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Abstract

We introduce a generic two-loop scheme for smooth minimax optimization with
strongly-convex-concave objectives. Our approach applies the accelerated proximal
point framework (or Catalyst) to the associated dual problem and takes full advan-
tage of existing gradient-based algorithms to solve a sequence of well-balanced
strongly-convex-strongly-concave minimax problems. Despite its simplicity, this
leads to a family of near-optimal algorithms with improved complexity over all
existing methods designed for strongly-convex-concave minimax problems. Addi-
tionally, we obtain the first variance-reduced algorithms for this class of minimax
problems with finite-sum structure and establish faster convergence rate than batch
algorithms. Furthermore, when extended to the nonconvex-concave minimax opti-
mization, our algorithm again achieves the state-of-the-art complexity for finding
a stationary point. We carry out several numerical experiments showcasing the
superiority of the Catalyst framework in practice.

1 Introduction

Minimax optimization has been extensively studied in past decades in the communities of mathe-
matics, economics, and operations research. Recent years have witnessed a surge of its applications
in machine learning, including generative adversarial networks [16], adversarial training [47, 28],
distributionally robust optimization [31, 1], reinforcement learning [8, 9], and many others. The
problem of interest in such applications is often a smooth minimax optimization problem (also
referred to as saddle point problems):

min
x∈X

max
y∈Y

f(x, y), (1)

where the function f : Rd1 × Rd2 → R is smooth (i.e., gradient Lipschitz), X is a convex set in Rm,
and Y is a convex and compact set in Rn. In many machine learning applications, f has a finite sum
structure, that is f(x, y) = 1

n

∑n
i=1 fi(x, y), where each component corresponds to a loss associated

with single observation.

A significant body of first-order algorithms for minimax optimization exists in the literature, ranging
from the classical projection method [42], Korpelevich’s extragradient method [20], Nemirovski’s
Mirror Prox algorithm [32], Nesterov’s dual extrapolation method [34], Tseng’s accelerated proximal
gradient algorithm [46], to many recent hybrid or randomized algorithms, e.g., [30, 17, 38, 19, 6, 25],
just to name a few. Most of these existing work and theoretical analyses are limited to the following
settings (i) the strongly-convex-strongly-concave setting (e.g., [45, 29, 15]), (ii) the general convex-
concave setting (e.g., [32, 34]), and (iii) the special bilinear convex-concave setting (e.g., [5, 48, 7].
The lower complexity bounds for these three settings established in [50], [33], [37], respectively,
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Table 1: Comparison with other algorithms for general strongly-convex-concave setting. For simplic-
ity, we ignore the dependency on ` and µ inside log. The lower complexity bound is Ω

(
`/
√
µε
)

[37].
Last column indicates whether the algorithm requires the knowledge of target accuracy ε in advance.
All algorithms here have the Õ(DY) dependency on the diameter of Y in oracle complexity.

Algorithms Oracle Complexity number of loops prefix ε
MINIMAX-APPA [24] O

(
`/
√
µε log3(1/ε)

)
3 Yes

DIAG [44] O
(
`

3
2 /(µ

√
ε) log2(1/ε)

)
3 No

Primal-dual Smoothing [51] O
(
`

3
2 /(µ

√
ε) log2(1/ε)

)
3 Yes

Our Algorithm O
(
`/
√
µε log(1/ε)

)
2 No

can be attained by some existing algorithms. For example, extragradient method (EG) achieves
the optimal O(1/ε) complexity for smooth convex-concave minimax problems, and the optimal
O(κ log(1/ε)) complexity for well-balanced strongly-convex-strongly-concave minimax problems,
where the x-component and y-component of the objective share the same condition number κ [50].

However, there are relatively few results outside of these settings. Of particular interests are the
following two settings: f(x, ·) is concave but not strongly-concave for any x ∈ X , while f(·, y)
could be strongly-convex or even nonconvex. Strongly-convex-concave minimax optimization covers
broad applications in game theory, imaging, distributionally robust optimization, etc. While the
special bilinear case of this setting has been studied extensively in the literature, the general case is
less explored. In fact, strongly-convex-concave minimax optimization has also been routinely used
as a building block for solving nonconvex-concave minimax problems [40, 44]. Hence, we mainly
focus on the strongly-convex-concave setting.

For strongly-convex-concave minimax problems, the lower complexity bound of first-order algorithms
is Ω

(
`/
√
µε
)

for achieving an ε-duality-gap [37], where ` is the smoothness constant and µ is the
strong convexity constant. Recently, [44] proposed the so-called dual implicit accelerated gradient
algorithm (DIAG) that achieves the first-order oracle complexity of O

(
`3/2/(µ

√
ε) log2(1/ε)

)
. A

similar complexity bound was obtained from the primal-dual smoothing method in [51]. More
recently, [24] introduced the MINIMAX-APPA algorithm that further improves the complexity by
shaving off a factor of O(

√
`/µ), yielding a near-optimal convergence rate up to the logarithmic

factor. However, these algorithms are fairly complicated as they stack several procedures including
accelerated gradient descent on x, accelerated gradient ascent on y, and accelerated proximal point
algorithm, in different manners, thus requiring at least three loops. In addition to the complicated
procedure, the latter two algorithms require an additional layer of smoothing, and solve the surrogate
problem minx∈X maxy∈Y f(x, y)+O(ε)‖y‖2. In practice, how to select a good smoothing parameter
of order O(ε) remains elusive.

Meanwhile, it is unclear how these sophisticated algorithms can be integrated with variance-reduction
techniques to solve strongly-convex-concave minimax problems with finite-sum structure efficiently.
Most existing variance-reduced algorithms in minimax optimization focus on strongly-convex-
strongly-concave setting, e.g., SVRG and SAGA [38], SPD1-VR [43], SVRE [6], Point-SAGA [26],
primal-dual SVRG [11], variance reduced prox-method [4], etc. These algorithms typically preserve
the linear convergence of batch algorithms, yet with cheaper per-iteration cost and improved com-
plexity. Outside of this regime, few results are known [27, 49]. To the best of our knowledge, the
design of efficient variance reduction methods for finite-sum structured minimax problems under the
strongly-convex-concave or nonconvex-concave settings remains largely unexplored.

This raises the question: can we simply leverage the rich off-the-shelf methods designed for strongly-
convex-strongly-concave minimax problems to these unexplored settings of interest? Inspired by
the success of the Catalyst framework and accelerated APPA that use gradient-based algorithms
originally designed for strongly convex minimization problems to minimize convex/nonconvex
objectives [22, 21, 39, 13], we introduce a generic Catalyst framework for minimax optimization.
Rooted in an inexact accelerated proximal point framework, the idea is to repeatedly solve the
following auxiliary strongly-convex-strongly-concave problem using an existing methodM:

minx∈X maxy∈Y f(x, y) + τx
2 ‖x− x̄t‖

2 − τy
2 ‖y − zt‖

2. (2)
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While the algorithmic extension looks straightforward, selecting appropriate proximal parameters
τx, τy, the prox centers x̄t, zt, and the methodM for solving the auxiliary problems, are critical
and make a huge difference in the overall complexity. Our key insight is that when the condition
numbers of the auxiliary problems are well balanced, they become relatively easy to solve and simply
applying existing algorithms such as extragradient method asM would suffice. For instance, in the
strongly-convex-concave setting, we set τx = 0, τy = µ. In sharp contrast, the MINIMAX-APPA
algorithm [24] uses τx = 1

` and τy = O(ε), which results in extra complications (i.e., a two-loop
algorithm) in solving the auxiliary problems.

Based on the generic Catalyst framework, we establish a number of interesting results:

(i) For strongly-convex-concave minimax optimization, we develop a family of two-loop algo-
rithms with near-optimal complexity and reduced order of the logarithmic factor. In fact, sim-
ply combing Catalyst with extragradient method yields the complexity,O

(
`/
√
µε log(1/ε)

)
,

which improves over all existing methods, as shown in Table 1.

(ii) For nonconvex-concave minimax optimization, we provide a simple two-time-scale inexact
proximal point algorithm for finding an ε-stationary point that matches the state-of-the-art
complexity of Õ

(
`2ε−3

)
.

(iii) For minimax problems with finite-sum structure, we provide a family of variance-reduced
algorithms for the strongly-convex-concave setting, improving the Õ

(
n¯̀/
√
µε
)

complexity
of the best batch algorithm to Õ

(
¯̀2/
√
µ3ε∨n 3

4 ¯̀1
2 /
√
ε
)
, and to Õ

(
¯̀/
√
µε∨n 1

2 ¯̀1
2 /
√
ε
)

with
additional assumption on cocoercive gradient. When extending to the nonconvex-concave
setting, we improve the Õ

(
n¯̀2ε−3

)
complexity of the best batch algorithm to Õ

(
n

3
4 ¯̀2ε−3

)
,

and to Õ
(
n

1
2 ¯̀2ε−3

)
with cocoercive gradient. Here ¯̀is the average of smoothness constants

of the components.

For the ease of notation, we refer to the strongly-convex-strongly-concave setting as SC-SC for
short, or (µ1, µ2)-SC-SC if the strong convexity and strong concavity constants are given by µ1, µ2.
Similarly, SC-C or µ-SC-C refers to the strongly-convex-concave setting, and NC-C to the nonconvex-
concave setting. Throughout the paper, ‖ · ‖ stands for the standard `2-norm.

2 A Catalyst Framework for SC-C Minimax Optimization

In this section, we focus on solving strongly-convex-concave minimax problems and introduce a
general Catalyst scheme. We formally make the following assumptions.

Assumption 1 (SC-C). f(·, y) is µ-strongly-convex for any y in Y , i.e.,

f(x1, y) ≥ f(x2, y) +∇xf(x2, y)T (x1 − x2) +
µ

2
‖x1 − x2‖2, ∀x1, x2 ∈ X .

and f(x, ·) is concave for all x in X . X and Y are convex and closed sets, and Y is bounded with
diameter DY = maxy,y′∈Y ‖y− y′‖. There exists at least one saddle point (x∗, y∗) ∈ X ×Y , which
satisfies maxy∈Y f(x∗, y) ≤ f(x∗, y∗) ≤ minx∈X f(x, y∗) for all (x, y) ∈ X × Y .

Assumption 2 (Lipschitz gradient). There exists a positive constant ` such that

max{‖∇yf (x1, y1)−∇yf (x2, y2)‖ , ‖∇xf (x1, y1)−∇xf (x2, y2)‖} ≤ `[‖x1 − x2‖+‖y1 − y2‖],

holds for all x1, x2 ∈ X , y1, y2 ∈ Y .

The goal is to find an ε-saddle point (x̄, ȳ) such that gapf (x̄, ȳ) := maxy∈Y f(x̄, y) −
minx∈X f(x, ȳ) ≤ ε. We call gapf (x̄, ȳ) the primal-dual gap, which implies both primal optimality
gap and dual optimality gap. If ε = 0, then (x̄, ȳ) is a saddle point.

We present a generic Catalyst scheme in Algorithm 1. Analogous to its prototype [22, 39], this
scheme consists of several important components: an inexact accelerated proximal point step as the
wrapper, a linearly-convergent first-order methodM as the workhorse, as well as carefully chosen
parameters and stopping criteria.
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Algorithm 1 Catalyst for SC-C Minimax Optimization
1: Input: initial point (x0, y0), parameter τ > 0
2: Initialization: α1 = 1, v0 = y0

3: for all t = 1, 2, ..., T do
4: Set zt = αtvt−1 + (1− αt)yt−1.
5: Find an inexact solution (xt, yt) to the following problem with algorithmM

min
x∈X

max
y∈Y

[
f̃t(x, y) := f(x, y)− τ

2
‖y − zt‖2

]
(?)

such that
f(xt, yt)−minx∈X f(x, yt) ≤ ε(t) and ∇y f̃t(xt, yt)T (y − yt) ≤ ε(t), ∀y ∈ Y (3)

6: vt = yt−1 + 1
αt

(yt − yt−1);
7: Choose αt+1 ∈ [0, 1] such that 1−αt+1

α2
t+1

= 1
α2
t
.

8: end for
9: Output: (x̄T , yT ) with x̄T =

∑T
t=1

1/αt∑T
m=1 1/αm

xt.

Inexact accelerated proximal point step. The main idea is to repeatedly solve a series of regular-
ized problems by adding a quadratic term in y to the original problem:

min
x∈X

max
y∈Y

[
f̃t(x, y) := f(x, y)− τ

2
‖y − zt‖2

]
, (?)

where τ > 0 is a regularization parameter (to be specified later) and zt is the prox-center. The
prox-centers {zt}t are built on extrapolation steps of Nesterov [35]. Noticeably, this step can also be
viewed as applying the original Catalyst scheme [22] to the dual function h(y) := minx∈X f(x, y).
The major distinction is that we do not have access to the closed-form dual function, which causes
difficulty in measuring the inexactness of auxiliary problems and evaluating the solution performance
in terms of the primal-dual gap, instead of dual optimality.

Linearly-convergent algorithm M. By construction, the series of auxiliary problems (?) are
(µ, τ)-SC-SC. Thus, they can be solved by a wide spectrum of first-order algorithms established in
the literature, at a linear convergence rate, including gradient descent ascent (GDA), extra-gradient
method (EG), optimistic gradient descent ascent (OGDA), SVRG, to name a few. Yet, the dependence
on the condition number may vary across different algorithms. We assume that any deterministic
algorithmM when solving the (µ, τ)-SC-SC minimax problem has a linear convergence rate such
that

‖xk − x∗‖2 + ‖yk − y∗‖2 ≤
(

1− 1
∆M,τ

)k
[‖x0 − x∗‖2 + ‖y0 − y∗‖2], (4)

and any stochastic algorithmM satisfies

E[‖xk − x∗‖2 + ‖yk − y∗‖2] ≤
(

1− 1
∆M,τ

)k
[‖x0 − x∗‖2 + ‖y0 − y∗‖2], (5)

where ∆M,τ depends on τ and algorithmM. For instance, when EG or OGDA is adopted, ∆M,τ =

`+τ
4 min{µ,τ} [45, 15, 2]; when SVRG or SAGA is adopted, ∆M,τ ∝ n+

(
`+τ

min{µ,τ}

)2

, provided that
the objective has the finite-sum structure and each component is `-smooth [38].

Stopping criteria. To guarantee the overall convergence in terms of primal-dual gap, it is necessary
to approximately solve the auxiliary problem (?) to moderate accuracy and ensure the entire pair (x, y)
converges properly. For the sake of generalization, we adopt the criterion specified in (3) in our generic
scheme. The stopping criterion can be achieved by most existing minimax optimization algorithms
after sufficient iterations. Yet, it could still be hard to check in practice because minx∈X f(x, yt) and
maxy∈Y ∇y f̃t(xt, yt)T (y − yt) are not always computable. The following lemma shows that this
issue can be alleviated, at the minor cost of a full gradient evaluation and a projection step.

Lemma 2.1. Consider a function f̃(x, y) that is (µ1, µ2)-SC-SC and has ˜̀-Lipschitz gradient on
X × Y . Let z∗ = (x∗, y∗) be the saddle point, i.e, the solution to the minimax optimization
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minx∈X maxy∈Y f̃(x, y). For any point z = (x, y) in X × Y , we define [z]β = ([x]β , [y]β) with
β > 2˜̀ to be the point after one step of projected gradient descent ascent:

[x]β = PX
(
x− 1

β∇xf̃(x, y)
)
, [y]β = PY

(
y + 1

β∇y f̃(x, y)
)
,

then we have

1. gapf̃ ([z]β) ≤ A‖z − z∗‖2, ∇f̃([x]β , [y]β)T (ȳ − [y]β) ≤ A‖z − z∗‖2 + 2βDY‖z − z∗‖;

2. ‖z − z∗‖ ≤ β+˜̀

µ̃ ‖z − [z]β‖, ‖z − [z]β‖2 ≤ 2
(1−˜̀/β)3

‖z − z∗‖2,

where A = β + 2β ˜̀2

µ̃2 + 4β ˜̀2

µ̃2(1−˜̀/β)3
, µ̃ = min{µ1, µ2}.

Based on this observation, we can therefore use the following easy-to-check criterion:

‖x− [x]β‖2 + ‖y − [y]β‖2 ≤ min

{
µ̃2ε(t)

2A(β + ˜̀)2
,

(
µ̃ε(t)

4βDY(β + ˜̀)

)2}
. (6)

Note that many algorithms such as EG or GDA, already compute ([x]β , [y]β) with β being the
stepsize, so there is no additional computation cost to check criterion (6).

Choice of regularization parameter. As we can see, the smaller τ is, the auxiliary problem is
closer to the original problem. However, smaller τ will give rise to worse conditions of the auxiliary
problems, making them harder to solve. We will discuss the dependence of the inner and outer loop
complexities on τ and provide a guideline for choosing τ for differentM.

As a final remark, we stress that the idea of using (accelerated) proximal point algorithm for minimax
optimization is by no means new. Similar ideas have appeared in different contexts. However, they
differ from our scheme in one way or the other. To list a few: [41, 30, 23, 38] considered the inexact
PPA for C-C or NC-NC minimax problems by adding quadratic terms in both x and y; [40, 44]
considered the inexact PPA for NC-C minimax problems, by adding a quadratic term in x; [24]
considered the inexact accelerated PPA for SC-SC minimax problems by adding a quadratic term
in x. On the other hand, a number of work, e.g., [19, 24, 51] also add a quadratic term in y to the
minimax optimization, but in the form O(ε)‖y‖2, which is completely different from PPA. Besides
these differences, the subroutines used to solve the auxiliary minimax problems and choices of
regularization parameters in these work are quite distinct from ours. Lastly, we point out that the
proposed framework is closely related to the inexact accelerated augmented Lagrangian method
designed for linearly constrained optimization problems [18], which can be viewed as a special
case by setting f(x, y) as the Lagrangian dual. In spite of this, approaches for solving the auxiliary
problems are completely different, as is theoretical analysis.

3 Main Results
3.1 Convergence Analysis

In order to derive the total complexity, we first establish the complexity of the outer loop and then
combine it with the inner loop complexity from algorithmM. We then discuss the optimal choice of
the regularization parameter τ for different settings.
Theorem 3.1 (Outer-loop complexity). Suppose function f satisfies Assumptions 1 and 2. The output
(x̄T , yT ) from Algorithm 1 satisfies

gapf (x̄T , yT ) ≤ α2
T

[
τ
2D

2
Y + 2

∑T
t=1

1
α2
t
ε(t)
]
, (7)

where DY = maxy,y′∈Y ‖y − y′‖ is the diameter of Y . If we further choose, ε(t) =
3τDYα2

t

2πt2 , then

gapf (x̄T , yT ) ≤ α2
T τD2

Y . (8)
Remark 1. The above result is true without requiring strong convexity in x; only convexity-concavity
of f(x, y) is sufficient. In addition, the regularization parameter τ can be any positive value. Hence,
Algorithm 1 is quite flexible. Because 2/(t+ 2)2 ≤ α2

t ≤ 4/(t+ 1)2 [39], Theorem 3.1 implies that
the algorithm finds a point with ε primal-dual gap within O(

√
τ/εDY) outer-loop iterations. Notice

that the outer-loop complexity decreases as τ decreases.
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We now turn to the inner loop complexity. By construction, the auxiliary problem (?) is (µ, τ)-SC-SC
and ˜̀smooth with ˜̀= `+ τ , which can be solved by many existing first-order algorithms at a linear
convergence rate. Below we present the complexity of the inner loop with warm start.

Proposition 3.1 (Inner-loop complexity). Suppose we apply a linearly convergent algorithmM
described by (4) or (5) to solve the auxiliary problem (?) and set the initial point to be (xt−1, zt)
at iteration t. Let K(ε(t)) denote the number of iterations (expected number of iterations ifM is

stochastic) forM to find a point satisfying (6). Then K(ε(t)) is O
(

∆M,τ log
(

˜̀·DY
min{1,µ,τ}·ε(t)

))
.

In practice, choosing a good initial point to warm start algorithmM can be helpful in accelerating the
convergence. The above proposition shows that in theory, using a simple warm start strategy helps al-
leviate the logarithmic dependence on the distance from the initial point to the optimal point. Without
the warm start strategy, one would require X to be bounded and K(ε(t)) = O

(
∆M,τ log(DX+DY

ε(t)
)
)

.
Here we do not require boundedness on X .

As we can see, the choice of τ plays a crucial role since it affects both inner-loop and outer-loop
complexities. Combining the above two results immediately leads to the total complexity:

Corollary 3.2 (Total complexity). Suppose Assumptions 1, 2 hold, and the subproblems are solved
by a linearly convergent algorithmM to satisfy the stopping criterion (3) or (6) with accuracy ε(t)
as specified in Theorem 3.1. For Algorithm 1 to find an ε-saddle point, the total number of gradient
evaluations (expected number ifM is stochastic) is

O
(

∆M,τ

√
τ/εDY log

(
` · DY

min{1, µ, τ} · ε

))
.

For any choice of linearly-convergent methodM and any regularization parameter τ , the oracle
complexity is guaranteed to be O (DY/

√
ε log(DY/ε)), which is optimal both in ε and DY up to a

logarithmic factor [37]. The dependence on the condition number will solely be determined by the
term ∆M,τ

√
τ , which we analyze in detail below for specific algorithms.

3.2 Specific Algorithms and Complexities

In order to minimize the total complexity, we should choose the regularization parameter τ that
minτ>0 ∆M,τ

√
τ . Below we derive the choice of optimal τ for different algorithmsM and present

the corresponding total complexity. Table 2 summarizes this for several algorithms we consider.

Deterministic first-order algorithms. If we adopt the simplest gradient descent ascent (GDA) as
M for solving the subproblem, then ∆M,τ =

(
`+τ

2 min{µ,τ}
)2

[12]. IfM is extra-gradient method
(EG) or optimistic gradient descent ascent (OGDA), then ∆M,τ = `+τ

4 min{µ,τ} [45, 15, 2]. Minimizing
∆M,τ

√
τ for both cases yields that the optimal choice for τ is µ. In particular, when using EG or

OGDA, the total complexity becomes

O
(
` · DY√
µε

log

(
` · DY

min{1, µ} · ε

))
.

Remark 2. This complexity matches the lower complexity bound for this class of problems [37] in
ε, `, µ and DY , up to a logarithmic factor. In addition, it improves over the best-known result, which
was recently established in [24], which has a cubic order on the logarithmic factor and requires
boundedness of X .

A key observation is that by setting τ = µ, the auxiliary problem (?) becomes (µ, µ)-SC-SC, and
it is known that simple EG or OGDA achieves the optimal complexity for solving this class of
well-balanced SC-SC problems [50]. Unlike [44, 24] , their subproblems are harder to solve because
of ill-balanced condition numbers, thus leading to an inferior complexity.

Besides the complexity improvement, our algorithm is significantly simpler and easier to implement
than the current state-of-the-arts. The DIAG algorithm in [44] applies Nesterov’s accelerated gradient
ascent to the dual function and an additional two-loop algorithm to solve their subproblems. The
MINIMAX-APPA algorithm in [24] adds a smoothing term in y and applies a triple-loop algorithm
to solve the auxiliary SC-SC problem. In contrast, our algorithm only requires two loops, does not
require to prefix accuracy ε, and has fewer tuning parameters. Results are summarized in Table 1.
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Table 2: The table summarizes the optimal choice of regularization parameter τ and total complexity
of the proposed Catalyst framework for finite-sum SC-C minimax optimization with f(x, y) =
1
n

∑n
i=1 fi(x, y), when combined with different methodsM.

M ∆M,τ ∝ Choice for τ Total Complexity of Catalyst

GDA [12]
(

¯̀+τ
min{µ,τ}

)2

µ Õ
(

n¯̀2√
µ3ε

)
EG/OGDA [29, 15] ¯̀+τ

min{µ,τ} µ Õ
(
n¯̀
√
µε

)
SVRG/SAGA [38] n+

(
¯̀+τ

min{µ,τ}

)2 µ, if ¯̀/µ ≥
√
n

Õ
(

¯̀2√
µ3ε
∨ n

3
4 ¯̀

1
2√
ε

)
¯̀√
n

, if ¯̀/µ <
√
n

SVRE1[6] n+
¯̀+τ

min{µ,τ}
µ, if ¯̀/µ ≥ n

Õ
(

¯̀
√
µε ∨

n
1
2 ¯̀

1
2√
ε

)
¯̀

n , if ¯̀/µ < n

Stochastic variance-reduced algorithms. We now consider finite-sum-structure minimax prob-
lems, minx∈X maxy∈Y f(x, y) , 1

n

∑n
i=1 fi(x, y), where each component fi has `i-Lipschitz

gradients. Denote ¯̀ = 1
n

∑n
i=1 `i as the average of smoothness constants. The resulting SC-SC

subproblem (?) also has the finite-sum structure and can be solved by a number of linearly-convergent
variance-reduced algorithms, such as SVRG, SAGA [38], and SVRE [6].

If using SVRG or SAGA asM, we have ∆M,τ ∝ n+
( ¯̀+τ

min{µ,τ}
)2

[38]. When using SVRE asM,

∆M,τ ∝ n +
¯̀+τ

min{µ,τ} , assuming that the gradients are also `i-cocoercive [6]. Particularly, when
using SVRE, the optimal τ is µ if ¯̀/µ ≥ n and ¯̀/n otherwise. Therefore, the total complexity is

Õ
( ¯̀
√
µε

)
if ¯̀/µ ≥ n; and Õ

(
n

1
2 ¯̀1

2

√
ε

)
otherwise.

Remark 3. In either case, our result improves over the complexity Õ
(
n¯̀
√
µε

)
when using the batch

extra-gradient method asM. To the best of our knowledge, this is the best complexity established so
far for this class of SC-C minimax optimization problems. Results are summarized in Table 2.

4 Nonconvex-Concave Minimax Optimization
We now turn to nonconvex-concave minimax problems (1), and formally make Assumption 3. Denote
g(x) = maxy∈Y f(x, y) as the primal function, which is `-weakly-convex [44]. The goal is to
find an ε-stationary point of g(x). For any x̄, consider the Moreau envelop of g: ψ1/τx(x̄) :=

minx∈X

{
gτx(x; x̄) := g(x) + τx

2 ‖x− x̄‖
2
}
. The norm of the gradient ‖∇ψ1/τx(x̄)‖ is commonly

used to measure the quality of a solution x̄ [10]. We call x̄ ε-stationary point of g if ‖∇ψ1/τx(x̄)‖ ≤ ε.
Assumption 3. f(x, ·) is concave for any x in X . X and Y are convex and closed sets, and Y is
bounded with diameter DY = maxy,y′∈Y ‖y − y′‖.

Our modified Catalyst framework is described in 2, which further applies the proximal point algorithm
to the primal function g(x), by adding a quadratic term in x, in the same spirit as [40, 44, 24]. The
main difference lies in that we use Algorithm 1 to solve subproblems in form of minx∈X gτx(x;xt).
Now we use τy to denote the parameter in Algorithm 1 in order to distinguish from τx. Algorithm 2
can be considered as a two-time-scale inexact proximal point algorithm, which repeatedly solves the
subproblem

minx∈X maxy∈Y f(x, y) + τx
2 ‖x− x̄t‖

2 +
τy
2 ‖y − zt‖

2. (9)

We call it two-time-scale, not only because τx and τy differ, but also because the prox center of y
comes from the extrapolation step of acceleration and is updated more frequently than the prox center
of x. The subproblem (9) is (τx − `, τy)-SC-SC if τx > `, thus can be efficiently solved.

1 SVRE requires assuming each component has `i-cocoercive gradient, which is a stronger assumption than
assuming `i-Lipschitz gradient.
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Algorithm 2 Catalyst for NC-C Minimax Optimization
1: Input: initial point (x0, y0), parameter τx > `
2: for all t = 0, 1, ..., T − 1 do
3: use Algorithm 1 to find xt+1 such that

gτx(xt+1;xt) ≤ min
x∈X

gτx(x;xt) + ε̄

4: end for
5: Output: x̂T which is uniformly sampled from x0, ..., xT−1.

Theorem 4.1 (Outer-loop complexity). Suppose f satisfies Assumption 2 and 3. The output from
Algorithm 2 satisfies

E‖∇ψ1/τx(x̂T )‖2 ≤ 2τ2
x

τx − `

[
g(x0)− g∗

T
+ ε̄

]
,

where g∗ = minx∈X g(x). If T =
4τ2
x(g(x0)−g∗)
(τx−`)ε2 and ε̄ = (τx−`)ε2

2τ2
x

, then E‖∇ψ1/τx(x̂T )‖ ≤ ε.

Theorem 4.1 implies that the outer-loop complexity is O(ε−2). In the following corollaries, we
specify the choices of τx, τy , andM for solving subproblems and the total complexity.
Corollary 4.2. Suppose f satisfies Assumption 2 and 3. If we choose τx = 2`, τy = ` and use
EG/OGDA/GDA to solve subproblems, then Algorithm 2 finds an ε-stationary point with the total
number of gradient evaluations of Õ

(
`2ε−3

)
.

Corollary 4.3. Suppose f(x, y) = 1
n

∑n
i=1 fi(x, y) satisfies Assmption 3 and each component fi has

`i-Lipschitz gradient with ¯̀= 1
n

∑n
i=1 `i. If we choose τx = 2¯̀, τy =

¯̀√
n

and use SVRG/SAGA to

solve subproblems, then Algorithm 2 finds an ε-stationary point with the total complexity Õ
(
n

3
4 ¯̀2ε−3

)
.

If we further assume fi has `i-cocoercive gradient, choose τx = 2¯̀, τy =
¯̀

n and use SVRE to solve
subproblems, then Algorithm 2 finds an ε-stationary point with the total complexity Õ

(
n

1
2 ¯̀2ε−3

)
.

Corollary 4.2 shows that simply using Catalyst-EG/OGDA achieves the complexity Õ
(
`2ε−3

)
. This

matches with the current state-of-the-art complexity for nonconvex-concave minimization [24, 44,
51, 36]. Note that our algorithm is much simpler than the existing algorithms, e.g., Prox-DIAG [44]
requires a four-loop procedure, whereas MINIMAX-APPA [24] requires a smoothing step. For
problems with finite-sum structure, as shown in Corollary 4.3, using Catalyst-SVRG attains the
overall complexity Õ

(
n

3
4 ¯̀2ε−3

)
, improving over all existing results. For instance, PG-SVRG

proposed in [40] gives Õ
(
nε−2 + ε−6

)
, which has a much worse dependence on ε and n.

5 Numerical Experiments
We consider the wireless communication problem in [3]. Given n communications channels with
signal power p ∈ Rn and noise power σ ∈ Rn, the capacity of channel i is proportional to log(1 +
βipi/(σ

0
i + σi)), where βi > 0 and σ0

i are known constants. We would like to maximize the channel
capacity under the adversarially chosen noise [14]. This can be formulated as an SC-C minimax
problem:

min
p

max
σ

f(p, σ) := −
n∑
i=1

log

(
1 +

βipi
σ0
i + σi

)
+
λ

2
‖p‖2, such that 1>σ = N, p ≥ 0, σ ≥ 0.

We generate two datasets with (1) β = 1 and σ0 ∈ R1000 uniformly from [0, 100]1000, (2) β = 1 and
σ0 ∈ R500 uniformly from [0, 10]500. In Figure 1, we apply the same stepsizes to EG and subroutine
in Catalyst-EG, and we compare their convergence results with stepsizes from small to large. In Figure
2, we compare four algorithms: extragradient (EG), SVRG, Catalyst-EG, Catalyst-SVRG with best-
tuned stepsizes, and evaluate their errors based on (a) distance to the limit point: ‖pt−p∗‖+‖σt−σ∗‖;
(b) norm of gradient mapping: ‖∇pf(pt, σt))‖ + ‖σt − PΣ(σt + β∇σf(pt, σt))‖/β. In Figure 3,
we compare EG, Catalyst-EG and DIAG with best-tuned stepsizes.

Although EG with average iterates has an optimal complexity of O(1/ε) for solving convex-concave
minimax problems [32], its convergence behavior for SC-C minimax optimization remains unknown.
Both Catalyst-EG and DIAG are designed for SC-C minimax optimization: Catalyst EG has a
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Figure 1: Comparion of EG and Caralyst-EG under same stepsizes
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Figure 2: Comparison of EG, Catalyst-EG, SVRG and Catalyst-SVRG on Dataset 1
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Figure 3: Comparison of EG, Catalyst-EG, and DIAG on Dataset 2

complexity of Õ(`/
√
µε) and DIAG has a complexity of Õ

(
`

3
2 /(µ

√
ε)
)

. Here we use the same
stepsize for primal and dual variables in EG and its counterpart with Catalyst. In Catalyst, we use
‖xt − PX (xt − β∇xf(xt, yt))‖/β + ‖yt − PY(yt + β∇yf(xt, yt))‖/β as stopping criterion for
subproblem, which is discussed in Section 2. We control the subroutine accuracy ε(t) as max{c/t8, ε̃},
where c is a constant and ε̃ is a prefixed threshold. In contrast, DIAG does not provide a easy-to-
verify stopping criterion for subroutine. We stop the subroutine of DIAG based on the criterion:
‖xk − xk−1‖2 + ‖yk − yk−1‖2, where k indexes the subroutine iterations. We note that there is
no theoretical convergence analysis for SVRG under SC-C setting. To form a fair comprison with
SVRG, we report last iterate error in Catalyst-SVRG rather than averaged iterates.

We observe that Catalyst-EG performs better than EG and DIAG. Under the same stepsize, Catalyst
framework significantly speed up EG. SVRG, albeit without theoretical guarantee in the SC-C setting,
converges much faster than batch algorithms. Catalyst-SVRG also greatly improves over SVRG and
outperforms all other algorithms.
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Broader Impact

Our work provides a family of simple and efficient algorithms for some classes of minimax optimiza-
tion. We believe our theoretical results advance many applications in ML which requires minimax
optimization. Of particular interests are deep learning and fair machine learning.

Deep learning is used in many safety-critical environments, including self-driving car, biometric
authentication, and so on. There is growing evidence that shows deep neural networks are vulnerable
to adversarial attacks. Since adversarial attacks and defenses are often considered as two-player games,
progress in minimax optimization will definitely empower both. Furthermore, minimax optimization
problems provide insights and understanding into the balance and equilibrium between attacks and
defenses. As a consequence, making good use of those techniques will boost the robustness of deep
learning models and strengthen the security of its applications.

Fairness in machine learning has attracted much attention, because it is directly relevant to policy
design and social welfare. For example, courts use COMPAS for recidivism prediction. Researchers
have shown that bias is introduced into many machine learning systems through skewed data, limited
features, etc. One approach to mitigate this is adding constraints into the system, which naturally
gives rise to minimax problems.
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