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Abstract. High fidelity models used in many science and engineering applications couple

multiple physical states and parameters. Inverse problems arise when a model parameter

cannot be determined directly, but rather is estimated using (typically sparse and noisy)

measurements of the states. The data is usually not sufficient to simultaneously inform all of

the parameters. Consequently, the governing model typically contains parameters which are

uncertain but must be specified for a complete model characterization necessary to invert for

the parameters of interest. We refer to the combination of the additional model parameters

(those which are not inverted for) and the measured data states as the“complementary

parameters”. We seek to quantify the relative importance of these complementary

parameters to the solution of the inverse problem. To address this, we present a framework

based on hyper-differential sensitivity analysis (HDSA). HDSA computes the derivative of

the solution of an inverse problem with respect to complementary parameters. We present

a mathematical framework for HDSA in large-scale PDE-constrained inverse problems

and show how HDSA can be interpreted to give insight about the inverse problem.

We demonstrate the effectiveness of the method on an inverse problem by estimating a

permeability field, using pressure and concentration measurements, in a porous medium

flow application with uncertainty in the boundary conditions, source injection, and diffusion

coefficient.

Keywords : Inverse Problems, sensitivity analysis, model uncertainty, design of experiments,

subsurface flow.

1. Introduction

Rapid advances in numerical algorithms and computing infrastructure have made it feasible

to simulate complex multiphysics systems governed by systems of partial differential

equations (PDEs) on high resolution computational grids. Inverse problems arise when

some model parameters cannot be determined directly, but rather are estimated using

measurements of the model state variables. The states may correspond to different physical

quantities with varying data volumes and measurement fidelities, and measurements are

typically sparse and noisy due to budget and hardware limitations.
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Inverse problems governed by systems with complex physics involve various sources of

uncertainty. This includes the uncertainty in the parameters being estimated, uncertainty in

measurement data, and uncertainty in parameters in governing PDEs that are not the focus

of the parameter estimation, but are needed for a full model specification. For clarity, we refer

to the model parameters being estimated as inversion parameters and to the other model

parameters besides the inversion parameter as auxiliary parameters. Additionally, we refer

to the parameters specifying the experimental conditions, such as types of measurements

or measurement noise levels, as experimental parameters. The auxiliary parameters and the

experimental parameters are needed for the formulation of the inverse problem. We call the

combination of auxiliary and experimental parameters the complementary parameters. This

article is about understanding and quantifying the impact and relative importance of the

perturbations in complementary parameters to the solution of an inverse problem.

For illustration, let us consider a subsurface flow problem, in which we seek to invert for

the log-permeability field using a tracer test. The forward model we consider is given by the

mass conservation, constrained by Darcy’s law, resulting in a linear elliptic PDE governing

the pressure, and a time-dependent PDE governing diffusion and transport of the tracer.

The inversion parameter here is the log-permeability field. The auxiliary parameters include

the source terms (e.g., the tracer injection), boundary conditions, and coefficients (e.g., the

diffusion coefficient) in the governing PDE system. The measurements correspond to the

two states: pressure and concentration. The experimental parameters correspond to noise

in these measurements.

We propose a general framework to assess the relative importance of complementary

parameters in determining the solution of the inverse problem. To do so, we build upon

previous work in [1], and a series of related articles [2, 3, 4, 5, 6, 7, 8, 9], that introduced hyper-

differential sensitivity analysis (HDSA) for PDE-constrained optimization. HDSA computes

the Fréchet derivative of the solution of the inverse problem with respect to complementary

parameters. We use this derivative to define hyper-differential sensitivities of the inverse

problem solution with respect to the complementary parameters. These sensitivities describe

the change in the solution of the inverse problem with respect to perturbations of a given

parameter. We also define generalized sensitivity indices that determine maximum (worst

case) changes in the inverse problem solution with respect to perturbations in a set of

complementary parameters.

By providing sensitivity information on the experimental parameters, our framework

provides vital information for effective data collection. For instance, by discovering the

sensor measurements the inverse problem solution is most sensitive to, we can identify the

sensors where higher fidelity measurements are desired. This can be achieved by designing

sensors with improved error tolerances, or in problems where this is possible, repeating

these sensor measurements to reduce the associated measurement noise. Furthermore, we

demonstrate that HDSA can be used to compare the relative importance of different types
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of sensors. As such, this process complements experimental design which is used to design

optimal sensor placement for data measurements. By calibrating the measurement fidelities

in a given experimental design (e.g., a sensor network), one can make the most out of the

measurements for effective parameter estimation. Therefore, the proposed framework can be

combined with an optimal experimental design (OED) problem [10, 11, 12] to: (i) identify an

optimal set of experiments; and (ii) calibrate the fidelities of the experiments or further prune

the specified set of experiments, based on the sensitivity analysis results. HDSA provides a

systematic framework to distinguish between measurements obtained from different sensor

types and understand the relative importance of spatial and temporal sensor distributions.

While HDSA is not intended to replace OED, it augments it by providing unique insights

into the influence of various sensors in large-scale multiphysics applications.

Another important application of the proposed framework is guiding OED under

uncertainty. In practical applications, an OED problem must be found in such a way

that it is robust with respect to uncertainty in auxiliary model parameters; see e.g., [13].

Performing sensitivity analysis of the inverse problem solution with respect to auxiliary

parameters informs the sources of model uncertainty one needs to focus on when solving an

OED under uncertainty problem. By focusing on sources of model uncertainty the inverse

problem solution is most sensitive to, our framework can significantly reduce the complexity

of an OED under uncertainty problem. Furthermore, for applications in which multiple

experiments may be designed to target calibration of different auxiliary parameters, the

proposed sensitivities may identify where experimental efforts should be invested to calibrate

the most influential parameters through a sequence of different experiments.

Additionally, in complex physics systems, typically the influence of various sources of

model uncertainty on the solution behavior is not clear a priori. The proposed sensitivity

analysis framework provides important insight about the governing model.

In contrast to traditional sensitivity analysis, where one quantifies the contribution of

auxiliary parameters to variability in model output, our proposed framework provides a goal

oriented sensitivity analysis approach by quantifying the impact of perturbations in auxiliary

parameters on estimation of unknown model parameters. This enables determining which

auxiliary parameters need to be specified more accurately. In fact, it might be that some

auxiliary parameters should be estimated along with the inversion parameters, if possible.

Lastly, these sensitivities provide a computationally efficient low order approach to

uncertainty quantification for large-scale systems. For instance, if the solution of the inverse

problem must be determined in real time to inform critical decision making, coupling the

estimated solution with a notion of uncertainty contributed by errors in the complementary

parameters provides real time uncertainty estimation which is critical for making informed

decisions.

The present work concerns local sensitivity analysis for deterministic variational inverse

problems. We consider connections to statistical formulations and global sensitivity analysis
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in Section 7. The contributions of this article are as follows:

• We define HDSA with respect to experimental parameters. This provides a systematic

approach to compare different sensor types and reveals information about the relative

importance of distributed (spatially and temporally) sensor measurements, neither of

which can be easily determined by traditional OED.

• Theoretical results are presented for linear inverse problems to provide intuition and

demonstrate properties of the sensitivities with respect to experimental parameters.

• We build upon previous work [1] to develop a more comprehensive mathematical

framework for HDSA of nonlinear multiphysics inverse problems. This is done, in

particular, by maturing the idea of generalized sensitivities as a tool for systematically

comparing the importance of auxiliary parameters (which may be of differing physical

characteristics and scales) alongside the novel development of HDSA for experimental

parameters.

• Comprehensive numerical results, in a large-scale subsurface flow application,

demonstrate the interpretation and use of HDSA for nonlinear multiphysics inverse

problems.

The remainder of the article is organized as follows. Section 2 outlines the

basic principles of inverse problems and design of experiments. Section 3 provides

the mathematical formulation of hyper-differential sensitivities and their interpretation

for inverse problems constrained by multiphysics. The computational considerations,

implementation, and cost analysis of HDSA is detailed in Section 4. Section 5 presents

a large scale, multiphysics model problem, which is then used to construct sensitivity results

that are detailed in Section 6. Concluding remarks and notes on potential areas of future

work are highlighted in Section 7.

2. Preliminaries

In this section, we recall background material on inverse problems and design of experiments,

which are augmented by the proposed sensitivity analysis in subsequent sections.

2.1. Inverse Problems

In the present work, we are concerned with ill-posed inverse problems governed by PDEs.

Specifically, we seek to estimate a parameter m, henceforth called the inversion parameter,

using data y and a model of the form

F (m) + η = y.
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Here F is the parameter-to-observable map and η represents measurement noise. Evaluating

F (m) requires solving the governing PDEs and extracting the solution at measurement

points.

Due to ill-posedness and availability of only sparse noisy measurements, we are led

to variational formulations with suitable regularizations. Specifically, we consider an

optimization problem of the following form:

min
u,m

J(u,m, θe)

s.t. v(u,m, θa) = 0

u ∈ U,m ∈M.

(1)

Here, U is an infinite dimensional reflexive Banach space containing the state,M is a possibly

infinite dimensional Hilbert space, J is a regularized data misfit cost functional (we make this

precise below), and v represents the constraining PDE system. The experimental parameters,

θe, represent uncertainty in the data, while θa are the auxiliary parameters contained in the

system of PDEs. Generally, solving this optimization problem produces parameter estimates

that are consistent with measurement data and the model. For the remainder of the article,

we refer to (1) as the inverse problem.

We mention that an alternative approach to address ill-posed inverse problems is to

consider a Bayesian formulation [14]. In this approach, the inversion parameter m is modeled

as a random variable, and the goal is to find a distribution law for m that is consistent

with measurement data, the model, and a prior distribution of m that models our prior

knowledge/beliefs about m. In the present work, we restrict our attention to deterministic

formulation of inverse problems, as described above.

We assume that the PDE represented by v is uniquely solvable for any admissible m

and θa. This allows us to formulate (1) in reduced space [15]. Letting A(m, θa) denote

the solution operator for the PDE, i.e. v(A(m, θa),m, θa) = 0 for all m and θa, we define

the reduced objective function Ĵ(m, θe, θa) = J(A(m, θa),m, θe). In this article we focus on

objective functions defined as a linear combination of data misfit and regularization, yielding

a general form for the inverse problem

min
m∈M

Ĵ(m, θe, θa) :=
1

2
‖QA(m, θa)− y(θe)‖2 + αR(m), (2)

where y(θe) is a vector of measured data (with uncertainty parameterized by θe), Q an

observation operator that maps the PDE solution to a set of observation locations, R is

a regularization operator, and α is a regularization parameter. Traditional approaches to

solving inverse problems fix θ = (θe, θa) to a best estimate and solve (2) by optimizing over

m. Analyzing the influence of θ on the solution of (2) is the focus of this article.

Besides ill-posedness, such inverse problems are difficult to solve for a number of other

reasons. These include having noisy observations, expensive forward PDE solves, tuning
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multiple experimental and modeling parameters, and optimization in infinite (or large finite)

dimensional spaces. Common optimization methods used to tackle such problems include

quasi-Newton, inexact Newton-CG, Gauss-Newton, and truncated CG trust region solvers.

These optimization problems often require efficient gradient and Hessian computation

through adjoint state methods, and repeated large scale linear system solves with Krylov

iterative methods. We direct the interested reader to a number of classical inverse problem

references [16, 17, 18, 19, 20, 21, 22].

2.2. Design of Experiments

An important aspect of solving an inverse problem is the collection of informative

measurement data, which is guided by design of experiments. In our target inversion, this

generally corresponds to specifying the locations of the sensors used to collect measurement

data and is known as an optimal experimental design (OED) problem [10, 11, 12]. OED

for inverse problems governed by differential equations has received significant attention in

recent years; see e.g., [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. An OED problem

is typically formulated with a statistical formulation of the inverse problem in mind. An

optimal design is one that optimizes the statistical quality of the estimated parameters.

Examples include maximizing the expected information gain, leading to a D-optimal design

problem, or minimization of average posterior variance, leading to a Bayesian A-optimal

design problem.

OED is a powerful tool that is used on a wide variety of problems. It is also a very

challenging problem both from mathematical and computational point of view, especially

when it comes to nonlinear inverse problems governed by PDEs; see e.g., [31, 33]. The

developments in the present work are closely related to OED: while we do not directly solve

an OED problem, we address the following relevant questions: (i) which measurements is

the solution of an inverse problem most sensitive to? And (ii) which measurement types

are most influential to the solution of the inverse problem? The latter is tied to important

questions typically not addressed in OED literature: how should multi-purpose sensors that

can take different types of measurements be deployed, and how should different sensor types

be designed and deployed in an existing experimental design?

3. Hyper-differential Sensitivity Analysis for Inverse Problems

This section is devoted to our proposed framework for hyper-differential sensitivity analysis

(HDSA) of PDE-constrained inverse problems. In Subsection 3.1, we detail the mathematical

formulation of the operator mapping complementary parameters to solutions of the PDE-

constrained inverse problem, and its Fréchet derivative. In Subsection 3.2 the hyper-

differential sensitivities are defined, as well as the generalized sensitivity index which is

used to compare the importance of sets of complementary parameters with different physical
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characteristics. Subsection 3.3 presents an analytical result for linear inverse problems which

connects the sensitivities to the trace of the covariance in the solution of the inverse problem.

3.1. Mathematical Formulation

HDSA differs from traditional sensitivity analysis in that it determines the sensitivity of

the solution of an optimization problem rather than simply a model (which is typically a

constraint in the optimization problem). We seek to perform HDSA on (2) to determine

the sensitivity of the optimal m to uncertainty in complementary (both experimental and

auxiliary) parameters θ which are fixed when solving (2).

HDSA uses the derivative of the solution of (2) with respect to θ. To formally define

HDSA, we assume that Ĵ is twice continuously differentiable with respect to (m, θ) and that

m? is a local minimum of (2) for specified complementary parameters θ = θ?. Assuming

that the Hessian of Ĵ with respect to m, evaluated at (m?, θ?), is positive definite [1, 2], we

can apply the implicit function theorem [35, p. 38] to Ĵm (the Fréchet derivative of Ĵ with

respect to m), to define a continuously differentiable mapping F from a neighborhood of θ?

to a neighborhood of m?,

F : N (θ?)→ N (m?)

such that

Ĵm(F(θ), θ) = 0, for all θ ∈ N (θ?),

i.e., F maps complementary parameters to stationary points of (2). The Fréchet derivative

of F with respect to θ, evaluated at θ?, is given by

D := Fθ(θ?) = −H−1B, (3)

where H is the Hessian of Ĵ with respect to m, evaluated at m? and θ?, i.e., H :=

Ĵm,m(m?, θ?), and B is the Fréchet derivative of Ĵm with respect to θ, evaluated at m?

and θ?, i.e., B := Ĵm,θ(m
?, θ?).

An intuitive interpretation of (3) is that once (2) has been solved to optimality for the

specified θ?, we take a perturbation with respect to θ (B) and apply a Newton step (−H−1)

to update the solution of the inverse problem. We interpret Dθ as the sensitivity of the

solution of the inverse problem when the complementary parameters are perturbed in the

direction θ. Note that upon discretization, applying the inverse of H to a vector requires a

large-scale linear solve, which requires many PDE solves.

3.2. Sensitivity Indices

We use (3) to define sensitivity indices that attribute importance to each parameter. To

this end, we first formalize assumptions about the parameter space. In general, the

complementary parameters θ = (θe, θa) ∈ Θ take values in a possibly infinite dimensional

7



space Θ = Θ1×Θ2× ...×ΘK , which is a product of K Hilbert spaces. The first ` parameter

spaces contain the experimental parameters θe ∈ Θ1 × ...×Θ`, while the remainder contain

the auxiliary parameters θa ∈ Θ`+1 × ... × ΘK . The product space Θ is equipped with the

inner product

〈θ, φ〉Θ = 〈θ1, φ1〉Θ1 + · · ·+ 〈θK , φK〉ΘK
, for θ, φ ∈ Θ.

We are particularly interested in cases where each Θk, k = 1, 2, . . . , K, may have significantly

different physical characteristics. For instance, corresponding to various physical quantities

(thermal, fluid, solid, etc.) which have different spatial and temporal dependence.

To better understand spatial and temporal patterns of importance within a particular

parameter or data source, we define pointwise sensitivity indices in space and time, and

later generalized sensitivities which remove these units. From here on, we use Θ and Θk to

denote the discretizations of the possibly infinite dimensional spaces Θ and Θk. To respect

spatiotemporal structure in discrete data, we use weighted norms corresponding to spatial

and/or temporal discretizations. For instance, if θk models perturbations of spatiotemporal

data measurements then

‖θk‖Θk
=

√√√√ 1

ntns

ntns∑
i=1

(θik)
2

where θik denotes the ith component of the vector θk ∈ Rntns , ns and nt denote the number

of spatial and temporal points, respectively.

Upon discretization of (1), we let {b1
k, b

2
k, . . . , b

nk
k } denote a basis for each parameter

space Θk, where nk is the dimension of Θk.

We define a basis for Θ as {eik} for k = 1, . . . , K and i = 1, . . . , nk where

eik =
(
01 . . . 0k−1 bik 0k+1 . . . 0K

)>
.

We define the pointwise sensitivity indices for k = 1, . . . , K and i = 1, . . . , nk as,

Sik =
‖Deik‖M
‖eik‖Θ

, (4)

where D is the discretized sensitivity operator (3), and ‖ · ‖M is the norm discretized

consistently with respect to the norm in M. The pointwise sensitivities measure the

change in the solution of the inverse problem with respect to a perturbation of the kth

parameter in direction bik. Thus, high sensitivity indicates that errors in the parameter will

cause a significant change in the reconstructed solution. This leads to an interpretation

of the sensitivities as quantifying the importance of accurately measuring or modeling the

parameter.

We would also like to compare sensitivities of various parameters with differing units

to determine their importance relative to each other. To do this, we seek to formulate
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a generalized sensitivity index for a particular set of parameters θk ∈ Θk, which can be

interpreted as the maximum change in the solution with respect to a unit norm perturbation

of the kth parameter. Care must be taken here to ensure the sensitivities can be compared

accurately, as some parameters may be local in space and/or time, while others are not. We

first consider a projection operator Tk : Θ → Θ, which zeros out all elements of θ except

those in Θk. Then the generalized sensitivity for parameters is

Sk = max
θ∈Θ

‖DTkθ‖M
‖θ‖Θ

. (5)

In this way, we obtain a single generalized sensitivity for each set of parameters θk,

k = 1, . . . , K, which allows for a dimensionless comparison of parameters with different

physical characteristics.

3.3. Interpretation of Experimental Parameter HDSA for Linear Inverse Problems

Sensitivity of auxiliary parameters, θa in the notation of this article, is a natural concept

with a clear physical interpretation. The sensitivity of the solution of the inverse problem to

experimental parameters is less intuitive, so we present an analytic result in Proposition 3.1 to

provide intuition. For conciseness and clarity in this subsection, we consider only uncertainty

in the experimental parameters.

Assume that ỹ = (ỹ1, ỹ2, . . . , ỹn)> is a vector of noisy data which may be modeled by

a linear parameter-to-observable map QA acting on an unknown parameter m. Estimating

this unknown m gives rise to a linear inverse problem. To apply HDSA with respect to

experimental parameters, we model the data as

yi = ỹi(1 + θie) i = 1, 2, . . . , n,

where (θ1
e , θ

2
e , . . . , θ

n
e )> = θe ∼ N(0,Σ) is a perturbation of the nominal value ỹi, i.e.

a noise model. Assuming uncorrelated observations, the noise covariance matrix is Σ =

diag(σ2
1, . . . , σ

2
n). An estimate of the inversion parameter can be obtained by solving

min
m

Ĵ(m) :=
1

2
‖QAm− y‖2

Σ−1 +
α

2
‖m‖2

R (6)

with θe = 0, i.e. solving a linear least squares problem with the data ỹ. The norm in the

regularization term is weighted by regularization operator R :M→M which we assume is

a self-adjoint, strictly positive linear operator on M [22].

The estimator m? obtained from solving (6) is a random variable, due to the random

noise in the data. HDSA provides the sensitivity of its solution with respect to θe =

(θ1
e , θ

2
e , . . . , θ

n
e ). This may be interpreted as the sensitivity of the least squares estimate with

respect to the data, a metric to assess the relative importance of the observations. Such

sensitivity information can be used to inform sensor designs and measurement tolerances.
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Proposition 3.1 relates the variance of m? (with respect to randomness in θe) to the pointwise

sensitivities with respect to data measurements Si as defined in equation (4). Here, we

omit the subscript (K = 1) on the pointwise sensitivities, as we only consider one type of

parameter in this section.

Proposition 3.1. Tr(Cov(m?)) =
∑n

i=1(Si)2, where Tr denotes the trace of a linear operator

and Si is defined as in (4) when Θ = Rn is equipped with the Σ−1 weighted norm.

Proof. Computing the Fréchet derivative of the objective Ĵ in (6), setting it equal to zero,

and solving for m yields the solution of the inverse problem,

m? = (A∗WA+ αR)−1A∗Wy = (A∗WA+ αR)−1A∗W(ỹ + Ỹθe),

where A∗ denotes the adjoint of the linear operator A and Ỹ = diag
(
ỹ1, ỹ2, . . . , ỹn

)
.

Computing the Fréchet derivative of m? with respect to θe (which coincides with (3)) yields

D = (A∗WA+ αR)−1A∗WỸ.

The covariance of the estimator m? (with respect to randomness in θe) is

Cov(m?) = Cov(Dθe) = DΣD∗.

Therefore,

Tr(Cov(m?)) = Tr(DΣD∗) = Tr(D∗DΣ) =
n∑
i=1

〈ei,D∗DΣei〉

=
n∑
i=1

(σi‖Dei‖M)2 =
n∑
i=1

(σi‖ei‖Σ−1Si)2 =
n∑
i=1

(Si)2,

where ei is the ith canonical unit vector in Rn.

This result provides useful intuition into the sensitivity indices and indicates that the

variance of the inverse problem solution is scaled by the magnitude of the sensitivities with

respect to data.

Remark 3.1. Notice that Proposition 3.1 generalizes naturally to Bayesian linear inverse

problems. With a Gaussian prior and likelihood, the solution of the Bayesian linear inverse

problem is a Gaussian posterior. With the assumption θe ∼ N(0,Σ) on the measurement

noise, and an appropriately chosen prior covariance, the maximum a posteriori (MAP) point

is equivalent to the solution m? of the deterministic linear inverse problem. Taking the trace

of the MAP point’s covariance we again conclude Proposition 3.1. Note that in the Bayesian

setting, we consider the average variance of the MAP estimator as a measure of robustness of

this point estimator for the inversion parameter. This is different than the average posterior

uncertainty in the parameter given by the trace of the posterior covariance operator.
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4. Computational Considerations

We begin our discussion with a simple illustrative example. To highlight the dimensions of

the discretized operators and gain insight into the computational complexity of HDSA, we

consider a discretized inverse problem with only auxiliary parameters:

min
m

Ĵ(m) =
1

2
‖Qu− y‖2

W +
α

2
‖m‖2

R

where L(m)u = Vθ.
(7)

where Q ∈ Rd×n is an observation operator, u ∈ Rn the state vector, y ∈ Rd is the

vector of experimental observations, W ∈ Rd×d a symmetric weight matrix, α > 0 a

regularization coefficient,m ∈ Rp the discretized inversion parameter, R ∈ Rp×p a symmetric

positive definite regularization operator, L(m) ∈ Rn×n a discretized differential operator,

θ ∈ Rk the vector of auxiliary parameters, and V ∈ Rn×k. Note that the discretized state

dimension n corresponds to the number of degrees of freedom in the mesh (typically large),

and for problems with distributed parameters, p will also have a comparable dimension

to n (frequently equal). The dimension of the auxiliary parameters, k, can also be large,

potentially larger than n when there are multiple distributed auxiliary parameters.

In practice, we compute the action of the gradient and Hessian of Ĵ using a formal

Lagrangian approach where each application of the Hessian requires two linear PDE solves

(inverting the matrix L(m)). To compute the action of D (the discretization of (3)) on a

vector, we require 2 linear solves to apply the matrix B to a vector, and then 2I linear

solves to apply H−1 to the resulting vector, where I is the number of iterations needed by

an iterative linear solver. We direct the reader to Appendix A, where we demonstrate the

adjoint method used to compute the gradient and Hessian of the reduced objective function

Ĵ , as well as the operator B.

In general, the sensitivity indices (4) and generalized sensitivity indices (5) may be

computed in a variety of ways. The efficiency of different approaches depends upon (i) the

dimension of the parameter space, (ii) the computational cost of the PDE solves, (iii) the

structure of the Fréchet derivative D, and (iv) the available computational resources.

The computational bottleneck when computing (4) and (5) is repeatedly inverting H
(a large linear system solve). In general, we are interested in systems of nonlinear PDEs.

For such systems, each application of H−1 requires 2I linearized PDE solves, where I is the

number of iterations required by the linear solver (such as conjugate gradient). Because

HDSA is post-optimality analysis, we do not require solving nonlinear systems repeatedly as

in the inverse problem, but rather solving PDEs which are linearized about the solution of

the inverse problem.

As introduced in [1], a randomized generalized eigenvalue problem may be formulated

to estimate the truncated generalized singular value decomposition (GSVD) of D. When

the parameter dimension is large and Fréchet derivative D is low rank, both (4) and (5)
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may be efficiently estimated by using the truncated GSVD and leveraging the parallelism of

randomized methods. We refer the reader to [1] for additional details.

If D is not low rank but the parameter dimension and cost per PDE solve is mild, we

may compute (4) and (5) directly by applying D to each basis function in Θ. This does

not exploit structure as in the GSVD approach, but it is embarrassingly parallel making it

feasible for moderate parameter dimensions.

If D is not low rank and the parameter dimension or cost per PDE solver prohibits

computing (4) and (5) directly, we may still compute (5) using a GSVD. Each generalized

sensitivity index corresponds to the leading singular value of D acting on a projection

operator. Since the number of generalized sensitivities are typically small, they may be

estimated by using randomized solvers to compute the leading singular value. By exploiting

parallelism, this may be done with a modest number of linearized PDE solvers regardless of

the spectral decay in D.

5. Model Problem

In this section, we present a multiphysics model problem which is then used in Section 6

to compute hyper-differential sensitivities and demonstrate the usefulness and flexibility of

HDSA. As a motivating example, we consider the problem of identifying the permeability

field of a porous subsurface region with a tracer substance flowing through the domain. We

consider a unit square domain Ω with boundary Γ = ∪3
i=0Γi, where Γ0, Γ1, Γ2, and Γ3 denote

the bottom, right, top, and left edges of Ω, respectively.

We model subsurface flow of a fluid through a porous medium with Darcy’s Law and

consider transport of the tracer through the medium governed by the advection diffusion

equation:

−∇ · (em∇p) = 0 in Ω (8a)

ct −∇ ·
(
ε∇c

)
+∇ ·

(
vc
)

= g in [0, T ]× Ω (8b)

p = p1 on Γ1 (8c)

p = p2 on Γ3 (8d)

∇p · n = 0 on Γ0 ∪ Γ2 (8e)

∇c · n = 0 on [0, T ]× {Γ0 ∪ Γ1 ∪ Γ2 ∪ Γ3} (8f)

c(0, ·) = 0 in Ω (8g)

Here p denotes the pressure field, m the log-permeability field of the medium, v =

−em∇p the Darcy velocity, c(t, x) the tracer concentration, ε the diffusivity constant, and

g the source term of the injected tracer. In the present example, we used ε = 0.025. For

simplicity of notation, the constant fluid viscosity and constant porosity of the medium have
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been removed from the model. The Dirichlet pressure boundary conditions (on left and right

boundaries) are described by non-zero fuctions p1 and p2. We let p1 be greater in magnitude

than p2, as this pressure difference will drive fluid flow from right to left through the domain,

p1(y) = 15 + cos(2πy) +
1

2
cos(4πy),

p2(y) = 10 + 2 cos(2πy).

The tracer source is described by

g(x, y) =
16∑
k=1

10e−100((x−vk)2+(y−wk)2)

where the source injection locations (vk, wk) are arranged in a 4× 4 grid as depicted by the

diamonds in Figure 1.
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Figure 1: Concentration sensor, pressure sensor, and source locations.

We seek to solve an inverse problem to reconstruct the log-permeability field m, using

pressure and concentration measurements. Let Q denote the observation operator and

y ∈ Rn be a vector of np pressure measurements and nc concentration measurements at

nt measurement times, giving a total of n = np + ncnt data points,

y =
[
p1 p2 . . . pnp c1 c2 . . . cncnt

]
.

The observation (sensor) locations are depicted in Figure 1.

We consider the inverse problem

min
m

Ĵ(m) :=
1

2
‖QA(m)− y‖2

W +
α

2

∫
Ω

‖∇m‖2
2 dx

13



where A is the solution operator for (8),

W =

(
1

p2σ2 Inp 0

0 1
c2σ2 Incnt

)

is a data misfit weight matrix and α is the regularization coefficient. We used α = 3× 10−2

in our numerical experiments; this was chosen based on numerical experimentations seeking

a regularization coefficient that is large enough to mitigate ill-posedness and at the same

time produces a reasonable parameter reconstruction. The weight matrix divides each

measurement by the measurement noise σ and the average of its data type (p and c

respectively) to ensure the two data types, which are on different scales, have equivalent

importance in the data misfit term.

We synthesize data for this problem with additive Gaussian noise that perturbs the data

with a standard deviation of 3% of the true value, i.e. θie ∼ N (0, σ), with σ = 0.03. Note

that we assume pressure and concentration sensors have the same proportional measurement

error, σp = σc = 0.03.

The inverse problem is solved on a 55×55 finite element spacial discretization with 48

time steps, while the data is generated from a forward PDE solve with a 109×109 finite

element spacial discretization and 98 time steps. We use a completely uninformed, constant

0 initial guess, with 49 concentration sensors and 35 pressure sensors arrayed throughout the

domain as depicted in Figure 1 to solve the inverse problem.

6. Computational Results

Using the model presented in Section 5, we solve the inverse problem and compute sensitivity

indices to determine which parameters and data sources are most important. Figure 2 depicts

the true log permeability field we seek to reconstruct through the inverse problem, and the

reconstructed solution found by solving the inverse problem with a truncated CG trust region

solver. Note that since the optimization problem is non-convex we are only guaranteed to

find a local minimizer.
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Figure 2: Left: True Permeability Right: Reconstructed Solution.

In Subsection 6.1 we display and interpret generalized sensitivity indices for the

pressure data, concentration data, tracer source term, diffusion coefficient, and the left and

right pressure Dirichlet boundary conditions. In Subsection 6.2 we analyze the pointwise

sensitivities with respect to the experimental parameters (pressure and concentration data),

and in Subsection 6.3 we analyze the pointwise sensitivities with respect to auxiliary

parameters (source term, pressure Dirichlet boundary conditions, and diffusion coefficient).

General discussion of the importance and interpretation of the sensitivities is presented in

Subsection 6.4.

We model uncertain parameters as a nominal value times a parameterized perturbation.

When our parameters of interest are constants, such as data measurements or modeling

coefficients, we can model uncertain parameters as

d = d̃(1 + aθ),

where d is the parameter of interest, d̃ is the nominal value, a is a scaling coefficient, and

θ ∈ [−1, 1] the parameterization of the perturbation. In practice, we compute the sensitivity

with θ = 0, which corresponds to computing the sensitivity at the nominal parameter value

d̃. Extensions to global sensitivity analysis may consider sampling θ in [−1, 1]. The scaling

coefficient a is problem dependent, and should be set based on prior knowledge of the level

of uncertainty in the parameter of interest. When the parameter is a spatially and/or

temporally distributed, we model uncertainty in the function using a linear combination of

basis functions

f(x) = f̃(x)
(

1 + a
L∑
i=1

θiφi(x)
)

where f̃ its nominal estimate, L the dimension of the discretized basis, and {φi} are basis

functions. The results in this article take φi as linear finite element basis functions defined

on a coarser mesh than the PDE is solved on (to enforce smoothness in perturbations). For

this model problem we let a = 0.05 for the experimental parameters and a = 0.2 for the
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auxiliary parameters which indicates 5% uncertainty in the data (experimental parameters)

and 20% uncertainty in the auxiliary parameters.

6.1. Generalized Sensitivity Results

We calculate the generalized sensitivities for each parameter type, which allows for

comparison between their relative importance. These are plotted in Figure 3.

Generalized Sensitivities

Pressure Concen. Source Diffusion BCleft BCright

0

0.5

1

1.5

2

2.5

Experimental Parameters
Auxiliary Parameters

Figure 3: Bar graph of generalized parameter sensitivities.

From Figure 3, we can see that for this specific model problem it is most important to

accurately measure the left and right boundary conditions. This makes sense intuitively, as

the boundary conditions drive the fluid flow and the problem is advection dominated. We

can also tell that in terms of data collection, it is more important to accurately measure

concentration than pressure and that measuring the diffusion coefficient with a high degree

of accuracy is relatively unimportant.

We consider the left boundary condition as an example and illustrate the interpretation

of its generalized sensitivity index. Such principles of interpretation may be extended to

any other generalized sensitivity indices but are omitted for conciseness. Figure 4 displays

the true left boundary condition and the perturbation of the left boundary condition

corresponding to the generalized sensitivity index (the argument of the maximization in

(5). The perturbation plotted in Figure 4 is the unit norm perturbation that results in the

maximum change in the inverse problem’s solution. Thus, the generalized sensitivity index

S5 = 2.12 indicates that this unit norm perturbation will result in a change of about 2.12 in

the norm of the solution of the inverse problem. Scaling by the norm of the solution of the

inverse problem gives an interpretation that the unit norm perturbation shown in Figure 4

results in approximately a 14% change in the solution of the inverse problem. With this

interpretation, a user may associate a level of uncertainty in the boundary condition and
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the resulting change in the estimated permeability field to determine if further calibration

is needed.
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Figure 4: Perturbation of the left pressure Dirichlet boundary condition.

6.2. HDSA with Respect to Experimental Parameters

In this section, we turn to the pointwise hyper-differential sensitivities (4) to study the spatial

and temporal dependence within the experimental parameters. Using the reconstructed log-

permeability field, we compute the sensitivities of the solution with respect to both pressure

and contaminant measurements at each sensor location, and for concentration, each time

step. Figure 5 shows the spatial distribution of contaminant sensitivities (depicted by colored

points using the right colorbar scale) at informative time snapshots, overlaid atop the tracer

concentration field (depicted by a greyscale concentration map using the left colorbar scale).

By overlaying these plots, we are able to study how the sensitivities relate to the tracer

advection.
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Figure 5: Concentration sensitivities at times 0.01, 0.04, 0.07, 0.10, 0.13, and 0.1567.
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Note that both the sensitivity and concentration colorbar scales change in each plot,

which is to allow the reader to visualize the results more clearly. We make the following

observations about the concentration sensitivities. (1) As a general trend, the sensitivity of

concentration increases in time. This is because the continuous source injection increases the

amount of tracer in the domain as time progresses, making concentration sensors increasingly

important. (2) We also see that as the mass of high tracer concentration (depicted by bright

white in the color map) moves, sensors that observe this change in mass have increased

importance while the mass moves toward or away from the sensor and then decrease in

importance after the mass has moved passed. This phenomenon is particularly noticeable

from the sensors in the high permeability channel at y = 0.5. As the tracer mass moves

from right to left at y = 0.5 the sensor’s importance increases following the back edge of the

mass, and then decreases after the mass moves past. (3) We also notice that the sensor on

the left boundary at y = .5 is highly important early in time and the sensors at (0.2, 0.33)

and (0.2, 0.66) are more important later in time. This is because the majority of the tracer

is getting advected toward those sensors which are therefore observing a large amount of

tracer flow.

To further study the concentration sensitivities, Figure 6 depicts the time evolution of

each concentration sensitivity in an array of plots. Each plot describes the time evolution of

a single contaminant sensitivity and they are spatially arranged to correspond to the sensor

locations they depict (compare with Figure 1 for their spatial association).

Figure 6: A spatial distribution of the time evolution of contaminant sensitivities. Each

subplot has the same horizontal axis range depicting time from 0 to .16. Each vertical axis

subplot has the same range depicting sensitivity from 0 to .2832
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From Figure 6 we can see that some of the sensitivities decrease in importance over

time, or have a range of time during which they decrease before they begin to increase again.

Sensors for which the tracer permanently moves away experience a long-term decrease in

importance. The decrease in sensitivity at a sensor location, followed by a subsequent

increase is likely caused by the movement of tracer through the high permeability region

at y = 0.5. As the tracer empties out of this central region, the concentration changes from

being a single mass to being two distinct masses, one in the upper portion and the other in

the lower portion of the domain. This splitting of the concentration mass, when observed

by a nearby sensor, likely causes a minor disturbance in the general trend of the sensitivity.

Because this problem is advection dominated, the movement of the tracer through the

domain has a large impact on the interpretation of the pressure sensitivities as well. Figure

7 shows the spatial distribution of pressure sensitivities (depicted by colored points using

the right colorbar scale) overlaid atop the pressure field (depicted by a greyscale pressure

map using the left colorbar scale).

Figure 7: Pressure sensitivities

First, notice that the pressure sensitivities are larger than the concentration sensitivities

at early time steps, but are eventually surpassed by the steadily increasing concentration

sensitivities over time. Also observe that the sensors with highest pressure sensitivity, are in

the upper right and lower right corners of the domain. Because the tracer moves from right

to left, the majority of information about the tracer advection is found on the left side of

the domain. The right side of the domain, and particularly the low permeability regions at

the top and bottom, have a lack of tracer flow information. Thus, the inverse problem relies

heavily on the pressure measurements in these regions to reconstruct the permeability field,

which corresponds to the higher pressure sensitivities in this region.
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6.3. HDSA with Respect to Auxiliary Parameters

In this section, we study the pointwise hyper-differential sensitivities with respect to auxiliary

parameters: the source term and pressure Dirichlet boundary conditions. The diffusion

coefficient is also an auxiliary parameter, however according to the generalized sensitivities

it is relatively unimportant so we will not investigate it further.

We begin by analyzing the sensitivities with respect to the source term. Figure 8 depicts

the sensitivities of the source at each injection well, next to a plot of the Darcy velocity field.

The source uncertainty is discretized by taking a 3 × 3 mesh locally around each well. This

models our uncertainty in the rate and distribution of the injected tracer at each well due

to hardware limitations, while the location of the injected tracer is known.
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Figure 8: Left: Source sensitivities, Right: Darcy Velocity Field

From Figure 8 we can see that the areas of high source sensitivity generally occur in

regions with low Darcy velocity. This is likely because in these regions, the problem is

diffusion dominated and the tracer is not advected away from the injection site very quickly.

Thus, if the source injection is perturbed, the tracer will stay in that region and slowly

diffuse, affecting concentration measurements in that area for may time steps. If a source

injection is perturbed in a region of high Darcy velocity, the tracer will be pulled away and

mix with the rest of the tracer moving through the domain. Thus for this problem, the

source injections have highest sensitivity in regions that are diffusion dominated.

According to the generalized sensitivities, the boundary conditions have the largest

relative impact of any uncertain parameter on the solution. To further understand the

influence of the boundary conditions on the physical systems in the model, we consider the

hyper-differential sensitivities of the boundary conditions. Figure 9 depicts the sensitivities

of the solution with respect to the pressure Dirichlet boundary conditions, discretized by 21

equally spaced nodes on each boundary.
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Figure 9: Pressure Dirichlet boundary condition sensitivities

From the boundary condition sensitivities in Figure 9 we can see that on both the

left and right boundary, there is a heightened sensitivity around y = 0.3 and y = 0.7.

This corresponds to the area between the high permeability region through the middle

of the domain, and the low permeability regions above and below it. A perturbation of

the boundary conditions near the low permeability region is going to have minimal effect

because the low permeability region is going to keep the Darcy velocity small relative to

the rest of the domain regardless. Similarly, a perturbation of the boundary conditions in

the high permeability region is going to have little effect because the high permeability is

going to keep the Darcy velocity relatively high in that area. A perturbation in the pressure

boundary conditions will have maximal impact in the thin region between the high and low

permeability regions. This perturbation can cause the region of moderate Darcy velocity

to become a region of either high or low Darcy velocity relative to the other regions of the

domain, significantly impacting the advection flow.

6.4. Discussion

It is evident from our analysis that the hyper-differential sensitivities can provide a wealth

of information about how the solution of the inverse problem depends on the interactions

within the governing physics systems. These observations are not readily apparent without

the sensitivities, which emphasizes their usefulness in understanding the inverse problem. In

particular, the sensitivities with respect to experimental parameters can be used to determine

where and when to place expensive, high fidelity sensors in an experimental design, and where

less accurate and more cost effective sensors can be uesd.

In addition to providing information about the underlying physics in a model, these

observations allow experimenters to determine how to design experiments, by prioritizing
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the measurement and estimation of all complementary parameters considered. For this

problem, the generalized sensitivities inform us that tracer concentration is more important

to measure accurately than pressure, which informs the design of sensors and data collection

techniques. We also learn that accurately estimating the pressure Dirichlet boundary

conditions is highly important, while the diffusivity coefficient is relatively unimportant. This

information informs the model specification and how these parameters should be estimated

and considered in the model.

7. Conclusion

In this article, we have presented a mathematical framework for hyper-differential sensitivity

analysis in the context of inverse problems constrained by multiphysics systems of partial

differential equations. The mathematical formulation involves derivative based local

sensitivity analysis of the solution of an inverse problem with respect to perturbations of

parameters. This framework is general and can be applied to a wide variety of inverse

problems. The usefulness of HDSA is most apparent in the context of complicated

multiphysics systems with many uncertain parameters. By introducing sensitivity analysis

with respect to experimental parameters and maturing the generalized hyper-differential

sensitivity indices, we have enabled analysis of the relative importance of both auxiliary

model parameters and experimental parameters, such as data sources. Studying hyper-

differential sensitivities provides new insights into both understanding the underlying

physical systems of a model, and designing experiments to solve inverse problems. In

particular, comparing the relative importance of spatially and temporally distributed

measurements with various sensor types provides unique insights that are difficult to attain

using traditional experimental design methodologies. HDSA compliments experimental

design by providing a systematic way to compare multiphysics parameters and data sources.

HDSA is an emerging technology and as such there are several important considerations

to be studied in future work. One questions is “how robust are the sensitivities of

experimental parameters to perturbations of design?” In practice, one may not be able

to place a sensor exactly where a design indicates it should be. If a sensor’s location is

perturbed within a local area, how will this affect the magnitude of the sensitivity, and that

of its neighboring sensors? Ideally, perturbing the location of a sensor slightly will have

a minimal impact on the sensitivity at that sensor and its neighbors, indicating that the

hyper-differential sensitivities are robust to perturbations of the design, but this has yet to

be rigorously verified.

Moreover, HDSA of inverse problems requires availability of measurement data. For

the computational results in this paper, we assumed that we had some set of experimental

data, but in many applications we would like to compute sensitivities a priori, before data

is collected. In such cases, one could generate training data by applying the forward model
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to a sample of the inversion parameters drawn from a prior distribution, giving rise to a

distribution of the sensitivities.

Appendix A. Details for the model inverse problem (7)

First, we illustrate the computation of gradient and Hessian of Ĵ . To facilitate this, we

introduce the Lagrangian

L(u,m,λ,θ) = Ĵ(m) + λ>(L(m)u−Vθ),

where λ is a Lagrange multiplier (vector). To compute the gradient of Ĵ , using the so called

formal Lagrange approach, we consider the variations of L with respect to λ, u and m.

Note that

Lλ(u,m,λ,θ) = L(m)u−Vθ and Lu(u,m,λ,θ) =
∂Ĵ

∂u
+ λ>L(m).

Setting these variations equal to 0 results in the state and the adjoint equations:

L(m)u = Vθ and L(m)>λ = −Q>W(Qu− y).

Then, the gradient g(m) of Ĵ satisfies, g(m)T = Lm(u,m,λ,θ) = ∂Ĵ
∂m

+λ> ∂A
∂m
u; therefore,

g(m) = αRm+ C>λ with C =
∂

∂m

(
L(m)u

)
.

To compute the action of the Hessian H(m) of Ĵ (at m) on a vector m̂, we differentiate

through the directional derivative 〈g(m), m̂〉. This is faciliated by introducing the “meta-

Lagrangian”:

LH(u,m,λ,θ, û, λ̂; m̂) = m̂
>[C>λ+ αRm

]
+ λ̂

>[
L(m)u−Vθ

]
+

û>
[
L(m)>λ+ Q>W(Qu− y)

]
.

The Lagrange multipliers û and λ̂ are refered to as the incremental state and adjoint

variables; see e.g., [36]. Letting the variations of LH with respect to λ̂ and û vanish gives

L(m)û = −Cm̂, (incremental state equation) (A.1)

L(m)>λ̂ = −Lumm̂− Luuû. (incremental adjoint equation) (A.2)

The Hessian apply is then given by, [H(m)m̂]> = LHmm̂, resulting in

H(m)m̂ = Lmmm̂+ Lmuû+ C>λ̂. (A.3)
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Algorithm 1 Computation of H(m)m̂ for a given m̂.

solve the incremental state equation (A.1) for û

Solve the incremental adjoint equation (A.2) for λ̂

Evaluate H(m)m̂ accordng to (A.3).

Note that in the above equations

Luu = Q>WQ, Lmm = αR +
∂

∂m
(CTλ), and Lmu = L>um =

∂

∂m
(L(m)Tλ)

We summarize the compuation of H(m)m̂ in Algorithm 1. Note that the cost associates

with Algorithm 1 is two (linear) PDE solves. Also, by replacing the expressions for the

incremental state and adjoint variables in the expression for the Hessian apply, we can write

the (reduced) Hessian as:

H = C>L(m)−>LuuL(m)−1C + Lmm − LmuL(m)−1C−C>L(m)−>Lum.

Letting B be the (discretized) Fréchet derivative of the gradient with respect to θ,

B = gθ(m) = −C>L(m)−>Q>WQL(m)−1V + LmuL(m)−1V.

This is the discretized version of the operator B in (3).
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