data for ARSC

A typical 16-bit fixed-point data type is usually sufficient for
training neural networks for hardware accelerators with no loss in
classification accuracy [20]. 8-bit precision is sufficient for inference
with minimal accuracy error loss [21]. In this work, we use the
dynamic fixed-point data type for each CONV layer [22] .

A dynamic fixed-point x stores a value as follows:

value = (−1)s·
BW−2∑
i=0

2i·xi· 2−fl (2)

where xi is the ith bit of data x. Here BW is the bit-width with the
highest bit as the sign bit. 2−fl is the scale factor and fl is determined
by the floating range and quantized range for each CONV layer. The
equation (2) can be viewed as an ordinary binary fixed-point number
multiplied by a scale factor. As a result, for dynamic fixed-point
data, we only needs the integer operation and bit shifting operations
in DNN computing, which is more efficient.

To convert a floating-point number to a dynamic fixed-point data,
we perform the following symmetric quantization scheme for both
weights and input activation:

xquant = round(
xfloat

2BW−1−fl
· (2BW−1 − 1)) (3)

If we define fup = argmin(2fup > x), which means 2fup is the
minimum value that is larger than the floating data x of interest. For
example, if the maximum weight is 3.2, then the minimum power of
two can cover 3.2 is 4, hence fup = 2. BW is the bit-width of the
quantized number with a sign bit, then fl = BW − fup − 1.

Now, we perform some error analysis for ARSC computing. If
we use the dynamic fixed-point data type in regular multiplication
operation, the multiplication result is xquant ·wquant. The measurement
error of xquant or wquant is within there quantization stepsize.

As discussed in subsection II-B, if we use the CBSC multiplier
with the same bit-width, the result is round(xquant ·wquant/2

BW−1) ·
2BW−1. When we truncate 1 bit from the data (weight or activation),
the CBSC multiplication result becomes:

round(
xquant

2
· wquant

2BW
) · 2BW+1 (4)

Using the same example in Fig. 3, the 5-bit signed CBSC multipli-
cation has input x = 13, w = 9 and BW = 5. When we reduce
the CBSC input and computation bit-width from 5-bit to 4-bit, which
means BWnew = 4 and truncate x from 13 to 6, truncate w from 9
to 4, then based on (4), the CBSC counter output will be 3. The final
result is 3·25 = 96. As we can see, one-bit truncation will enlarge the
computation error because the output result resolution has dropped
from 2BW to 2bw+1. The floating number can be approximately
recovered from the quantized number by simply multiplying the scale
factor:

xfloat = xquant ∗ 2−fl (5)

For the proposed ARSC DNN accelerator, we adopt the layer-wise
quantization scheme in which each CNN layer has its quantization
scale factor. In this way, we replace the floating number multiplication
by the bit-shifting operation to reduce the DSP occupation and
improve the throughput.

For the stochastic computing, it was well known that the random
errors in multiplication become significant when the result is close
to zero as [10]. However, due to the L1 and L2 regulation, many
weights are trained to have normal distribution around zero [23].
To mitigate this problem, following a similar strategy as [10], we
try to remove near-zero weight and perform the re-training to avoid
this issue. We remove near zero weights if the weight is less than a
threshold Wth as defined below:

Wth = α · std(W k) (6)

where std(W k) indicates the standard deviation of weights in layer k.
α is determined experimentally. After such near-zero weight removal,
re-training is carried to mitigate the accuracy loss.

We note that to make this proposed run time aging mitigation
method work for practical VLSI processors, one needs to have
on-chip aging sensors such as the oscillation based BTI aging
sensor [24]. Then an online intelligent controller will be employed
to map the aging sensor reading to the required actions for frequency
adjustment and bit-width reduction configuration of the DNN layers
in the run-time. But the main goal of this paper is to demonstrate
the feasibility of such dynamic aging mitigation strategy based on
the ARSC framework. Also due to page limitation, the specific
dynamic aging controller design based on the ARSC framework will
be presented in our future work.

IV. IMPLEMENTATION

The training and inference processes of CBSC-embedded DNN are
performed on different platforms separately. Before we conduct the
CBSC in DNN accelerator, we implement the training and adoption
process with methods mentioned in Sec. III, which includes the initial
model training, near-zero weight removal, and data quantization. The
training and adoption process are implemented on local PC platform
with Pytorch 1.5.0. We summarize this process in Fig. 7. The initial
training step generates a normal DNN network with floating type
parameters and activations. For large networks, the initial training
step can also be replaced by loading pre-trained model parameters to
speed up the design process. Then we remove the weight parameters
within the threshold to adopt the model to SC. Similar to [10], we
start from a small threshold Wth and increase it based on the accuracy
test result. The accuracy test step emulates the fixed-point datatype
calculation behavior in python, so that we can directly use the server
platform to evaluate the current model without switching to other
platforms. The quantization step here converts the model data from
floating-point to fixed-point, the quantized results can be applied in
both accuracy emulation test and the final hardware implementation.

To evaluate the performance of the ARSC based DNN module,
including delay, power and resource occupation, we implement the
proposed design in C and synthesized by Xilinx vivado HLS for
XC7Z045 device of Zynq-7000 family, and obtain resource utilization



Fig. 7: The training process

#BRAM18K #DSP48E #FF #LUT
18 4 27711 111917

TABLE I: ARSC-based DNN resource utilization. Note: BRAM18K:
18K Block RAM, DSP48E: DSP 48E slice, FF: flip-flop in Zynq 7000
FPGA

report, and critical path delay from the synthesis report. The details
of the hardware resource utilization information are show in Table. I.

As mentioned in Sec. III, we use parallel SC blocks to accelerate
the computation and improve the throughput. We also apply loop-
wise pipeline to further increase the throughput with negligible extra
resource occupation. Different from the ASIC-based module, FPGA
mainly use LUT to perform arithmetic operations.

We use the Xilinx Power Estimator to evaluate the power con-
sumption, which can easily obtain the total power consumption by
hardware resource utilization and the desired frequency. We’ll discuss
the power consumption of the design later in Sec. V.

For the delay and latency evaluation, Vivado HLS synthesis reports
provide the layer-wise critical path and latency. With layer-wise
dataflow optimization, the latency of the DNN network will roughly
be the maximum layer-wise latency. The resulting critical path of
the 5-layer DNN design, which is also calculated from the worst
layer critical path, is 9.51ns, which means that the our ARSC-based
DNN can run under the highest frequency of 105.3MHz. We will
also analysis the throughput effect from CBSC bit-width adjustment
in the Sec. V.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present results from the proposed ARSC
computing DNN accelerator design for long-term aging management.
The proposed CNN network has 2 CONV layers and 3 FC layers as
we mentioned before. The 5-layer CNN is used as the demonstration
of the proposed concept and we remark that the proposed method

ARSC can be applied to general DNN networks. We trained the
proposed ARSC based CNN on the server for the MNIST dataset [19]
which consists of 50000 training images and 10000 testing images.

Fig. 8: The throughput and accuracy versus different bit-width

Fig. 9: The dynamic power versus different bit-width

To estimate the frequency decrease caused by the NBTI induced
aging process, we refer the time-dependent degradation aware Nan-
gate 45nm standard cell library from Karlsruhe Institute of Tech-
nology (KIT) [4] to calculate the chip frequency within 10 years.
We use Synopsys design suite to synthesize the ARSC-based DNN
design. The timing analysis shows that the working frequency of
the ASIC-based design of the DNN will decrease from 3.23GHz
to 2.86GHz after 10 years, as shown in Fig. 1. The aging process
have negative impact on the throughput, which can be simulated
on FPGA by slowing the clock frequency with same percentage
as from 3.23GHz to 2.86Ghz in the mentioned ASIC-based aging
analysis. Adjust the frequency from 105.3MHz to 93.2MHz, in which
105.3MHz is the original FPGA clock frequency and 93.2Mhz is
determined by decreasing same proportion as the ASIC-based design
frequency drops from 3.23GHz to 2.86GHz. Note that such mapping
may not be perfect as the design technologies used in our ASIC
and FPGA are different. The above aging effect decreases the DNN
accelerator inference throughput. Hence, we apply the proposed
ARSC to mitigate the throughput deterioration by decreasing the
bit-wdith of SC. As mentioned in Sec. II, decreasing 1-bit in the
SC bit-width will approximately reduce half of the computation
workload and almost double the throughput, which is enough to
make up throughput decreasing caused by NBTI induced frequency
decline. The lower the bit width of SC, the more the improvement
of throughput. The Table II shows the frequency for different SC
bit widths to maintain the same throughput as 8-bit SC in original
105.3MHz. For example, when the FPGA frequency drops to no less
than 55.93MHz, reducing the SC bit width from 8-bit to 7-bit is
enough to keep the throughput no lower than its original value.



Bit-Width Frequency (MHz) Power (W) Accuracy
8 105.26 1.190 0.996
7 55.93 1.026 0.996
6 30.65 0.986 0.993
5 18.00 0.925 0.973

TABLE II: Key performance metric comparison under the same through-
put.

Based on interval clocks cycles that comes from simulation re-
sults of different data bit-width on Vivado HLS, we calculate the
throughput at different clock frequencies in Fig. 8. As we can
see by sacrificing 3-bit precision, which means that we use 5-bit
precision to do the inference based on the weights obtained from
the 8-bit precision, the inference classification will only decrease
2.3% in accuracy. At the same time, we can increase the throughput
(number of images per second) substantially by 482%. The inference
throughput and accuracy under different bit-width is shown in Fig. 8.
As we can see, initially (when the aging process hasn’t started yet),
if we use the full 8-bit precision for the inference, the throughput
at 105.3MHz clock frequency is 114 image per second. When the
clock frequency decrease due to the aging process, the throughput will
decrease to 101. We can make up for the throughput if we truncate the
precision by only one bit (from 8 to 7), which makes the throughput
increase to 189. Furthermore, by decreasing the precision of SC
multiplication to 5-bit, the throughput will be about 5.8 times of the
8-bit precision, which shows huge potential we can mitigate the aging
effects if such accuracy is still accepted in practical applications.

From Fig. 9, we analyze the power consumption under different
clock frequency by Xilinx Power Estimator. Estimation results show
that when making the trade off between the throughput and the
accuracy mentioned before, we can save near 12.3% of total device
power and 22.2 % of ARM core and uncore (also called Processing
System or PS) and FPGA related dynamic power in XC7Z045
device of Zynq-7000 FPGA, which hosts the DNN design. As active
power can be reduced when frequency is scaled down, we can
further improve the long-term reliability due to the decreased chip
temperature [25].

VI. CONCLUSION

In this paper, we proposed a novel accuracy-reconfigurable stochas-
tic computing (ARSC) framework for dynamic reliability manage-
ment for deep neural network applications. The new ARSC design
can dynamically change accuracy via bit-width change of the data.
In this way, the new method can accommodate the long-term aging
effects by slowing the system clock frequency at the cost of small
accuracy loss while maintaining the throughput of the computing.
We showed how the recently proposed CBSC multiplication and bit-
width reduction can be implemented on a layer-wise quantization
scheme for CNN networks with dynamic fixed-point data. We de-
signed and validated the ARSC-based 5-layer convolutional neural
network designs for MNIST dataset based on Vivado HLS with
constraints from Xilinx Zynq-7000 family xc7z045 FPGA platform.
Experimental results showed that new ARSC based DNN can suf-
ficiently compensate the NBTI induced aging effects in 10 years
with marginal classification accuracy loss while maintaining or even
exceeding the pre-aging computing throughput. At the same time, the
proposed ARSC computing framework also reduce the active power
consumption and thus on-chip temperature by large frequency scaling,
which further contributes to the aging mitigation.

For the future work, we will investigate the an online intelligent
controller and manage algorithms to map the aging sensor reading to
the required actions for frequency adjustment and bit-width reduction
configuration of the DNN layers in the run-time.

REFERENCES

[1] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge of
stochastic computing,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 37, no. 8, pp. 1515–1531, 2018.

[2] “Failure Mechanisms and Models for Semiconductor Devices.” In
JEDEC Publication JEP122-A, Jedec Solid State Technolgy Association,
2002.

[3] “Critical Reliability Challenges for The International Technology
Roadmap for Semiconductors (ITRS),” 2003. In International Sematech
Technology Transfer Document 03024377A-TR, 2003.

[4] “Degradation-aware cell libraries, v1.0.” http://ces.itec.kit.edu/
dependable-hardware.php.

[5] S. X.-D. Tan, H. Amrouch, T. Kim, Z. Sun, C. Cook, and J. Henkel,
“Recent advances in EM and BTI induced reliability modeling, analysis
and optimization,” Integration, the VLSI Journal, vol. 60, pp. 132–152,
Jan. 2018.

[6] S. X.-D. Tan, M. Tahoori, T. Kim, S. Wang, Z. Sun, and S. Kiamehr,
VLSI Systems Long-Term Reliability – Modeling, Simulation and Opti-
mization. Springer Publishing, 2019.

[7] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Towards aging-
induced approximations,” in Proceedings of the 54th Annual Design
Automation Conference 2017, pp. 1–6, 2017.

[8] A. Naderi, S. Mannor, M. Sawan, and W. J. Gross, “Delayed stochastic
decoding of ldpc codes,” IEEE Transactions on Signal Processing,
vol. 59, no. 11, pp. 5617–5626, 2011.

[9] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 3, pp. 449–462, 2013.

[10] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1–6, IEEE, 2016.

[11] H. Sim, D. Nguyen, J. Lee, and K. Choi, “Scalable stochastic-computing
accelerator for convolutional neural networks,” in 2017 22nd Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 696–701,
IEEE, 2017.

[12] H. Sim and J. Lee, “A new stochastic computing multiplier with
application to deep convolutional neural networks,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6,
IEEE, 2017.

[13] R. Hojabr, K. Givaki, S. Tayaranian, P. Esfahanian, A. Khonsari, D. Rah-
mati, and M. H. Najafi, “Skippynn: An embedded stochastic-computing
accelerator for convolutional neural networks,” in Proceedings of the
56th Annual Design Automation Conference 2019, p. 132, ACM, 2019.

[14] S. Liu and J. Han, “Energy efficient stochastic computing with sobol
sequences,” in Proceedings of the Conference on Design, Automation
& Test in Europe, pp. 650–653, European Design and Automation
Association, 2017.

[15] F. Neugebauer, I. Polian, and J. P. Hayes, “Building a better random
number generator for stochastic computing,” in 2017 Euromicro Con-
ference on Digital System Design (DSD), pp. 1–8, IEEE, 2017.

[16] K. Kim, J. Lee, and K. Choi, “An energy-efficient random number
generator for stochastic circuits,” in 2016 21st Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 256–261, IEEE, 2016.

[17] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[18] B. R. Gaines, “Stochastic computing systems,” in Advances in informa-
tion systems science, pp. 37–172, Springer, 1969.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
pp. 2278–2324, Nov 1998.

[20] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, pp. 1737–1746, 2015.

[21] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on cpus,” 2011.

[22] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural
networks with low precision multiplications,” arXiv: Learning, 2014.

[23] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016. http://www.deeplearningbook.org.

[24] M. Tehranipoor, H. Salmani, and X. Zhang, Integrated Circuit Authen-
tication. Springer, 2014.

[25] J. Srinivasan, S. Adve, P. Bose, and J. Rivers, “Ramp: A model for
Reliability Aware Microprocessor Design,” IBM Research Report, 2003.


