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Abstract

Social recommendation task aims to predict users’ prefer-
ences over items with the incorporation of social connections
among users, so as to alleviate the sparse issue of collab-
orative filtering. While many recent efforts show the effec-
tiveness of neural network-based social recommender sys-
tems, several important challenges have not been well ad-
dressed yet: (i) The majority of models only consider users’
connections, while ignoring the inter-dependent knowledge
across items; (ii) Most of existing solutions are designed
for singular type of user-item interactions, making them in-
feasible to capture the behavior heterogeneity; (iii) The dy-
namic nature of user-item interactions has been less explored
in many social-aware recommendation techniques. To tackle
the above challenges, this work proposes a Knowledge-aware
Coupled Graph Neural Network (KCGN) that jointly injects
the inter-dependent knowledge across items and users into
the recommendation framework. KCGN enables the high-
order user- and item-wise relation encoding by exploiting mu-
tual information for global graph structure awareness. Addi-
tionally, we further augment KCGN with the capability of
capturing dynamic multi-behavior user-item interactive pat-
terns. Extensive experimental analysis on three real-world
datasets demonstrate the superiority of our method against
many strong baselines in a variety of settings. Source codes
are available at: https://github.com/xhcdream/KCGN.

Introduction

In recent years, social recommendation which aims to ex-
ploit users’ social information for modeling users’ pref-
erences in recommendations, have attracted significant at-
tention (Liu et al. 2019). As has been stated in many
social-aware recommendation literature (Wu et al. 2019a;
Chen et al. 2019b), social influences between users have
high impacts on users’ interactive behavior over items in
various recommender scenarios, such as e-commence (Lin,
Gao, and Li 2019) and online review platforms (Chen et al.
2020a). Hence, researchers propose to incorporate social ties
into the collaborative filtering architecture as side informa-
tion to characterize connectivity information across users.
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The most common paradigm for state-of-the-art social
recommender systems is to learn an embedding function,
which unifies user-user and user-item relations into latent
representations. To tackle this problem, many studies have
developed various neural network techniques to integrate
social information with the user-item interaction encod-
ing as constraints. For example, attention-based mechanism
has been utilized to aggregate correlations among different
users (Chen et al. 2019a; Chen et al. 2019b). Furthermore,
inspired by the recent advance of graph neural architectures,
several attempts are built upon the message passing frame-
works over the user-user social graph. For example, social
influence is simulated with layer-wise diffusion scheme for
information fusion (Wu et al. 2019a). GraphRec (Fan et al.
2019) employs the graph attention network to model the re-
lational structures between users. To enable the modeling
context-aware social effects, DANSER (Wu et al. 2019b)
stacks two-stage of graph attention layer for distinguishing
the multi-faceted social homophily and influence.

While these solutions have provided encouraging results,
several important challenges have not been well addressed
yet. In particular, First, in real-life scenarios, there typically
exist relations between items which characterize item-wise
fruitful semantics relatedness, and are helpful to understand
user-item interactive patterns (Wang et al. 2019a). For in-
stance, in online retailing systems, products of the same cat-
egories (e.g., food & grocery, clothing & shoes) or com-
plement with each other, could be correlated to enrich the
knowledge representation of items (Xin et al. 2019). For on-
line review platforms, the exploiting of dependencies among
the venues with the same functionality, is able to provide ex-
ternal knowledge in assisting user preference learning (Yu
et al. 2019). However, the majority of existing social recom-
mender systems fail to capture item-wise relational struc-
tures, which can hardly distill the knowledge-aware collab-
orative signals from the co-interactive behaviors of users.

Second, To simplify the model design, most of current
social recommendation methods have thus far focused on
modeling singular type of interactive relations between users
and items. Yet, many practical recommendation scenarios
may involve the diversity of users’ interaction behaviors
over items (Cen et al. 2019; Xia et al. 2020). Take the



e-commerce site as an example, the effective encoding of
multi-typed user-item interactive patterns (e.g., page view,
add-to-favorite and purchase) and their underlying inter-
dependencies (e.g., add-to-favorite activities may serve as
useful indicators for making purchase decisions), is crucial
to more accurately inference of user’s complex interest in
social recommendation tasks.

Third, The time dimension of the social recommendation
deserves more investigation, so as to capture behavior dy-
namics under the behavior heterogeneity. Most of recent ap-
proaches ignore the dynamic nature of user-item interactions
and assume that the factor influencing the interactive behav-
ior is only the identity of items (Song et al. 2019). While
there exist a handful of recent work that consider the sequen-
tial information in social recommendation (Song et al. 2019;
Sun, Wu, and Wang 2018), their are limited in their intrinsic
design for singular type of user-item relations. This makes
them insufficient to yield satisfactory embeddings with the
preservation of multiplex behavioral interaction signals in a
dynamic manner for more complex scenarios.

While intuitively useful to integrate the above dimensions
into social recommendation frameworks, two unique tech-
nical challenges arise in achieving this goal. Specifically,
graph-structured neural network can be applied to naturally
model the topological information of social node instances,
such as the graph-based convolutional network (Wu et al.
2019a) or attention mechanism (Wu et al. 2019b; Fan et al.
2019). However, their non-linear aggregation functions can
only learn the local proximity between users and are inca-
pable of capturing the broader context of the graph struc-
ture (e.g., users with the isomorphic social structures) (You,
Ying, and Leskovec 2019). Hence, how to jointly capture
knowledge-aware user-user and item-item local relations, as
well as retain the long-range social influence and item de-
pendencies under global context, remains a significant chal-
lenge. Additionally, it is also very challenging to handle
the dynamic multi-behavior user-item interactions, so as to
capture the dynamic relation-aware structural dependencies
across users and items with arbitrary duration.

The Present Work. In light of the aforementioned moti-
vations and challenges, we study the social recommenda-
tion problem by proposing the Knowledge-aware Coupled
Graph Neural Network (KCGN). To jointly deal with the
user-user and item-item local and global relational struc-
ture awareness, we incorporate the mutual information es-
timation schema into the coupled graph neural architecture.
This design enables the collaboration between neural mu-
tual information estimator and graph-structured represen-
tation learning paradigm, which preserves the node-level
unique characteristics and graph-level substructure knowl-
edge across users and items. In addition, to capture the dy-
namic multi-behavioral interactive patterns, we integrate a
relation-aware message passing framework with the rela-
tive temporal encoding strategy, which endows KCGN with
the capability of automatically learning the temporal user-
specific temporal behavior dependencies and evolution of
multi-behavior user-item interaction graph.

Our contributions can be highlighted as follows:

e We propose to capture both user-user and item-item with
the developed coupled graph neural network. Through
the joint modeling of user- and item-wise dependent
structures, our KCGN can enhance the social-aware user
embeddings with the preservation of knowledge-aware
cross-item relations in a more thorough way.

e We propose a relation-aware graph neural module to en-
code the multi-behavior user-item interactive patterns,
and further incorporate the temporal information into the
message passing kernel to augment the learning of cross-
behavior collaborative relations with behavior dynamics.

e We conduct extensive experiments on three real-world
datasets to show the show the superiority of our KCGN
when competing with 10 baselines from various research
lines. Further studies on scalability evaluation validate
the model efficiency of KCGN over several state-of-the-
art social recommender systems. We also show that our
model maintains strong performance in the cold-start sce-
narios when user-item interactions are sparse.

Problem Definition

We first introduce key definitions of social recommendation
with item relational knowledge and different types of user-
item interactions. We consider a typical recommendation
scenario, in which we have I users U = {uq, ..., u;, ..., ur}
and J items V' = {v1,...,vj,...,vs}. To capture the multi-
behavioral user-item interaction signals, we define a multi-
behavior interaction tensor as below:

Definition 1 Multi-Behavior Interaction Tensor X. We de-
fine a three-way tensor X € RI*/*K 1o represent the differ-
ent types of interactions between users and items, where K
(indexed by k) denotes the number of interaction types (page
view, add-to-favorite, purchase). In X, the element xf =1
if user interacts with item v; under the behavior type of k
and xf ; = 0 otherwise. To deal with the interaction dynam-

ics, we also define a temporal tensor T € RY*7*K vyith the

same size of X to record the timestamp information ( tiﬁ i) of
k

2,7

Definition 2 User Social Graph G,,. G,, = {U, E,} rep-
resents the social relationships (edges E,) among users
(nodes U ), where there exists an edge e; ;; between user u;
and u; given they are socially connected.

each corresponding interaction x

Definition 3 Item Inter-Dependency Graph G,. We fur-
ther define G, = {V, E,} to represent the inter-dependent
knowledge of items. In particular, we characterize the item-
wise relations with a triple {vj,e; j/,vji|vj, vy € V},
where edge e; ;: describes the relationship between item v;
and vy, such as vj and v belong to the same product cat-
egories and have similar functionality, or are interacted by
the same user under the same behavior type k.

Task Formulation. We formulate the studied recommenda-
tion task in this paper as: Input: multi-behavior interaction
tensor X € RI*/*K 'yser social graph G, and item inter-
dependent graph G,,. Output: a predictive function that ef-
fectively forecasts the future user-item interaction relations.
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Figure 1: The architecture of multi-behavior interactive pat-
tern modeling. @ denotes the element-wise addition.

Methodology
Multi-Behavior Interactive Pattern Modeling

To encode the multi-behavioral collaborative relations, we
propose a relation-aware graph neural architecture, which is
built upon the message passing paradigm (as shown in Fig-
ure 1), to empower KCGN capture the dedicated patterns of
different types of user-item interactions. Specifically, given
the multi-behavior interaction tensor X, we first construct a
multi-behavioral relation graph G,,, by representing the in-
teraction heterogeneity with type-specific item sub-vertices
v; = (v, ...,vf, .., vf), where K denotes the number of
interaction types. Each edge between u; and v;? represents
the corresponding interaction under k-th behavior type. Af-
ter that, there are (I 4 J - K) vertices in our multi-behavior
graph Gy = (Vin, Ern ), where Vy,, = U UV and 0f € V.

Message Construction Phase. We first generate the mes-
sage between user vertex u; and his/her interacted type-
specific item vertex v]’? as follows:

_’y(humpﬁj) (1)

where () denotes the information encoding function over
the input feature embeddings h,x € R/ K)xd h, € RI*d,
J
pﬁ ; 1s the decay factor to normalize the propagated influence
with node degrees (Chen et al. 2020b), i.e., p = —(————,
grees ( R VA
where N; denotes the number of neighboring nodes of user
u; and V. jk represents the number of connected user nodes of

item v; under the relation type of k. Hence, the constructed
message can be unfolded as:

_ k 3.
muﬁ—vf - ’Y(hv;ﬁpi,j) my, k

-l (h, W) b

m vk / j
Ui 4=V |NZHNJ]€| vj

where W; € R?*4 is the weight matrix. Similar operation

is applied for the message from u; to type-specific item vf.

Temporal Context Encoding Scheme. Inspired by the
recommendation techniques with modeling of temporal in-
formation (Sun et al. 2019; Huang et al. 2019), in our
framework, we allow the user-item interactions happening
at different timestamps interweave with each other, by in-
troducing a temporal context encoding scheme to model the

dynamic dependencies across different types of users’ be-
haviors. Motivated by the positional encoding algorithm in
Transformer architecture (Vaswani et al. 2017; Sun et al.
2019; Wu et al. 2020) we map the timestamp ¢; ;» of in-

dividual interaction z¥ ; into separated time slot as: T( )
Formally, we employ the sinusoid funct1ons to generate the
relative time embedding for each edge e ; € B in Gy, as:

bir ) = sin(T(tf j)/loooo#)
1,377

b 1)/100007F) 3)

T(th,),2i41 — COS(T(tf,
where (2¢) and (2¢ + 1) denotes the element index with the
even and odd position in embedding bf( ) respectively.

High-Order Message Aggregation Phase. We incorpo-
rate the propagated message between user u; and item v¥ i

as well as temporal context bz (t5 ) ON their interaction edge
K3

eﬁ ;> into our information propagation paradigm as:
1 ) mU 1w
(3,k)ENu; i
1 1 l
SED DR (L o ))W§>>) @
(4,K)ENy 5

where ¢(-) denotes the LeakyReLU function to perform the

transformation. mﬁLu is the self-propagated message with
the weight matrix W{ € R4<4_ & denotes the element-wise
addition. [ is the index of L graph layers. We finally generate

the user/item embeddings (i.e., hy; , h?, ) with the following
i,5

concatenation operation || as:

h:, = (b | |- | h)
;= B |- | h)) 5)

We generate the summarized representation h* over all item
sub-vertex embeddings h; (k€ [1,..., K]) ‘with a gating

mechanism (Ma, Kang, and Liu 2019) to differentiate the
importance of type-specific behavioral patterns.

Knowledge-aware Coupled Graph Neural Module

To jointly inject the user- and item-wise inter-dependent
knowledge into our user preference modeling, we develop
a knowledge-aware coupled graph neural network which
enables the collaboration between the mutual information
learning and graph representation paradigm. While many
efforts have been devoted to modeling graph structural in-
formation, they are limited in their ability in capturing
both local and global graph substructure awareness (Velick-
ovic et al. 2019), such as the user- and item-specific so-
cial/knowledge signals and high-order relationships across
users/items. KCGN is equipped with a dual-stage graph
learning paradigm (As shown in Figure 2).

Local Relational Structure Modeling. We first learn the
user- and item-specific specific embeddings (z.,,, z,,,;) which
preserves the local connection information over user social
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Figure 2: The architecture of joint encoding of user-user and
item-item inter-dependent relational structures.

graph G, and item inter-dependent graph G, with the fol-
lowing graph-based update functions (zJ, =h, =h;):

Ui UJ

22V = (12, 20 G))

2D, 2] = w([nﬁﬂ% 2] -n(Gt)) (6)

where 7(-) denotes the adjacent relations of G,, and G,
with the symmetric normalization strategy in the informa-
tion aggregatlon across the neighboring users/items, e.g.,

n(Gy) = 2A D, . Hence, A, is the addition of iden-
tity matrix I and adJacent matrix A,, so as to incorporate
the information self-propagation (Chen et al. 2020b).

Joint Encoding of Local and Global Dependencies. In
this graph learning paradigm, we aim to inject both local-
and global-level relational structures over the both the user
social graph and knowledge-aware item relation graph into
our learned latent user/item representations. Different from
the existing graph neural network approaches (Velickovic et
al. 2019; Xu et al. 2020) which model the mutual relations
between local feature embeddings and a single global repre-
sentation, we enrich the global semantics with the consider-
ation of connected graph substructures (e.g., the entire social
relations of all users may consist of different connected sub-
graphs G')). In particular, we first generate a fused graph-
level representation f¢ ,fg: € R? by applying the mean
pooling over node- spemﬁc embeddmgs

We design our neural mutual information estimator based
on a discriminator D(x,y) for node-graph pairwise rela-
tionships, to provide probability scores for sampled pairs.
To be specific, we generate positive samples as (z,,fa ),
(2o, o, ). and negative samples as (z,,,fq: ), (Z,,;,fq).
Here, z,,, and Z,, are randomly picked with node shuffling
to generate the misplaced node-graph pairwise relations.

Due to the rationality of cross-entropy in mutual informa-
tion maximization (Wang et al. 2020), we define our noise-

contrastive knowledge-aware loss function Lz as follows:

N

)\1 pos
L= 7( 7(2u, fa,) - logo (2., - fay,)
W B 2 T
neg
+Z (2, far,) - log[l — o(Z, fG')])
v

A2 pos
W( Z 7(2y;,fc1) - logo(z,, - far)

pos neg ~ ;—1

n(‘q

+ Z 7, fcr,) - log[l — oG, -fgg)]) )

where Z\f;jOb/N;joé and Ny, /Ny, denotes the number of
positive and negative instances sampled over sub-graph G,
and G7,. 7(-) is an indicator function, e.g., 7(z,,,fq;) = 1
and 7(z,,,fc; ) = 1 corresponds to the positive and negative
pair instances. A; and Ao are balance parameters. We aim to
minimize L£g which is equivalent to maximize the mutual
information, to jointly preserve the node-specific user/item
characteristics and global graph-level dependencies.

Model Optimization

We define our loss £ which includes (i) multi-behavior
user-item interaction encoding; (ii) knowledge-aware user-
user and item-item inter-dependent relation learning. Partic-
ularly, £ integrates the pairwise BPR loss, which has been
widely used in recommendation task (Wang et al. 2019c),
with the mutual information maximization paradigm as:

L= > B )+AIO017+Ls  B)

(i,5F.i7)€o

~Ino(z; ;+ —

the pairwise training data is denoted as O =
{(u, 3757w, 5%) € RY (w,57) € R™} (RY, R™
denotes the observed and unobserved interactions, respec-
tively). © are trainable parameters, o (-)—sigmoid. A controls
the strength of Lo regularization for overfitting alleviation.

Model Time Complexity Analysis . Our model spends
O(|E| x d) for the message passing in handling all of the u-i,
i-u and i-i relations, where | E| denotes the number of edges.
Also, O((I +J - K) x d?) computation is spent by the trans-
formations. Typically, the first term is dominant due to infor-
mation compression. In conclusion, KCGN is comparable in
time efficiency compared to the most efficient GNN recom-
mendation methods. Also, our model only utilize moderate
memory to store node embeddings (O((I + J - K) x d)),
which is also similar to the existing methods.

Evaluation
Experiments are performed from the following aspects:

e RQ1: Does KCGN consistently outperform other baseline
in terms of recommendation accuracy?

e RQ2: How is the performance of KCGN’s variants with
the combination of different relation encoders?

e RQ3: How is forecasting performance of compared meth-
ods w.r.t different interaction density degrees?



e RQ4: How do the representations benefit from the col-
lectively encoding of global knowledge-aware cross-
interactive patterns in social recommendation?

e RQS5: How do different hyper-parameter settings impact
the performance of our KCGN framework?

e RQ6: How is the model efficiency of the KCGN?

Experimental Settings

Dataset. Table 1 lists the statistics of three datasets.
Epinions'. This data records the user’s feedback over differ-
ent items from a social network-based review system Epin-
ions (Fan et al. 2019). Each explicit rating score (ranging
from 1 to 5) is regarded as an individual type of interaction:
negative, below average, neutral, above average, positive.
Yelp?. This data is collected from the Yelp platform, in
which user-item interactions are differentiated with the same
split rubric in Epinions. Furthermore, user’s social connec-
tions (with common interests) are contained in this data.
E-Commerce It is collected from a commercial e-commerce
platform with different types of behaviors, i.e., page view,
add-to-cart, add-to-favorite and purchase. User’s relations
are constructed with their co-interact patterns.

Table 1: Statistics of Experimented Datasets.

Dataset Epinions Yelp E-commerce
# of Users 18,081 43,043 334,042

# of Items 251,722 66,576 195,940

# of User-Item Interactions 715,821 283,512 1,930,466
Interaction Density Degree 0.0157% 0.0098% 0.0029%
# of Social Ties 590,641 549,451 13,572,512
Social Tie Density Degree 0.1806% 0.0296% 0.0121%
# Item Relations 6,069,106 1,847,060 1,382,280

Evaluation Protocols. We adopt two widely used evalu-
ation metrics for social recommendation tasks (Chen et al.
2019a): Hit Ratio (HR@k) and Normalized Discounted Cu-
mulative Gain (NDCG@Fk). We follow the evaluation set-
tings in (Chen et al. 2019b; Wu et al. 2019a) and employ the
leave-one-out method for generating training and test data
instances. To be consistent with (Sun et al. 2019), we asso-
ciate each positive instance with 99 negative samples.

Baselines. We consider the following compared methods:

Probabilistic Matrix Factorization Method.

o PMF (Mnih and et al 2008): it is a probabilistic approach
with the matrix factorization for user/item factorization.

Conventional Social Recommendation Methods.

o TrustMF (Yang et al. 2016): this method incorporates the
truth relationships between users into the matrix factoriza-
tion architecture for user interaction embedding.

Attentive Social Recommendation Techniques.

o SAMN (Chen et al. 2019a): this model is a dual-stage at-
tention network which learns the influences between the
target user and his/her neighboring nodes.

o EATNN (Chen et al. 2019b): This transfer learning model
is also on the basis of attention mechanism to jointly fuse
information from user’s interactions and social signals.

Uhttps://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm
“https://www.yelp.com/dataset/download

Graph Neural Networks Social Recommender Systems.

o DiffNet (Wu et al. 2019a): it is a deep influence propaga-
tion framework to model the social diffusion process.

e GraphRec (Fan et al. 2019): it aggregates the social rela-
tions between users via a graph neural architecture.

e NGCF+S (Wang et al. 2019c¢): we incorporate the social
ties into the state-of-the-art graph-structured neural col-
laborative filtering model for joint message propagation.

e DANSER (Wu et al. 2019b): it is composed of two graph
attention layers for capturing the social influence and ho-
mophily, respectively from both users and items.

e LR-GCCEF (Chen et al. 2020b): it is a new graph-based
collaborative filtering model based on graph convolu-
tional network by removing non-linearities.

Social Recommendation with Sequential Pattern.
o DGRec (Song et al. 2019): it jointly models the dynamic
user’s preference and the underlying social relations.

Knowledge Graph-enhanced Recommendation.

o KGAT (Wang et al. 2019b): it is a graph attentive message
passing framework which utlize the knowledge graph to
enhance the recommendation with side information.

Implementation Details. In our experiments, the KCGN
framework is implemented with Pytorch and Adam opti-
mizer is adopted for hyperparameter estimation. The train-
ing process is performed with the learning rate of 1e~2, and
the batch size selected from [1024, 2048, 4096, 8192]. The
embedding size is tuned from the range of [8, 16, 32, 64]. In
our evaluations, we employ the early stopping for training
termination when the performance degrades for 5 continu-
ous epochs on the validation data.

Overall Model Performance Comparison (RQ1)

Table 2 reports the results of KCGN and 10 baselines in
predicting the overall click-through rate. It can be seen that
KCGN consistently obtains the best performance across dif-
ferent recommendation scenarios in terms of two metrics,
which justifies the effectiveness of our method in integrat-
ing user-user and item-item relations, with the multi-modal
user-item interactive patterns.

Compared with traditional approaches, neural network
based models usually achieve better performance, due to the
modeling of high-level non-linearities during the feature in-
teraction phase. Among various compared approaches, the
GNN-based models outperforms the attentive social recom-
mender systems, which ascertains the rationality of apply-
ing graph neural networks for high-order relations across
users/items in a recursive way. Different from those GNN-
based techniques, our framework integrates the social and
knowledge-aware relations from global context via a mutual
information encoding paradigm, and also captures behavior
dynamics, which results in consistent better performance.

We further investigate the performance of our KCGN in
making recommendations on the target type of interactions
(e.g., user’s purchase on E-commerce or positive feedback
on Epinions and Yelp). The results are shown in Table 3.
We can observe that KCGN still achieves significant im-
provement, with the careful consideration of dependencies



Table 2: Performance comparison of all methods in CTR prediction in terms of HR@ 10 and NDCG @ ]0.
Data Metrics| PMF | TrustMF | DiffNet | SAMN | DGRec | EATNN | NGCF+S | KGAT | GraphRec | DANSER | LR-GCCF || KCGN
Epinions HR | 06197 | 0.6353 | 0.6323 | 0.6390 | 0.6268 | 0.6422 | 0.7071 | 0.6756 | 0.6865 | 0.6693 | 0.6779 || 0.7429
NDCG | 0.4105 | 04179 | 04160 | 0.4259 | 0.4127 | 0.4483 | 04980 | 0.4708 | 0.4786 | 0.4627 | 04783 || 0.5131
Yelp HR | 0.6986 | 0.7562 | 07853 | 0.7514 | 0.7662 | 0.7715 | 0.7813 | 0.7721 | 0.7605 | 0.7740 | 0.7692 || 0.8026
NDCG | 04609 | 04959 | 0.5126 | 0.4863 | 0.4954 | 0.5066 | 0.5232 | 0.5113 | 0.4943 | 0.5082 | 05189 || 0.5308
b Commence |_HR_[0:6540 [ 06742 | 07223 [ 0.6767 | 0.6723 | 0.6837 | 06944 | 0.6891 | 0.6680 [ 06703 | 06901 [[ 0.7353
NDCG | 04312 | 04527 | 0.5193 | 04614 | 0.4417 | 04569 | 0.4763 | 04735 | 0.4393 | 0.4437 | 04851 | 0.5296

Table 3: Prediction results for like/purchase behaviors on
three datasets in terms of HR@ /0 and NDCG@ 10.

Data [Metrics |DiffNet| SAMN |DGRec| EATNN|NGCF+S|KGAT |GraphRec| DANSER|KCGN
Epinions HR |0.6283[0.6387|0.6251 | 0.6686 | 0.7008 [0.6851| 0.6782 | 0.6535 |0.7459
NDCG [ 0.4113]0.4217[0.4093] 0.4543 | 0.4855 [0.4808] 0.4653 | 0.4449 [0.5196

Yelp HR [0.8098 [0.78720.8087 | 0.8007 | 0.8102 [0.7911] 0.7815 | 0.7900 |0.8396
NDCG [0.5422]0.5258[0.5348] 0.5315 | 0.5469 [0.5300] 0.5209 | 0.5331 [0.5739

E-Crmrc HR [0.8948]0.8912]0.9008 [ 0.8774 [ 0.9077 [0.8864| 0.8493 [ 0.8724 [0.9115
"[NDCG0.6733]0.6602[0.6598 0.6510 | 0.6984 0.6534] 0.6279 | 0.6497 [0.7106

among different types of user-item interactions. While the
baseline KGAT proposes to incorporate the auxiliary knowl-
edge graph, it fails to explicitly differentiate type-specific
behavioral patterns.

We further present the performance of click behavior pre-
diction with different top-K ranked items in Table 4. From
the results, it is obvious that KCGN outperforms all base-
lines with different top-K values, which demonstrate its ro-
bust ranking performance.

Table 4: Ranking performance evaluation on Yelp dataset
with varying Top-K value in terms of HR@K and NDCG@K

@5 @10 @15

Model
HR [ NDCG HR | NDCG HR [ NDCG
DiffNet | 0.6311 | 04622 | 0.7853 | 0.5126 | 0.8628 | 0.5329
SAMN | 05995 | 04363 | 0.7514 | 0.4863 | 0.8271 | 0.5050
DGRec | 0.6114 | 04445 | 07662 | 0.4954 | 0.8399 | 0.5141
EATNN | 0.6258 | 04552 | 0.7715 | 0.5066 | 0.8411 | 0.5250
NGCF+S | 0.6428 | 04697 | 0.7813 | 0.5232 | 0.8525 | 0.5370
KGAT 0.6398 | 04674 | 0.7721 | 05113 | 0.8541 | 0.5329
GraphRec | 0.6233 | 045044 | 0.7605 | 04943 | 0.8342 | 0.5137
DANSER | 0.6304 | 04624 | 0.7740 | 0.5082 | 0.8356 | 0.5245
KCGN 0.6594 | 0.4876 | 0.8026 | 0.5308 | 0.8682 | 0.5424

Impact of Different Relation Encoders (RQ2)

We next perform experiments to evaluate the impact of the
incorporation of multi-typed user-item interactions, user-
wise relations, item-wise dependencies, and the temporal
context, with the following five contrast variants of KCGN.

o KCGN-M: KCGN without modeling multi-behavioral
patterns and only with singular-type interactions.

e KCGN-U: KCGN without the social relation encoder for
capturing the social signals in the recommendation.

o KCGN-I: KCGN without the external knowledge to char-
acterize the item semantic relatedness.

e KCGN-UI: KCGN without both the user- and item-wise
relation encoders and remove the coupled mutual infor-
mation paradigms in the joint learning framework.

e KCGN-T: KCGN without the temporal context encoding.

Figure 3 shows the comparison results of different vari-
ants. We can see that the joint model KCGN achieves
the best performance. As such, it is necessary to build a

joint framework to simultaneously capture social dimension
(users’ social influence), item dimension (knowledge-aware
inter-item relations), multi-behavior interactions, and time-
aware user’s interest, for making recommendations. In addi-
tion, KCGN-UI performs worse than KCGN-U and KCGN-
I, which again confirms the efficacy of our designed hetero-
geneous relation aggregation functions.
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Figure 3: Ablation studies for different sub-modules of
KCGN framework, in terms of HR@ /0 and NDCG @ [0.

Performance over Sparsity Distributions (RQ3)

One key motivation to exploit social- and knowledge-aware
side information is to alleviate the sparsity issue, which lim-
its the model robustness. Hence, we further evaluate our
KCGN for both inactive and active users. In particular, we
partition the target users into four sparsity levels in terms of
their interaction densities. Figure 4 presents the evaluation
results on different user groups on Yelp and E-Commerce
data in terms of NDCG@10. We can observe that KCGN
outperforms representative baselines in most cases, espe-
cially on sparest user groups. This suggests that incorporat-
ing both user and side knowledge as their external relations,
empowers the representations of inactive users through our
recursive information aggregation architecture.
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Figure 4: Performance of KCGN and baselines over users
with different sparsity from Yelp and E-Commerce data.

Qualitative Analyses of KCGN (RQ4)

We illustrate how our social-aware multi-typed relation en-
coding schema benefit the ability of embedding user’s pref-
erence into the latent learning space. In particular, we sam-
ple several users and their four- and five-star rated items



from Yelp dataset, and further visualize the corresponding
user/item embeddings learned by NGCF+S and our KCGN
(as shown in Figure 5). From the results, we can notice that:
i) the visualized embeddings could well preserve the rela-
tionships between users and their interacted items with a
clustering phenomenon (represented with the same color);
ii) KCGN could provide a better separation for different
users and their interacted items (e.g., 9 v.s. 323, and O v.s.
341). Hence, the above observations verify the superior rep-
resentation learning ability of KCGN through the encoding
function which maps the social and behavioral interaction
units into effective latent space.

Q )"..
() [ s
)_seC ° ,% o \*
4 ol .0 a9
Y 5 ‘é\
o »
A Ko ¥ o
(a) NGCF+S (b) KCGN

Figure 5: Visualized embeddings for users (stars) and their
4- or 5-rated item (circles), learned by KCGN and NGCF+S.

Parameter Sensitivity Study (RQ5)

Impact of # Recursive Graph Layers. Figure 6 shows the
experimental results with different number of embedding
propagation layers over user-item interaction graph. We can
observe that increasing the depth of KCGN could boost the
performance, i.e., KCGN-2 performs better than KCGN-0
(without the graph structure) and KCGN-1 (only consider
1-hop neighbors). The performance improvement lies in the
effective modeling of high-order collaborative effects across
users and items. KCGN with 3 graph layers performs worse
than KCGN-2, suggests that exploring higher-level relations
may involve noise.

Impact of Embedding Dimension. We notice that the ac-
curacy is initially improved with larger embedding size due
to the stronger representation ability. However, the perfor-
mance degrades with the further increase of dimensionality,
which indicates the overfitting phenomenon.

Model Efficiency Study (RQ6)

We finally investigate the computation cost of our KCGN
when competing with state-of-the-art baselines. We per-
form experiments on a single NVIDIA GeForce GTX2080
Ti GPU. For fair comparison, th evaluation is conducted
with the released code of baselines and we further optimize
the implementations of data retrieval process for all base-
lines with efficient strategies (e.g., sparse matrix storage). As
shown in Table 5, we can observe that KCGN achieves com-
petitive time efficiency (measured by running time of each
epoch) when compared with neural social recommendation
methods. It is worthwhile pointing out that methods with
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Figure 6: Hyper-parameter study of KCGN

Table 5: Model scalability study with running time (s).

Data | DiffNet | DGRec | SAMN | EATNN | NGCF+S | KGAT | GraphRec | KCGN
Epinions 4.2 4.4 4.7 10.7 12.6 60.5 328.8 17.5

Yelp 1.7 2.6 8.9 13.5 3.2 20.9 94.5 3.7
E-Cmrc. | 70.5 82.5 78.3 152.7 149.4 342.8 2400 70.2

stacking multiple graph attention layers is time-consuming,
due to their pairwise attentive weights calculations for social
or knowledge graph information aggregation.

Related Work

Social-aware Recommender Systems. Deep learning has
been revolutionizing recommender systems and many neu-
ral network models have been proposed for social recom-
mendation scenario (Yin et al. 2019). For example, attention
mechanisms are introduced to learn the influences between
users, such as SAMN (Chen et al. 2019a) and EATNN (Chen
et al. 2019b). It is worth mentioning that several recent ef-
forts explore the GNNs for incorporating social relations
into the user-item interaction encoding (Wu et al. 2019b;
Fan et al. 2019; Wu et al. 2019a; Xu et al. 2020). Different
from these methods, KCGN focus on fuse the heterogeneous
relations from different modalities (social, item knowledge
and temporal), to boost the recommendation performance.

Graph Methods for Recommendation. Many recent ef-
forts have been devoted to exploring insights from GNNs
for modeling collaborative signals in recommender systems.
For example, inspired by the graph convolutional opera-
tions, PinSage (Ying et al. 2018) and NGCF (Wang et al.
2019c) aims to aggregate high-hop neighboring feature in-
formation over the user-item interaction graph. Several sub-
sequent extensions have been developed to revisit the graph-
based CF effects, such as LightGCN (He et al. 2020), LR-
GCCEF (Chen et al. 2020b) and KHGT (Xia et al. 2021). Mo-
tivated by these works, we propose a new knowledge-aware
graph neural architecture for social recommendation.

Conclusion

In this paper, we propose KCGN, an end-to-end framework
that naturally incorporates knowledge-aware item depen-
dency into the social recommender systems. KCGN unifies
the user-user and item-item relation structure learning with
a coupled graph neural network under a mutual information-
based neural estimator. To handle the dynamic user-item in-
teraction heterogeneity, we design a relation-aware graph
encoder to empower KCGN to maintain dedicated repre-
sentations of multiplex behavioral signals with the incorpo-
ration of temporal information. Through extensive experi-
ments on real-world datasets, we demonstrate that KCGN
achieves substantial gains over state-of-the-art baselines.
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