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Third-generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron
star binaries with unprecedented fidelity. Extracting the highest precision science from these signals
is expected to be challenging owing to both high signal-to-noise ratios and long-duration signals. We
demonstrate that current Bayesian inference paradigms can be extended to the analysis of binary
neutron star signals without breaking the computational bank. We construct reduced order models
for ∼ 90 minute long gravitational-wave signals, covering the observing band (5−2048 Hz), speeding
up inference by a factor of ∼ 1.3 × 104 compared to the calculation times without reduced order
models. The reduced order models incorporate key physics including the effects of tidal deforma-
bility, amplitude modulation due to the Earth’s rotation, and spin-induced orbital precession. We
show how reduced order modeling can accelerate inference on data containing multiple, overlapping
gravitational-wave signals, and determine the speedup as a function of the number of overlapping
signals. Thus, we conclude that Bayesian inference is computationally tractable for the long-lived,
overlapping, high signal-to-noise-ratio events present in 3G observatories.

Introduction.— Third-generation (3G) gravitational-
wave detectors such as Cosmic Explorer (CE) [1] and
the Einstein Telescope (ET) [2] will observe hundreds
of thousands to millions of binary neutron star (BNS)
mergers a year [3, 4]. Many of the observed signals will
be extremely loud, with signal-to-noise ratios (SNRs)
∼ O(100 − 1000). These signals will provide exquisite
measurements of neutron star masses, tidal deformabil-
ity, and spins, facilitating breakthroughs in cosmology
and fundamental physics [5, 6]. Analyzing signals in
the 3G era will require scaling data analysis methods
by orders-of-magnitude beyond their current capabilities:
signals will be in band up to around 40 times longer than
in Advanced LIGO/Virgo, the event rate will be thou-
sands of times higher, and multiple signals will be in
band at any one time [1, 2].

Bayesian inference is the gold standard for measuring
the properties of gravitational-wave signals [7–10]. In
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Bayesian inference, the posterior probability density of
source parameters Θ given experimental data d, and an
hypothesis for the data H, is:

p(Θ|d,H) =
π(Θ|H)L(d|Θ,H)

Z(d|H)
, (1)

where π(Θ|H) is the prior distribution, L(d|Θ,H) is the
likelihood function and Z(d|H) is the evidence. The
posterior, p(Θ|d,H), is the target of parameter estima-
tion, and the evidence is the target for hypothesis test-
ing/model selection. As research and development of 3G
instruments ramps up, there is increasing interest in the
posterior density of gravitational-wave source properties
because it is fundamental to answering interesting ques-
tions about the astrophysics capabilities of the detectors.
However, because of the high cost of computing the pos-
terior density for BNSs, approximate methods are often
used to study the capabilities of 3G detectors; see, e.g.,
[11]. Fisher-matrix analyses have been used to approx-
imate the width of p(Θ|d,H), assuming the likelihood
is well approximated by a Gaussian distribution. While
this assumption is valid for some projections of the pos-
terior, it is not generally valid—even when the SNR is in
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the thousands—and must be carefully vetted [9]. Hence,
a Bayesian treatment of parameter estimates is timely in
order to reliably study topics in neutron star astrophysics
with networks of 3G detectors.

In this Letter we demonstrate how Bayesian inference
can be performed on BNS signals using reduced order
models (ROMs) [12–14] of gravitational waveforms. Our
work extends previous applications of reduced order mod-
eling to signals that are up to 90 minutes in duration
from a low frequency of 5 Hz, which is close to the ex-
pected low-frequency cutoff for 3G detectors [1, 2]. In
addition, the ROMs incorporate effects of the Earth’s
rotation on GW signals, tidal deformability of neutron
stars, and spin-induced orbital precession. We show that
our ROMs are accurate representations of the original
waveforms at around the ∼ 10−12 level, ensuring that
the ROM approximation is valid up to SNR ≈ 106 [15]—
good enough for essentially all foreseeable 3G science.

The ROMs form highly efficient approximations of the
likelihood function—the most expensive part of infer-
ence. This approximation is known as a reduced order
quadrature (ROQ) [12, 13, 16]. We show that the ROQ
can speed up the evaluation of the likelihood function by
a factor of around 13,000 on individual BNS signals. This
makes inference on these signals tractable. Additionally,
we show that the ROM/ROQ framework can be applied
to accelerate likelihood calculations on multiple overlap-
ping in-band signals. At any given time, there are likely
to be hundreds of BNSs in the Universe emitting gravi-
tational waves in the 3G observing band [17]. However,
signals are sufficiently separated in time that they can
usually be analysed separately, though, sometimes two
or more signals are sufficiently close that a simultane-
ous analysis is required [4]. We determine the theoretical
speedup factor for multiple in-band signals and show that
the ROM/ROQ framework can speed up inference by a
factor of around 10,000 for several overlapping signals.

We perform Bayesian inference on a 90 min-long signal
at a similar luminosity distance to GW170817, added into
synthetic data of a 3G network consisting of CE, ET, and
a southern-hemisphere CE-like detector which we call
CE-South. The signal has SNR≈2400. We are able to
perform Bayesian inference in around 1600 CPU hours.
Without the ROQ, the run time of the analysis would be
around 107 CPU hours. We overcome limitations of the
Fisher information matrix by accurately determining the
uncertainties of source parameters whose posterior den-
sities are highly non-Gaussian. Our results demonstrate
that even loud 3G signals can be analysed with modest
computational resources. However, reduced-order meth-
ods are essential for controlling the computational cost.

The likelihood function and reduced order models.—
The most expensive part of evaluating the posterior prob-
ability is the likelihood function because it involves com-
puting gravitational waveforms. The log likelihood func-

tion is [18]

lnL ∝ −1

2

〈
d− h, d− h

〉

= 〈d, h〉 − 1

2
〈h, h〉 − 1

2
Zn , (2)

where the constant Zn = 〈d, d〉 is known as the “noise ev-
idence,” and quantifies the likelihood of the data under
the hypothesis that it is Gaussian noise [19]. The an-
gle brackets 〈a, b〉 denote the usual noise-weighted inner
product [20].

In the frequeny domain, the gravitational waveforms h
have the general form [11]

(3)
h(f ; Θ) =

1

DL

[
F+(f ; ξ)h+(f ; θ, ι, φc, tc)

+ F×(f ; ξ)h×(f ; θ, ι, φc, tc)
]
,

where h(+,×)(f ; θ, ι, φc, tc) are the individual gravita-
tional wave polarizations and are a function only of the
intrinsic parameters θ, orbital inclination ι, and phase
and time at coalescence φc and tc. DL is the luminos-
ity distance to the source. The quantities F(+,×) are
the detector response functions, which depend on the
binary’s right ascension α, declination δ and polariza-
tion phase ψ, which define ξ = (α, δ, ψ). The full set
of parameters Θ which appears on the left-hand side
is the combined set of intrinsic and extrinsic parame-
ters, i.e., Θ = (θ, ξ, ι, φc, tc, DL). The detector response
functions are also functions of time/frequency due to the
Earth’s rotation, which cannot be neglected for BNS sig-
nals starting from 5 Hz [11]. Since the time evolution
of the response functions is slow compared to that of
the gravitational-wave signal, we can use the stationary
phase approximation which allows us to separate F(+,×)
and h(+,×)—see [11] for details, and the explicit form of
the frequency-dependent F(+,×).

In the frequency domain, the ROMs of h (Eq. 3) have
the following general form [13]:

hROM(f ; Θ) =

N∑

J=1

h(FJ ; Θ)BJ(f) . (4)

The quantities BJ(f) are a basis set which span the space
of the signal. The h(FJ ; Θ) which appear on the right-
hand side of Eq. 4 are the unapproximated waveform
(Eq. 3) evaluated at a frequency FJ from a reduced set
of N frequencies {FJ}NJ=1. Previous work on reduced
order modeling for gravitational-wave parameter estima-
tion also constructed ROMs for the waveform amplitude
h∗h which is used to approximate the 〈h, h〉 term in the
likelihood (Eq. 2) [13]. We find this unnecessary, and
this term can be computed at negligible cost which we
discuss below.

The ROM requires M/N fewer waveform evaluations
than the unapproximated expression for the waveform,
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where M = T × [fmax − fmin] and T is the signal du-
ration. This is given by the Nyquist theorem, assum-
ing a fixed sampling rate. For 3G detectors, we assume
fmax = 2048 Hz, fmin = 5 Hz, T = 90 min (5400 s). When
ROMs are substituted into the likelihood function, they
form a compressed inner product known as a reduced
order quadrature (ROQ). The ROQ speeds up the likeli-
hood function by a factor [12, 13]

S ≈M/N , (5)

and in general S � 1. This speedup assumes that
the waveforms have a closed-form expression, which
frequency-domain waveforms typically do.

ROM construction.—The ROMs are constructed in
three steps: (i) make a representative “training-space” of
gravitational waveforms which span the parameter range
of interest; (ii) select basis elements from the training set;
and (iii) determine the reduced set of frequency nodes.
All steps are achieved using a greedy algorithm [21–23].
We construct ROMs of 90 min-long gravitational-wave
signals including spin precession and tidal deformabil-
ity. That we can build ROMs for 90 min-long BNS sig-
nals should not be taken for granted. Previous studies
[12, 13, 24] have not established whether ROMs for such
signals can be made in practice or if they would be prac-
tical for data analysis. In [12, 13, 24] various scalings for
ROM basis sizes are given as a function of low-frequency
of the signals, or parameter space ranges. However, there
has been no systematic study on the size of ROM bases
on both low-frequency and parameter space size. The
fundamental issue is whether the parameter space can be
made small enough to be both effective and efficient for
long-duration signals. Below, we show that it is indeed
the case.

We focus on individual signals, and target a small re-
gion of intrinsic parameter space on which we build a
training set. The parameters are the chirp mass Mc,
symmetric mass ratio η, tidal deformabilities (λ1, λ2),
spin components projected along the orbital angu-
lar momentum axis (χz

1, χ
z
2), effective-precession spin

and the initial value of the azimuthal precession an-
gle (χp, α0), and orbital inclination ι. We use the
waveform model IMRPhenomPv2 NRTidalv2 [25–
27], which is parameterized by the vector θ =
{M, η, χz

1, χ
z
2, χp, α0, ι, λ1, λ2}. Inclination appears here

because it evolves during the inspiral due to spin-induced
orbital precession.

The size of the ROM basis is sensitive to the range
in chirp mass. We pick a fiducial chirp mass value of
M∗ = 1.385M� and restrict the width of the chirp
mass of the training set to be ±5× 10−4M�. This mass
range is approximately 1 × 103∆M, where ∆M is the
Fisher-matrix error, estimated using gwbench [28]. Fol-
lowing the Fisher-matrix error treatment in [29], we find
that signals with SNRs of around 10 have Fisher errors
∆M ∼ 10−4M�. Hence, our chirp mass range ensures
that we can analyze signals with SNRs around 10 with-
out artificially railing against prior bounds in mass. In

practice, we may want to use broader priors in mass
than are possible with a single parameter-space patch.
Broader prior ranges can be employed simply by uti-
lizing multiple ROM bases that individually span small
parameter-space ranges. Around 1000 such patches in
M−η would be needed to cover the full BNS mass space,
assuming BNSs have chirp masses approximately in the
range 1M�–2M�.

All other intrinsic parameters are chosen to have
physically-motivated ranges. The symmetric mass ratio
is restricted to 0.2 ≤ η ≤ 0.25. Assuming a minimum
neutron star mass of 1M�, this range ensures we de-
scribe neutron stars with masses up to 2.6M� (around
the maximum plausible non-rotating neutron star mass
[30–32]). For all other parameters, we consider the fol-
lowing ranges: 0 < χp ≤ 0.1, −0.1 ≤ χz

1,2 ≤ 0.1,
0 ≤ λ1,2 ≤ 5000. Additionally, the ROM is constructed
to be valid for all values of sky location parameters
ξ = (α, δ, ψ), luminosity distance DL, phase at coales-
cence φc, ι, and α. We consider three starting frequencies
fmin = 5, 10, 20 Hz, maximum frequency fmax = 2048 Hz,
and signal duration of T = 90 min. These values of fmin

test how the size of the ROM bases scales with the low-
frequency cut off.

We construct a training set of waveforms for the pa-
rameter space defined above. The basis and reduced
frequency nodes are selected using a greedy algorithm.
Details about the training set and greedy algorithm
are described in the supplementary material. For sig-
nals starting in band from 5, 10, 20 Hz, the ROMs have
N = 522, 291, 179 basis elements. The basis size only
increases by a factor of three when going from 20 Hz to
5 Hz, despite the signals being over 40 times longer in du-
ration. Bases of around ∼ 500 elements should be typical
for ROMs of BNS signals starting from 5 Hz with parame-
ter ranges similar to those used here. Reducing the chirp
mass to that of a 1M� + 1M� binary will change the
signal duration only by a factor of 2, much less than the
difference in the duration of signals starting from 20 Hz
vs 5 Hz. Hence, the basis size should be roughly constant
for lower-mass systems.

The computational cost of building the ROM is rela-
tively small. We require 160 16-core 2.20GHz Intel Xeon
E5-2660 CPUs running for around 7 minutes, and then a
single CPU running for around 2 hours to complete the
basis construction – see Step-(ii) of the ROM building
strategy in the Supplementary material. The memory
footprint of the basis is around 90GB. Thus, it would be
feasible to build reduced order models covering the full
chirp-mass range of BNSs.

Likelihood speedup.—The most efficient use of ROMs in
Bayesian inference is to compress the large inner prod-
ucts in the likelihood function. The compressed inner
products are known as a ROQ integration rule. We ob-
tain the ROQ likelihood by substituting the ROM (Eq. 4)
into the likelihood (Eq. 2). The ROQ likelihood is

lnLROQ ∝ L(Θ)− 1

2
Q(Θ)− 1

2
Zn , (6)
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where the functions L(Θ) and Q(Θ) are given by

L(Θ) = <
N∑

J=1

h(FJ ; Θ)ωJ(tc) , (7)

Q(Θ) =
N∑

I=1

N∑

J=1

h∗(FI ; Θ)h(FJ ; Θ)ψIJ . (8)

The quantities ωJ(tc) and ψIJ are integration weights
that depend only on the basis functions, data, and noise
power spectral density, and are defined in the supplemen-
tary material.

The computational cost of the ROQ likelihood scales
as

lnL ∼ O(N ×W ) , (9)

where W is the number of operations required to evaluate
the waveform at a given frequency. Unlike previous work
[13], we have chosen to write the Q term without the use
of an explicit basis for the waveform amplitude h∗h. The
scaling of Eq. 8 is independent of W because waveforms
at the reduced frequencies have already been computed
as part of L (Eq. 7). Thus, Eq. 8 scales like ∼ O(N2) and
we find that N is small enough such that N2 � N ×W .
For our basis starting from 5 Hz (which contains N = 522
basis elements), the theoretical speedup (Eq. 5) is S =
5400s× (2048−5)Hz/522 ≈ 21, 000. Empirically, we find
a speed up of around 13,000. The degradation in perfor-
mance is due to fixed overheads, such as allocating data
structures for the waveforms. The integration weights
ωIJ(tc) and ψIJ are dependent on the data and noise
power spectral density and have to be computed before
data analysis can take place. The cost of computing both
is negligible in practice.

Validation and accuracy.—The accuracy of the ROQ
likelihood (Eq. 6) is limited by the accuracy of the ROM.
We validate the accuracy by computing the mismatch M
between the ROM representation of h (Eq. 4) and its
unapproximated form (Eq. 3):

M(h) = 1− 〈hROM, h〉√
〈hROM, hROM〉〈h, h〉

. (10)

In the noise-weighted inner products, we assume a flat
power spectrum, meaning our mismatches are more con-
servative than if one used a gravitational-wave detector
noise power spectral density. In Fig. 1 we show the mis-
match M(h) for 2×106 random parameter values Θ that
were not included in the training space. We include ran-
dom sky locations, inclinations, luminosity distances, and
phases at coalescence. We also include the frequency-
dependent response functions in the mismatch calcula-
tions, demonstrating that the ROM is accurate describ-
ing signals with amplitudes modulated by the Earth’s ro-
tation. The mismatch is strongly peaked around 10−12,
ensuring that parameter estimation will be unbiased up
to SNR ≈ 106 (so that twice the mismatch multiplied by
the SNR squared is less than unity [15, 33]).

10−12 10−10 10−8

ROM mismatch

101

103

C
ou

nt
s

FIG. 1: Accuracy of the ROM approximation for 90-minute
long BNS signals starting from 5 Hz. The signals include am-
plitude modulation due to the Earth’s rotation.

Inference with a high-SNR signal.—As an illustrative
example, we consider inference on a signal, which we
nickname GW370817. The parameters are: Θ370817 =
{M = 1.3854M�, η = 0.24925, χz

1 = −0.0113, χz
2 =

0.01070, χp = 0.03, α0 = 1.1, ι = 0.785, λ1 = 422.5, λ2 =
839.4, DL = 38.77 Mpc, α = 1 hours 57 min 20.5 s, δ =
−14.9 deg, ψ = 2.012, φc = 0}. This signal has a luminos-
ity distance consistent with GW170817. We add the sig-
nal into synthetic data of a three-detector network con-
sisting of CE, ET, and CE-South. We use a “zero-noise”
realization of Gaussian noise [34], which (statistically) is
the most likely realization. This noise realization has the
added convenience that if we use flat priors, the posterior
peaks at exactly the true parameter values which serves
as a useful diagnostic check. The signal has SNR = 2400.
We use flat priors on all parameters, and the ranges are
given by the range of validity of the ROM. In addition,
we impose a physically motivated prior constraint on the
component tidal deformability: λ2 > λ1. Lastly, we use
a uniform prior over a 0.2s interval centered on the true
trigger time. In general it is not necessary to restrict
the chirp mass prior to such a narrow range. Provided
that ROMs exist in local patches covering an extended
chirp-mass region, a wide prior can be utilized by build-
ing ROQ weights from multiple ROM bases.

We use the dynesty nested sampling package to infer
the posterior density. In order to obtain well-converged
posteriors, we set the number of live points to 5000, and
use a random-walk proposal from the bilby [10, 35] in-
ference library, which takes a number of steps equal to 70
times the running estimate of the autocorrelation length.
The analysis is parallelized over 160 cores. The analysis
takes 10 hours (1600 CPU hours) on a cluster of 16-core
2.20GHz Intel Xeon E5-2660 CPUs. The large CPU time
occurs because the implementation of the nested sam-
pling algorithm in [10, 35] is extremely slow to converge
when the SNR is in the thousands. However, only a hand-
ful of events are likely to be detected at these SNRs, with
the vast majority of signals having “moderate” SNRs
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FIG. 2: One- and two-dimensional posterior densities for
component masses and component tidal deformabilities.
Dark/light shading indicates the one-sigma/two-sigma credi-
ble interval respectively. True parameter values are indicated
by dashed lines.

less than 100. Analysis on signals with moderate SNRs
takes on the order of a day using a single CPU using
ROM/ROQ techniques [13]. In contrast, the CPU time
without ROM/ROQ methods would be on the order of
20×106 hours, i.e., prohibitively expensive. This analysis
highlights the need for improvements to the convergence
of stochastic-sampling based approaches to inference.

In Fig. 2, we show the one- and two-dimensional pos-
terior densities for the component masses and tidal de-
formabilities. The component masses can be constrained
to the ∼ 5× 10−3M� level at the 90% credible intervals,
which is consistent with Fisher information estimates.
The tidal deformabilities have broad uncertainty and are
highly non-Gaussian, demonstrating the importance of
full Bayesian inference for understanding how well tidal
effects—and hence nuclear physics—can be constrained
by 3G observatories.

Overlapping signals.—When multiple signals are
present simultaneously, the log likelihood function is

lnL ∝ −1

2

〈
(d−

n∑

i=1

hi), (d−
n∑

j=1

hj)
〉

=
〈
d,

n∑

i=1

hi

〉
− 1

2

∑

ij

〈hi, hj〉 −
1

2
Zn, (11)

where the sums run over the independent gravitational-
wave signals. The double sum

∑
ij runs over all pairs

(i, j). In the multiple-signal case, the ROQ likelihood

and its scaling are

lnLROQ =
n∑

i=1

L(Θi)−
n∑

i=1

1

2
Q(θi)

+

n2/2∑

{j,k}

Rjk(Θj ,Θk,∆t
jk)− 1

2
Zn (12)

∼ O
(
N × n×W +N2 × (n+ n2/2)

)
,

where L and Q are given by Eq. 7 and Eq. 8. The
Rjk term sums over products of all pairs of waveforms
{j, k}, with j > k, and is also a function of the rela-
tive time offset between two signals, ∆tjk. The function
Rjk(Θj ,Θk,∆t

jk) is

〈
h(Θj), h(Θk)

〉
≈ Rjk(Θj ,Θk,∆t

jk) =

<
N∑

K=1

N∑

L=1

h∗(FK ; Θj)h(FL; Θk)ΓKL(∆tjk) , (13)

where the matrix ΓKL(∆tjk) is a set of integration
weights, given in the supplementary material. The over-
all speedup of the multiple-signal ROQ likelihood Eq. 12
with respect to non-ROQ likelihood (Eq. 11) is

S ≈ MnW +Mn2/2

NnW +Nn2/2
, with n > 1 , (14)

where we have kept terms at O(W ) and O(n2). The
N2n2 scaling is potentially problematic if the number
of in-band signals is large. However, most overlapping
signals—roughly between 96% to 99.5%—are well sepa-
rated in time so that they can be analysed separately (ta-
bles I and IV of [4]). Thus, we only consider the speedup
for the simultaneous analysis of a few in-band signals.
We empirically determine a speed-up of around ∼ O(104)
compared to the calculation time without ROM for up to
10 in-band signals. We show the speedup as a function
of the number of in-band signals in the supplementary
material.
Discussion.—Reduced order models of gravitational-

wave signals from BNS mergers can be used to acceler-
ate parameter estimation in 3G observatories, thereby
removing a computational hurdle. This work lays the
groundwork for detailed studies of BNS systems in the
3G era. Further, the ROM/ROQ framework can be
used to efficiently carry out inference on data contain-
ing multiple overlapping signals. Further avenues to
pursue include ROMs of more sophisticated waveforms,
e.g., with higher-order gravitational-wave modes, which
can place tighter constraints on parameter estimates
[36]. Bayesian inference on very loud signals—SNR ∼
O(1000)—requires significantly more likelihood evalua-
tions than in analyses on LIGO/Virgo signals. Sampling-
based methods for Bayesian inference will have to be sig-
nificantly adapted and scaled up in order to efficiently
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analyze data in the 3G era. For instance, Hamilto-
nian Monte Carlo methods [37] (which exploit gradi-
ents of posterior densities) and machine learning tech-
niques, e.g., [38–41] (which provide rapid approximations
to reduced order models and posterior densities) may be
promising avenues to explore.
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