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Abstract
As cyberattacks caused by malware have prolifer-
ated during the pandemic, building an automatic
system to detect COVID-19 themed malware in so-
cial coding platforms is in urgent need. The ex-
isting methods mainly rely on file content analy-
sis while ignoring structured information among
entities in social coding platforms. Additionally,
they usually require sufficient data for model train-
ing, impairing their performances over cases with
limited data which is common in reality. To ad-
dress these challenges, we develop Meta-AHIN,
a novel model for COVID-19 themed malicious
repository detection in GitHub. In Meta-AHIN, we
first construct an attributed heterogeneous informa-
tion network (AHIN) to model the code content and
social coding properties in GitHub; and then we
exploit attention-based graph convolutional neu-
ral network (AGCN) to learn repository embed-
dings and present a meta-learning framework for
model optimization. To utilize unlabeled infor-
mation in AHIN and to consider task influence of
different types of repositories, we further incor-
porate node attribute-based self-supervised module
and task-aware attention weight into AGCN and
meta-learning respectively. Extensive experiments
on the collected data from GitHub demonstrate that
Meta-AHIN outperforms state-of-the-art methods.

1 Introduction
Along with the global health crisis, the cyberattacks have in-
creased by more than 250% and caused over $300 million
loss in 2020 [Waggoner and Markowitz, 2021]. During the
pandemic, using malware as a major weapon, cybercriminals
utilized coronavirus disease (COVID-19) related information
as a lure to infiltrate victims’ systems to perform attacks such
as stealing users’ virtual assets and compromising network,
which have caused significant loss of individuals, corpora-
tions, and governments. To perform the attacks, cybercrimi-
nals may post malicious code repositories with a COVID-19
theme in social coding platforms to disseminate malware. As
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GitHub has become the largest source code repository plat-
form with 40 million users and over 280 million public repos-
itories, it has been utilized by cybercriminals to disseminate
malware to compromise security of the cyberspace [Fan et
al., 2019]. For example, a COVID-19 themed repository with
embedded malicious code hosted in GitHub could be directly
forked by other developers and easily disseminated through
other social platforms like Reddit. Therefore, preventing the
propagation of COVID-19 themed malware is in urgent need.
In this paper, we solve this problem by developing an intelli-
gent framework to detect COVID-19 themed malicious repos-
itories in GitHub.

To detect malicious code repositories, existing meth-
ods [Semmle, 2019a; Semmle, 2019b; Rokon et al., 2020]
mainly rely on code content while ignoring the rich structured
relations among entities in social coding platforms, impairing
the effectiveness for judging their legitimacy. More specifi-
cally, GitHub brought in two vulnerability detection products
CodeQL [Semmle, 2019a] and LGTM [Semmle, 2019b] in
2019, which can automatically analyze the variants of critical
vulnerabilities based on code content of the repository. Addi-
tionally, although some effective models [Zhang et al., 2020a;
Fan et al., 2019] for malicious code repository detection
have been proposed, they require sufficient samples for model
training. For example, Rokon et al. [Rokon et al., 2020] uti-
lized 97K labeled repositories in GitHub to train a supervised-
learning model for malicious repository detection. Thus, ex-
isting models are not suitable for detecting novel types of
malicious repositories with few data, such as malware with
a COVID-19 theme and their variants.

In this paper, we aim to address the above challenges by
developing a novel model called Meta-AHIN (Figure 1(a)),
which integrates graph convolutional neural network and
meta-learning for COVID-19 themed malicious repository
detection with few data constraint in GitHub. First, we
construct an Attribute Heterogeneous Information Network
(AHIN) to model the relationships among four types of en-
tities (i.e., repository, keyword, file, and user) in GitHub.
Next, we build an attention-based graph convolution network
(AGCN) to fuse both structural relations and semantic con-
tent information for learning node representations in AHIN.
To exploit and capture unlabeled information in AHIN, we
further design a self-supervised module and refine the node
embeddings which are fed to downstream classifier for ma-



licious repository detection. Since novel types of malicious
repositories with a COVID-19 theme may only have few
data samples, we build a meta-learning framework to transfer
knowledge from detection tasks of regular repositories and
adapt them quickly for new detection tasks (e.g., COVID-19
themed malicious repository detection). In addition, consid-
ering different malicious repository detection tasks contribute
differently to the meta-learner, we introduce task-aware atten-
tion weights to measure their importances. Self-supervised
module and task weights are incorporated into AGCN and
meta-learning respectively for better detection performance.
To summarize, the major contributions of this work include:
• We solve the problem of COVID-19 themed malicious

repository detection with few data constraint in GitHub,
which is novel and important.

• To handle structural relations and unstructured content in-
formation in GitHub, and to account for the constraint of
few labeled samples of COVID-19 themed malicious repos-
itory, we develop a novel model called Meta-AHIN by inte-
grating graph convolutional network and meta-learning.

• We collect COVID-19 themed malicious repository data
from GitHub and conduct extensive experiments using this
dataset. Promising results demonstrate the effectiveness of
our model by comparison with state-of-the-art methods.

2 Related Work
Malware Repository Detection. The recent studies for ma-
licious repository detection usually focus on the analysis of
code (or app) content [Ye et al., 2017; Ragkhitwetsagul et
al., 2019; Meli et al., 2019; Rokon et al., 2020]. For ex-
ample, Rokon et al. proposed a content-based supervised
learning method to identify malicious repositories in GitHub
[Rokon et al., 2020]. These methods, however, ignore the rich
structural information among different types of entities (e.g.,
repository, user) in social coding platforms. Different from
existing works, we study the characteristics of code reposi-
tory by incorporating both structural relation and unstructured
content information in GitHub.
Graph Convolutional Network (GCN). Our graph repre-
sentation learning framework is conceptually inspired by
GCN [Wu et al., 2020]. There are two main types of GCN:
spectral methods and spatial methods. For spectral methods,
they aim to represent nodes in graph and perform convolution
in the spectral space [Bruna et al., 2013; Henaff et al., 2015;
Defferrard et al., 2016]. For spatial methods, they operate
the original graph directly and define convolution layers over
nodes to aggregate information of local neighbors [Hamilton
et al., 2017; Veličković et al., 2018]. Besides homogeneous
GCN, some models [Zhang et al., 2019; Zhang et al., 2020b;
Ye et al., 2020b; Ye et al., 2020a] handle heterogeneous
graphs. Inspired by these studies, we build an attention-based
GCN to learn node embeddings in AHIN.
Meta-Learning. Recent meta-learning models generally fall
into two groups: (1) metric-based meta-learning [Vinyals et
al., 2016; Snell et al., 2017], and (2) gradient-based meta-
learning [Finn et al., 2017; Lee and Choi, 2018; Finn et al.,
2018]. For the former ones, they implement a generalized
metric and matching functions from training tasks to train the

model; for the latter ones, they propose to employ data of ex-
isting tasks to learn well initialized model parameters that can
be updated to new tasks in a fast manner with few data. In this
paper, we are motivated to use gradient based meta-learning
to address the challenge of few labeled data for COVID-19
themed malicious repository detection.

3 Preliminaries
3.1 Problem Definition
Let G = (V, E ,X ) denote an attributed heterogeneous infor-
mation network (AHIN), where V is the set of different types
of nodes, E ⊆ V×V is the set of different edges, and X is the
attributed feature set. A node can be regarded as any type of
entities and an edge can be regarded as any type of relations
between two nodes. There are four types of nodes (repository,
keyword, file, and user) and seven types of relations (e.g.,
file-contain-keyword) in our built AHIN (see Figure 1(b)).
The goal is to learn repository embeddings f which can be
fed to a classifier for malicious repository detection. Given
the features of all repository nodes Xr = (x1, . . . , xN ) (N :
number of repositories) and their labels Y = (y1, . . . , yN )
(yi = 1 denotes malicious and yi = 0 represents benign),
we aim to learn a mapping function Uφ : Xr → Y (with
parameter φ). Unlike existing works that use sufficient sam-
ples for model training, we consider a more practical scenario
that only few labeled data are available since novel COVID-
19 themed repositories only have limited malicious samples.
Specifically, given different types of regular repositories and
their labels, we aim to build a classifier which can be quickly
adapted to predict labels of different types of COVID-19
themed repositories that are unseen during the model training,
given few malicious samples of these repositories. Formally,
the problem is defined as follows.

Problem 1. COVID-19 themed malicious repository detec-
tion. Given a set of different types of code repositories (w/o a
COVID-19 theme) along with their attributed features Xr =
(x1, . . . , xN ) and corresponding labels Y = (y1, . . . , yN )
as well as the built AHIN G (training data), the problem is
to build a machine learning model to detect malicious code
repositories with a COVID-19 theme that have few malicious
samples (testing data).

3.2 Graph Convolutional Network
Since GCN has been proved to be powerful for learning the
node representations [Kipf and Welling, 2017] by exploring
both structure of a graph G and node features X , we employ
GCN as the base model to learn the repository representations
in AHIN. Our goal is to learn the embedding fi ∈ Rd (d: em-
bedding dimension), which corresponds to the representation
of repository node i. The layer-wise propagation rule of GCN
is defined as follows:

H l+1 = σ(ÃH lW l), (1)

where H l+1 denotes the node representations at l + 1 layer
and H0 = X , Ã is a symmetric normalization of A with self-
loop, i.e., Ã = D̂−

1
2 ÂD̂−

1
2 with Â = A+ IN . A, IN , D̂ are

the adjacency matrix, the identity matrix, and the diagonal



Figure 1: The overall framework of Meta-AHIN: (a) It first constructs an AHIN, and then develops an attention-based GCN to obtain
repository embedding. Task attention-based meta-learning is designed to optimize model parameters. (b) AHIN contains four types of
entities and seven types of relations as well as content features of all nodes. (c) Self-supervised module by masking node types. (d) Task-
aware MAML by incorporating task attention weight into MAML.

node degree matrix of Â respectively. W l denotes the weight
matrix at l-th layer, and σ is the activation function. For sim-
plicity, we use f = GCN(X,A) to denote a GCN model.

4 Proposed Model
In this section, we present the details of Meta-AHIN. At first,
we construct an AHIN to depict both structural relations and
unstructured content information in GitHub. Then we pro-
pose an attention-based GCN which is further augmented by
a self-supervised module, to learn the node embeddings for
malicious repository detection. Lastly, we introduce a task
attentive meta-learning procedure for model optimization.

4.1 AHIN Construction
To comprehensively describe repositories in GitHub, besides
content-based features, we also take semantic context and
structural relation information within GitHub into consider-
ation. As shown in Figure 1(b), we build an AHIN with four
types of entities and seven types of relations as well as fea-
tures of each entity, such that both content and relation infor-
mation can be exploited simultaneously. The content features
and relation information are introduced as follows.
Content Feature. For each type of node in AHIN, we extract
different content features (as listed in Table ??) and concate-
nate them to denote feature vector of the node. Note that for
text content (e.g., readme), we merge all text information for
each entity and feed them into the pre-trained BERT language
model [Devlin et al., 2018] to acquire the corresponding fea-
ture vector. For instance, for keyword feature, we extract all
of the keywords from every source code file to represent the
repository. Then, we select a set of malicious-oriented key-
words based on word frequency, and feed the keyword set of
each repository to BERT to obtain a keyword-based feature
embedding. For enumerated content (e.g., file type such as
executable file), we apply one-hot encoding to convert it to a
binary feature vector.

Content Feature

Repository readme, program language, topic keywords
Keyword keywords from every source code file
File filename, SHA-1, and type of file
User username, location, bio information

Relation Information

R1 repository-contributed-by-user
R2 repository-forked-by-user
R3 repository-owned-by-user
R4 repository-stared-by-user
R5 repository-contain-file
R6 file-contain-keyword
R7 repository-contain-keyword

Table 1: Content feature and relation information in AHIN.

Relation. Besides content features, relations among differ-
ent entities are also indispensable to judge the legitimacy of
repository. For instance, a repository is more likely to be
judged as malicious if it is owned by a cyber attacker (e.g.,
R3: repository-owned-by-user). Hence, we leverage seven
types of edges (R1-R7 in Table 1) to describe the informative
and complex relationships among four types of entities.

4.2 AHIN Representation Learning

Attention-based GCN. After constructing the AHIN, we de-
sign an attention-based GCN to learn the repository embed-
ding. Specifically, we first transform the input attribute fea-
tures of all entities to a common space. For each node vi ∈ V
with type Ti and its attributes Xi, the transform function
g(X) is defined as follows:

g(Xi) = XiWTi
, (2)



where WTi is the transform weight matrix for node type Ti
(|T | = 4). Then, considering the converge of node features
with Laplacian smoothing [Kipf and Welling, 2017], we use
a two-layer GCN, where the node embedding is formulated:

f = GCN(g(X), A) = ÃReLU (ÃX WT W
0)W 1. (3)

To handle the heterogeneous graph with different types
of nodes, we then leverage attention mechanism to capture
different influence of neighbors for generating node embed-
dings. Given two neighboring nodes vi, vj ∈ V , we define
the effect coefficient between them via the Softmax function:

ei,j =
exp (fi fTj )∑

vj∈Nvi
exp (fi fTj )

, (4)

whereNvi denotes the neighbor set of vi. Then, the attention-
based embedding for vi is given as follows:

f atti =
∑
j∈Nvi

ei,j · fj . (5)

Further, for each repository node vr ∈ V , we feed its em-
bedding f attr into a fully-connected layer to obtain its mali-
cious score, i.e., Ŷ attr = f attr W att. The objective is to min-
imize the cross-entropy loss between the given labels Y and
the prediction score Ŷ att:

Latt = −
∑
r∈Vr

Yr log(Ŷ attr ), (6)

where Vr is the set of labeled repository nodes in AHIN and
Y is the label of repository (malicious or benign).
Self-Supervised Augmentation. In order to exploit the un-
labeled information in AHIN, we further introduce a self-
supervised module to enhance the representation learning
ability (see Figure 1(c)). Specifically, we randomly mask type
attributes of some nodes in AHIN by using special masked in-
dicators. Then, we employ a mean pooling layer AGGMEAN

to aggregate neighboring nodes information of the masked
nodes and obtain their embeddings:

f mk = AGGMEAN (f
att
1 , ..., fatt|Nvk

|) =
1

|Nvk |
∑
p∈Nvk

fattp , (7)

where Nvk is the neighbor set of vk. Moreover, for each
masked node vk, we feed fmk into a fully-connected layer,
i.e., Ẑmk = fmk Wm, to obtain the predicted value of node
type. The objective of this module is to minimize the cross-
entropy between the given node types Z and the predictions:

Lm = −
∑
k∈Vm

Zk log(Ẑmk ), (8)

where Vm is the set of masked nodes. Finally, the joint ob-
jective is defined as the combination of repository label clas-
sification and self-supervised masked node type prediction:

L = Latt + Lm. (9)

4.3 Task-aware Meta-Learning
MAML. We design the optimization strategy based on
Model Agnostic Meta-Learning (MAML) [Finn et al., 2017].
Specifically, it applies gradient-based algorithm that learns
well initialized model parameters which can be quickly
adapted to unknown new tasks. In this paper, we are given
a set of tasks T defined as classification tasks on different
types of repositories. We use the classification tasks of code
repositories (w/o a COVID-19 theme) as training tasks while
those of COVID-19 themed repositories as testing tasks. Data
sampled from each task τ ∈ T is divided into support set Sτ
and query set Qτ . Then, the classifier is first updated to task-
specific model (w/o a COVID-19 theme) using support set
Sτ , and further optimized to task-agnostic model usingQτ of
all tasks in training data. After sufficient training, the learnt
model further adapt to new tasks with few data samples in
support set, which is called meta-testing. Let φ be the set of
model parameters. For a certai task τ , α is the step size, we
firstly feed Sτ to the model and calculate the loss Lτ on Qτ
to update parameters φ to φ

′

τ through gradient descent:

φ′τ = φ− α5φ Lτ (φ). (10)

Task-aware Attention. Unlike traditional meta-learning
methods [Finn et al., 2017] treating each training task with
equal weight for optimizing the meta-learner, we introduce
the self-attention [Lee et al., 2019] to reflect the importance
of different tasks (see Figure 1(d)). Particularly, the task at-
tention weight is computed as follows:

Oτ =
exp (MLP(Fτ ))∑

τ ′∈T exp(MLP(Fτ ′ ))
, (11)

where Fτ = MEAN (fτ ) represents the task embedding which
is averaged by all of repository embeddings of τ . Then, with
the task-specific model parameter φ′τ obtained from Eq. 10,
the model parameters are updated as follows:

φ←− φ− β 5φ
∑
τ∈T

OτLτ (φ′τ ), (12)

where β is the learning rate, and Lτ is the loss on Qτ . The
Meta-AHIN procedure is illustrated in Algorithm 1.

Algorithm 1 Training Procedure of Meta-AHIN

Require X,A: nodes features and adjacent matrix of AHIN
1: Obtain repository embeddings fatt and masked node em-

beddings fm via Eq. 5 and Eq. 7 respectively
2: Compute the joint objective L via Eq. 9
3: while not convergae do
4: Sample a batch of training tasks τ from T
5: for each τ do
6: Sample a support set Sτ and a query set Qτ
7: Update parameters via Eq. 10
8: end for
9: Calculate the importance of each task via Eq. 11

10: Update model parameters via Eq. 12
11: end while



Setting 1-shot 3-shot 5-shot 8-shot 15-shot

Group Model F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC

B1 Feature+LR 0.4566 0.5169 0.4640 0.5296 0.4639 0.5432 0.4869 0.5524 0.5313 0.5597
Feature+DNN 0.4843 0.5266 0.4918 0.5308 0.4931 0.5554 0.5016 0.5591 0.5564 0.5770

B2
Feature+Protonet 0.4853 0.5278 0.5088 0.5524 0.5259 0.5765 0.6241 0.6438 0.6517 0.6722
Feature+Matching 0.4975 0.5489 0.5325 0.5905 0.5478 0.6253 0.6325 0.6758 0.6417 0.6959
Feature+MAML 0.5268 0.5771 0.5646 0.6204 0.5685 0.6527 0.6653 0.7178 0.6835 0.7356

B3

Deepwalk+DNN 0.4834 0.5210 0.4932 0.5360 0.5056 0.5458 0.5184 0.5691 0.5646 0.5964
metapath2vec+DNN 0.5074 0.5243 0.5137 0.5508 0.5327 0.5687 0.5378 0.5731 0.5731 0.6111
GCN+DNN 0.4989 0.5178 0.5255 0.5543 0.5541 0.5935 0.5848 0.6002 0.6190 0.6304
GAT+DNN 0.5021 0.5160 0.5231 0.5500 0.5713 0.5920 0.5918 0.6280 0.6348 0.6415

B4

Deepwalk+MAML 0.5523 0.6049 0.5940 0.6505 0.6248 0.6867 0.6940 0.7500 0.7303 0.7693
metapath2vec+MAML 0.5892 0.6399 0.6446 0.6835 0.6771 0.7145 0.7316 0.7788 0.7729 0.7960
GCN+MAML 0.6376 0.6836 0.7051 0.7236 0.7464 0.7737 0.7718 0.8058 0.8043 0.8248
GAT+MAML 0.6139 0.6661 0.6903 0.7129 0.7404 0.7622 0.7846 0.8147 0.8209 0.8382

Ours Meta-AHIN 0.7006 0.7173 0.7747 0.7768 0.8149 0.8283 0.8591 0.8687 0.8640 0.8851

Table 2: Performance comparisons of all methods with different support data sizes (shot numbers).

5 Experiments and Analysis
In this section, we first introduce our collected data. Then we
conduct extensive experiments to evaluate the performance of
our proposed model and show related analysis.

5.1 Data Collection
We evaluate our model with the dataset crawled from GitHub.
The dataset is divided into two groups: code repository with
and w/o a COVID-19 theme. we crawl the open source repos-
itories in GitHub from Feb 2020 to Dec 2020. Particularly,
for COVID-19 themed repository, we crawl them based on a
set of COVID-19 related keywords (e.g., coronavirus) and the
corresponding user profile. There are seven types of reposi-
tories based on the application scenarios (e.g., tracking appli-
cation). Four of them are regular repositories viewed as train-
ing tasks and the other three are COVID-19 themed repos-
itories viewed as testing tasks. To obtain the ground truth,
we apply a two-step mechanism: (i) we implement Virus-
Total [Virustotal, 2017] having over 70 anti-malware scan-
ning tools to validate the legitimacy of repository; and then
(ii) we ask anti-malware experts to confirm the legitimacy of
repositories. Hence, we obtain 20,895 repositories including
6,965 malicious (835 with a COVID-19 theme), 13,930 be-
nign repositories (1,670 with a COVID-19 theme). Specifi-
cally, we construct an AHIN with 174,661 nodes (i.e., 20,895
repository nodes, 52,530 keyword nodes, 82,451 file nodes,
and 18,785 user nodes) and 696,464 edges of R1-R7.

5.2 Baseline Methods
We compare our model with following baseline methods:
• Traditional Classification. We take the attributes of each

repository as feature vector and feed it to logistic regres-
sion (LR) or 5-layer deep neural network (DNN) (B1).

• Meta-Learning. For meta-learning baseline methods,
besides MAML [Finn et al., 2017], we also employ

two popular few-shot learning models, Matching Network
(Matching) [Vinyals et al., 2016] and Prototypical Net-
work (Protonet) [Snell et al., 2017] to train a meta-learner
to classify COVID-19 themed repository (B2).

• Graph Embedding. We also utilize four popular graph
representation learning models to learn repository embed-
dings in AHIN: Deepwalk [Perozzi et al., 2014], meta-
path2vec [Dong et al., 2017], GCN [Kipf and Welling,
2017], and GAT [Veličković et al., 2018]. Then the
learned repository embeddings are fed to a generic 5-layer
DNN (B3). In addition, we also implement MAML (B4)
framework to train these four models.

5.3 Evaluation Metrics and Parameter Settings
To evaluate the performances of our model and baseline
methods, we adopt two widely-used metrics: F1 score (F1)
and accuracy (ACC). The experiments are conducted under
the environment of the Ubuntu 16.04 OS, plus Intel i9-9900k
CPU, GeForce GTX 2080 Ti Graphics Cards, and 64 GB of
RAM. For meta-learning models, inner-level and outer-level
learning rate are set as 0.003 and 0.001 respectively. The up-
date steps for the meta-testing task is 2. For graph represen-
tation learning models: the dimension of node embedding is
256. We apply Pytorch to implement all methods and use
10-fold cross-validations.

5.4 Comparison with Baseline Models
The performances of all models are reported in Table 2, where
the best results are highlighted in bold and the best baseline
results are indicated by underline. The shot number denotes
the support data size. According to this table, we can find that
(i) The performance of meta-learning models (with repository
feature (B2) or node embedding (B4)) are better than tradi-
tional feature based classification models (B1). Particularly,
MAML outperforms Protonet and Matching. (ii) For graph
representation learning models (B3 and B4), GCN has the



Setting 3-shot 8-shot

Tid Model F1 ACC F1 ACC

T1
GCN+MAML 0.7113 0.7246 0.7805 0.8134
GAT+MAML 0.725 0.7158 0.7885 0.8253
Meta-AHIN 0.7767 0.7728 0.8437 0.8658

T2
GCN+MAML 0.6856 0.6937 0.7532 0.7842
GAT+MAML 0.6638 0.6854 0.7625 0.7853
Meta-AHIN 0.7583 0.7641 0.8335 0.8494

T3

GCN+MAML 0.6937 0.7158 0.7739 0.8046
GAT+MAML 0.6878 0.7103 0.7870 0.8059
Meta-AHIN 0.7681 0.7613 0.8543 0.8619

Table 3: Results of different models for each type/task (Tid).

best performance when the support data size is small, while
GAT has the best performance when the support data size is
larger. (iii) In all cases, Meta-AHIN significantly outperforms
all baseline methods for COVID-19 themed malicious repos-
itory detection, demonstrating the effectiveness of our model
design. (iv) To further show performance for each type of
COVID-19 themed malicious repository, we report results of
our model and the best baseline methods in Table 3. It is
easy to find that Meta-AHIN is robust for different tasks and
significantly outperforms the baseline models.

5.5 Ablation Studies
Since Meta-AHIN integrates three essential components
(i.e., attention-based GCN (AGCN), self-supervised module
(Ssup), and task-attention MAML (taMAML)), we conduct
extensive ablation studies to analyze the contributions of dif-
ferent components by removing each of them independently
(see Table 4). Specifically, we remove MAML (A1) and
task-attention (A2) from our model respectively. We can see
that both (especially A1) results drop significantly, showing
that both MAML and task-attention have large contribution to
Meta-AHIN. In addition, we remove self-supervised module
(A3) and neighbor attention of GCN (A4) form our model.
We found that Meta-AHIN is better than A3 and A4, demon-
strating that both self-supervised learning and neighbor atten-
tion are effective in enhancing the model.

Model 3-shot 8-shot

F1 ACC F1 ACC

Meta-AHIN 0.7747 0.7768 0.8591 0.8687
– MAML (A1) 0.5559 0.5812 0.6238 0.6570
– attention on MAML (A2) 0.7373 0.7460 0.8150 0.8225
– self-supervised (A3) 0.7489 0.7409 0.8239 0.8360
– attention on GCN (A4) 0.7625 0.7605 0.8379 0.8513

Table 4: Results of model variants.

5.6 Comparison with Industrial Methods
We further validate the performance of Meta-AHIN by com-
parisons with other industrial security products including
LGTM (provided by GitHub) and other popular anti-malware

products integrated in VirusTotal [Virustotal, 2017] (i.e., Dr-
Web, McAfee, and Avast). From Table 5, we observe that
Meta-AHIN achieves around 50% and 20% accuracy im-
provement in comparison with LGTM and Avast respectively.
It shows that our model can significantly improve the perfor-
mance of COVID-19 themed malicious repository detection.

Method Version F1 ACC

LGTM - 0.1459 0.3592

DrWeb 7.0.46.3050 0.5958 0.6174
McAfee 6.0.6.653 0.6187 0.6360
Avast 18.4.3895.0 0.6679 0.6881

Meta-AHIN - 0.8640 0.8851

Table 5: Comparisons with other industrial security products.

5.7 Embedding Visualization
To better show the effectiveness of our model, we visualize
embeddings of one type of repositories generated by Meta-
AHIN and GAT with MAML in Figure 2. The green and
orange points represent the embeddings for benign and mali-
cious repositories respectively. In Figure 2, we observe that
our model splits benign and malicious repositories better than
GAT+MAML, which shows the superiority of our model.

Figure 2: Embedding visualization of malicious/benign repositories.

6 Conclusion
In this paper, we develop a novel model (i.e., Meta-AHIN) to
solve the problem of COVID-19 themed malicious repository
detection in social coding platform (i.e., GitHub) accounting
the constraint of few labeled samples. In particular, our
proposed Meta-AHIN employs an attention-based GCN to
learn repository embeddings in AHIN constructed based on
GitHub data. To exploit unlabeled information in AHIN, a
self-supervised module is proposed and incorporated into
the model. Moreover, a task attention-based meta-learning
framework is developed to address the challenge of few
labeled samples and to optimize model parameters. The
experimental results based on the real-world dataset from
GitHub demonstrate the effectiveness of our proposed model.
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