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Ilicit drug trafficking via social media sites such as Instagram has become a severe problem, thus drawing a
great deal of attention from law enforcement and public health agencies. How to identify illicit drug dealers
from social media data has remained a technical challenge due to the following reasons. On the one hand, the
available data are limited because of privacy concerns with crawling social media sites; on the other hand,
the diversity of drug dealing patterns makes it difficult to reliably distinguish drug dealers from common
drug users. Unlike existing methods that focus on posting-based detection, we propose to tackle the problem
of illicit drug dealer identification by constructing a large-scale multimodal dataset named Identifying Drug
Dealers on Instagram (IDDIG). Totally nearly 4,000 user accounts, of which over 1,400 are drug dealers, have
been collected from Instagram with multiple data sources including post comments, post images, homepage
bio, and homepage images. We then design a quadruple-based multimodal fusion method to combine the
multiple data sources associated with each user account for drug dealer identification. Experimental results
on the constructed IDDIG dataset demonstrate the effectiveness of the proposed method in identifying drug
dealers (almost 95% accuracy). Moreover, we have developed a hashtag-based community detection technique
for discovering evolving patterns, especially those related to geography and drug types.
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1 INTRODUCTION
Illegal drug trade (a.k.a. drug trafficking) is a global black market dedicated to the distribution and

trade of drugs prohibited by law. Due to the co-evolution of cyberspace and human society, online
illicit drug trade has become a major problem, attracting increasingly more attention from both
law enforcement and public health agencies. According to a RAND report in 2010 [40], the total
size of the illicit drug market in the US was estimated to be in the order of 100 billion dollars per
year. Recent studies [44, 76] have shown that popular social media platforms such as Instagram,
Twitter, and Facebook have become a convenient direct-to-consumer marking tool for illegal dealers.
Among popular social media platforms, Instagram is a particularly effective tool for advertising
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Fig. 1. A Drug-related Post with Multiple Patterns of lllicit Drug Dealing. Drug dealers can engage in illicit
drug trade by direct posting (pattern 1) or commenting (pattern 2).

illicit drugs due to their photo-sharing features. Since the majority of Instagram users are young
people, including teenagers, it is important to tackle the problem of illicit drug trade on Instagram.

In this paper, focusing on Instagram, we study the problem of illicit drug dealer identification,
which is a critical step to combat illicit drug trafficking on social media platforms. There are several
technical challenges facing the detection of illicit drug dealers from Instagram data: (1) Ambiguity.
It is often difficult to distinguish an illicit drug dealer from a drug abuser account. Even for domain
experts, different people could reach different conclusions, which make the results inconsistent
[76]. Wicit drug trafficking methods have become sophisticated in social media platforms such as
Instagram. As shown in Fig. 1, drug dealers can engage in illicit drug trade by either posting or
commenting. Furthermore, how to distinguish illicit drug dealers from legal regular consumers
or drug abuser accounts has remained one of the open problems [76]. (2) Heterogeneity. The
data sources related to illicit drug trade involve both images and text; moreover, the modes of
communication adopted by illicit drug dealers are diverse - posting vs. commenting, hashtag
vs. homepage, and diversity of drug-related images. How to systematically pull together these
heterogeneous information has remained a long-standing open problem [73]. (3) Scalability. Even
though the population of drug dealer accounts is relatively small, the total size of social media data
is enormous. How to efficiently mine large-scale and temporally varying social media data calls for
innovative technical solutions at the system level [77].

The motivation behind this work is largely two-fold. First, recognizing the importance of data
and the rapid growth of Instagram community [21], we argue that it is necessary to construct an
update-to-date and large-scale database to support the research related to illicit drug trade. When
compared against the pioneering work in this field [76], we believe Instagram-based detection of
illicit drug dealers can benefit from a more ambitious effort of data collection. Moreover, we advocate
the public release of such a database to serve as a benchmark for supporting the emerging field of
research on illicit supply networks [32]. Second, rapid advances in machine learning, especially deep
learning [20] and multimodal data fusion [42] provide a rich weaponry of advanced computational
tools for automatically extracting knowledge from training data without feature engineering. How
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to leverage these latest advances in drug dealer identification calls for an integrated approach.
Meanwhile, the issue of dealing with missing information in multimodal data (e.g., drug dealers
often intentionally hide some information for evading law enforcement) has remained an open
problem [42].

In this work, we propose to tackle the problem of drug dealer identification by constructing a
large-scale dataset called Identifying Drug Dealers on Instagram (IDDIG), including over 2,000
posts, nearly 4,000 user homepages as well as multimodal data sources (text and images, posts
and homepage). In particular, the importance of biography information at the homepage on social
media data mining has remained an underexplored topic [30, 35] and not been studied in previous
works on drug-dealer detection [44, 76]. To construct such a large-scale dataset, we have designed
an automatic data crawling system for Instagram that jointly uses hashtag and image information
to guide the data collection. A user-friendly data annotation platform is also developed to support
manual labeling of multimodal data, which is inevitably a tedious process. With labeled data
(ground-truth for machine learning), we have built a brand new drug-dealer identification system
by leveraging the latest advances in deep learning including Bidirectional Encoder Representations
from Transformers (BERT) [10] based text classification, ResNet-based [28] image classification,
as well as feature-level multimodal data fusion [16]. The key contributions of this paper are
summarized as follows.

o The construction of a large-scale dataset called IDDIG for drug-dealer identification. We
have designed an automatic hashtag-based data crawling system and a user-friendly data
annotation system to support large-scale data collection. For the first time, we have collected
over 1,400 drug dealers’ accounts (positive examples) and over 2,000 non-drug-dealer accounts
(negative examples). The newly constructed IDDIG dataset will be made publicly available to
support the research related to illicit drug trade.

o The development of a fully automatic and highly accurate system for drug dealer identification.
Our new system is built upon a novel quadruple-based data representation (image vs. text,
post vs. homepage) and several latest advances in deep learning including natural language
processing (e.g., BERT model [10]), deep image classification (e.g., ResNet model [28]) and
feature-level multimodal data fusion (e.g., [26]). For the first time, we have addressed the
issue of missing modalities in multimodal data fusion.

e The application of joint post and homepage identification to real-world Instagram data for
identifying illicit drug dealers and drug rings (i.e., community detection). We have achieved
an overall accuracy of almost 95% on our test dataset with a balanced training dataset, and
demonstrated a graceful performance degradation as the training dataset gradually becomes
unbalanced. The developed system has also demonstrated its potential for detecting drug-
trafficking communities online, which could facilitate the disruption of illicit drug trade by
law enforcement.

The rest of this paper is organized as follows. In Section 2, we briefly review related works on
social media data mining and user profiling to contextualize the proposed approach. In Section
3, we describe the construction of our new large-scale dataset in detail, including data crawling
and data annotation subsystems. In Section 4, we present a new drug-dealer identification system
by jointly exploiting the post and homepage information. In Section 5, we address the issue of
community detection based on hashtags and graph clustering. We report our experimental results
in Sec. 6 and make several concluding remarks in Sec. 7.
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2 RELATED WORK
2.1 Social Media Data Mining

In the past decades, social media has greatly facilitated the generation and sharing of information
via virtual communities and networks. Data associated with popular social media platforms such as
Facebook and Twitter have grown at exponential rates. Accordingly, social media data mining 3, 69—
71, 77] has rapidly evolved into an emerging field with a wide range of applications from online
surveys [57] and public health monitoring [50, 74] to online marketing [56, 65] and recommendation
systems [23, 48]. Various new mining techniques such as user profiling and community detection
have been developed for social media data specifically.

In particular, our work is related to user profiling in social media that classifies users into different
labels from their social media data such as posted texts and images [34, 45]. Such a collection
of online identities has found successful applications in personalized recommendation [33] and
marketing analysis [34]. Most recently, deep learning-based multimodal data fusion has been studied
for user profiling in [13]. Conceptually analogous to the grouping of people in the physical world,
online identities tend to form various virtual communities. Community detection and analysis
[3, 77] have been widely studied in the literature of social media data mining. Both member-based
and group-based community detection algorithms have been developed; both the evolution and
evaluation of virtual communities have been investigated.

2.2 Drug Abuse and Dealing Analysis

As far as we know, there has been limited work on tracking drug abuse and illicit drug trade from
online data. Among these existing works, [5] analyzed the time and location patterns of drug use by
mining Twitter data; network information of Instagram user timelines was used in [8] to monitor
suspicious drug interaction activities; [85] and [76] analyzed Instagram data for tracking and
identifying drug dealer accounts. More recently, machine learning and natural language processing
techniques have been applied to combat prescription drug abuse [39, 63, 64] and detect illicit drug
dealers [44, 81]. Different from previous work that only used one modality data (i.e., text data),
our work is built upon multimodal data fusion for illicit drug dealer identification. There are some
works that combines both image and text data for identifying substance use risk [27]. Our work
is different in twofold: first, our research goal is illicit drug dealer identification, which is more
challenging due to the factor that illicit drug trafficking methods have become sophisticated in
social media platforms. Second, our multimodal data fusion is built upon a novel quadruple-based
data representation (image vs. text, post vs. homepage).

2.3 lllicit Drug Use Detection Systems

In our own previous work, we have developed an automatic opioid user detection system called
AutoDOA using Twitter data in [12]. In AutoDOA, to model the users and posted tweets as well as
their rich relationships, we first construct a structured heterogeneous information network (HIN)
[67]. Then we have taken a meta-path based approach to formulate similarity measures over users
and aggregate different similarities using Laplacian scores. This work was further extended in [11]
into HinOPU by constructing an ensemble of classifiers to combine different predictions, which
improves the accuracy for opioid user detection. Most recently, we have developed a novel and
intelligent system named uStyle-uID leveraging both writing and photography styles for drug
trafficker identification on darkweb [79]. At the core of this new system is attributed heterogeneous
information network (AHIN) [46] which elegantly integrates both writing and photography styles
along with the text and photo contents, as well as other supporting attributes (i.e., drug dealer
and drug product information) and various kinds of relations. However, it is usually hard to detect
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Table 1. Existing Drug-related Datasets from Social Media.

# of positive ~ Public

Study Year Data source Drug user/Drug dealer # of positive posts user accounts  available
[86] 2016  Instagram Drug user 2,362 406 No
[76] 2017  Instagram Drug dealer 1,260 27 No
[52] 2018 Twitter Drug dealer 692 / No
[29] 2019 Twitter Drug user 280 / No
[44] 2019 Instagram  Drug user and dealer 1,228 237 No
IDDIG (Ours) 2020 Instagram Drug dealer 1,022 1,406 Yes

illicit drug trafficking activities from Instagram data based on these existing methods due to the
following reasons. First, Instagram is an image-oriented social media platform, which is different
from text-oriented ones such as Twitter. Therefore, it is difficult to directly transfer AutoDOA [12]
from Twitter to Instagram due to the variation of modality. Second, uStyle-uID [79] is developed
for darkweb, whose characteristics differ dramatically from those of clearweb - e.g., it is generally
difficult for the public to access darkweb; but once it is accessed, it is relatively easy to detect illicit
drug trafficking. By contrast, detecting illicit drug trafficking on clearweb is like finding a needle
in a haystack. Most existing Instagram-based detection methods can not comprehensively detect
constantly evolving drug trafficking patterns or activities. For example, [44, 76] can detect illegal
drug trafficking such as Pattern 1 in Fig. 1 (direct posting) with good performance but fail to detect
Pattern 2 (indirect commenting).

3 IDDIG DATASET CONSTRUCTION

Data collection has played an increasingly important role in machine learning and data mining
research [72]. In this section, we first review several existing datasets related to drug trafficking
research. Then we present a new large-scale dataset constructed from Instagram; toward this
objective, we will discuss our efforts on data crawling and data annotation, respectively.

3.1 Current State-of-the-Art

Existing detection methods have collected several databases for drug-dealer and drug-user detection.
Tab. 1 summarizes the statistics of these datasets for illicit drug dealing tracking. In [86], a dataset
containing 2,362 posts and 406 drug users (including drug dealers) was introduced. It also contained
drug users’ followers and the accounts they follow. 176 users contain geolocation tags in their posts.
Based on the post and homepage information on Instagram, a total of 1,260 drug-related posts
and 27 drug dealer accounts were collected in [76] for drug dealer detection. Each account in the
dataset contains detailed information, including post content, temporal information of each post,
and the number of followers/followees. In [52], 692 drug-related tweets were identified as being
associated with illegal online marketing and sale of prescription opioids to detect and report illicit
online marketing and sales of controlled substances via Twitter. A recent study [29] collected a
dataset (with 280 drug-related) for analysis of drug-abuse risk behavior on Twitter. Recently, 1,228
drug dealer posts and 267 drug dealer accounts were collected by [44] and images of different types
of drugs were fine-grained and categorized into five different categories.

Although great effort has been devoted to drug-related data collection, there exist the following
limitations of existing datasets: (1) The size of these datasets are not large enough to support deep
learning-based approaches. For example, the number of drug dealer or user account instances is all
less than 500. This is limited by that drug dealers or users make up a tiny fraction of Instagram’s
user accounts [76], and many heterogeneous data (e.g., text and images) need to be collected,

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:6 Hu and Yin, et al.

Pretrained Al model

: . rdy
Filter |, . VOG-16 § S Fileered —
A i '
- 8] ot |

Hashtag
Search
Drug-related Megative Positive
Hashtag list Searched Posts Drug-related image or not. Drug-related Posts
1 Update Data Parse

s | Convert to
] .-r g nﬂE I'!ME I"'Js()N object Determine
= L I L Ld - JSON || ' data to be
— = 4 5 . - - i
TR B8N Database | Object ml_ Formalize extracted
Hashtags Images  Comments Bio User images database JSON object

Fig. 2. Automatic and Iterative Hashtag-based Multimodal Data Collection from Instagram.

increasing the cost of storage and management [27]. (2) Due to the privacy protection, the user
account number, face related images and contact information (e.g., other chat app user ID, see
the black blocks in Fig. 1) are not allowed to be made public. Consequently, no dataset is publicly
available to support the research related to drug dealer detection as of today.

3.2 Multi-model Data Collection Scheme on Instagram

To fill in this gap, we have made a great effort on data collection and construction of a large-scale
dataset in this project. Existing web crawling techniques (e.g., [58]) do not meet the requirements of
this project due to the following technical challenges. First, it is desirable to develop an automatic
system capable of identifying drug-related content without human intervention. This is in sharp
contrast to previous works (e.g., [76]) that count on humans for data collection, which are difficult
to scale up. Second, the designed data crawling system needs to be versatile in that it supports
multimodal (including both text and images) and multisource (e.g., posts and comments) collection.

To achieve this objective, we have developed an automatic system capable of iteratively collecting
multimodal data, as shown in Fig. 2. The rationale underlying our data crawling system is still based
on hashtag-based search [19]. Hashtags on Instagram can help users extend their reach, engage
their audience, which can be attached to posts and become clickable phrases and topics with the
# placed in front of them. However, unlike [76] working with a fixed collection of hashtags, we
propose a data crawling algorithm that iteratively expands the pool of hashtags for scaling up our
search. Such expansion of hashtags is guided by an intelligent pretrained Al model (VGG-16 [68])
designed for drug image classification. By treating drug-related hashtags and images as a pair of
peer hidden variables, our iterative crawling system aims at refining and updating the collected
multimodal data in an Expectation-Maximization (EM)-like manner. The detailed description of
our data collection system consists of the following four components.

(1) Drug-related hashtags collection. A total of 200 drug-related hashtags have been manually
collected by domain experts using the hashtag search API [17]. These hashtags contain various
types of drugs, such as 3,4-methylenedioxy-methamphetamine (MDMA), Lysergic acid diethylamide
(LSD), codeine, painkiller and xanax etc., which are widely trafficked on Instagram. We have used
this set of hashtags as the initial starting point of our data collection.

(2) Drug-related post detection. We search each post (which includes an image and comments)
with each drug-related hashtag as input. A VGG-16 based binary classification model [68] is pre-
trained to detect drug-related posts from the accompanying image information. The image-based
dataset for model pretraining contains various types of drug-related images, which are sources of
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Fig. 3. User Interface of Web-based IDDIG Annotation Platform.

Bing image search API (similar to Google image search API adopted in [76]). If an image of a post
is detected by the model as being drug-related (positive), we save its link for further processing.

(3) Drug-related data collection. The detected posts were converted and formalized into a universal
Json object [53] to facilitate storage and retrieval. As post comments are sources from several
user accounts, we saved each post-related information (including posted images and comments)
and homepage information about the user who commented on the post. The user’s homepage
information includes both the bio and images from the user’s latest 10 posts (we refer to it as
Homepage image in the following). Totally, 10,000 potential posts and 23,034 user homepage
information were collected as the initial dataset.

(4) Drug-related hashtag update. New hashtags from each detected post can be added into the
list of drug-related hashtags. We have also recorded the frequency of each hashtag to track the
most frequent ones. The system uses the new hashtag (which has the highest frequent counts) in
the next iteration until the amount of collected data reaches a prespecified threshold (in this study,
we have set the threshold to be 1000 drug-dealer accounts).

When compared with previous work [76], we note that the key difference lies in our emphasis
on posted comments and biography data (Instagram bio) instead of hashtags and captions as salient
features for drug-dealer identification.

3.3 User Interface of Data Annotation Platform

The collected data can not be used as training data without proper annotation (manual labeling).
As the collected posts often contain rich drug trafficking information (e.g., drug types, contact
information, sales areas, and so on), we have designed a data annotation platform for drug dealer
detection, as shown in Fig. 3. The annotation platform mainly contains two modules: the image
labeling module and comment labeling module. The image labeling module is designed to label
image-related information, including fine-grained classification of drug forms (e.g., powder, pills,
liquid, cannabis, mushroom, and LSD as shown in Fig. 3) and contact information (e.g., user ID in
the chat app, such as Snapchat, wickr, Kik, What’s up, telegram or email address) embedded in the
image. The comment labeling module is designed to label comment-related information, including
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Fig. 4. The Conversion Process from Raw Data in IDDIG Dataset to Quadruple-based Training Samples.

Table 2. Details of the constructed IDDIG Dataset.

Type Number Missing rate
# of posts 1,022 NA
# of unique user accounts 1,406 NA
Positive # of Posted Image 2,815 0%
# of Posted Comment 2,722 3.30%
# of Homepage Bio 1,239 55.98%
# of Homepage Images 12,061 57.15%
# of posts 1,090 NA
# of unique user accounts 2,485 NA
Negative # of Posted Image 3,206 0%
# of Posted Comment 3,206 0%
# of Homepage Bio 2,663 16.90%
# of Homepage Images 24,883 22.39%

contact information embedded in the comment, and whether it is related to a drug dealer or a drug
consumer.

In addition, for each post, we have also designed a button to check the homepage of users who
comment on the post. Based on the post information and homepage information, the domain expert
will add an annotation to the post indicating whether it contains a drug dealer account or not. When
multiple drug dealer accounts comment on a post, we process the information into multiple data,
as shown in Fig. 4. It takes on average 3-to-5 minutes to label each post; using a crowd-sourcing
approach, we have divided the task of data annotation among 10 participants. Overall, we have
spent around 400 hours on labeling all collected Instagram data.

In summary, a total of 2,112 posts have been annotated and organized for Identifying Drug
Dealer on Instagram (IDDIG). As shown in Tab. 2, IDDIG contains 3,206 negative samples and 2,815
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Fig. 5. The framework of our proposed multimodal data fusion approach to illicit drug dealer identification.
Our model takes in posted comment (PC), posted image (PI), homepage bio (HB), and homepage images
(Hls) associated with Instagram users, and combines multimodal information using a quadruple-based fusion
strategy to identify an illicit drug dealer.

positive samples. Each sample was characterized by a quadruple-based data structure, including
Posted Comment (PC), Posted Image (PI), Homepage Bio (HB), and Homepage Image (HI). Among
2,815 positive samples, 1,022 positive samples are pattern 1 (trafficking by direct posting) and the
other 1,793 positive samples are pattern 2 (trafficking by indirect commenting) as shown in Fig. 1.
In addition, Tab. 2 shows that more than 50% positive samples miss homepage bio and homepage
images. Most of these missing cases are from pattern 2 samples. To protect the privacy, we manually
erase users’ personal information to achieve the purpose of protecting user privacy. Our proposed
dataset is publicly available!.

4 QUADRUPLE-BASED MULTIMODAL FUSION FOR ILLICIT DRUG DEALER
IDENTIFICATION

4.1 Problem Formulation and System Overview

Given the background in Section 3, we can formally define the problem of illicit drug dealer
identification as follows: our aim is to build an effective approach to identify illicit drug dealers
from normal users on Instagram. For each user, we have her/his posted comment (PC), posted
image (PI), homepage bio (HB), and homepage image (HI). Then each user n is represented with
quadruple u"™ = (PC", PI", HB", HI"*). Let ¢" = 1 denotes that user N is an illicit drug dealer, ¢" = 0

ITentative downloading link for IDDIG dataset: https://data.mendeley.com/.
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otherwise. Given a set of n training examples D = {(u',c!), (u? ¢c?),..., (uN,cN)}, we aim at
building a predictive model f : u — c to identify illicit drug dealers.

We formulate the problem of illicit drug dealer identification as a binary classification problem,
namely, the output of our model is the predicted probability ¢” of a user n being an illicit drug dealer.
We have adopted the cross-entropy loss, which has been widely applied in deep learning-based
classification [80]. Specifically, the cross-entropy loss function is defined by

N

£(©) = — Z " log " 1)

n=1

Fig. 5 shows the framework of our proposed multimodal data fusion approach to illicit drug dealer
identification. Our model takes in posted comments (PC), posted images (PI), homepage bio (HB),
and homepage images (HI) associated with Instagram users. A quadruple-based fusion strategy
is proposed to combine the multimodal information, and the combined feature representation is
exploited to identify illicit drug dealers. In this section, we will first discuss the single modality and
then elaborate on the strategy of multimodal data fusion.

4.2 Drug Dealer Identification based on Single Modality

4.2.1 Text-based Identification. Text-based information such as hashtags and captions have been
used to differentiate drug-related posts from non-drug-related posts in [76]. It has been shown that
there is a clear difference between these two classes of posts; but meanwhile it is easy for Instagram
platform administrators to automatically detect these drug-related posts from drug dealer. However,
increasingly more drug dealers tend to avoid detect by commenting under some hot or drug-related
posts (see pattern 2 in Fig. 1). Many cases such cases are collected in our database. As mentioned
above, we argue that posted comments and bio information are often more reliable than tags and
captions. Therefore, we propose to develop a new text-based classifier based on comments and bio
data as follows. To justify the above claim, we have empirically found that comments and biography
data posted on Instagram almost always contain many drug-related hashtags, contact information,
sales destinations, and payment methods. Such findings are consistent with the common sense that
trade-related information, no matter being legal or illicit, has shared characteristics because they
are supposed to facilitate the communication between dealers and consumers [44]. Therefore, we
have hand-picked posted comments (including the captions associated with posted images) and
bio information at the homepage as the two most salient features in text classifier. Unlike [76], we
propose to leverage the latest advances in natural language processing into the task of text-based
drug-dealer identification.

There have been several deep learning-based models with promising performance in text classifi-
cation, such as CNN [38], bi-directional long short-term memory (BiLSTM) [84], convolutional long
short-term memory (CLSTM) [83], and Bidirectional Encoder Representations from Transformers
(BERT) [10]. Among these models, BERT, as a state-of-art text classification model, can consider
the full context of a word by looking at the words that come before and after it—particularly
useful for understanding the intent behind search queries. BERT uses large-scale corpus to create
pretrained language models and fine-tune pretrained models for specific tasks. Therefore, we use
the BERT-based model in our method for drug dealer detection. The text information in our IDDIG
dataset- namely, comments and bio, are taken as input, respectively, to fine-tune the BERT-based
model. The BERT model used is the BERT-based (12-layer, 768-hidden, 12-heads, 110M parameters).
To obtain the sentence-level representation, we extract the token embedding of the last layer and
compute the mean vector to get the final feature representation of 768 dimensions.
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Fig. 6. Sample Post Images from IDDIG Dataset (note that they contain diverse drug-related content, from
pills and weeds to syrup and powder).

4.2.2  Image-based Identification. In previous work [76], image-based information has been found
more reliable than text-based one for the task of drug-related post recognition. Then, the problem
of dealer account detection was solved by extracting features from drug-related posts. Thanks to
the construction of IDDIG dataset at a large scale, it is possible to directly exploit image information
for the task of drug-dealer identification. Similar to text data, images including both post images
and homepage images often contain rich information, such as drug types (as shown in Fig. 6) and
contact information of drug dealers (e.g., user ID from Wickr, Snapchat and telegram). Unlike text
data, both drug dealers and regular consumers could post similar images containing drug-related
content. Therefore, it is plausible to conjecture that image-based information is less reliable than
text-based one for the task of drug-dealer identification.

As reported later in Sec. 6, such conjecture has been confirmed by our experimental results.
We have used the widely used ResNet-50 [28] for the task of image-based user classification.
ResNet-50 is a pretrained deep learning model for image classification with excellent generalization
performance on various recognition tasks [18, 36]. Thanks to the identity function introduced to
the network, the gradient calculation in back-propagation can flow more effectively, which helps
alleviate the notorious vanishing gradient problem. Using the collected IDDIG dataset, we have
fine-tuned the pretrained ResNet-50 model on our post images and homepage images, respectively,
for drug-dealer detection. The images have been cropped to 224 X 224 X 3, and horizontally flipped
randomly for data augmentation. We take these processed images as the input and obtain feature
vectors in the latent 2048-dimensional space. To implement transfer learning with fine-tuning
[59], we have removed the last predicting layer of the pretrained model and replaced them with
task-specific prediction layers (drug-dealer vs. non-drug-dealer).

4.3 Joint Multi-modal Optimization for Drug-Dealer Identification

Multimodal data fusion [42] refers to a class of techniques combining information from multiple
modalities for improved performance. In previous work [76], a decision-level (late) fusion strategy
was adopted because training a joint model for feature-level (early) fusion faced several technical
challenges such as weak correlation in social media data and lack of paired training data. However,
as shown in [22], feature-level fusion has some advantages over decision-level fusion, at least
in theory. Meanwhile, new multimodal data fusion techniques including feature reduction and
concatenation [26], compact and factorized bilinear pooling [18, 37, 47] have been developed for
the applications of multimodal biometric recognition and visual question answering.

In this work, we propose to leverage these latest advances in multimodal data fusion and explore
their potential of feature-level fusion for drug-dealer identification. To the best of our knowledge,
this will be the first systematic study of multimodal data fusion, including both protocol design
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and fusion strategies for drug-dealer identification. We have structured our study into two parts.
In the first part, we will present three protocols - namely, multimodal post-based identification,
multimodal homepage-based identification, and joint quadruple-based optimization identification.
In the second part, we will discuss three competing strategies for multimodal data fusion - feature
concatenation [26], bilinear pooling [47], and factorized bilinear pooling [18, 37].

4.3.1 Fusion Protocols. Drug dealers usually post both text and images to promote drugs for
sale, as well as comments related to product advertisements, sales destinations, and payment
methods. Meanwhile, texts and images can be posted either as comments or at the homepage of an
Instagram user. Such multimodal and multisource distribution of collected data distinguishes our
quadruple-based data representation from previous works. As shown in Fig. 4, quadruple-based
data representation allows us to come up with three different fusion protocols, as follows.

1. Multimodal data fusion

This is the scenario that has been considered in previous works [76, 86]. In addition to feature-
level fusion, our approach differs from [76, 86] by exploiting the multimodal information contained
in both the post and the homepage of Instagram users [30, 35]. The homepage of drug dealers often
contains an even richer set of multimodal data than the post, which could serve as supplementary
advertising tools. In previous work [76], homepage statistical data, including percentages of drug-
related posts, temporal patterns, relational information, and evidence of transactions are combined
to identify a drug dealer account. Instead of using the statistical data derived from the homepage,
we propose to fuse the bio text and the last ten post images in homepages directly for drug dealer
account identification. For multimodal data fusion at the post level, we have used Resnet-50 and
BERT to extract 2048-dimensional image-based and 768-dimensional text-based feature vectors,
respectively. For multimodal data fusion at the homepage level, we first extract a sequence of ten
image-based features from the ten homepage images, respectively. Then the average of these ten
features is used as the final image-based feature representation. If the number of homepage images
is less than 10, the features are averaged according to the number of homepage images. If homepage
images are missing, the image matrix will be filled with 0 to participate in the multimodal fusion
training. Similar to post-level fusion, the averaged 2048-dimensional image-based feature vector
will be concatenated with a 768-dimensional text-based feature vector to generate a composite
2816-dimensional vector or combined with text-based feature vector by the bilinear pooling method.
The fused feature vector is finally fed into the softmax classifier with cross-entropy loss function in
Eq. (1) for classifying the drug dealer account.

2. Multi-source data fusion

The collection of multimodal data from different sources (i.e., post vs. homepage) allows us to
conduct another line of research on information fusion. Instead of fusing across modalities, it is
possible to fuse the information of the same modality but across different sources. Such multisource
data fusion [78] has been studied in the field of remote sensing before; under the framework of
drug-dealer identification, we believe that multisource data fusion offers complementary insight to
multimodal data fusion. Specifically, such comparative studies could help answer the following
questions: 1) which modality is more important - image vs. text? 2) which source is more reliable -
posts vs. homepage? We conjecture that texts are more important than images due to the intrinsic
ambiguity in pictorial representation; posts are more reliable than homepages because posts are
often directly used as the advertising tool by drug dealers. Unlike multimodal data fusion, the
feature vectors associated with the same modality but from different sources always have the same
dimensionality. It is often more convenient to implement FFT-based compact bilinear pooling [15]
for a pair of equal-length feature vectors. Note that either multimodal or multisource data fusion
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only reflects one perspective that can be biased; it is desirable to jointly exploit them, as we will
elaborate next.

3. Joint quadruple-based fusion

In the real world, drug dealers often need to advertise for drugs while evading being caught
by law enforcement. Accordingly, the information we have collected about drug dealers from
Instagram is often incomplete - i.e., not all quadruple elements in the proposed IDDIG dataset
are available for the same account. Such missing data (a.k.a. missing modality) constraint makes
it difficult to use only two-element posts or homepages for accurately identifying drug dealers.
The method in [76] first fused multimodal post data to filter drug-related posts, and then detected
drug dealer accounts based on multimodal homepage fusion. However, this method often fails to
distinguish illicit drug dealers from legal regular consumers or drug abuser accounts.

Multimodal data fusion with missing data has been recently studied for deep multimodal encoding
in [49]. Inspired by the imputation strategy, in this work, we have designed a joint optimization
method for quadruple-based information fusion, as shown in Fig. 5. The features of post-image,
comments, bio, and homepage images are first extracted using BERT and ResNet-50 models,
respectively. Then the four elementary features are either concatenated into a 5632-dimensional
feature vector (the missing element will correspond to an imputation of all zero subvectors) or
combined by bilinear pooling operations (note that bilinear pooling can naturally tolerate one
missing element and output the available element as the output vector). This way, our quadruple-
based fusion can tolerate nine out of a total of 16 different missing patterns. The concatenated or
fused features are finally fed into the Softmax for drug dealer detection.

4.3.2 Fusion Strategies. The strategies of multimodal fusion have been extensively studied in
the literature (e.g., [2, 42]). Fusion of textual and visual information has been particularly the
focus of research on visual question answering [15] and sentiment analysis [7]. When feature
vectors associated with textual and visual information have different dimensions, concatenating
them becomes the easiest solution, even though such strategy suffers from the potential “curse
of dimensionality” [61]. Our experience suggests that such an ad-hoc strategy fits well with the
powerful deep learning framework when computational resources are not scarce. A computationally
more efficient approach is not to concatenate but to combine multiple feature vectors (assuming
normalized to the same length) into a composite vector without the change of dimensionality. This
line of research has led to a flurry of bilinear pooling methods, including compact bilinear pooling
[15] and factorized bilinear pooling [18].

In this study, we have conducted a comprehensive comparative study of four competing fusion
strategies: 1) Feature concatenation [26, 82]. Direct concatenation of two feature vectors into
a longer one (e.g., 2048 + 768 = 2816). 2) Bilinear pooling [47]. Bilinear pooling was introduced
in [47] to provide a robust image representation for fine-grained image classification. In bilinear
pooling, two feature vectors are fused by an outer product (or Kroneker product for matrices) -i.e.,
we can take element-wise interactions between a pair of feature vectors into account as follows:

zZ= ) xy] (2)

where {x;|x; € RP,i € S}, {yj|yj eRYje S} are two feature vectors, S is the set of spatial locations
(combinations of rows and columns), and Z € R*7 is the fused feature descriptor. Similar to the
kernel expansion, it allows the consideration of all pairwise interactions (e.g., 2048 * 768 = 1572864).
It can be seen that the size of bilinear feature descriptor can be large, which makes it computationally
infeasible. 3) Compact bilinear pooling [15]. In view of the explosion of dimensionality, a more
compact solution to bilinear pooling is developed based on Fast Fourier Transform (FFT). It requires
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the two features have identical lengths (e.g., a 768-dimensional vector needs to be resampled to a
2048-dimensional one). 4) Factorized bilinear coding [18]. This is one of the latest advances in
computationally efficient bilinear pooling. To generate more compact representations, it is possible
to employ a factorized bilinear coding (FBC) strategy to more efficiently integrate the features from
multimodal data.

The basic idea behind FBC is to encode the features into sparse representations and to learn a
dictionary B with k atoms that can be factorized into low-rank matrices to capture the sparsity
structure of observation data. More specifically, let the dictionary B = [by, bs, ..., b ] € RPI*k FBC
proposes to factorize each dictionary atom b; € RP9(1 < I < k) into UjV,", where U; € RP*" and
Vi € R? are learnable low-rank matrices. This way, the original bilinear feature xiy}— can be

k
reconstructed by cf,UlVlT, with ¢, € RF being the FBC code, and ¢/, being the I-th element of c,
I=1

(1<v<N,Nis the number of pairs in S).
The sparsity-based FBC encodes two input features (x;,y;) into ¢, by solving the following
optimization problem:
k
x,-yJT - Z CiUlVlT
I=1

2

+Alleolly ®)

min
Cy

where A is the Lagrangian multiplier controlling the trade-off between the reconstruction error and
the sparsity. The FBC code ¢, can be obtained by the classical LASSO method [75] which produces

¢, =P{U x;0VTy)),
¢, = sign(c]) o max((abs(c,) — %), 0).

4)

where o denotes the Hadamard product, P € R¥"* is a binary matrix with only elements in the
row [, columns ((I — 1)r + 1) to (Ir) being “1", and U and V are the transformations of U and V are
in the form of

~ =

UT = [fle] = 'I((qﬂ:k) oUT)] e RTkxp
VT = ["7IT] — [% _IVT] € Rrkxq
where I € R™¥ is an all “1" matrix, gq; is the I-th column of Q = ((P(UTUPT -VTVPT))"'P)T.

®)

5 UNSUPERVISED LEARNING FOR DRUG-DEALER COMMUNITY DETECTION

Community detection in a social network refers to the problem of identifying a cluster of connected
vertices forming fairly independent compartments in a graph or a network [54, 55]. Detecting
drug-dealer communities (a.k.a. drug trafficking rings) in the real world has been studied by
social scientists and criminologists for decades [1]. Finding the community of drug dealers and
their customers from social media data such as Instagram has only been recently considered (e.g.,
[44]). By exploring how the hashtags are connected to Instagram, we make the first step toward
revealing the hashtag culture, which might lead to useful hints for online community detection.
In other words, the complicated relational characteristics of Instagram hashtag can be discovered
through data mining and visualization techniques, allowing a deeper understanding of drug-dealer
communities/clusters found across hashtags.

To demonstrate the feasibility of this idea, we have designed an unsupervised learning method
using NetworkX [25] - a graph object and a Python language package developed for exploiting
and analyzing networks. NetworkX has been widely used for operations on large-scale real-world
graphs, such as graphs with over 10 million nodes and 100 million edges [24]. For the IDDIG
dataset, we have collected from Instagram, more than 800 posts in our dataset all contain at least
one mention of drug-related hashtag (e.g., #pills, #psychedelic, #mdmatherapy, #mdmatrip, #lsdtrip,
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Table 3. Text-based Classification for Drug Dealer Detection

Performance Accuracy Precision Recall F1 score
PC only

CNN[41] 84.38% 69.12% 95.05% 80.03%
BiLSTM[6] 83.42% 94.00% 75.45% 83.71%
CLSTM[83]  85.12% 70.16% 95.90% 81.04%
BERT[10] 87.17% 93.67% 75.98% 83.90%
HB only

CNN[41] 8451%  67.32%  97.82% 79.75%
BiLSTM[6] 84.04% 73.46% 89.42%  80.66%
CLSTM[83] 84.51% 93.47% 70.76%  80.55%
BERT[10] 84.38% 76.52% 93.05% 83.98%

and #lsdls). All unique hashtags in the corpus represent nodes in the graph. Edges were formed
between hashtags if they were mentioned together in the same post. This yielded an undirected
drug-related graph, which was then analyzed by NetworkX. For the task of community detection,
we can calculate various graph attributes such as betweenness centrality [4], adjacency matrix [60],
clustering coefficient [43], and vertex similarity [14]. The identified communities in a network are
often visualized by a tool, so-called Sunburst plot (please refer to Fig. 8 for illustrative examples).

6 EXPERIMENTAL RESULTS

In this section, we first report the performance of single modality methods on our own IDDIG
dataset for drug-dealer identification. Different multimodal fusion schemes (protocols and strategies)
were then compared and analyzed. Finally, we present our experimental results of drug-dealer
community detection using NetworkX and analyzed the characteristics of drug-dealer community
on Instagram.

6.1 Experimental Setup

The IDDIG dataset used in our experiments contains 3,206 negative samples and 2,815 positive
samples. As shown in Tab. 1, the size of positive user accounts is much larger than all existing
datasets. We have split the whole IDDIG dataset into 70% training set and 30% testing set. For
post and homepage images, we have adopted a ResNet50 to extract the feature vectors of length
20438; for posted comments and bio texts, we have used BERT pretrained model to extract a 768-
dimensional vector. We have trained the proposed multimodal fusion model using the popular
Adam optimization algorithm [62] with a mini-batch size of 10 based on IDDIG. The following
parameters are adopted in our setting: learning rate a = 0.001, 8; = 0.9, B2 = 0.999, ¢ = 1078. We
opt to terminate the training after 50 epochs. All experiments are conducted using PyTorch on a
workstation with one RTX 2080 GPU.

6.2 Drug-dealer Identification Results

6.2.1 Single modality based Results for Drug-Dealer Detection. To evaluate the performance of
single modality classification at this stage by training and testing on the proposed IDDIG dataset.
We have implemented four models (i.e., CNN[41], BILSTM[6], CLSTM [83] and BERT[10]) for text
classification and compare their performance based on the proposed IDDIG dataset. Four different
performance metrics (accuracy, precision, recall, and F1 score) are reported in Tab. 3. It can be
observed that 1) BERT has the best performance than any other text classification model with
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Table 4. Image-based Classification for Drug Dealer Detection

Performance Accuracy Precision Recall F1 score
PI only

VGG16 [68] 70.72% 63.44% 70.94%  66.98%
ResNet50 [28] 69.69% 62.61% 68.47%  65.41%

ResNet152 [28] 73.61% 65.96% 76.35% 73.61%
DenseNet121 [31] 72.78% 67.49% 67.49% 67.49%

HI only
VGG16 [68] 83.25% 74.94% 93.05% 83.02%
ResNet50 [28] 84.04% 76.11% 92.90% 83.67%

ResNet152 [28] 83.58% 75.09% 93.80% 83.41%
DenseNet121 [31] 83.37% 75.93% 93.61% 83.27%

83.90% F1 score on comment and 83.98% F1 score on bio; this is not surprising because BERT
represents the current state-of-the-art in natural language processing. 2) comment-based and
bio-based textural information have similar discrimination power because they have both achieved
over 80% F1 score. 3) two LSTM models (BiLSTM[6] and CLSTM [83]) have demonstrated strikingly
different precision/recall results, which reflect the trade-off between these two objectives.

For image-based classification, we have trained four models(i.e., VGG-16 [68], ResNet-50 [28],
ResNet-152 [28], and DenseNet121 [31]) to classify our post images and homepage images. As
shown in Tab. 4, the best performance for post image classification is achieved by ResNet-152 with
over 73% accuracy and 73% F1 score and the best performance for homepage image classification is
achieved by ResNet-50 with over 84% accuracy and 83% F1 score. When compared with homepage
images, we observe that the performance of image-based classification is noticeably lower for post
images. Such an experimental finding is consistent with our common sense because homepage is
often a more reliable source than post for drug-dealer identification (note that we have used ten
images in the homepage). In addition, our experimental results show that homepage image-based
classifications have achieved comparable performance to text-based (closer to bio-based than post-
based). Previous study [76] has demonstrated that accounts with a higher value of drug-related
percentage are more likely to be drug dealers. Our study further corroborates such findings thanks
to numerous drug-related images posted at the homepage, which justifies the benefit of our data
collection from the homepage.

6.2.2 Fusion based Results for Drug-Dealer Detection. To compare and analyze different mul-
timodal data fusion methods, we have designed three fusion experimental schemes including
data-source-based fusion, data-type-based fusion, and quadruple-based fusion. We will first report
our experimental results in correspondence with the three protocols discussed in Sec. 4.3.1. Then,
we will compare different fusion strategies, as covered in Sec. 4.3.2.

(1) Multi-modal data fusion: In a previous study [76], it has been shown that the fusion of
image and text data can improve the performance of drug-related post recognition. Since we have
collected multimodal data from different sources (post vs. homepage), we have conducted the fusion
experiments at both post-level and homepage level. The experiment results are as shown at the
top row in Table 5 have confirmed the benefit of multimodal data fusion in terms of significant
performance improvement. Moreover, our results have demonstrated that post-based fusion may
have the better performance with over 94% accuracy and 94% F1 Score than homepage-based fusion.
One possible explanation for such findings is that textual information plays a more dominating
role in drug-dealer identification than visual information. For example, contact information along
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Table 5. Comparison of Different Fusion Protocols (top-down): Multi-modal Data Fusion, Multi-source Data
Fusion, and Quadruple-based Fusion.

Performance Accuracy Precision Recall F1 score
Post-level fusion PI + PC 94.95% 93.47% 95.17%  94.31%
Homepage-level fusion HI + HB 91.29% 88.20% 92.60%  90.35%
Text-based fusion PC + HB 93.68% 90.44% 95.77%  93.03%
Image-based fusion PI + HI 92.95% 87.57% 97.89%  92.44%

Quadruple-based fusion PI+ PC +
(Decision-level fusion)  HI + HB
Quadruple-based fusion PI + PC +
(Feature-level fusion) HI + HB

94.48% 96.92% 90.33% 93.51%

95.55% 96.41% 93.35%  94.86%

such as user ID is often sufficient because only drug dealers prefer financial incentives to privacy
concerns.

Table 6. Comparison of Experimental Results between Feature Concatenation and Various Bilinear Pooling
Methods.

Performance  Accuracy Precision Recall F1 score
Bilinear Pooling 94.02% 95.40% 90.79%  93.03%
Compact
Bilinear Pooling
Factorized
Bilinear Pooling
Concat (ours) 94.95% 93.47% 95.17% 94.31%

93.62% 92.88% 92.60% 92.74%

92.02% 93.85% 87.61% 90.63%

(2) Multi-source data fusion: An alternative fusion protocol is across different sources instead
of modalities. We have implemented text-based feature fusion with 768 + 768 dimensions by
concatenating two BERT model output vectors based on the comment and bio in IDDIG dataset. We
have also implemented image-based feature fusion with 2048 + 2048 dimensions by concatenating
two ResNet model output vectors based on the post-image and homepage images. It can be seen that
text-based feature fusions produce better classification results with over 93% accuracy and 93% F1
score than image-based feature fusion, as shown in the middle row in Tab. 5. It is interesting to note
that the recall performance is notably better than the precision performance for image-based fusion.
Such low-precision and high-recall observation is consistent with the nature of visual information
- i.e., it is too liberal for the task of identifying drug dealers. By contrast, textual information is
more conservative and favorable to the precision metric as adopted by a related work [44]. This
is because text data on Instagram do contain more direct drug-trafficking related information,
including various uses of drug-related hashtags, evidence of transactions and payment methods.

(3) Quadruple-based fusion: Similar to the previous work [22], we have implemented and com-
pared feature-level fusion (ours) with decision-level fusion (adopted by [76]) on the IDDIG dataset.
In our implementation, a linear weighting method is used for decision-level fusion (similar to [76]).
Without any prior knowledge, we have selected 25% weights for post-image—image-based classifier,
comment-based classifier, bio-based classifier, and homepage image-based classifier, respectively.
The performance comparison result of the two fusion methods (decision-level vs. feature-level) is
shown at the bottom row in Table 5. It demonstrated that the proposed feature-level fusions in this
paper have better accuracy and F1 score results than decision-level fusion. Feature-level fusions
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Accuracy Precision Recall F1 score

Fig. 7. Impacts of Negative/Positive Ratio on performances of illicit drug dealer identification.

have some advantages over decision-level fusion strategies, in that the process of decision-making
cannot increase the amount of information contained in the input features (due to data processing
inequality [9]).

(4) Different feature-level fusion strategies: As discussed in Sec. 4.3.2, information fusion at the
feature level can be implemented by several strategies. As of today, there still lacks a rigorous
theory for evaluating and comparing these competing strategies. Therefore, we have opted to take
an empirical approach in this study. Four competing fusion strategies have been implemented:
feature concatenation [26], bilinear pooling [47], compact bilinear pooling [15], and factorized
bilinear pooling[18]. As shown in Tab. 6, feature concatenation has achieved the overall best
performance (only falls behind bilinear pooling on the precision metric). Such findings suggest
that brute-force concatenation is capable of outperforming more delicate pooling as long as the
increase of dimensionality remains manageable.

6.3 Impact of negative-positive ratio

In the real world scenario, the portion of drug dealers on Instagram is small, which means the
dataset can be highly imbalanced. To make our dataset closer to the real world distribution (the
number of negative samples is larger than positive), we have collected many nondrug dealers
and their associated data on Instagram. Such data augmentation allows us to study the impact of
negative-positive ratio on the identification performance of our system. Specifically, we have added
different number of negative samples to compare and evaluate the robustness of quadruple-based
fusion method. The ratio of negative data over positive data (N/P) is set to 2:1, 4:1, 6:1 and 8:1,
and the identification results are shown in Fig. 7. We found our model is not sensitive to negative-
positive ratios in the testing range (note that a much larger ratio than 8 might better characterize
the challenge of “finding a needle in a haystack” in practice).

6.4 Drug-related community detection and visualization

The constructed IDDIG dataset also allows us to discover drug-related community structures,
which might shed novel insights on the dynamics and evolution of illicit drug trade in the real
world. In our experiment, we have first conducted a hashtag-based community detection algorithm
using the existing tool NetworkX [25]. The default parameter setting has been used (e.g., at most
10 most frequent nodes in each cluster will be preserved). Fig. 8 a) shows the sunburst plot of
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Fig. 8. Sunburst Plots of Community Detection from IDDIG Dataset. a) Network Structure Discovered by
Drug-type Hashtag; b) Community Structure Detected by Geography Information Using Hashtag Xanax.

IDDIG dataset organized by different drug types. It can be observed that the class of Lysergic acid
diethylamide (LSD) represents the most popular community on Instagram (accounting for almost
25% of hashtags). This is a novel discovery, supporting the strong correlation with the young age of
Instagram users, such as teenagers. Based on the hashtag “4Xanax”, we have further analyzed the
community structure based on the available geography information (i.e., place-related hashtags).
Fig. 8 b) shows the sunburst plot of Xanax hot spots discovered from IDDIG data. We note that the
states of Texas, Ohio, and California are the top three ranked in terms of drug-dealer locations. In
the meantime, Instagram data also reveals worldwide connections of illicit drug trade between US
and other countries in Europe, South America, and Asia.

7 CONCLUSION

Concluding Remarks. In this study, we have collected and constructed a large-scale dataset (IDDIG)
from Instagram data to support the research related to drug-dealer identification. Our dataset
includes both textual and visual information contained in posted comments as well as at the home-
page. An automatic hashtag-based iterative data crawling system and a user-friendly interactive
web-based data annotation system were presented. Our data crawling and annotation systems
allow us to build a dataset with thousands of positive and negative samples. Based on the con-
structed IDDIG dataset, we have developed a quadruple-based data representation for drug-dealer
identification. BERT and ResNet models are adopted to extract text-based and image-based features
from quadruple-based data representation, respectively. We have conducted a comprehensive
study of multimodal data fusion for the identification of drug dealers and verified the performance
improvement due to quadruple-based fusion. The overall accuracy of our drug-dealer identification
has reached almost 95% on the IDDIG dataset, according to our experimental results. Furthermore,
we have detected the drug dealer account community by mining hashtag culture. The experiments
show that our proposed approach is effective and able to detect drug dealer accounts with high
accuracy thanks to data fusion across modalities and sources.

Limitations and Future Research. There are a few limitations in this work and interesting future
research directions. First, missing modalities are common in the dataset. We adopted an ad-hoc
imputation strategy for the missing modality problem in this work. An interesting future work is to
explore more efficient fusion strategies with incomplete modalities. Generative adversarial network
(GAN)-based approaches have shown promising performance on handling missing modalities

n [66]. However, how to address this issue under the framework of multimodal data fusion has
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remained open [51]. Second, although we have assessed the impact of negative-positive ratio on
performances of illicit drug dealer identification, in real practice, the negative-positive ratio can
be much more negatively skewed. The model can be better evaluated with negative-positive ratio
that approximates the real ratio on Instagram. Third, robust detection of drug-related communities
such as drug ring especially how to establish the connection between darkweb and clearweb is a
challenging problem, which will be left for future studies.
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