Heterogeneous Temporal Graph Transformer:
An Intelligent System for Evolving Android Malware Detection

Yujie Fan!, Mingxuan Ju!, Shifu Hou!, Yanfang Ye!*
Wengiang Wan?, Kui Wang?, Yinming Mei?, Qi Xiong?
! Dept. of Computer and Data Sciences, Case Western Reserve University; > Tencent Security Lab, Tencent
1 Ohio, United States; Guangdong, China
{yxf370,mxj255,sxh1055,yanfang.ye}@case.edu,{johnnywan,flashwang, yinmingmei, keonxiong}@tencent.com

ABSTRACT

The explosive growth and increasing sophistication of Android
malware call for new defensive techniques to protect mobile users
against novel threats. To address this challenge, in this paper, we
propose and develop an intelligent system named Dr.Droid to jointly
model malware propagation and evolution for their detection at
the first attempt. In Dr.Droid, we first exploit higher-level seman-
tic and social relations within the ecosystem (e.g., app-market,
app-developer, market-developer relations etc.) to characterize app
propagation patterns; and then we present a structured hetero-
geneous graph to model the complex relations among different
types of entities. To capture malware evolution, we further con-
sider the temporal dependence and introduce a heterogeneous tem-
poral graph to jointly model malware propagation and evolution
by considering heterogeneous spatial dependencies with temporal
dimensions. Afterwards, we propose a novel heterogeneous tempo-
ral graph transformer framework (denoted as HTGT) to integrate
both spatial and temporal dependencies while preserving the het-
erogeneity to learn node representations for malware detection.
Specifically, in our proposed HTGT, to preserve the heterogeneity,
we devise a heterogeneous spatial transformer to derive heteroge-
neous attentions over each node and edge to learn dedicated rep-
resentations for different types of entities and relations; to model
temporal dependencies, we design a temporal transformer into the
HTGT to attentively aggregate its historical sequences of a given
node (e.g., app); the two transformers work in an iterative manner
for representation learning. Promising experimental results based
on the large-scale sample collections from anti-malware industry
demonstrate the performance of Dr.Droid, by comparison with
state-of-the-art baselines and popular mobile security products.

CCS CONCEPTS

« Security and privacy — Malware and its mitigation; - Com-
puting methodologies — Learning latent representations.

*Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °21, August 14-18, 2021, Virtual Event, Singapore

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08...$15.00
https://doi.org/10.1145/3447548.3467168

KEYWORDS
Heterogeneous Temporal Graph, Transformer, Malware Detection.

ACM Reference Format:

Yujie Fan!, Mingxuan Jul, Shifu Hou?, Yanfang Ye! and Wengiang Wan?,
Kui Wang?, Yinming Mei?, Qi Xiong?. 2021. Heterogeneous Temporal Graph
Transformer: An Intelligent System for Evolving Android Malware Detec-
tion. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD °21), August 14-18, 2021, Virtual Event, Sin-
gapore. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3447548.
3467168

1 INTRODUCTION

Thanks to the mobility and ever expanding capabilities, mobile
devices connected to the Internet become ubiquitous, which have
transformed our daily lives in various aspects (e.g., socializing, on-
line banking, healthcare, education, daily work). Today, society’s
overwhelming reliance on the complex yet increasingly connected
devices makes their security more important than ever. Android, as
an open source and customizable operating system (OS) for mobile
devices, is currently dominating the market by 71.99% [23]. How-
ever, due to its large market share and open source ecosystem of
development, Android attracts not only the developers for produc-
ing legitimate Android applications (apps), but also attackers to
disseminate malware (malicious software) that deliberately fulfills
the harmful intent to mobile device users. Driven by considerable
profits, there has been explosive growth of Android malware - i.e.,
according to AV-Test, the total new Android malware (including
potentially unwanted apps) reached 8.81 million in 2020 [2]. The
large volume of increasingly sophisticated Android malware has
posed serious threats to mobile device users, such as stealing user
credentials, pushing unwanted apps or advertisements (ads), block-
ing user accesses until ransoms are paid [12]. In particular, as a large
population transitioned to work-from-home models and businesses
rapidly shifted to remote operations during the global pandemic,
malware attacks also pivoted. According to PurpleSec, the estimated
cost of ransomware attacks nearly doubled in 2020 reaching $20
billion [21]. Therefore, the detection of evolving Android malware
is of great importance to both researchers and security industry.
To protect legitimate users against Android malware attacks,
the most significant line is mobile security products. However, in
the never-ending arms race, attackers always devise new tactics to
evade the detection. For example, malware may always adopt tech-
niques such as repackaging and obfuscation to bypass the detection.
As defenders, our thesis is that, no matter how a malware mutates
and evolves, the goal is to evade the detection while preserving
its dedicated malicious intents and functionalities. To that end, as

https://doi.org/10.1145/3447548.3467168
https://doi.org/10.1145/3447548.3467168
https://doi.org/10.1145/3447548.3467168

shown in Figure 1.(a), we propose to learn the evolution patterns
for the abstraction of latent malice encoded in malware variants
for their detection. In addition to evolution patterns, malware prop-
agation also plays an important role for the detection. For example,
the “TigerEyeing” trojan, a kind of Command and Control (C&C)
malware [35], camouflages as legitimate apps and only executes to
perform the profitable tasks on-demand; as such, merely evolution
patterns characterized by app content may not be sufficient for its
detection. To combat such a sophisticated malware, as illustrated
in Figure 1.(b), its propagation patterns - i.e., how it’s disseminated
within the ecosystem (e.g., who owned/developed the app, which
markets the app was distributed, etc.) - can provide complementary
knowledge for its detection. To this end, as shown in Figure 1.(c),
we ask ourselves “can we jointly model malware propagation and
evolution to learn their latent representations for the detection”?

(a) Evolution of Android malware variants Latent malice

GV (0

Wsas, / -
m
‘E/ (z}ﬁ\

(b) Malware propagation patterns ¢) Jointly model propagation and evolution

Figure 1: Motivation: jointly model propagation & evolution.

To solve the above problem, there are two major challenges: The
first one is how to devise an integral model that is capable of depict-
ing the complex semantic and social relations within the ecosystem
(e.g., app-market, app-developer, market-developer relations etc.)
to characterize app propagation patterns while considering their
temporal dependencies (i.e., app evolution). The second one is how
to design an effective framework that is able to seamlessly integrate
both heterogeneous spatial dependencies and temporal dimensions
for app representation learning to detect the malicious ones.

In this paper, to address the above challenges, we propose and
develop an intelligent system named Dr.Droid (shown in Figure 2)
for evolving Android malware detection. In Dr.Droid, to tackle the
first challenge, as illustrated in Figure 2.(a.1), besides content-based
features, we propose to consider higher-level semantic and social
relations among apps and other types of entities (e.g., app markets,
owners, names, and developers); and then we introduce a struc-
tured heterogeneous graph (HG) to model the complex relations in
a comprehensive manner (shown in Figure 2.(a.2)); afterwards, to
further integrate the temporal dependencies in the HGs (e.g., dy-
namics of evolving malware variants), we present a heterogeneous
temporal graph (HTG) for modeling (illustrated in Figure 2.(a.3)).
For the second challenge, to learn node representations over the
HTG, the dynamics of HTG with evolution in time and space en-
tailed the heterogeneity open a new research area from currently
considered homogeneous graph structures [4, 20, 31, 38]. In this

work, as shown in Figure 2.(b), we propose a novel HTG trans-
former framework (denoted as HTGT) to jointly integrate both
spatial and temporal dependencies while preserving the hetero-
geneity to learn node representations over the HTG for malware
detection. To the best of our knowledge, this is the first work of
devising a transformer framework over HIG to jointly characterize
malware propagation and evolutionary patterns for their detection.
More specifically, our proposed HTGT consists of a heterogeneous
spatial transformer (HST) and a temporal transformer (TT): (1) in
the HST (Figure 2.(b.1)), we design heterogeneous node and relation
encoders and derive different attentions over each node and edge
to learn dedicated representations for different types of entities and
relations; (2) in the TT (Figure 2.(b.2)), we attentively aggregate
the historical dependencies of a given node into the HTGT; and (3)
the two transformers (i.e., HST and TT) work collaboratively in an
iterative manner to learn node representations in the HTG. Later,
the node (i.e., app) representations learned from HTGT will be fed
to a multi-layer perceptron (MLP) to train the classifier (Figure 2.(c))
for the detection of evolving Android malware. Based on the large-
scale and real sample collections from Tencent Security Lab, we
perform extensive experimental studies; and promising results with
comparison to state-of-the-art baselines and popular security prod-
ucts demonstrate the performance of Dr.Droid in evolving Android
malware detection. Our major contributions include:

o Novel model to jointly characterize malware propagation
and evolution. To combat the increasingly sophisticated An-
droid malware, we propose to consider app content to learn their
evolution patterns and contextual information (i.e., the environ-
ment where apps dwell) to learn their propagation patterns. To
meet this objective, it calls for novel model for abstraction. In this
work, we present an innovative HTG for jointly modeling mal-
ware propagation and evolution patterns at the first attempt. Such
a comprehensive description of Android apps within the ecosys-
tem makes malware evasion much more difficult and costly.

e Innovative transformer framework over HTG to learn node

presentations for malware detection. Based on the built HTG,
by exploiting latest advances in machine learning, we propose
an end-to-end transformer framework over HTG (i.e., HTGT) to
integrate both spatial and temporal dependencies while retain-
ing the heterogeneity to learn latent representations of Android
apps that encode both their propagation and evolution patterns
for the detection of malicious ones. In the HTGT, the designed
heterogeneous spatial transformer (i.e., HST) and temporal trans-
former (i.e., TT) work in an iterative and collaborative way for
node representation learning in HTG. As the proposed learn-
ing paradigm is a general framework for HTG represenation
learning, in addition to malware detection, it can also be readily
applied to various dynamic network mining tasks, such as node
classification, clustering and similarity search.

An intelligent system deployed in anti-malware industry.

We develop a practical system Dr.Droid integrating our proposed
method for evolving Android malware detection and provide

a comprehensive experimental study based on the large-scale

and real sample collections from Tencent Security Lab, which

demonstrates the performance of our developed system. Dr.Droid
has been deployed in anti-malware industry to protect millions
of users worldwide against evolving malware attacks.

(a) Data Collector and HTG Constructor (b) HTG Transformer Framework (HTGT) (c) Classifier
{ ! {(a.1) Data Collector {(a.2) HG Schema T] LU I
HST HST =2 = w (HST [~fx o)
5 o o k=1 = eEa PR k=1,
. £ 2 o E s E 1 '
i< 5E | 8s! {128 zf WA -
S | 2% gg 2z O s B
,. ge 5§ || i< EE EE U s, ~
. EE = £E: ZE)
; =% || 122 =3 V%A 5
. ¥ £
!/ HG®_—HG® —HG® —HGY —| Hﬁq‘t’ 1 (b. l) Heterogeneous Spatial Transformer (HST) Entities:
| Heterogencous| | FC GO0+ P | i§§! Android APP
1 Entity
S-S ___ En'clold)er Sotovtonl) (Malicious, Benign, Unknown)
5 J/ 5 Q 5, \Q e e = Name @Bamation
(1) [T(2) [TG) | T - 1 & 3] = (1ol
h ® HTG/ koth layer, {9 Market (E%Signature
a I . P ' ¢™ Content | Dynamlc Manifest 1.Activity 2. Receiver 3. Provider i Signature (i.e., App Authorship)
Il! Benign Ij§! Malicious igg Unk
" gn 'y W' Unknown ‘®Features QAPI .Features Features 4. Service 5.Permission 6. Meta-data @ Affiliation (i.e., App Ownership)

Figure 2: System architecture of Dr.Droid. In Dr.Droid, (a) based on the collected data, we first construct a HGT to jointly model
Android app propagation and evolution for the abstraction; (b) to integrate both spatial and temporal dependencies while
preserving heterogeneity of the built HGT, we then propose a novel HTGT framework, which consists of a heterogeneous
spatial transformer (HST) and a temporal transformer (TT), to learn node representations in HTG in an iterative manner; and
(c) the node representations learned from HTGT will be fed to a MLP to train the classifier for Android malware detection.

2 PROPOSED METHOD

In this section, we introduce our proposed method integrated in
Dr.Droid for evolving Android malware detection in detail.

2.1 Feature Extraction

To comprehensively describe Android apps for evolving malware
detection, we propose to consider content-based features of apps
to learn their evolution and contextual information (i.e., the envi-
ronment where apps dwell) to depict their propagation patterns.

Content Features of Android Apps. Android app is compiled
and packaged in a single archive file (with an .apk suffix) that
includes the source code in the dex file, resources, assets, and
manifest file. As Application Programming Interfaces (APIs) are
used by Android apps in order to access Android OS functional-
ity and system resources, we extract the API calls from the dex
file to describe a given app. For example, the set of APIs of (“star-
tActivity”, “checkConnect”, dSMS”, “finishActivity”) extracted
from a malicious trojan denote its intention of sending SMS mes-
sages without user’s concern. Meanwhile, since the manifest file
of an app describes essential information about the app to An-
droid OS, we retrieve the activities, broadcast receivers, content
providers, services, permissions and meta-data from the manifest
file of each given app. For example, as activities provide Graphical
User Interface (GUI) functionality to enable user interactivity, the
extracted activities of “com.assistant.home.LocationActivity” and
“com.paypal.android.sdk.payments.LoginActivity” from a COVID-
19 themed malware reflect that it claims providing location-based
COVID-19 updates but actually steals user’s payment credential.
In addition, we also obtain dynamic features during runtime exe-
cutions of a given app when applicable, including its loaded dex
files, connected urls and generated texts. For instance, during the

» o«

sen

runtime executions, an online banking trojan dynamically loaded
six dex files from its C&C server to execute malicious activities and
send user confidential to websites such as “http://vpay.api.eeri*.com”
and “http://pay.i*g.pw”. These statically and dynamically extracted
features will be attached to each app as attributed feature vector.
Contextual Information. To capture the contextual information
for the characterization of malware propagation patterns, we fur-
ther extract higher-level semantic and social relations among apps
and other entities within the ecosystem. The information include:
R1: app-market relation to denote an app and its hosted market (e.g.,
official app stores like Google Play, third-party markets such as Ap-
toide). For each market, we use one-hot representation as its attrib-
uted feature vector. R2: app-affiliation relation to depict an app (e.g.,
“mobileqq”) and its ownership (e.g., “tencent.com”). Companies con-
ventionally use their reversed domain names (e.g., “tencent.com”) to
begin apps’ package names (e.g., “com.tencent.mobileqq”) which are
unique names to identify the apps (e.g., “mobileqq”). R3: app-name
relation to describe an app and its abstraction. For each affiliation
and name, we exploit pre-trained embedding model (e.g., Ernie
[25]) to obtain its attributed features. R4: app-signature relation to
denote an app and its authorship (i.e., each app run on the Android
must be signed by the developer, which relates to the app’s sig-
nature). We also retrieve metadata such as the number/frequency
a developer (i.e., app signature) posts/updates his/her apps in the
markets as its attributed features. In addition, we further consider
the market-developer relation (i.e., R5) and interactions between
app affiliations, signatures and names (i.e., R6-R8).

Given the rich semantic and complex relations extracted above, it
is important to model them properly so that various relations can be
well exploited to characterize app propagation, while considering
the temporal dependencies to describe app evolution.

2.2 HTG Construction

To meet the above objective, we first present a structured hetero-
geneous graph (HG) that is capable of modeling heterogeneous
spatial dependencies among different types of entities (i.e., nodes)
to characterize app propagation patterns.

Definition 1. Heterogeneous Graph (HG). A HG is defined as
a graph G = (V, E, X) consisting of an entity set V = U2, V; of
m type, a relation set E representing the spatial relations among
entities, and a feature set X = U2, X; (X; is the feature set for
entity set V;), with an entity type mapping ¢: V — L and a relation
type mapping : E — R, where L denotes the entity type set and
R is the relation type set, and |L| + [R| > 2. Graph Schema. The
graph schema for G, denoted as 7G = (L, R), is a graph with nodes
as entity types from L and edges as relation types from R.

HG not only provides the graph structure of data associations,
but also provides a higher-level abstraction of the categorical as-
sociation. In our application, we have five entity types (i.e., app,
market, affiliation, name, signature) and eight types of relations
among them (i.e., RI-R8). Based on the above definition, the HG

host™!
schema is shown in Figure 3.(a). As such, a pattern of app =,

associate™ associate

. host
market signature market app can be
encoded in the HG to characterize a malware propagation path - e.g.,
a developer distributed malicious apps through different markets.

T TR TE)

APP Market

(a) HG schema

(b) Sample HTG

Figure 3: HG schema and a sample HTG.

Based on the built HG, we propose to further consider the tem-
poral dependencies in the HGs (e.g., dynamics of evolving malware
variants) to build a heterogeneous temporal graph (denoted as
HTG), whose definition is given below.

Definition 2. Heterogeneous Temporal Graph (HTG). A HTG
is a graph that is defined as G = ({G(t)}thl,E’), where T is the
number of timestamps in a given window, G isaHGat timestamp
t, E’ describes the temporal relations between G and G+
1<t<T).

Based on the above definition, a sample HTG is shown in Figure

3.(b). To this end, the problem of Android malware detection can
be considered as node (i.e., app) classification in the HTG. To solve
this problem, we first formulate the concept of HTG representation
learning in the following.
Problem 1. HTG Representation Learning. Given a HTG G =
(V, &), the representation learning task is to learn a function 7 :
V — R that maps each node v € V to a vector in a d-dimensional
space R4 (d < |V]), by integrating both spatial and temporal
dependencies among them while preserving the heterogeneity.

The dynamics of HTG with evolution in time and space en-
tailed the heterogeneity present new challenges for node repre-
sentation learning over HTG for malware detection. HTG rep-
resentation learning is an emerging research field, especially in
the context of HTG with the heterogeneity developing a research
frontier from currently considered homogeneous graph structures
[8, 14, 20, 29, 30, 38]. In this paper, we propose a novel HTG trans-
former framework (denoted as HTGT) to integrate both spatial
and temporal dependencies while retaining the heterogeneity to
learn latent representations of Android apps (i.e., nodes in the HTG)
that encode both their propagation and evolution patterns for the
detection of malicious ones. We describe our proposed HTGT in
detail in the following section.

2.3 HTGT for Node Representation Learning

It is not yet well understood how to integrate information in space
and time into a single, general model for node presentation learning
[19], especially in the context of heterogeneous graph structures.
To tackle this challenge, as shown in Figure 2.(b), based on the
constructed HTG, we propose a HTG transformer framework (i.e.,
HTGT) consisting of a heterogeneous spatial transformer (HST) and
a temporal transformer (TT): in the HST, we design heterogeneous
node and relation encoders and derive different attentions over
each node and edge to learn dedicated representations for different
types of entities and relations; in the TT, we attentively aggregate
the historical dependencies of a given node into the HTGT. The
two transformers of HST and TT are coupled and work collabo-
ratively in an iterative manner to learn node representations in
the HTG. More specifically, in each iteration: in the TT, each node
receives information from its historical sequence; while in the HST,
the nodes, which now have information from both present and
past, start exchanging information through message passing. We
elaborate our devised HST and TT in the followings.
Heterogeneous Spatial Transformer (HST). As shown in Figure
4, given a targeted node u” and its neighborhood N} in the HG at
timestamp ¢ (i.e., G € G), the representation of node u’ learned
via HST can be formulated as:

2ty = HST(bf, {(hS, ef,0) 0 € NE}:Onsr), ()

where hi, € R? and e,’;,v are the d-dimension embedding of node v
and the relation between u and its neighbor v, respectively, @ysT
is the learnable parameters of HST and is shareable across all times-
tamps. To accommodate the node and relation heterogeneity, we
equip HST with a node encoder ¢(-) and a relation encoder f(-).
Formally, given u’ of type ¢(u) and e, , of type /(u,0), g(-) and
f () are defined as:

g(u) = PqS(u) : hltl’ @)
fu,0) =Ry (y0) - 9(0),
where Py (), Ry u0) € R9*d are node-dependent and relation-
dependent weight matrices. The node encoder addresses the het-
erogeneity of a HG that originates from the node feature vectors
while relation encoder deals with the heterogeneity that derives
from different types of relations. Considering the fact that different
neighbors have different impacts on the targeted node, inspired by
the Transformer proposed in [26], we utilize its attention mecha-
nism to implement HST by mapping the target node into a Query

Heterogeneous Heterogeneous

Entity Encoder i Relation Encode
Entity e Relation
Encoding Encoding
Entity A Relation
7 Encoding Encoding
Entity o Relation
{ Encoding Encoding

®Product
@ D Add

Figure 4: Heterogeneous spatial transformer (HST).

vector, neighbors into Key vectors and calculate their dot product
as attentions. We define the g, (query) for u, ki (key) and v/, (value)
for v in the heterogeneous spatial domain as:

a4 = Wi - g(u),
K, =WEST - f(u,0), 3)
vh = WIST . f(u,0),

where WSIST, WfST,ngST € R4 denote the transformation
matrices for query, key, and value, respectively. q/, depicts the
embedding of u that queries v, k, represents the indexing of v and
v!, depicts the transformed embedding for v. The attention o, for v
is calculated by:
i explal - ()T
* Toentexp(qy - (K)T)

©

And then, the aggregated embedding z,, € R? is formulated as:

2y = WIST (g +)" ab-vh), ©)
veN},
where WIST is a regularization matrix which makes the aggregated

embedding smooth. We employ multi-head attention to stabilize
the learning process. Specifically, H independent attention heads
are executed in a parallel fashion, and then their representations
are averaged, resulting in the following output:

H
1
t _ HST t t
z, = EZ fh '(9(“)+ > “u,h'Vu,h)- ©
h=1 veN,

Without loss of generality, we then stack K-layer HSTs in a back-
to-back manner to capture K-order neighbor information.

Temporal Transformer (TT). To characterize app evolution, as
shown in Figure 2.(b.2), our designed TT is equipped with an atten-
tion mechanism to capture the temporal dependencies. Formally,
the representation of node u’ in the HG at timestamp t learned via

TT is formulated as: : -
h!, =TT(x}, Z.;077),)

ZL = (2|t < t},

where x, € R%@ is the original feature vector of node u, Z,

denotes the historical sequences before timestamp t, ©rr is the
learnable parameters of TT and is shareable across all timestamps.
To capture the importance of a historical embedding z/, with respect

to the current feature vector xltl, we transform X,l; into Query vector,
zf; into Key vector and calculate their dot product as the attention.
Motivated by [26], we further define a time encoding function I(-)
for 2!, as:

U(zly) = I, (24 (1) + p(t',),
(") sin(¢’/10000%/4) if i is even, (8)
Ji) = .
p cos(t’/10000%/4) if i is odd,

where i is the index of each element, || denotes the concatenation
operation, p(-) is a frequency encoding function that characterizes
a time-dependent sinusoid. The reason to incorporate I(-) is for
TT to leverage time-related factors before calculating attentions
for feature vectors at different timestamps. With this function, the
feature vectors at different timestamps will be treated differently.
Accordingly, q?, kf; and vf; in the temporal domain are formulated
as:

'
K, =WIT . 1(2),)
Vi = Wil U(z)),

where WqTT € RdXd‘/"(“),WlZT, WZT € R9%4 denote the transfor-
mation matrices for query, key, and value, respectively. Finally, we
apply Eq.(4) - Eq.(6) to conduct attention calculation, embedding
aggregation and multi-head attention computation, respectively.
To this end, our proposed HTGT to learn node representations in
the HTG is given in Algorithm 1.

t _ywIT t
qu—Wq - X

Algorithm 1: HTGT for Node Representation Learning
Input: HTG G = (V, &), time window T, HST layer K.
Output: Node representation zg, Yue V.

Initialize: Z « {};
fort=1to T do

q.. k%, vl — Eq.(8)-(9) with Z t < t,YueVl

calculate temporal attention via Eq.(4);

h!, « Eq.(5)-(6)

for k =1to K do

¢!, k., vl — Eq.(2)-(3) with h!, Yu € V!, Vo € N{;
calculate spatial attention via Eq.(4);

Yu € Vi,

z!, — Eq.(5)-(6) Yu e Vi,
b, 7, Yu eVt
end
append z!, to Z Yu eVt
end
Return z! Yu e V;

2.4 Classification

By applying the proposed HTGT, given a node (i.e., app) u in the
HTG, we are able to generate its representation z;. For malware
detection task, as shown in Figure 2.(c), we then feed it into a MLP
followed by a nonlinear layer (e.g., sigmoid) to get its prediction:

Ju = 0(MLP(zy)). (10)

Given the training dataset D, the HTGT can be back-propagated
with the cross-entropy loss:

L= 3, g + (1=) log(1 =) + IO, (11)
ueD

where 7, and y,, are the prediction and ground-truth for node u
respectively, and ||®||g is the L2-regularizer to prevent over-fitting.
We also investigate the computational complexity of HTGT: given
a HTG in time window T, for each iteration (i.e., 1 < t < T), the
complexity for TT to aggregate temporal information is O(T|V?])
and HST consumes O(|E?|) time for message passing; and thus
the complexity of HTGT in each iteration is O(T|V!| + |E?|) and
O(T|V| + |&]) for time window T.

3 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct four sets of experiments using large-
scale sample collections from Tencent Security Lab to fully evaluate
the performance of Dr.Droid integrating our proposed method.

3.1 Experimental Setup

Data Collection and Preparation. We obtain the large-scale and
real-world data collections from Tencent Security Lab: the sam-
ple set contains 82,831 Android apps collected from 55 app stores/
marketplaces/ websites during July 06 to July 12, 2020 (i.e., 15,041
of them are detected as malicious, 59,561 are benign, and 8,229
are unknown). For the 8,229 unknown apps, with the analysis by
anti-malware experts in Tencent Security Lab, 3,096 are malicious
and 5,133 are benign, which are used as the testing set in the exper-
iments. After feature extraction, the constructed HTG has 210,947
nodes (i.e., 82,831 nodes with type of app, 44,816 nodes with type
of signature (i.e., developer), 30,139 nodes with type of affiliation,
53,106 nodes with type of names, 55 nodes with type of market)
and 1,531,887 edges (including 1,246,950 edges in heterogeneous
spatial domain and 284,937 edges in temporal domain).
Decisions and tradeoffs for the system design choices. Dur-
ing the system development, we did encounter several challenges
of finding optimal tradeoffs between detection performance and
efficiency: how to decide the best time window while accommo-
dating the scale of built HTG, and how to capture the temporal
dependencies for the characterization of app evolution. To solve
these problems, taking the domain knowledge from anti-malware
experts, we set the time window to seven days as the life-cycle of
active malware is about a week on average and we use a pre-trained
framework to index the collected apps.

Environmental and Parameter Settings. Experiments are im-
plemented under Ubuntu 19.10 operating system, equipped with
Ryzen 9 3900X processor, two GeForce RTX 2080Ti graphic cards
and 64 GB of RAM. Our model is developed under PyTorch 1.7.1 and
Python 3.7.6. We utilize Adaptive Moment Estimation (Adam) to
optimize HTGT with a learning rate of 0.005. We set the dimension
of hidden embedding to 32, the number of epochs to 1000, the layers
of HST to 2, each of which consists of 2 attention heads. We also use
ReLU as the activation function and float32 operation to speed up
training procedure and reduce memory usage. For reproducibility
of experiments, we set the random seed of PyTorch and Numpy to
12,345. The open-source code of our proposed HTGT framework
integrated in Dr.Droid is publicly available in GitHub [7].

Evaluation Metrics. To quantitatively assess performances of dif-
ferent methods in Android malware detection, we exploit the in-
dices of true/false positives/negatives (TPs/FPs/TNs/FNs), precision,
recall, accuracy (ACC) and F1 for evaluations.

3.2 Evaluation of Dr.Droid

In this set of experiments, we comprehensively validate the pro-
posed methods integrated in Dr.Droid, including HTG modeling and
HTGT representation learning framework in evolving Android mal-
ware detection. To validate the benefits of HTG for jointly modeling
malware propagation and evolution by considering the heteroge-
neous spatial dependencies and temporal dimensions, we compare
it with two types of app representations using the deep neural net-
work (DNN) with a 3-layer MLP as classification model: DNN¢onzent
taking the content features of apps as inputs, and DNNgygment us-
ing the augmented features as inputs (i.e., content-based features
concatenating relations of R1-R4). In order to examine how much
performance each domain contributes to the detection, we also
compare HST that is only with heterogeneous spatial dependencies
to TT which only considers the temporal dimensions. In addition,
we also validate the iterative working mechanism for HST and TT
in our proposed HTGT framework by comparing it to two variants:
(a) HTGTrg that first uses sequential model to capture temporal
dependencies across all timestamps and then performs message
passing in heterogeneous spatial domain; and (b) HTGTgr with
the implementation in a reverse way.

Quantitative evaluation. The experimental results are shown in
Table 1, from which we can see that: (1) with the help of additional
relations, DNNgygmen: performs better than DNNcontens; (2) TT
and HST achieve better results than traditional feature-based meth-
ods, which demonstrates the effectiveness of TT utilizing temporal
dependence for depicting app evolution and HST integrating hetero-
geneous spatial dependencies to characterize app propagation for
malware detection; (3) solely HST performs better than merely TT
in our application, which indicates app propagation may provide
higher-level generation than app evolution in malware detection;
(4) Dr.Droid with the devised HTGT that jointly characterizes both
app propagation and evolution patterns in an iterative manner out-
performs others in detecting evolving Android malware, which
achieves an impressive performance of 0.9880 ACC and 0.9908 F1.

Table 1: Evaluation of Dr.Droid in malware detection.

Model ‘ ACC F1 Recall

Precision

Detection based on traditional features

DNNeontent 0.9491 0.9253 0.9647 0.8889

DNNaugment 0.9539 0.9315 0.9604 0.9043
Contributions made by different domains
TT 0.9643 0.9700 0.9673 0.9768
HST 0.9720 0.9775 0.9745 0.9819

HTGT with different settings

HTGTrs 0.9769 0.9812 0.9823 0.9816
HTGTst 0.9796 0.9834 0.9819 0.9846
Dr.Droid 0.9880 0.9908 0.9913 0.9902

Case studies and analysis for novel results. To better interpret
the contributions made by different domains in evolving malware
detection, we further perform the case studies based on the de-
tection results. Figure 5.(a) shows that the evolving adware vari-
ants repackaged themselves on various online games to push un-
wanted apps and ads, whose latent malice (e.g., including ma-
licious activities such as “cn.*“push.android.ui.PushActivity” and
“com.b***e.sdk.openadsdk.activity. TTDelegateActivity”) can be de-
rived by the designed TT. This demonstrates the benefits of TT
which considers the temporal dependencies to capture malware
evolution for their detection. By contrast, Figure 5.(b) shows an
example that evolving scamware (e.g., “Earn Money Everyday”) and
malicious video players (e.g., “Sweet Orange”) were disseminated
via dedicated app supply chain; as such, Dr.Droid that integrates
both heterogeneous spatial dependencies and temporal dimensions
to capture malware propagation and evolution patterns shows its
superiority in their detection.

(a) Evolving adware variants repackaged themselves in various online games

Markets/ Popular Apps Affiliations Signatures Evolving Malware
Websites (Developers)
Ad
host alliance relate) |produce]
= PLaneg) e — L
[J |) @
P e | B9***4B_ E4"**6E

(b) Different types of malware variants disseminated via dedicated app supply chain

Figure 5: Case studies and analysis of novel results.

3.3 Comparison with Baseline Methods

In this set, we compare Dr.Droid incorporating the proposed HTGT
for node representation learning in malware detection with state-
of-the-art baseline methods. We consider three groups of baselines:
homogeneous and heterogeneous graph representation learning
models as well as dynamic HG learning methods.

e Homogeneous graph embedding models: Graph convolu-
tional network (GCN) [17] averages neighbors’ embeddings with
a linear projection; graph attention network (GAT) [27] uses self-
attention to aggregate information of neighbors.

e Heterogeneous graph embedding methods: Relational graph
convolutional network (RGCN) [22] designs different linear pro-
jections for different types of relations for information aggre-
gation; heterogeneous graph attention network (HAN) [28] ag-
gregates the information from neighbors through node-level
attention and semantic-level attention; heterogeneous graph
transformer (HGT) [13] utilizes different transformer attention
blocks for different relations, and summarizes embeddings from
all blocks using a sum function.

e Dynamic HG representation learning models: We exploit
our proposed temporal transformer (i.e., TT) to capture temporal
dependencies while exploring HAN and HGT to characterize
heterogeneous spatial dependencies for comparisons.

For GCN and GAT that are designed for homogeneous graphs,
we simply ignore the heterogeneity and directly feed the graph into

these learning models. For HAN, we devise four metapaths (i.e., app-
signature-app, app-affiliation-app, app-name-app and app-market-
app) to facilitate the node representation learning; in addition, we
further project the distinct attribute dimensions of different node
types into a unified feature space. The experimental results are
shown in Table 2, from which we have the following observations:
(1) heterogeneous graph embedding models (i.e., RGCN, HAN, HGT
and our propose HST) outperform those homogeneous ones (i.e.,
GCN and GAT) as they are able to preserve richer spatial seman-
tics and heterogeneous structure information, and note that the
proposed HST performs better than the other three heterogeneous
graph embedding models; (2) introducing temporal dependencies
into malware detection task helps the performances (i.e., dynamic
HG representation learning models obtain better results than oth-
ers) as it helps capturing app evolution in addition to propagation
patterns; (3) Dr.Droid that integrates HTGT for node representa-
tion learning over HTG achieves the best results in terms of all
evaluation metrics. The improvement of HTGT against baselines is
achieved by the well-designed HST that captures heterogeneity in
spatial domain and the iterative learning mechanism that collabora-
tively couples HST and TT to jointly characterize app propagation
and evolution for evolving malware detection.

Table 2: Comparison with baseline methods.

Method | Acc F1 Recall

Precision

Homogeneous graph embedding methods

GCN 0.9536 0.9724
GAT 0.9555 0.9754

0.9650
0.9682

0.9592
0.9607

Heterogeneous graph embedding models

RGCN 0.9608 0.9686 0.9590 0.9730
HAN 0.9677 0.9748 0.9713 0.9822
HGT 0.9684 0.9757 0.9745 0.9791
HST 0.9720 0.9775 0.9745 0.9819

Dynamic HG representation learning methods

TT+HAN 0.9829 0.9880 0.9868 0.9874
TT+HGT 0.9836 0.9881 0.9870 0.9887
Dr.Droid ‘ 0.9880 0.9908 0.9913 0.9902

3.4 Comparison with Other Detection Systems

In this set, we compare Dr.Droid with some popular commercial
mobile security products and machine learning-based detection
systems. For anti-malware products, we use Norton with the latest
version of 5.1.0.5628 and Lookout with the latest version of 10.36.3-
877b68b. For machine learning-based systems, we choose recently
developed HG-based detection systems for comparison: HinDroid
[12] that generates the commuting matrix for each metapath and
uses multi-kernel learning to aggregate them for Android malware
detection; AiDroid [35] that learns out-of-sample node represen-
tations for malware detection; and Dr.HIN [10] which explores
disentangled representation learning in HG to learn distinct, infor-
mative factors hidden in HG embeddings for malware detection.
The results shown in Table 3 demonstrate that Dr.Droid outper-
forms the two anti-malware products and three HG-based learning

systems in detecting evolving Android malware. The main reasons
behind this could be: (1) compared to the commercial security prod-
ucts, by bringing new innovations to jointly model heterogeneous
spatial dependencies and temporal dimensions, Dr.Droid is able
to characterize both malware propagation and evolution for their
detection; (2) compared with the previously developed HG-based
detection systems, Dr.Droid further introduces the temporal depen-
dencies to depict malware evolution, which helps the detection.

Table 3: Comparison with other detection systems.

System ACC F1 Recall Precision
Norton 0.9560 0.9622 0.9523 0.9734
Lookout 0.9559 0.9636 0.9583 0.9693
HinDroid 0.9605 0.9692 0.9634 0.9773
AiDroid 0.9653 0.9739 0.9658 0.9746
Dr.HIN 0.9704 0.9754 0.9730 0.9776
Dr.Droid 0.9880 0.9908 0.9913 0.9902

3.5 Evaluation of Parameter Sensitivity

In this set of experiments, we first investigate how different choices
of hyper-parameters affect the model performance. In Dr.Droid, for
the designed HTGT, there are two main parameters: the numbers
of attention heads and layers of HST. We range them from one to
four to examine their correlations with ACC and F1. For a better
visualization, we plot two 3D graphs as shown in Figure 6.(a). We
notice that both ACC and F1 achieve local optima with two spatial
attention heads and layers of HST. By observing the gradient of
these two surfaces, we find that increasing HST layers slightly
helps boosting the performance; however, the performance would
be deteriorated when considering a large number of layers as some
unrelated neighbors could be brought. As such, Dr.Droid is able to
reach high performance under a cost-effective parameter choice.

i
-
08 &
ACC F1, 0.6
991‘ 90 1
988 98 1
) s 8 04
Wi 1 :
i %i 02
\/ _g \\/ ; _5 i FPR
heagg o Y heagg 1o Y 0 02 04 06 08 1

(a) Parameter sensitivity (b) ROC curve

Figure 6: Parameters and post-launch performance.

4 SYSTEM DEPLOYMENT AND IMPACTS

Deployment challenges and post-launch performance. As An-
droid malware techniques are constantly evolving, the system has
been updated on a daily basis to learn and incorporate newly de-
tected malware against novel threats. Dr.Droid has been deployed
and tested based on the large-scale and daily sample collections
from Tencent Security Lab for over seven months: based on the
newly collected apps everyday (i.e., about 150,000 testing samples
per day), as shown in Figure 6.(b), the receiver operating character-
istic (ROC) curve of Dr.Droid in detecting newly unknown Android
malware achieves an impressive 0.9839 true positive rate (TPR) at
0.0043 false positive rate (FPR).

Novelty and usability. Thanks to the novel HTGT framework that
is capable of jointly modeling malware propagation and evolution
at the first attempt, the system has demonstrated its performance in
evolving Android malware detection. Using the developed Dr.Droid,
the analysis of daily collected unknown apps can be performed
within hours with multiple servers.

Audience and societal impacts. The importance of cybersecurity
can hardly be understated; by advancing data-driven innovations,
Dr.Droid has been deployed in anti-malware industry to provide ser-
vice for over 700 millions mobile users worldwide against evolving
Android malware attacks.

5 RELATED WORK

In recent years, systems applying data mining and machine learn-
ing techniques have been developed for Android malware detection
[3, 11, 16, 34, 37], where different kinds of classification models are
constructed based on different feature representations. Different
from most of the existing works that merely leveraged app content,
in our prior works, HinDroid [12], AiDroid [35] and Dr.HIN [10]
were proposed to exploit structured HGs to model the complex rela-
tions among apps and other types of entities for Android malware
detection. These systems have been successfully deployed in anti-
malware industry by tackling different challenges of representation
learning over HGs: HinDroid [12] proposed multi-kernel learning to
aggregate different similarities formulated by different meta-paths;
AiDroid [35] resolved out-of-sample node representation learning
problem; while Dr.HIN [10] explored disentangled representation
learning in HG. Different from our preliminary studies, in this work,
we exploit temporal dependencies of HGs to jointly model malware
propagation and evolution for their detection at the first attempt.

Spatial-temporal graph representation learning has been widely
studied [1, 20, 31, 39] with successful applications such as traffic
flow prediction [4, 6, 8, 29, 30, 38] and infectious disease forecast-
ing [15, 36]. However, most of the existing works mainly focus
on homogeneous graph structures. To consider the spatial hetero-
geneity [24], dynamic HG representation learning has achieved
increasing attention [9, 13, 18, 32, 33]. Those current works can be
summarized in two categories: one first explores sequential models
to capture temporal dependencies across all timestamps and then
performs message passing in the spatial domain [5, 6, 15, 30, 38];
and the other first conducts message passing in each graph slice
and then uses sequential models to obtain final representations
[4, 8, 18, 29, 31, 32, 39]. It is not yet well understood how to inte-
grate information in spatial and temporal domains into a single,
general model for node presentation learning [19], especially in the
context of heterogeneous graph structures. Different from existing
studies, in this paper, leveraging advances of Transformer [26], we
devise a novel framework consisting of a heterogeneous spatial
transformer and a temporal transformer which work collaboratively
in an iterative manner for HTG representation learning.

6 CONCLUSION

To protect legitimate users against evolving Android malware at-
tacks, in this paper, we propose and develop an intelligent system
named Dr.Droid to jointly model malware propagation and evo-
lution for their detection at the first attempt. In Dr.Droid, we first

present a structured HG to model the complex semantic and social
relations within the ecosystem to characterize app propagation
patterns; to further depict app evolution, we also consider the tem-
poral dependence and introduce a HTG to jointly model malware
propagation and evolution by considering heterogeneous spatial
dependencies with temporal dimensions. Based on the constructed
HTG, we propose a novel HTG transformer framework (i.e., HTGT)
to integrate both spatial and temporal dependencies while preserv-
ing the heterogeneity to learn node representations for malware
detection. In our proposed HTGT, to preserve the heterogeneity, we
devise a heterogeneous spatial transformer (i.e., HST) to derive het-
erogeneous attentions over each node and edge to learn dedicated
representations for different types of entities and relations; to model
temporal dependencies, we design a temporal transformer (i.e., TT)
into the HTGT to attentively aggregate its historical sequences of
a given node (i.e., app); the two transformers work collaboratively
in an iterative fashion for representation learning. Comprehensive
experiments based on the large-scale sample collections from Ten-
cent Security Lab demonstrate the performance of Dr.Droid, which
has been deployed in anti-malware industry to protect millions of
users worldwide against evolving Android malware attacks.

7 ACKNOWLEDGMENTS

Y. Fan, M. Ju, S. Hou and Y. Ye’s work is partially supported by
the NSF under grants IIS-2027127, 1IS-2040144, 1IS-1951504, CNS-
2034470, CNS-1940859, CNS-1814825, OAC-1940855 and ECCS-
2026612, the DoJ/NIJ under grant NIJ 2018-75-CX-0032.

REFERENCES

[1] Emre Aksan, Peng Cao, Manuel Kaufmann, and Otmar Hilliges. 2020. A
Spatio-temporal Transformer for 3D Human Motion Prediction. arXiv preprint
arXiv:2004.08692 (2020).

AV-Test. 2021. AV-Test Malware Statistics. https://www.av-test.org/en/statistics/
malware/.

[3] Haipeng Cai, Na Meng, Barbara Ryder, and Daphne Yao. 2019. Droidcat: Effective
android malware detection and categorization via app-level profiling. IEEE TIFS
14, 6 (2019), 1455-1470.

Zhiyong Cui, Kristian Henrickson, Ruimin Ke, and Yinhai Wang. 2019. Traffic
graph convolutional recurrent neural network: A deep learning framework for
network-scale traffic learning and forecasting. IEEE TITS 21, 11 (2019), 4883-4894.

[5] Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, and Yue Ning.
2019. Graph message passing with cross-location attentions for long-term ili
prediction. arXiv preprint arXiv:1912.10202 (2019).

[6] Zulong Diao, Xin Wang, Dafang Zhang, Yingru Liu, Kun Xie, and Shaoyao He.
2019. Dynamic spatial-temporal graph convolutional neural networks for traffic
forecasting. In AAAL Vol. 33. 890-897.

[7] Yujie Fan, Mingxuan Ju, Shifu Hou, Yanfang Ye, Wengiang Wan, Kui Wang,
Yinming Mei, and Qi Xiong. 2021. Open-source Code of Dr.Droid. https://github.
com/kdd2021drdroid/KDD2021_DrDroid/tree/main.

[8] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention based spatial-temporal graph convolutional networks for traffic flow
forecasting. In AAAI Vol. 33. 922-929.

[9] Huiting Hong, Yucheng Lin, Xiaoqing Yang, Zang Li, Kung Fu, Zheng Wang,
Xiaohu Qie, and Jieping Ye. 2020. HetETA: Heterogeneous information network
embedding for estimating time of arrival. In KDD. 2444-2454.

[10] Shifu Hou, Yujie Fan, Mingxuan Ju, Yanfang Ye, Wenqiang Wan, Kui Wan, Yin-

ming Mei, Qi Xiong, and Fudong Shao. 2021. Disentangled Representation Learn-

ing in Heterogeneous Information Network for Large-scale Android Malware

Detection in the COVID-19 Era and Beyond. In AAAL

Shifu Hou, Aaron Saas, Lifei Chen, and Yanfang Ye. 2016. Deep4maldroid: A deep

learning framework for android malware detection based on linux kernel system

call graphs. In 2016 IEEE/WIC/ACM International Conference on Web Intelligence

Workshops (WIW). IEEE, 104-111.

[12] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. 2017. Hin-
droid: An intelligent android malware detection system based on structured
heterogeneous information network. In KDD. ACM, 1507-1515.

[2

[

[4

o

[11

[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous

graph transformer. In WWW. 2704-2710.

Ziyu Jia, Youfang Lin, Jing Wang, Ronghao Zhou, Xiaojun Ning, Yuanlai He, and

Yaoshuai Zhao. 2020. Graphsleepnet: Adaptive spatial-temporal graph convolu-

tional networks for sleep stage classification. In IJCAIL 1324-1330.

[15] Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais, and

Shawn O’Banion. 2020. Examining covid-19 forecasting using spatio-temporal

graph neural networks. arXiv preprint arXiv:2007.03113 (2020).

TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. 2019.

A Multimodal Deep Learning Method for Android Malware Detection Using

Various Features. IEEE TIFS 14, 3 (2019), 773-788.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Wenjuan Luo, Han Zhang, Xiaodi Yang, Lin Bo, Xiaoqing Yang, Zang Li, Xiaohu

Qie, and Jieping Ye. 2020. Dynamic Heterogeneous Graph Neural Network for

Real-time Event Prediction. In KDD. 3213-3223.

Andrei Nicolicioiu, Iulia Duta, and Marius Leordeanu. 2019. Recurrent space-time

graph neural networks. arXiv preprint arXiv:1904.05582 (2019).

Chiara Plizzari, Marco Cannici, and Matteo Matteucci. 2020. Spatial tempo-

ral transformer network for skeleton-based action recognition. arXiv preprint

arXiv:2008.07404 (2020).

Purplesec. 2021. 2020 Ransomware Statistics, Data, and Trends. In

https://purplesec.us/resources/cyber-security-statistics/ransomware/.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional

networks. In ESWC. Springer, 593-607.

Statcounter. 2021. Mobile Operating System Market Share Worldwide. In

https://gs.statcounter.com/os-market-share/mobile/worldwide.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S. Yu, and Tianyi Wu. 2011. Path-

Sim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information

Networks. PVLDB (2011).

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin

Tian, Danxiang Zhu, Hao Tian, and Hua Wu. 2019. Ernie: Enhanced representa-

tion through knowledge integration. arXiv preprint arXiv:1904.09223 (2019).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. arXiv preprint arXiv:1706.03762 (2017).

[27] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[28] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S

Yu. 2019. Heterogeneous graph attention network. In WWW. 2022-2032.

Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan

Jia, and Jian Yu. 2020. Traffic flow prediction via spatial temporal graph neural

network. In WWW. 1082-1092.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.

Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint

arXiv:1906.00121 (2019).

Mingxing Xu, Wenrui Dai, Chunmiao Liu, Xing Gao, Weiyao Lin, Guo-Jun Qi,

and Hongkai Xiong. 2020. Spatial-temporal transformer networks for traffic flow

forecasting. arXiv preprint arXiv:2001.02908 (2020).

Hansheng Xue, Luwei Yang, Wen Jiang, Yi Wei, Yi Hu, and Yu Lin. 2020. Mod-

eling Dynamic Heterogeneous Network for Link Prediction using Hierarchical

Attention with Temporal RNN. arXiv preprint arXiv:2004.01024 (2020).

Luwei Yang, Zhibo Xiao, Wen Jiang, Yi Wei, Yi Hu, and Hao Wang. 2020. Dynamic

heterogeneous graph embedding using hierarchical attentions. In ECIR. Springer,

425-432.

Yanfang Ye, Lingwei Chen, Shifu Hou, William Hardy, and Xin Li. 2018. DeepAM:

a heterogeneous deep learning framework for intelligent malware detection.

Knowledge and Information Systems 54, 2 (2018), 265-285.

Yanfang Ye, Shifu Hou, Lingwei Chen, Jingwei Lei, Wenqiang Wan, Jiabin Wang,

Qi Xiong, and Fudong Shao. 2019. Out-of-sample Node Representation Learning

for Heterogeneous Graph in Real-time Android Malware Detection. In I[JCAL

4150-4156.

Yanfang Ye, Shifu Hou, Yujie Fan, Yiming Zhang, Yiyue Qian, Shiyu Sun, Qian

Peng, Mingxuan Ju, Wei Song, and Kenneth Loparo. 2020. a-Satellite: An Al-

Driven System and Benchmark Datasets for Dynamic COVID-19 Risk Assessment

in the United States. IEEE Journal of Biomedical and Health Informatics 24, 10

(2020), 2755-2764.

Yanfang Ye, Tao Li, Donald Adjeroh, and S Sitharama Iyengar. 2017. A survey

on malware detection using data mining techniques. ACM Computing Surveys

(CSUR) 50, 3 (2017), 1-40.

[38] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph con-

volutional networks: A deep learning framework for traffic forecasting. arXiv

preprint arXiv:1709.04875 (2017).

Cunjun Yu, Xiao Ma, Jiawei Ren, Haiyu Zhao, and Shuai Yi. 2020. Spatio-Temporal

Graph Transformer Networks for Pedestrian Trajectory Prediction. In ECCV.

Springer, 507-523.

[14

(16

=
=

(18

[19

[20

[21

[22

~
=

[24

[25

[26

[29

[30

[31

[32

@
&

[34

[35

[36

@
=

'S
22

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/
https://github.com/kdd2021drdroid/KDD2021_DrDroid/tree/main
https://github.com/kdd2021drdroid/KDD2021_DrDroid/tree/main

	Abstract
	1 Introduction
	2 Proposed Method
	2.1 Feature Extraction
	2.2 HTG Construction
	2.3 HTGT for Node Representation Learning
	2.4 Classification

	3 Experimental Results and Analysis
	3.1 Experimental Setup
	3.2 Evaluation of Dr.Droid
	3.3 Comparison with Baseline Methods
	3.4 Comparison with Other Detection Systems
	3.5 Evaluation of Parameter Sensitivity

	4 System Deployment and Impacts
	5 Related Work
	6 Conclusion
	7 Acknowledgments
	References

