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Abstract

At the heart of machine learning lies the question
of generalizability of learned rules over previously
unseen data. While over-parameterized models
based on neural networks are now ubiquitous in
machine learning applications, our understanding
of their generalization capabilities is incomplete
and this task is made harder by the non-convexity
of the underlying learning problems. We provide
a general framework to characterize the asymp-
totic generalization error for single-layer neural
networks (i.e., generalized linear models) with
arbitrary non-linearities, making it applicable to
regression as well as classification problems. This
framework enables analyzing the effect of (i) over-
parameterization and non-linearity during model-
ing; (ii) choices of loss function, initialization,
and regularizer during learning; and (iii) mis-
match between training and test distributions. As
examples, we analyze a few special cases, namely
linear regression and logistic regression. We are
also able to rigorously and analytically explain
the double descent phenomenon in generalized
linear models.

1. Introduction

A fundamental goal of machine learning is generalization:
the ability to draw inferences about unseen data from finite
training examples. Methods to quantify the generalization
error are therefore critical in assessing the performance of
any machine learning approach.

This paper seeks to characterize the generalization error for
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a class of generalized linear models (GLMs) of the form

y:¢0ut(<w7w0>7d)7 (1)

where € RP is a vector of input features, y is a scalar out-
put, w° € RP are weights to be learned, oy (+) is a known
link function, and d is random noise. The notation <:c, w0>
denotes an inner product. We use the superscript “0” to
denote the “true” values in contrast to estimated or postu-
lated quantities. The output may be continuous or discrete
to model either regression or classification problems.

We measure the generalization error in a standard man-
ner: we are given training data (x;,y;), 7 = 1,..., N from
which we learn some parameter estimate w via a regularized
empirical risk minimization of the form

w = argmin Fou(y, Xw) + Fip (w), 2)

where X = [z1 22 ... a:N]T, is the data matrix, F,; is
some output loss function, and Fj, is some regularizer on
the weights. We are then given a new test sample, xs, for
which the true and predicted values are given by

Yts = ¢out(<$tsa ’LUO>, dts>7 /y\ts = ¢(<wt87 ’&3))7 (3)

where dis is the noise in the test sample, and ¢(+) is a pos-
tulated inverse link function that may be different from the
true function ¢,¢(+). The generalization error is then de-
fined as the expectation of some expected loss between ys
and 5 of the form

E fts(yts7 §t5)7 (4)

for some test loss function fis(-) such as squared error or
prediction error.

Even for this relatively simple GLM model, the behavior
of the generalization error is not fully understood. Recent
works (Montanari et al., 2019; Deng et al., 2019; Mei &
Montanari, 2019; Salehi et al., 2019) have characterized
the generalization error of various linear models for clas-
sification and regression in certain large random problem
instances. Specifically, the number of samples /N and num-
ber of features p both grow without bound with their ratio
satisfying p/N — [ € (0,00), and the samples in the
training data x; are drawn randomly. In this limit, the gen-
eralization error can be exactly computed. The analysis can
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explain the so-called double descent phenomena (Belkin
et al., 2019a): in highly under-regularized settings, the test
error may initially increase with the number of data samples
N before decreasing. Perhaps the first empirical evidence
of the double descent curve can be traced back to (Bos &
Opper, 1997). See the prior work section below for more
details.

Summary of Contributions. Our main result (Theo-
rem 1) provides a procedure for exactly computing the
asymptotic value of the generalization error (4) for GLM
models in a certain random high-dimensional regime called
the Large System Limit (LSL). The procedure enables the
generalization error to be related to key problem parameters
including the sampling ratio 5 = p/N, the regularizer, the
output function, and the distributions of the true weights
and noise. Importantly, our result holds under very general
settings including: (i) arbitrary test metrics fis; (ii) arbi-
trary training loss functions Fj,; as well as decomposable
regularizers Fiy; (iii) arbitrary link functions ¢q,¢; (iv) cor-
related covariates x; (v) underparameterized (8 < 1) and
overparameterized regimes (5 > 1); and (vi) distributional
mismatch in training and test data. Section 4 discusses in
detail the general assumptions on the quantities fis, Fout,
Fi,,, and ¢oy; under which Theorem 1 holds.

Prior Work. Many recent works characterize generaliza-
tion error of various machine learning models, including
special cases of the GLM model considered here. For exam-
ple, the precise characterization for asymptotics of predic-
tion error for least squares regression has been provided in
(Belkin et al., 2019b; Hastie et al., 2019; Muthukumar et al.,
2019). The former confirmed the double descent curve of
(Belkin et al., 2019a) under a Fourier series model and a
noisy Gaussian model for data in the over-parameterized
regime. The latter also obtained this scenario under both
linear and non-linear feature models for ridge regression
and min-norm least squares using random matrix theory.
Also, (Advani & Saxe, 2017) studied the same setting for
deep linear and shallow non-linear networks.

The analysis of the the generalization for max-margin linear
classifiers in the high dimensional regime has been done in
(Montanari et al., 2019). The exact expression for asymp-
totic prediction error is derived and in a specific case for
two-layer neural network with random first-layer weights,
the double descent curve was obtained. A similar dou-
ble descent curve for logistic regression as well as linear
discriminant analysis has been reported by (Deng et al.,
2019). Random feature learning in the same setting has
also been studied for ridge regression in (Mei & Monta-
nari, 2019). The authors have, in particular, shown that
highly over-parametrized estimators with zero training error
are statistically optimal at high signal-to-noise ratio (SNR).

The asymptotic performance of regularized logistic regres-
sion in high dimensions is studied in (Salehi et al., 2019)
using the Convex Gaussian Min-max Theorem in the under-
parametrized regime. The results in the current paper can
consider all these models as special cases. Bounds on the
generalization error of over-parametrized linear models are
also given in (Bartlett et al., 2019; Neyshabur et al., 2018).

Although this paper and several other recent works consider
only simple linear models and GLMs, much of the motiva-
tion is to understand generalization in deep neural networks
where classical intuition may not hold (Belkin et al., 2018;
Zhang et al., 2016; Neyshabur et al., 2018). In particular,
a number of recent papers have shown the connection be-
tween neural networks in the over-parametrized regime and
kernel methods. The works (Daniely, 2017; Daniely et al.,
2016) showed that gradient descent on over-parametrized
neural networks learns a function in the RKHS correspond-
ing to the random feature kernel. Training dynamics of over-
parametrized neural networks has been studied by (Jacot
et al., 2018; Du et al., 2018; Arora et al., 2019; Allen-Zhu
et al., 2019), and it is shown that the function learned is in
an RKHS corresponding to the neural tangent kernel.

Approximate Message Passing. Our key tool to study
the generalization error is approximate message passing
(AMP), a class of inference algorithms originally developed
in (Donoho et al., 2009; 2010; Bayati & Montanari, 2011)
for compressed sensing. We show that the learning problem
for the GLM can be formulated as an inference problem
on a certain multi-layer network. Multi-layer AMP meth-
ods (He et al., 2017; Manoel et al., 2018; Fletcher et al.,
2018; Pandit et al., 2019) can then be applied to perform
the inference. The specific algorithm we use in this work
is the multi-layer vector AMP (ML-VAMP) algorithm of
(Fletcher et al., 2018; Pandit et al., 2019) which itself builds
on several works (Opper & Winther, 2005; Fletcher et al.,
2016; Rangan et al., 2019; Cakmak et al., 2014; Ma & Ping,
2017). The ML-VAMP algorithm is not necessarily the most
computationally efficient procedure for the minimization
(2). For our purposes, the key property is that ML-VAMP
enables exact predictions of its performance in the large sys-
tem limit. Specifically, the error of the algorithm estimates
in each iteration can be predicted by a set of deterministic re-
cursive equations called the state evolution or SE. The fixed
points of these equations provide a way of computing the
asymptotic performance of the algorithm. In certain cases,
the algorithm can be proven to be Bayes optimal (Reeves,
2017; Gabrié et al., 2018; Barbier et al., 2019; Advani &
Ganguli, 2016).

This approach of using AMP methods to characterize the
generalization error of GLMs was also explored in (Barbier
et al., 2019) for i.i.d. distributions on the data. The explicit
formulae for the asymptotic mean squared error for the
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regularized linear regression with rotationally invarient data
matrices is proved in (Gerbelot et al., 2020). The ML-VAMP
method in this work enables extensions to correlated features
and to mismatch between training and test distributions.

2. Generalization Error: System Model

We consider the problem of estimating the weights w in
the GLM model (1). As stated in the Introduction, we
suppose we have training data {(z;,v;)} Y, arranged as

X = [z1xo...2n]|" € RNXP gy = [y1y...yn]T €
RY. Then we can write
y = ¢Out (Xwoa d)a (5)

where ¢out(2z,d) is the vector-valued function such that

[Pout (2, )] = Pout(2n,dyn) and {d,})_, are general
noise.

Given the training data (X, vy), we consider estimates of
w? given by a regularized empirical risk minimization of
the form (2). We assume that the loss function Fj,; and
regularizer Fj, are separable functions, i.e., one can write

Zfout y'ruzn 1n me wj

(6)
for some functions fo. : R? — R and fi, : R — R. Many
standard optimization problems in machine learning can
be written in this form: logistic regression, support vector
machines, linear regression, Poisson regression.

out ?J>

Large System Limit: We follow the LSL analysis of (Bay-
ati & Montanari, 2011) commonly used for analyzing AMP-
based methods. Specifically, we consider a sequence of
problems indexed by the number of training samples N. For
each N, we suppose that the number of features p = p(N)
grows linearly with N, i.e.,
. p(N)
NN

- (7

for some constant § € (0, c0). Note that 8 > 1 corresponds
to the over-parameterized regime and 3 < 1 corresponds to
the under-parameterized regime.

True parameter: We assume the true weight vector w®

has components whose empirical distribution converges as

T, ®)

li 0

N E>noo {wn}
for some limiting random variable W°. The precise defi-
nition of empirical convergence is given in Appendix A. It
means that the empirical distribution 11) f 1 0w, converges,
in the Wasserstein-2 metric (see Chap. 6 (Villani, 2008)),

to the distribution of the finite-variance random variable

wo. Importantly, the limit (8) will hold if the components
{wd}?_, are drawn i.i.d. from the distribution of W° with
IE(WO) < oo. However, as discussed in Appendix A, the
convergence can also be satisfied by correlated sequences
and deterministic sequences.

Training data input: For each IV, we assume that the train-
ing input data samples, ; € RP, i = 1,..., N, are i.i.d.
and drawn from a p-dimensional Gaussian distribution with
zero mean and covariance X, € RP*P, The covariance can
capture the effect of features being correlated. We assume
the covariance matrix has an eigenvalue decomposition,

2y, = LVidiag(st,) Vo, 9)

where sfr are the eigenvalues of X, and V§ € RP*P is the
orthogonal matrix of eigenvectors. The scaling % ensures
that the total variance of the samples, E|/z;||?, does not
grow with N. We will place a certain random model on sy,
and Vy momentarily.

Using the covariance (9), we can write the data matrix as
X = Udiag(s) Vo, (10)

where U € RV*P has entries drawn i.i.d. from A/(0, %)
For the purpose of analysis, it is useful to express the matrix
U in terms of its SVD:

U=V3Su,Vi, Sup = [ dlag(()smp) 0 } (11
where V| € R¥*¥ and V, € RP*? are orthogonal and
Swmp € RY*P with non-zero entries s,,,, € R™™{N:P} only
along the principal diagonal. s,,,, are the singular values
of U. A standard result of random matrix theory is that,
since U is i.i.d. Gaussian with entries A'(0, 1), the matrices
V1 and V, are Haar-distributed on the group of orthogonal
matrices and sy, is such that

P g (12)

]\}ij}noo{smp,i}
where Sy, > 0 is a non-negative random variable such that
Sﬁlp satisfies the Marcencko-Pastur distribution. Details on
this distribution are in Appendix H.

Training data output: Given the input data X, we assume
that the training outputs y are generated from (5), where the
noise d is independent of X and has an empirical distribu-
tion which converges as

lim {d;} %Y D (13)
N —o0
Again, the limit (13) will be satisfied if {d;}, are i.i.d.

draws of random variable D with bounded second moments.

Test data: To measure the generalization error, we assume
now that we are given a test point x4, and we obtain the
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true output yis and predicted output g given by (3). We
assume that the test data inputs are also Gaussian, i.e.,

z{, = u'diag(ss) Vo, (14)

where u € RP? has i.i.d. Gaussian components, N(0, %),
and sy and V are the eigenvalues and eigenvectors of the
test data covariance matrix. That is, the test data sample has
a covariance matrix

S = £ Vodiag(si,) Vo (15)

In comparison to (9), we see that we are assuming that the
eigenvectors of the training and test data are the same, but
the eigenvalues may be different. In this way, we can capture
distributional mismatch between the training and test data.
For example, we will be able to measure the generalization
error when the test sample is outside a subspace explored
by the training data.

To capture the relation between the training and test distri-
butions, we assume that components of s, and sys converge

as
PL(2)

J\;i_{noo{(str’i’ Sts,i)} =

(Str)Sts)7 (]6)

to some non-negative, bounded random vector (Si;, Sts).
The joint distribution on (St,, Sts) captures the relation
between the training and test data.

When Sy, = Sis, our model corresponds to the case when
the training and test distribution are matched. Isotropic
Gaussian features in both training and test data correspond
to covariance matrices Xy, = op, 1, s = o5 I, which
can be modeled as Sy, = oy, Sts = ots. We also require
that the matrix V is uniformly distributed on the set of
p X p orthogonal matrices.

Generalization error: From the training data, we obtain an
estimate w via a regularized empirical risk minimization (2).
Given a test sample x5 and parameter estimate w, the true
output ys and predicted output 7, are given by equation
(3). We assume the test noise is distributed as dis ~ D,
following the same distribution as the training data. The
postulated inverse-link function ¢(-) in (3) may be different
from the true inverse-link function ¢oys(+).

The generalization error is defined as the asymptotic ex-
pected loss,

Es = lim Efts(ﬂtmyts)a )
N—o0

where fis(-) is some loss function relevant for the test er-
ror (which may be different from the training loss). The
expectation in (17) is with respect to the randomness in the
training as well as test data, and the noise. Our main result
provides a formula for the generalization error (17).

3. Learning GLMs via ML-VAMP

There are many methods for solving the minimization prob-
lem (2). We apply the ML-VAMP algorithm of (Fletcher
et al., 2018; Pandit et al., 2019). This algorithm is not nec-
essarily the most computationally efficient method. For our
purposes, however, the algorithm serves as a constructive
proof technique, i.e., it enables exact predictions for gen-
eralization error in the LSL as described above. Moreover,
in the case when loss function (2) is strictly convex, the
problem has a unique global minimum, whereby the gen-
eralization error of this minimum is agnostic to the choice
of algorithm used to find this minimum. To that end, we
start by reformulating (2) in a form that is amicable to the
application of ML-VAMP, Algorithm 1.

Multi-Layer Representation. The first step in applying
ML-VAMP to the GLM learning problem is to represent
the mapping from the true parameters w” to the output y
as a certain multi-layer network. We combine (5), (10) and
(11), so that the mapping w® + y can be written as the
following sequence of operations (as illustrated in Fig. 1):

zg = w’, pg = Vozg7
z) == ¢1(pg, &1), p) == Viz, (18)
zj 1= ¢2(pY. &2), Py = Vaz),
25 := ¢3(p3, &) = v,
where &, are the following vectors:
&1 :=5u, & i=smp, &3:=d, (19)

and the functions ¢(-) are given by

¢1(p07str) = diag(str)p07
¢2(p17 Smp) = Smppla (20)
¢3(p27 d) = ¢Out (p27 d)

We see from Fig. 1 that the mapping of true parameters
w® = z{ to the observed response vector y = z3 is de-
scribed by a multi-layer network of alternating orthogonal
operators 'V, and non-linear functions ¢,(-). Let L = 3

denote the number of layers in this multi-layer network.

The minimization (2) can also be represented using a similar
signal flow graph. Given a parameter candidate w, the
mapping w — Xw can be written using the sequence of
vectors

Po := Vozo,
p1 = Viz1, 21
P2 ‘= V2Z2 = Xw.

Zy ‘—w,
z) = StrpOa

Zy = Smpplv

There are L = 3 steps in this sequence, and we let

Z:{ZOaZIaZQ}a p:{POaPhPQ}
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Figure 1. Sequence flow representing the mapping from the unknown parameter values w° to the vector of responses y on the
training features X. V blocks represent multiplication by orthogonal operators and ¢ (-) blocks are non-linear functions acting coordi-
natewise. For the GLM learning problem we have &1 = s¢, and, £&2 = Smp, &3 = d. Also, ¢1(po, str) = diag(str)po, ¢2(P1,Smp) =

diag(smp)P1, and ¢3(p2,d) = @out(p2, d).

denote the sets of vectors across the steps. The minimization
in (2) can then be written in the following equivalent form:

Igligl Fy(zo) + Fi(po,z1) + Fo(p1,21) + F3(p2)

subject to py = Vyzy, (=0,1,2,

where the penalty functions Iy are defined as

FO() =F ()7 Fl(ﬂ) :5{21:Snp0}('a'>7
F2('7 ) = 5{zzzsmppl}('a ')a F3() :Fout (ya ')a

(23)
where 0 4(+) is 0 on the set A, and 400 on A°€.

ML-VAMP for GLM Learning. Using this multi-layer
representation, we can now apply the ML-VAMP algorithm
from (Fletcher et al., 2018; Pandit et al., 2019) to solve
the optimization (22). The steps are shown in Algorithm 1.
These steps are a special case of the “MAP version” of ML-
VAMP in (Pandit et al., 2019), but with a slightly different
set-up for the GLM problem. We will call these steps the
ML-VAMP GLM Learning Algorithm.

The algorithm operates in a set of iterations indexed by k. In
each iteration, a “forward pass” through the layers generates
estimates Zzy,, for the hidden variables z?, while a “backward
pass” generates estimates Py, for the variables pY. In each
step, the estimates zy, and pg, are produced by functions
g/ (-) and g, (-) called estimators or denoisers.

For the MAP version of ML-VAMP algorithm in (Pandit
et al., 2019), the denoisers are essentially proximal-type
operators defined as

proxF/A/(u) := argmin F(x) + 3 [z — u||2 .29
T

An important property of the proximal operator is that
for separable functions F' of the form (6), we have

[proxFM (w)]; = Prox; ., (u;).

In the case of the GLM model, for £ = 0 and L, on lines 1
and 1, the denoisers are proximal operators given by

8 (rg. 7% ) =proxp ;.- (rg),  (252)

g (r3,y,7) = ProXp .+ (r3). (25b)

Note that in (25b), there is a dependence on y through the
term Fo,¢(y, -). For the middle terms, ¢ = 1,2, i.e., lines 1
and 1, the denoisers are given by

(26a)
(26b)

e

8 (vy 4Ty e ) = 2,
(¢t = At A= D

g( (r€—17 I'e 77[_17 ’YZ ) = P,

where (Pg1,Zy) are the solutions to the minimization

~ . Y -
(Pe1,2¢) := argmin Fy(pea,ze) + %HZz —r/|?
(Pe-1,2¢)

+
Vet

+ THPH —r5 |2 27

The quantity (Qv/dw) on lines 1 and 1 denotes the empirical
mean % Zle Oy, [Ouy,.

Thus, the ML-VAMP algorithm in Algorithm 1 reduces
the joint constrained minimization (22) over variables
(20,21, 22) and (po, P1, P2) to a set of proximal operations
on pairs of variables (pgsj,%¢). As discussed in (Pandit
et al., 2019), this type of minimization is similar to ADMM
with adaptive step-sizes. Details of the denoisers g;t and
other aspects of the algorithm are given in Appendix B.

4. Main Result

We make two assumptions. The first assumption imposes
certain regularity conditions on the functions fis, @, Pout,
and maps gét appearing in Algorithm 1. The precise defini-
tions of pseudo-Lipschitz continuity and uniform Lipschitz
continuity are given in Appendix A of the supplementary
material.

Assumption 1. The denoisers and link functions satisfy the
following continuity conditions:

(a) The proximal operators in (25),
g (tg,7% ), 833,97 ),

are uniformly Lipschitz continuous in ry and (1'3'7 Y)
over parameters 7y, and 'y;“ .

(b) The link function ¢y (p, d) is Lipschitz continuous in
(p,d). The test error function fis(¢(2), Pout (2, d)) is
pseduo-Lipschitz continuous in (Z, z, d) of order 2.
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Algorithm 1 ML-VAMP GLM Learning Algorithm
1: Initialize 7y,, > 0,1y, =0for{ =0,...,L—1

:fork=0,1,... do

3

4 // Forward Pass

5 for(=0,...,.L—1do

6: if / = 0 then

7 Zyo = gcT(r;Zoa Vo)

8 else

9: Zie = 87 (CF 0o T Mt Vi)

10: end if

11: O‘;:e = <({9/Z\k[/8r;[>

12: + _ Vg(Zk;g B O‘zer;e)
: r, = T

1—ay,
13: Vljz = (1/0‘:2 = Dy
14:  end for

15:
16: //Backward Pass
17:. for{=1L,...,1do

18: if / = L then
19: Prz1 =8 (Ch 1V )
20: else

. Se ot —e(rt. AT A
21: Pk =8y (rk,g_lark+1,ea7k,e—1v’7/c+1,é)
22: end if
23: Opog = <3ﬁk,zfl/3r$z_1>

T (A - +
_ Vi (Prea — %,e—lrk,e—l)
24 Thp 1 = I—a-
O g

) - _ - +
25: Vit,01 = (1/0%,571 - 1)%,271
26: end for
27: end for

Our second assumption is that the ML-VAMP algorithm
converges. Specifically, let x;, = (V) be any set of out-
puts of Algorithm 1, at some iteration k£ and dimension N.
For example, x;,(N) could be Zg¢(N) or pye(N) for some
¢, or a concatenation of signals such as [z)(N) Z(N)].

Assumption 2. Let x; (V) be any finite set of outputs of
the ML-VAMP algorithm as above. Then there exist limits

z(N) = lim xx(N) (28)

k—o0

satisfying

. . 1 2 _
Jm  lm -zl (V) —z(N)|F=0. (29

We are now ready to state our main result.

Theorem 1. Consider the GLM learning problem (2) solved
by applying Algorithm 1 to the equivalent problem (22)
under the assumptions of Section 2 along with Assump-
tions 1 and 2. Then, there exist constants 7, ,75g > 0 and
M € RZ%? such that the following hold:

(a) The fixed points {Zy,pe}, ¢ = 0,1,2 of Algorithm 1
satisfy the KKT conditions for the constrained opti-
mization problem (22). Equivalently w := 7 is a
stationary point of (2).

(b) The true parameter w° and its estimate W empirically
converge as

PL(2)

lim {(w?,@;)} WO W),  (30)

N—o0

where W is the random variable from (8) and

o~

W = ProXy /=it (WO + Qo ), 3D

with Qy = N(0, 7, ) independent of W°.

(c) The asymptotic generalization error (17) with (Yis, Uts)
defined as (3) is given by

gts = Efts (¢out(Zts7D)7¢(Z\ts)) P (32)
where (Zis, ZS) ~ N(02, M) and independent of D.

Part (a) shows that, similar to gradient descent, Algorithm 1
finds the stationary points of problem (2). These stationary
points will be unique in strictly convex problems such as
linear and logistic regression. Thus, in such cases, the same
results will be true for any algorithm that finds such station-
ary points. Hence, the fact that we are using ML-VAMP is
immaterial — our results apply to any solver for (2). Note
that the convergence to the fixed points {Zg, P¢} is assumed
from Assumption 2.

Part (b) provides an exact description of the asymptotic
statistical relation between the true parameter w® and its
estimate w. The parameters 7, ,73' > 0 and M can be
explicitly computed using a set of recursive equations called
the state evolution or SE described in Appendix C in the
supplementary material.

We can use the expressions to compute a variety of relevant
metrics. For example, the PL(2) convergence shows that
the MSE on the parameter estimate is

N
1
lim — " (wl) — @,)* = BE(W° -

N—oc0

W) (33)

n=1

The expectation on the right hand side of (33) can then be
computed via integration over the joint density of (W©, W)
from part (b). In this way, we have a simple and exact
method to compute the parameter error. Other metrics such
as parameter bias or variance, cosine angle or sparsity de-
tection can also be computed.

Part (c) of Theorem 1 similarly exactly characterizes the
asymptotic generalization error. In this case, we would
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compute the expectation over the three variables (Z, Z , D).
In this way, we have provided a methodology for exactly
predicting the generalization error from the key parameters
of the problems such as the sampling ratio 5 = p/N, the
regularizer, the output function, and the distributions of the
true weights and noise. We provide several examples such
as linear regression, logistic regression and SVM in the
Appendix G. We also recover the result by (Hastie et al.,
2019) in Appendix G.

Remarks on Assumptions. Note that Assumption 1 is
satisfied in many practical cases. For example, it can be
verified that it is satisfied in the case when fi, (+) and fout(+)
are convex. Assumption 2 is somewhat more restrictive
in that it requires that the ML-VAMP algorithm converges.
The convergence properties of ML-VAMP are discussed
in (Fletcher et al., 2016). The ML-VAMP algorithm may
not always converge, and characterizing conditions under
which convergence is possible is an open question. However,
experiments in (Rangan et al., 2019) show that the algorithm
does indeed often converge, and in these cases, our analysis
applies. In any case, we will see below that the predictions
from Theorem 1 agree closely with numerical experiments
in several relevant cases.

In some special cases equation (32) simplifies to yield quan-
titative insights for interesting modeling artifacts. We dis-
cuss these in Appendix G in the supplementary material.

5. Experiments

Training and Test Distributions. We validate our theo-
retical results on a number of synthetic data experiments.
For all the experiments, the training and test data is gen-
erated following the model in Section 2. We generate the
training and test eigenvalues as i.i.d. with lognormal distri-
butions,

St2r = A(lo)o.luu7 StQS _ A(lO)O'luts,

where (ug,, uts) are bivariate zero-mean Gaussian with

1
cov(Ugy, Uts) = O’i [ ) [1) } .

In the case when UZ = 0, we obtain eigenvalues that are
equal, corresponding to the i.i.d. case. With o2 > 0 we
can model correlated features. Also, when the correlation
coefficient p = 1, Si, = Sis, so there is no training and test
mismatch. However, we can also select p < 1 to experiment
with cases when the training and test distributions differ. In

the examples below, we consider the following three cases:
(1) i.i.d. features (o, = 0);

(2) correlated features with matching training and test dis-
tributions (o, = 3 dB, p = 1); and

(3) correlated features with train-test mismatch (o, =
3dB, p = 0.5).

For all experiments below, the true model coefficients are
generated as i.i.d. Gaussian w? ~ N (0,1) and we use stan-
dard L2-regularization, fi,(w) = Aw?/2 for some A > 0.
Our framework can incorporate arbitrary i.i.d. distributions
on w; and regularizers, but we will illustrate just the Gaus-
sian case with L2-regularization here.

Under-regularized linear regression. We first consider
the case of under-regularized linear regression where the
output channel is @out(p, d) = p + d with d ~ N(0,03).
The noise variance 03 is set for an SNR level of 10 dB.
We use a standard mean-square error (MSE) output loss,
fout(y,p) = (y — p)?/(202). Since we are using the
L2-regularizer, fi,(w) = Aw?/2, the minimization (2) is
standard ridge regression. Moreover, if we were to select
A = 1/E(w})?, then the ridge regression estimate would
correspond to the minimum mean-squared error (MMSE)
estimate of the coefficients w®. However, to study the under-
regularized regime, we take A = (10)~*/E(w})?.

Fig. 2 plots the test MSE for the three cases described above
for the linear model. In the figure, we take p = 1000
features and vary the number of samples n from 0.2p (over-
parameterized) to 3p (under-parameterized). For each value
of n, we take 100 random instances of the model and com-
pute the ridge regression estimate using the sklearn package
and measure the test MSE on the 1000 independent test
samples. The simulated values in Fig. 2 are the median test
error over the 100 random trials. The test MSE is plotted in
a normalized dB scale,

E(Grs — y1s)?
Test MSE (dB) = 10log,, (@t%)) |

EyZ,

Also plotted is the state evolution (SE) theoretical test MSE
from Theorem 1.

In all three cases in Fig. 2, the SE theory exactly matches
the simulated values for the test MSE. Note that the case
of match training and test distributions for this problem
was studied in (Hastie et al., 2019; Mei & Montanari, 2019;
Montanari et al., 2019) and we see the double descent phe-
nomenon described in their work. Specifically, with highly
under-regularized linear regression, the test MSE actually
increases with more samples n in the over-parametrized
regime (n/p < 1) and then decreases again in the under-
parametrized regime (n/p > 1).

Our SE theory can also provide predictions for the corre-
lated feature case. In this particular setting, we see that
in the correlated case the test error is slightly lower in the
over-parametrized regime since the energy of data is concen-
trated in a smaller sub-space. Interestingly, there is minimal
difference between the correlated and i.i.d. cases for the
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Figure 2. Test error for under-regularized linear regression un-
der various train and test distributions. Noise variance o3 is
set to SNR = 10 dB. The number of features p = 1000, and the
number of samples n vary from 0.2 X p (over-parameterized) to
3 X p (under-parameterized). The experiment is averaged over
100 random instances of the model for each n and test MSE is
calculated with 1000 independent test samples.

under-parametrized regime when the training and test data
match. When the training and test data are not matched,
the test error increases. In all cases, the SE theory can
accurately predict these effects.

Logistic Regression. Fig. 3 shows a similar plot as Fig. 2
for a logistic model. Specifically, we use a logistic output
P(y = 1) = 1/(1 + e~ P), a binary cross entropy output
loss fout(y,p), and ¢o-regularization level A, so that the
output corresponds to the MAP estimate (we do not perform
ridgeless regression in this case). Other values of A would
correspond to M-estimators with a mismatched prior.

The mean of the training and test eigenvalues ESZ = ESZ
are selected such that, if the true coefficients w® were
known, we could obtain a 5% prediction error. As in the
linear case, we generate random instances of the model,
use the sklearn package to perform the logistic regression,
and evaluate the estimates on 1000 new test samples. We
compute the median error rate (1— accuracy) and compare
the simulated values with the SE theoretical estimates. The
i.i.d. case was considered in (Salehi et al., 2019). Fig. 3
shows that our SE theory is able to predict the test error rate
exactly in i.i.d. cases along with a correlated case and a case
with training and test mismatch.

Nonlinear Regression. The SE framework can also con-
sider non-convex problems. As an example, we consider a
non-linear regression problem where the output function is

Gous (p,d) = tanh(p) +d, d ~ N(0,032). (34)

* jid. (sim)
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corr (sim)
0.35 corr (SE)
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@
i
R 0.25
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0.15

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Sample ratio N/p

Figure 3. Classification error rate with logistic regression un-
der various train and test distributions. F,,; is the Binary
cross-entropy loss, and Fj,, is the ridge penalty. The median
error rate (1- accuracy) is estimated from 1000 new test samples.

The tanh(p) models saturation in the output. Corresponding
to this output, we use a non-linear MSE output loss

fou(y = P) = 5 (y — tanh(p)%.  (35)
94
This output loss is non-convex. The data is generated as in
the previous experiments and we scale the data matrix so
that the input E(p?) = 9 so that the tanh(p) is driven well
into the non-linear regime. We also take o = 0.01.

For the simulation, the non-convex loss is minimized using
Tensorflow where the non-linear model is described as a
two-layer model. We use the ADAM optimizer (Kingma &
Ba, 2014) with 200 epochs to approach a local minimum
of the objective (2). Fig. 4 plots the median test MSE for
the estimate along with the SE theoretical test MSE. We
again see that the SE theory is able to predict the test MSE
in all cases even for this non-convex problem. Note that
Figures 3 and 4 do not show a double descent because we
apply regularization in those experiments.

6. Conclusions

In this paper we provide a procedure for exactly computing
the asymptotic generalization error of a solution in a gen-
eralized linear model (GLM). This procedure is based on
scalar quantities which are fixed points of a recursive itera-
tion. The formula holds for a large class of generalization
metrics, loss functions, and regularization schemes. Our
formula allows analysis of important modeling effects such
as (i) overparameterization, (ii) dependence between covari-
ates, and (iii) mismatch between train and test distributions,
which play a significant role in the analysis and design of
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Figure 4. Test MSE under a non-linear least square estimation.
The tanh(-) output function is used with /2-regularization. Noise
variance o3 = 0.01. The ADAM optimizer is used for simulations.

machine learning systems. We experimentally validate our
theoretical results for linear as well as non-linear regression
and logistic regression, where a strong agreement is seen
between our formula and simulated results.
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