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Abstract

Generative Adversarial Networks (GANs) are
modern methods to learn the underlying dis-
tribution of a data set. GANs have been
widely used in sample synthesis, de-noising,
domain transfer, etc. GANs, however, are
designed in a model-free fashion where no ad-
ditional information about the underlying dis-
tribution is available. In many applications,
however, practitioners have access to the un-
derlying independence graph of the variables,
either as a Bayesian network or a Markov
Random Field (MRF). We ask: how can one
use this additional information in designing
model-based GANs? In this paper, we pro-
vide theoretical foundations to answer this
question by studying subadditivity properties
of probability divergences, which establish
upper bounds on the distance between two
high-dimensional distributions by the sum of
distances between their marginals over (local)
neighborhoods of the graphical structure of
the Bayes-net or the MRF. We prove that
several popular probability divergences sat-
isfy some notion of subadditivity under mild
conditions. These results lead to a principled
design of a model-based GAN that uses a set
of simple discriminators on the neighborhoods
of the Bayes-net/MRF, rather than a giant
discriminator on the entire network, provid-
ing significant statistical and computational
benefits. Our experiments on synthetic and
real-world datasets demonstrate the benefits
of our principled design of model-based GANs.
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1 Introduction

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) have been successfully used to model com-
plex distributions such as image data. GANs model
the learning problem as a min-max game between gen-
erator and discriminator functions. Depending on the
specific cost function and constraints on the discrimina-
tor network, the associated optimization problem aims
at estimating a Wasserstein distance (Arjovsky et al.,
2017), an Integral Probability Measure (IPM) (Müller,
1997), an f -divergence (Nowozin et al., 2016), etc.,
between the target and generated distributions.

GANs are often designed in a model-free fashion where
no additional information about the underlying distri-
bution is available1. In some applications, however,
one may have some side information about the data
distribution. For example, one may know that there is
a Markov chain governing the underlying independence
graph of the variables. In general, the underlying in-
dependence graph of variables may be available as a
Bayesian network (i.e. a directed graph) or a Markov
Random Field (i.e. an undirected graph). In this paper,
we ask: how can we use this additional information in
a principled model-based design of GANs?

In this paper, we provide theoretical foundations to an-
swer the aforementioned question for high-dimensional
distributions with conditional independence structure
captured by either a Bayesian network or a Markov
Random Field (MRF). We mainly focus on the appli-
cation to GANs, while the theory developed can be
used by any other type of adversarial learning that ex-
ploits discriminator networks. The pertinent question

1Some works have studied GANs under some strict as-
sumptions on the input data distribution. For example,
Feizi et al. (2017) has designed GANs for multivariate Gaus-
sians while Balaji et al. (2019) and Farnia et al. (2020) have
studied GANs for mixtures of Gaussians. In contrast, our
method is applicable to any Bayesian network or Markov
Random Field, which are significantly richer families of
distributions.
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is whether a known Bayes-net or MRF structure can
be exploited to design a GAN with multiple discrim-
inators that are localized and simple. In particular,
we are interested in whether we can replace the large
discriminator of the vanilla GAN implementation with
several simple discriminators that are used to enforce
constraints on local neighborhoods of the Bayes-net or
the MRF (i.e. local discriminators). Ignoring the un-
derlying conditional independence structure we might
know about the target distribution and letting the
GAN “learn it on its own” requires a very large discrim-
inator network, especially in applications where data is
gathered across many time steps. Large discriminators
face computational and statistical challenges, given
that min-max training is computationally challenging,
and statistical hypothesis testing in large dimensions
requires sample complexity exponential in the dimen-
sion; see e.g. discussions by Daskalakis and Pan (2017);
Daskalakis et al. (2019); Canonne et al. (2020).

Our proposed framework is based on subadditivity prop-
erties of probability divergences over a Bayes-net or a
MRF, which establish upper bounds on the distance
between two high-dimensional distributions with the
same Bayes-net or MRF structure by the sum of dis-
tances between their marginals over (local) neighbor-
hoods of the graphical structure of the Bayes-net or
the MRF (Daskalakis and Pan, 2017). For a Bayes-Net,
each local neighborhood is defined as the union of a
node i and its parents Πi, as it is the smallest set that
encodes conditional dependence. For a MRF, the set
of local neighborhoods can be defined as the set of
maximal cliques C of the underlying graph.

Let δ be some divergence or probability metric, such
as some Wasserstein distance or f -divergence, that
is estimated by each of the local discriminators in
their dedicated neighborhood. If we train a gener-
ator with the set of local discriminators, it samples
a distribution Q that minimizes the sum of diver-
gences δ between marginals of P and Q over the
local neighborhoods, where P is the target distribu-
tion. As per our description of what the local neigh-
borhoods are in each case, the optimization objec-
tive becomes

∑n
i=1 δ(PXi∪XΠi

, QXi∪XΠi
) on a Bayes-

net, and
∑
C∈C δ(PXC , QXC ) on a MRF. However,

our real goal is to minimize some divergence δ′(P,Q)
of interest measured on the joint (high-dimensional)
distributions. We say that δ(., .) satisfies general-
ized subadditivity if the sum

∑n
i=1 δ(PXi∪XΠi

, QXi∪XΠi
)

or
∑
C∈C δ(PXC , QXC ) upper-bounds the divergence

δ′(P,Q) of interest up to some constant factor α >
0 and additive error ε ≥ 0, i.e. δ′(P,Q) − ε ≤
α ·

∑n
i=1 δ(PXi∪XΠi

, QXi∪XΠi
) (on Bayes-nets), or

δ′(P,Q)−ε ≤ α·
∑
C∈C δ(PXC , QXC ) (on MRFs), where

δ′ can be the same or different from δ. In this sense,

the generator effectively minimizes δ′(P,Q) by mini-
mizing its upper-bound. Since, in many applications,
local neighborhoods can be significantly smaller than
the entire graph, local discriminators targeting each
of these neighborhoods will enjoy improved computa-
tional and statistical properties in comparison to a
global discriminator targeting the entire graph.

The key question is which divergences or metrics ex-
hibit subadditivity to be used in our proposed frame-
work. For testing the identity of Bayes-nets, Daskalakis
and Pan (2017) shows that squared Hellinger distance,
Kullback-Leibler divergence, and Total Variation dis-
tance satisfy some notion of generalized subadditivity.
Since our goal in this paper is to exploit subadditivity
in the design of GANs, we are interested in establish-
ing generalized subadditivity bounds for distances and
divergences that are commonly used in GAN formula-
tions. In this work, we prove that

• Jensen-Shannon divergence used in the original GAN
model (Goodfellow et al., 2014),

• Wasserstein distance used in Wasserstein GANs (Ar-
jovsky et al., 2017), and Integral Probability Metric
(IPM) (Müller, 1997) used in Wasserstein, MMD and
Energy-based GANs (Li et al., 2015; Zhao et al.,
2017),

• and nearly all f -divergences used in f -GANs
(Nowozin et al., 2016),

satisfy some notion of generalized subadditivity over
Bayes-nets under some mild conditions.2 Moreover, we
prove that under some mild conditions

• Wasserstein distance and IPM satisfy generalized
subadditivity on MRFs.

These results establish theoretical foundations for using
underlying conditional independence graphs in GAN’s
designs. We demonstrate benefits of our design over
several synthetic and real datasets such as the synthetic
“ball throwing trajectory” dataset and two real Bayes-
net datasets: the EARTHQUAKE dataset (Korb and
Nicholson, 2010) and the CHILD dataset (Spiegelhalter,
1992).

2 Related Works

In many applications, adversarial learning has been
used in a broader sense where multiple local discrimina-
tors have been employed in the learning framework. For
example, in image-to-image translation methods (Isola
et al., 2017; Zhu et al., 2017; Yi et al., 2017; Choi et al.,
2018; Yu et al., 2019; Demir and Unal, 2018), local

2We discuss the notion of “local subadditivity" in Sec-
tion 6 and Appendix F.
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discriminators are applied to different patches of im-
ages (Li and Wand, 2016). In the analysis of time-series
data as well as natural language processing (NLP) tasks,
local discriminators based on sliding windows (Li et al.,
2019), self-attention (Clark et al., 2019), recurrent neu-
ral networks (RNNs) (Esteban et al., 2017; Mogren,
2016), convolution neural networks (CNNs) (Nie et al.,
2018), and dilated causal convolutions (Oord et al.,
2016; Donahue et al., 2019) have been applied on dif-
ferent subsequences of the data. These models have
been applied to a wide range of tasks including image
style transfer (Isola et al., 2017; Zhu et al., 2017; Yi
et al., 2017; Choi et al., 2018), inpainting (Yu et al.,
2019; Demir and Unal, 2018), and texture synthesis (Li
and Wand, 2016), as well as time-series generation (Es-
teban et al., 2017; Mogren, 2016), imputation (Liu
et al., 2019), anomaly detection (Li et al., 2019), and
even video generation (Clark et al., 2019) and inpaint-
ing (Chang et al., 2019).

Intuitively, these methods aim at structuring the gener-
ation process and/or narrowing down the purview of the
discriminator to capture known dependencies leading
to improved computational and statistical properties.
These methods, however, are mostly not accompanied
by theoretical foundations. In particular, it is not clear
what subset of features each local discriminator should
be applied to, how many local discriminators should be
used in the learning process, and what the effect of the
discriminator localization is on estimating the distance
between the generated and target distributions.

3 Notation

Consider a Directed Acyclic Graph (DAG) G with
nodes {1, . . . , n}. Let Πi be the set of parents of node
i in G. Assume that (1, . . . , n) is a topological ordering
of G, i.e. Πi ⊆ {1, . . . , i−1} for all i. A probability dis-
tribution P (x) defined over space Ω = {(x1, . . . , xn)}
is a Bayes-net with respect to graph G if it can be
factorized as P (x) =

∏n
i=1 PXi|XΠi

(xi|xΠi).

Given an undirected graph G with nodes {1, . . . , n}, a
probability distribution P (x) defined over space Ω =
{(x1, . . . , xn)} is a MRF with respect to graph G if any
two disjoint subsets of variables A,B ⊆ {1, . . . , n} are
conditionally independent conditioning on a separating
subset S of variables (i.e. S such that all paths in G
from nodes in A to nodes in B pass through S). This
conditional independence property is denoted XA ⊥⊥
XB | XS . Such P (x) can be factorized as P (x) =∏
C∈C ψC(XC), where C is the set of maximal cliques

in G. In this paper, unless otherwise noted, we always
assume Xi ∈ Rd, thus Ω ⊆ Rnd, and use the Euclidean
metric. We always assume the density exists.

4 Generalized Subadditivity on
Bayes-nets

In this section, we define the notion of generalized
subadditivity of a statistical divergence δ on Bayes-nets.
We discuss subadditivity on MRFs in Section 5.

Definition 1 (Generalized Subadditivity of Diver-
gences on Bayes-nets). Consider two Bayes-nets P,Q
over the same sample space Ω = {(x1, . . . , xn)} and
defined with respect to the same DAG, G, i.e. fac-
torizable as P (x) =

∏n
i=1 PXi|XΠi

(xi|xΠi), Q(x) =∏n
i=1QXi|XΠi

(xi|xΠi), where Πi is the set of parents
of node i in G. For a pair of statistical divergences δ
and δ′, and constants α > 0 and ε ≥ 0, if the following
holds for all Bayes-nets P,Q as above:

δ′(P,Q)− ε ≤ α ·
n∑
i=1

δ(PXi∪XΠi
, QXi∪XΠi

),

then we say that δ satisfies α-linear subadditivity with
error ε with respect to δ′ on Bayes-nets. For the com-
mon case ε = 0 and δ′ = δ, we say that δ satisfies
α-linear subadditivity on Bayes-nets. When addition-
ally α = 1, we say that δ satisfies subadditivity on
Bayes-nets.

We refer to the right-hand side of the subadditivity
inequality as the subadditivity upper bound. If a sta-
tistical divergence δ satisfies linear subadditivity with
respect to δ′, minimizing the subadditivity upper bound
serves as a proxy to minimizing δ′(P,Q). The subad-
ditivity upper bound is often used as the objective
function in adversarial learning when local discrimina-
tors are employed.

We argue that subadditivity of δ on (1) product mea-
sures, and (2) length-3 Markov Chains suffices to imply
subadditivity on all Bayes-nets. The claim is implicit
in the proof of Theorem 2.1 by Daskalakis and Pan
(2017); we state it explicitly here and provide its proof
in Appendix A.1 for completeness. Roughly speaking,
the proof follows because we can always combine nodes
of a Bayes-net into super-nodes to obtain a 3-node
Markov Chain or a 2-node product measure, and ap-
ply the Markov Chain/Product Measure subadditivity
property recursively.

Theorem 1. If a divergence δ satisfies the following:

(1) For any two Bayes-nets P and Q on DAG
X → Y → Z, the following subadditivity holds:
δ(PXY Z , QXY Z) ≤ δ(PXY , QXY ) + δ(PY Z , QY Z).

(2) For any two product measures P and Q over vari-
ables X and Y , the following subadditivity holds:
δ(PXY , QXY ) ≤ δ(PX , QX) + δ(PY , QY ).

then δ satisfies subadditivity on Bayes-nets.
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Using Theorem 1, it is not hard to prove that squared
Hellinger distance has subadditivity on Bayes-nets, as
shown by Daskalakis and Pan (2017). For completeness,
we provide proof of the following in Appendix A.2
Theorem 2 (Theorem 2.1 by Daskalakis and Pan
(2017)). The squared Hellinger distance defined as
H2(P,Q) := 1 −

∫ √
PQ dx satisfies subadditivity on

Bayes-nets.

4.1 Subadditivity of f-Divergences

For two probability distributions P and Q on Ω, the
f -divergence of P from Q, denoted Df (P,Q), is de-
fined as Df (P,Q) =

∫
Ω
f (P (x)/Q(x))Q(x)dx. We

assume P is absolutely continuous with respect to
Q, written as P � Q. Common f -divergences are
Kullback-Leibler divergence (KL), Symmetric KL di-
vergence (SKL), Jensen-Shannon divergence (JS), and
Total Variation distance (TV); see Appendix B. The
subadditivity of KL-divergence on Bayes-nets is claimed
by Daskalakis and Pan (2017) without a proof. We
provide a proof in Appendix A.3 for completeness.
Theorem 3 (Claimed by Daskalakis and Pan
(2017)). The KL-divergence defined as KL(P,Q) :=∫
P log (P/Q) dx satisfies subadditivity on Bayes-nets.

It follows from the proof of Theorem 3 that the fol-
lowing conditions suffice for the KL subadditivity to
become additivity: ∀i, PXΠi

= QXΠi
(almost every-

where). From the investigation of local subadditivity of
f -divergences (Theorem 21 in Appendix F), we will see
that this is the minimum set of requirements possible.
The subadditivity of KL divergence easily implies the
subadditivity of the Symmetric KL divergence.
Corollary 4. The Symmetric KL divergence defined
as SKL(P,Q) := KL(P,Q) + KL(Q,P ) satisfies subad-
ditivity on Bayes-nets.

Moreover, the linear subadditivity of Jensen-Shannon
divergence (JS) follows from the subadditivity property
of squared Hellinger distance; see Appendix A.4.
Corollary 5. The Jensen-Shannon divergence
defined as JS(P,Q) := 1

2KL (P, (P +Q)/2) +
1
2KL (Q, (P +Q)/2) satisfies (1/ ln 2)-linear subaddi-
tivity on Bayes-nets.

Using a slightly modified version of Theorem 1, it
is not hard to derive the linear subadditivity of To-
tal Variation distance, which is stated without proof
by Daskalakis and Pan (2017). We provide a proof in
Appendix A.5 for completeness.
Theorem 6 (Claimed by Daskalakis and Pan (2017)).
The Total Variation distance defined as TV(P,Q) :=
1
2

∫
|P −Q| dx satisfies 2-linear subadditivity on Bayes-

nets.

4.2 Subadditivity of Wasserstein Distance
and IPMs

Suppose Ω is a metric space with distance d(·, ·). The
p-Wasserstein distance Wp is defined as Wp(P,Q) :=
(infγ∈Γ(P,Q)

∫
Ω×Ω

d(x, y)pdγ(x, y))1/p, where γ ∈
Γ(P,Q) denotes the set of all possible couplings of
P and Q; see Appendix C.

In general, Wasserstein distance does not satisfy subad-
ditivity on Bayes-nets and MRFs shown by a counter-
example using Gaussian distributions (Appendix E).
However, based on the linear subadditivity of TV on
Bayes-nets, one can prove that all p-Wasserstein dis-
tances with p ≥ 1 satisfy α-linear subadditivity when
space Ω is discrete and finite (Appendix A.6).

Corollary 7. If Ω is a finite metric space,
p-Wasserstein distance for p ≥ 1 satisfies
(21/pdiam(Ω)/dmin)-linear subadditivity on Bayes-nets,
where diam(Ω) is the diameter and dmin is the smallest
distance between pairs of distinct points in Ω.

Integral Probability Metrics (IPMs) are a class
of probability distances defined as dF (P,Q) :=
supφ∈F {Ex∼P [φ(x)]− Ex∼Q[φ(x)]}, which include the
Wasserstein distance, Maximum Mean Discrepancy,
and Total Variation distance. The IPM with F being
all 1-Lipschitz functions is the 1-Wasserstein distance
(Villani, 2008). Practical GANs take F as a parametric
function class, F = {φθ(x)|θ ∈ Θ}, where φθ(x) is a
neural network. The resulting IPMs are called neu-
ral distances (Arora et al., 2017).

Next, we prove that neural distances (even those ex-
pressible by a single ReLU neuron) satisfy generalized
subadditivity with respect to the Symmetric KL diver-
gence. This property establishes substantive theoretical
justification for the local discriminators used in GANs
based on IPMs.

Theorem 8. Consider two Bayes-nets P,Q on Ω =
{(X1, . . . , Xn)} ⊆ Rnd with a common DAG G, and
any set of function classes {F1, . . . ,Fn}. Suppose the
following conditions are fulfilled:

(1) the space Ω is bounded, i.e. diam(Ω) <∞;
(2) each discriminator class (Fi) is larger than the set

of single neuron networks with ReLU activations,
i.e. {max{wTx+ b, 0}

∣∣‖[w, b]‖2 = 1}; and
(3) log(PXi∪XΠi

/QXi∪XΠi
) are bounded and Lipschitz

continuous for all i.

Then the neural distances defined by F1, . . . ,Fn satisfy
the following α-linear subadditivity with error ε with
respect to the Symmetric KL divergence on Bayes-nets:

SKL(P,Q)− ε ≤ α ·
n∑
i=1

dFi(PXi∪XΠi
, QXi∪XΠi

),
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where α and ε are constants independent of P,Q and
{F1, . . . ,Fn}, satisfying

α > R
(

(kmax+1)d
)

and ε = O
(
nα−

2
(kmax+1)d+1 logα

)
,

where R((kmax + 1)d) is a function that only depends
on kmax (the maximum in-degree of G) and d (the
dimensionality of each variable of the Bayes-net).

Regarding condition (1), bounded space Ω still al-
lows many real-world data-types, including images and
videos. Regarding condition (2), all practical neural net-
works using ReLU activations satisfy this requirement.
Thus, the only non-trivial requirement is condition (3).
In practical GAN training, Q is the output distribu-
tion of a generative model, which can be regarded as
a transformation of a Gaussian distribution. Thus,
in general, Q is bounded and Lipschitz. If we have
P � Q, for bounded and Lipschitz real distribution P ,
the condition (3) is satisfied. If the subadditivity upper
bound is minimized, we can minimize SKL(P,Q) up
to O(n). For the detailed proof, see Appendix A.7.

5 Generalized Subadditivity on MRFs

The definition of generalized subadditivity of a statistical
divergence with respect to another one over MRFs
is the same as in Definition 1, except that the local
neighborhoods are defined as maximal cliques C ∈ C of
the MRF. For an alternative definition of subadditivity
on MRFs, see Appendix D.

The clique factorization of MRFs (i.e. P (x) =∏
C∈C ψ

P
C (XC)) offers a special method to prove the

subadditivity of IPMs on MRFs. Consider the Sym-
metric KL divergence SKL(P,Q) := KL(P,Q) +
KL(Q,P ) = Ex∼P [log(P/Q)] − Ex∼Q[log(P/Q)].
Clique factorization of P and Q decomposes SKL(P,Q)

into SKL(P,Q) =
∑
C∈C(ExC∼PXC [log(ψPC/ψ

Q
C )] −

ExC∼QXC [log(ψPC/ψ
Q
C )]), where each term in the sum-

mation is upper-bounded by an IPM dFC (PXC , QXC )

on the clique C, as long as log(ψPC/ψ
Q
C ) ∈ FC . This im-

plies the subadditivity of 1-Wasserstein distance with
respect to the Symmetric KL divergence, whenever each
log(ψPC/ψ

Q
C ) is Lipschitz continuous; see Appendix A.8

for the proof.

Theorem 9. Consider two MRFs P , Q with the same
factorization. If any of the following is fulfilled:

(1) The space Ω is discrete and finite.
(2) log(ψPC/ψ

Q
C ) are Lipschitz continuous for all C ∈ C.

Then, the 1-Wasserstein distance satisfies α-linear sub-
additivity with respect to the Symmetric KL Divergence
on MRFs, for some constant α > 0 independent of P
and Q.

Using the aforementioned property of Symmetric KL
divergence, the subadditivity of neural distances (Theo-
rem 8) can be generalized to MRFs; see Appendix A.9.
Corollary 10. For two MRFs P,Q on a common
graph G and a set of function classes {FC |C ∈ C},
if all of the three conditions in Theorem 8 are ful-
filled (with condition (3) replaced by: log(ψPC/ψ

Q
C ) are

bounded and Lipschitz continuous for all C ∈ C), the
neural distances induced by {FC |C ∈ C} satisfy α-linear
subadditivity with error ε with respect to the Symmet-
ric KL divergence on MRFs, i.e. SKL(P,Q) − ε ≤
α ·

∑
C∈C dFC (PXC , QXC ), where α and ε are con-

stants independent of P,Q and {FC |C ∈ C}, satisfying
α > R(cmaxd) and ε = O

(
|C|α−

2
cmaxd+1 logα

)
. |C| is

the number of maximal cliques in G and R(cmaxd) is a
function that only depends on cmax = max{|C|

∣∣C ∈ C}
(the maximum size of the cliques in G) and d.

6 Local Subadditivity

So far, we have stated and proved the subadditivity
or generalized subadditivity of some f -divergences on
Bayes-nets or MRFs. However, many divergences may
not enjoy subadditivity property (see such a counter-
example of 2-Wasserstein distance in Appendix E).
It is difficult to formulate a general framework for
determining which divergence is subadditive.

In this section, we consider a particular scenario when
two distributions P,Q are close to each other, which
can happen after some initial training steps in a GAN.
In this case, we are able to determine if an arbitrary f -
divergence satisfies generalized subadditivity on Bayes-
nets. We only report our main results here. See Ap-
pendix F and Appendix G for more details and proofs.
We consider two notions of “closeness” for distributions.
Definition 2. Distributions P,Q are one-sided ε-close
for some 0 < ε < 1, if ∀x ∈ Ω ⊆ Rnd, P (x)/Q(x) <
1 + ε. Moreover, P,Q are two-sided ε-close, if ∀x,
1−ε < P (x)/Q(x) < 1+ε. Note this requires P �� Q.

We find that most f -divergences satisfy generalized
linear subadditivity when the distributions are one- or
two-sided ε-close.
Theorem 11. An f-divergence whose f(·) is con-
tinuous on (0,∞) and twice differentiable at 1 with
f ′′(1) > 0 satisfies α-linear subadditivity, when P,Q
are two-sided ε(α)-close with ε > 0, where ε(α) is a
non-increasing function and limε↓0 α = 1.
Theorem 12. An f -divergence whose f(·) is continu-
ous and strictly convex on (0,∞), twice differentiable
at t = 1, and has finite f(0) = limt↓0 f(t), satisfies α-
linear subadditivity, when P,Q are one-sided ε(α)-close
with ε > 0, where ε(α) is a non-increasing function and
limε↓0 α > 0.
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Figure 1: Conceptual diagram of the Bayes-net GANs
with local discriminators compared with the standard
GANs.

7 GANs with Bayes-Nets/MRFs

Our proposed model-based GAN minimizes the general-
ized subadditivity upper bound of a divergence measure
δ. For example, a Bayes-net GAN3 is formulated as
the following optimization problem:

min
Q

n∑
i=1

δ(PXi∪XΠi
, QXi∪XΠi

).

Similar to a standard GAN (Goodfellow et al., 2014;
Arjovsky et al., 2017), the generated distribution Q
is characterized as G(Z) where G(.) is the generator
function and Z is a normal distribution. Note that
the discriminator is implicit in the definition of the
δ (Figure 1). Since local neighborhoods are often sig-
nificantly smaller than the entire graph, our proposed
model-based GAN enjoys improved computational and
statistical properties compared to a model-free GAN
that uses a global discriminator targeting the entire
graph.

8 Experiments

In this section, we provide experimental results demon-
strating the benefits of exploiting the underlying Bayes-
net or MRF structure of the data in the design of model-

3A model-based GAN on MRFs can be formulated simi-
larly.

based GANs. In our experiments, we consider a syn-
thetic ball throwing trajectory dataset as well as two real
Bayes-net datasets: the EARTHQUAKE dataset (Korb
and Nicholson, 2010) and the CHILD dataset (Spiegel-
halter, 1992). Unless otherwise stated, the Wasserstein
GAN (Arjovsky et al., 2017) with gradient penalty (Gul-
rajani et al., 2017) is used in the experiments. Detailed
experimental setups (including network architectures
and hyper-parameters) can be found in Appendix K.
The experiments on MRF datasets and more experi-
mental findings on Bayes-nets including the sensitivity
analysis of Bayes-net GANs are reported in Appendix J.

8.1 Synthetic Ball throwing trajectories

In this section, we consider a simple synthetic
dataset that consists of single-variate time-series data
(y1, . . . , y15) representing the y-coordinates of ball
throwing trajectories lasting 1 second, where yt =
v0 ∗ (t/15)− g(t/15)2/2. v0 is a Gaussian random vari-
able and g = 9.8 is the gravitational acceleration. These
trajectories are Bayes-nets, where the underlying DAG
has the following structure: each node t ∈ {1, . . . , 15}
has two parents, (t− 1) and (t− 2) (if they exist). This
is because, given g and without known v0, one can
determine yt from yt−1 and yt−2.

We train two types of GANs to generate “ball throwing
trajectories”: (1) Bayes-net GANs with local discrim-
inators where each discriminator has a certain time
localization width and (2) a standard GAN with one
global discriminator. From the underlying physics of
this dataset, we know that a proper discriminator de-
sign should have at least a localization width of 3
since one needs at least three consecutive coordinates
yt−2, yt−1, yt to estimate the gravitational acceleration
g. Thus, from the theory, a GAN trained using local
discriminators with a localization width of 2 should not
be able to generate high-quality samples. This is in fact
verified by our experiments. In Fig. 2, we see samples
generated by the local-width 3 GAN (Fig. 2(c)) are
visually very similar to the ground truth trajectories
(Fig. 2(a)), while samples generated by the local-width
2 GAN demonstrate poor quality.

Note that increasing the localization width of the dis-
criminators enhances their discrimination power, but
at the same time, it increases the model complexity,
which can cause statistical and computational issues
during the training. To understand this trade-off, we
progressively increase the localization width from 3
to 15, obtaining one giant discriminator at the end.
The quality of generated trajectories from the standard
GAN (corresponding to the giant discriminator) is, in
fact, worse (Fig. 2(d)).

In Fig. 3, we compare the estimation errors of the gravi-
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(d) Standard GAN

Figure 2: GAN-generated ball throwing trajectories by (b) the Bayes-net GAN (ours) with localization width 2
(the width of the local neighborhoods that the discriminators test on), (c) the Bayes-net GAN with local-width 3,
and (d) the standard GAN.

Dataset GAN used Energy Stats. (×10−2)
(smaller is better)

Detection AUC
(smaller is better)

Rel. BIC (×102)
(larger is better)

Rel. GED
(smaller is better)

EARTHQUAKE Bayes-net (ours) 0.24± 0.04 0.523± 0.005 +1.68± 0.17 0.4± 0.7
Standard 1.72± 0.08 0.564± 0.012 −4.30± 0.21 5.6± 0.7

CHILD Bayes-net (ours) 2.37± 0.10 0.644± 0.008 +0.6± 1.5 9± 4
Standard 4.40± 0.22 0.689± 0.019 −7.1± 2.0 24± 8

Table 1: Quality metrics of samples generated by the standard and Bayes-net GANs trained on the Bayes-nets.
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Figure 3: Estimation errors of gravitational accelera-
tion g and residual errors of degree-2 polynomial re-
gression on the generated trajectories with varying
localization width.

tational acceleration g and the residual errors of degree-
2 polynomial regression (which evaluate the “smooth-
ness” of generated trajectories) among GANs with dif-
ferent localization widths. Interestingly, the curves of
both metrics demonstrate a U -shaped behavior indicat-
ing that there is an optimal localization width balanc-
ing between the discrimination power and the model
complexity and its resulting statistical/computational
burden.

8.2 Real Bayes-nets

Next, we consider two real Bayes-net datasets: (1) the
EARTHQUAKE dataset which is a small Bayes-net
with 5 nodes and 4 edges characterizing the alarm

system against burglary which can get occasionally
set off by an earthquake (Korb and Nicholson, 2010),
and (2) the CHILD dataset which is a Bayes-net for
diagnosing congenital heart disease in a newborn “blue
baby” (Spiegelhalter, 1992), with 20 nodes and 25 edges.
The underlying Bayes-nets of both datasets are known.
We first generate samples from the Bayes-nets, then
train both standard GANs and Bayes-net GANs (us-
ing the subadditivity upper-bound as objectives) on
them (Since all the features are categorical, we use
Gumbel-Softmax (Jang et al., 2016) as a differentiable
approximation to the Softmax function in the generator;
see Appendix K.)

If a GAN learns the Bayes-net well, it should learn both
the joint distribution and the conditional dependencies.
We evaluate the quality of the generated samples by
four scores:

• Energy Statisticsmeasuring how close the real and
fake empirical distributions based on a statistical
potential energy (a function of distances between
observables) (Székely and Rizzo, 2013),

• Detection AUC: AUC scores of binary classifiers
trained to distinguish fake samples from real ones,

• Relative BIC: the Bayesian information criterion
of fake samples (a log-likelihood score with an addi-
tional penalty for the network complexity) (Koller
and Friedman, 2009) subtracted by the BIC of real
ones, and
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Figure 4: Causal structures predicted from (b) the observed data, (c) the data generated by the standard GAN,
and (d) the data generated by the Bayes-net GAN (ours).
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Figure 5: Causal structures predicted from the data generated by the Bayes-net GAN at different stages of
training and the Wasserstein loss curve.
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Figure 6: Energy statistics between generated and
observed samples at different stages of training.

• Relative GED: the graph editing distance between
the DAGs predicted from the fake and real samples
by a greedy search starting from the ground truth
DAG.

The first two metrics characterize the similarity between
the joint distributions, while the last two evaluate how
accurately the causal structure is learned.

We find that the Bayes-net GAN using the ground

truth causal graph consistently outperforms the model-
free standard GAN on all four quality metrics (Ta-
ble 1). For Bayes-net GANs, the relative BIC scores
(the second last column) are positive, i.e., the BIC
of samples generated by the Bayes-net GANs is even
higher than the BIC of observed data. Because the
Bayes-net GANs are designed to conveniently capture
the ground truth causal dependencies (compared to
the other correlations), the likelihood of the ground
truth causal structure can further increase. On the
EARTHQUAKE dataset, we can usually recover the
true causal graph from the data generated by the Bayes-
net GAN (Fig. 4(d)). This is not the case if we use
standard GANs (Fig. 4(c)), where any pair of nodes
are directly dependent on each other. In this regard,
we conclude the standard GANs cannot efficiently cap-
ture the conditional independence relationships among
variables.

Next, we study how a Bayes-net GAN learns the causal
structure during the training (Fig. 5). In general, dis-
crete Bayes-nets are multi-modals. The Bayes-net GAN
learns some strong conditional dependencies at first,
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e.g. “Burglary” leads to “JohnCalls” in the second
snapshot, although it is not a direct dependence (in
fact, “Burglary” triggers “Alarm”, then “JohnCalls”).
After some training, the dependence relation is further
specified, and the edge (“Burglary”→“JohnCalls”) is
replaced by a pair of new edges, (“Burglary”→“Alarm”)
and (“Alarm”→“JohnCalls”) in the second last snap-
shot. During training, we rarely observe that the Bayes-
net GAN captures any non-existing dependencies (e.g.
“Earthquake” and “Burglary”). However, this happens
often for standard GANs; see Fig. 4(c) for an example.

The success of learning causal independence structures
also simplifies the task of learning joint distribution.
Without changing any setup or hyper-parameters, re-
placing the discriminator with a set of local discrim-
inators brings a performance gain on the first two
scores as well (Table 1). Moreover, Bayes-net GANs
are computationally efficient when the Bayes-nets are
not very large. On average, they converge faster than
the standard GAN on Bayes-nets; see Fig. 6 for the
averaged curves of energy statistics on the EARTH-
QUAKE dataset. These results highlight the statistical
and computational benefits of our principled design of
Bayes-net GANs.
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Appendix to
GANs with Conditional Independence Graphs:
On Subadditivity of Probability Divergences

A Proofs

A.1 Proof of Theorem 1

Proof. The theorem is implicit in (Daskalakis and Pan, 2017). For completeness, we provide a full argument here.

For a pair of Bayes-nets P and Q with respect to a Directed Acyclic Graph (DAG) G, consider the topological
ordering (1, · · · , n) of the nodes of G. Consistent with the topological ordering, consider the following Markov Chain
on super-nodes: X{1,··· ,n−1}\Πn → XΠn → Xn, where Πn is the set of parents of node n and Πn ⊆ {1, · · · , n− 1}.
We distinguish three cases:

1. Πn 6= ∅ and Πn $ {1, · · · , n − 1}: In this case, we apply the subadditivity property of δ with respect to
Markov Chains to obtain δ(P,Q) ≤ δ(P∪n−1

i=1 Xi
, Q∪n−1

i=1 Xi
) + δ(PXΠn∪Xn , QXΠn∪Xn).

2. Πn = {1, · · · , n−1}: In this case, it is trivial that δ(P,Q) ≡ δ(PXΠn∪Xn , QXΠn∪Xn) ≤ δ(P∪n−1
i=1 Xi

, Q∪n−1
i=1 Xi

)+

δ(PXΠn∪Xn , QXΠn∪Xn).

3. Πn = ∅: In this case, Xn is independent from (X1, . . . , Xn−1) in both Bayes-nets. Thus we apply the
subadditivity of δ with respect to product measures to obtain δ(P,Q) ≤ δ(P∪n−1

i=1 Xi
, Q∪n−1

i=1 Xi
)+δ(PXn , QXn) ≡

δ(P∪n−1
i=1 Xi

, Q∪n−1
i=1 Xi

) + δ(PXΠn∪Xn , QXΠn∪Xn).

We proceed by induction. For each inductive step k = 1, · · · , n−2, we consider the following Markov Chain on super-
nodes: X{1,··· ,n−k−1}\Πn−k → XΠn−k → Xn−k. No matter what Πn−k is, we always have: δ(P∪n−ki=1 Xi

, Q∪n−ki=1 Xi
) ≤

δ(P∪n−k−1
i=1 Xi

, Q∪n−k−1
i=1 Xi

) + δ(PXΠn−k∪Xn−k , QXΠn−k∪Xn−k). In the end of the induction, we obtain: δ(P,Q) ≤
δ(PX1

, QX1
) +

∑n
i=2 δ(PΠi∪Xi , QΠi∪Xi) ≡

∑n
i=1 δ(PΠi∪Xi , QΠi∪Xi), since Π1 ≡ ∅. The subadditivity of δ on

Bayes-nets is proved.

A.2 Proof of Theorem 2

Proof. The subadditivity of squared Hellinger distance is proved in Theorem 2.1 of (Daskalakis and Pan, 2017).
Here, we repeat the proof for completeness.

Given Theorem 1, we only need to show the following:

1. For two Markov Chains P,Q on variables X → Y → Z, it holds that H2(PXY Z , QXY Z) ≤ H2(PXY , QXY ) +
H2(PY Z , QY Z).

2. For two product measures P,Q on variables X,Y , it holds that H2(PXY , QXY ) ≤ H2(PX , QX) + H2(PY , QY ).

We first show the subadditivity with respect to Markov Chains. Using the Markov property, we know PXY Z =
PZ|XY PXY = PZ|Y PXY (and the same holds for Q), thus,

H2(PXY Z , QXY Z)

= 1−
∫ √

PXY ZQXY Zdxdydz

= 1−
∫ √

PXYQXY

(∫ √
PZ|YQZ|Y dz

)
dxdy

= 1−
∫

1

2
(PY +QY )

(∫ √
PZ|YQZ|Y dz

)
dy +

∫
1

2

(√
PXY −

√
QXY

)2
(∫ √

PZ|YQZ|Y dz

)
dxdy
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Since all densities are non-negative, we have
√
PYQY ≤ 1

2 (PY +QY ) and
√
PZ|YQZ|Y ≤ 1

2

(
PZ|Y +QZ|Y

)
point-wisely. Thus,

H2(PXY Z , QXY Z)

≤ 1−
∫ √

PYQY

(∫ √
PZ|YQZ|Y dz

)
dy +

∫
1

2

(√
PXY −

√
QXY

)2
(∫

1

2

(
PZ|Y +QZ|Y

)
dz

)
dxdy

=

(
1−

∫ √
PY ZQY Zdydz

)
+

1

2

∫ (√
PXY −

√
QXY

)2

dxdy

= H2(PXY , QXY ) + H2(PY Z , QY Z)

It remains to show the subadditivity with respect to product measures. If P,Q are product measures over X,Y ,
then PXY = PXPY and QXY = QXQY . Since all densities are non-negative, we have

√
PYQY ≤ 1

2 (PY +QY )
point-wise. Hence,

H2(PXY , QXY )

= 1−
∫ √

PXYQXY dxdy

= 1−
∫ √

PXQX

(∫ √
PYQY dy

)
dx

= 1−
∫

1

2
(PX +QX)

(∫ √
PYQY dy

)
dx+

∫
1

2

(√
PX −

√
QX

)2
(∫ √

PYQY dy

)
dx

≤ 1−
(∫

1

2
(PX +QX)dx

)(∫ √
PYQY dy

)
+

∫
1

2

(√
PX −

√
QX

)2
(∫

1

2
(PY +QY ) dy

)
dx

= 1−
∫ √

PYQY dy +

∫
1

2

(√
PX −

√
QX

)2

dx

= H2(PX , QX) + H2(PY , QY )

A.3 Proof of Theorem 3

Proof. The subadditivity of KL-divergence is claimed in (Daskalakis and Pan, 2017) without proof. Here, we
provide a proof for completeness.

Given Theorem 1, we only need to show the following:

1. For two Markov Chains P,Q on variables X → Y → Z, it holds that KL(PXY Z , QXY Z) ≤ KL(PXY , QXY ) +
KL(PY Z , QY Z).

2. For two product measures P,Q on variables X,Y , it holds that KL(PXY , QXY ) ≤ KL(PX , QX)+KL(PY , QY ).

We first show the subadditivity with respect to Markov Chains. The Markov property implies PXY Z =
PXY PY Z/PY (and the same holds for Q). Thus,

KL(PXY Z , QXY Z) =

∫
PXY Z log

(
PXY
QXY

PY Z
QY Z

/
PY
QY

)
dxdydz

=

∫
PXY log

(
PXY
QXY

)
dxdy +

∫
PY Z log

(
PY Z
QY Z

)
dydz −

∫
PY log

(
PY
QY

)
dy

= KL(PXY , QXY ) + KL(PY Z , QY Z)−KL(PY , QY )

The subadditivity follows from the non-negativity of KL-divergence. Additivity holds when KL(PY , QY ) = 0.

It remains to show the subadditivity with respect to product measures. We will, in fact, show additivity rather
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than subadditivity. If P,Q are product measures over X,Y , then PXY = PXPY and QXY = QXQY , hence,

KL(PXY , QXY ) =

∫
PXY log

(
PX
QX

PY
QY

)
dxdy

=

∫
PX log

(
PX
QX

)
dx+

∫
PY log

(
PY
QY

)
dy

= KL(PX , QX) + KL(PY , QY ).

A.4 Proof of Corollary 5

Proof. The subadditivity of Jensen-Shannon divergence follows from:

1. The subadditivity of squared Hellinger distance (Theorem 2).

2. f -Divergence inequalities (Theorem 11 of (Sason and Verdu, 2016), repeated as Theorem 16 in Appendix B.2):
for any two densities P and Q,

(ln 2)H2(P,Q) ≤ JS(P,Q) ≤ H2(P,Q)

Combining the inequalities implies that, for any pair of Bayes-nets P,Q with respect to a DAG G, we have,

JS(P,Q) ≤ H2(P,Q) ≤
n∑
i=1

H2(PΠi∪Xi , QΠi∪Xi) ≤
1

ln 2

n∑
i=1

JS(PΠi∪Xi , QΠi∪Xi)

This proves that Jensen-Shannon divergence satisfies (1/ ln 2)-linear subadditivity on Bayes-nets.

Note that we assume natural logarithm is used in the definition of Jensen-Shannon divergence when deriving the
inequalities between JS(P,Q) and H2(P,Q) (see Theorem 16 for details). However, the choice of the base of the
logarithm does not affect the (1/ ln 2)-linear subadditivity of Jensen-Shannon divergence.

A.5 Proof of Theorem 6

In the following proofs, we extensively use the Integral Probability Metric (IPM) formula of Total Variation
distance (Müller, 1997). If F is the set of measurable functions on Ω taking values in [0, 1], then,

TV(P,Q) = sup
φ∈F

∣∣∣Ex∼P [φ(x)]− Ex∼Q[φ(x)]
∣∣∣

Lemma 13. Let P and Q be two Bayes-nets with respect to DAG X → Y → Z. Then,

TV(PXY Z , QXY Z) ≤ TV(PXY , QXY ) + TV(PY , QY ) + TV(PY Z , QY Z)

Proof. We do a hybrid argument. By the triangle inequality, we have:

TV(PXY Z , QXY Z) ≤ TV(PXY Z , PXYQZ|Y ) + TV(PXYQZ|Y , QXY Z)

We bound each term on the right-hand side separately.

Let us start with the second term. Let Fxy be the set of measurable functions on variables x and y taking values
in [0, 1], and Fxyz be the set of measurable functions on variables x, y, z taking values in [0, 1], etc. Using the
Markov property, we know PXY Z = PXY PZ|Y = PY PX|Y PZ|Y (and the same holds for Q). Then,

TV(PXYQZ|Y , QXY Z) = sup
φ∈Fxyz

∣∣∣EPXY QZ|Y [φ(x, y, z)]− EQXYZ [φ(x, y, z)]
∣∣∣

= sup
φ∈Fxyz

∣∣∣EPXY [EQZ|Y [φ(x, y, z)]
]
− EQXY

[
EQZ|Y [φ(x, y, z)]

] ∣∣∣
≤ sup
φ∈Fxy

∣∣∣EPXY [φ(x, y)]− EQXY [φ(x, y)]
∣∣∣

≡ TV(PXY , QXY )
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Let us now bound the first term,

TV(PXY Z , PXYQZ|Y ) = sup
φ∈Fxyz

∣∣∣EPXYZ [φ(x, y, z)]− EPXY QZ|Y [φ(x, y, z)]
∣∣∣

= sup
φ∈Fxyz

∣∣∣EPY PZ|Y [EPX|Y [φ(x, y, z)]
]
− EPY QZ|Y

[
EPX|Y [φ(x, y, z)]

] ∣∣∣
≤ sup
φ∈Fyz

∣∣∣EPY PZ|Y [φ(y, z)]− EPY QZ|Y [φ(y, z)]
∣∣∣

≤ sup
φ∈Fyz

∣∣∣EPY PZ|Y [φ(y, z)]− EQY QZ|Y [φ(y, z)]
∣∣∣

+ sup
φ∈Fyz

∣∣∣EQY QZ|Y [φ(y, z)]− EPY QZ|Y [φ(y, z)]
∣∣∣

= TV(PY Z , QY Z) + sup
φ∈Fyz

∣∣∣EQY [EQZ|Y [φ(y, z)]
]
− EPY

[
EQZ|Y [φ(y, z)]

] ∣∣∣
≤ TV(PY Z , QY Z) + sup

φ∈Fy

∣∣∣EQY [φ(y)]− EPY [φ(y)]
∣∣∣

≤ TV(PY Z , QY Z) + TV(PY , QY )

Combining the two inequalities concludes the proof.

Lemma 14. Let P and Q be two product measures over variables X and Y . Then,

TV(PXY , QXY ) ≤ TV(PX , QX) + TV(PY , QY )

Proof. By the triangle inequality, we have:

TV(PXY , QXY ) ≤ TV(PXY , PXQY ) + TV(PXQY , QXY )

We bound each term on the right hand side separately. Let Fxy be the set of measurable functions on variables x
and y taking values in [0, 1], and Fy be the set of measurable functions on variable y taking values in [0, 1], etc.
Then,

TV(PXY , PXQY ) = sup
φ∈Fxy

∣∣∣EPXY [φ(x, y)]− EPXQY [φ(x, y)]
∣∣∣

= sup
φ∈Fxy

∣∣∣EPY [EPX [φ(x, y)]]− EQY [EPX [φ(x, y)]]
∣∣∣

≤ sup
φ∈Fy

∣∣∣EPY [φ(y)]− EQY [φ(y)]
∣∣∣

≡ TV(PY , QY )

Similarly, we get TV(PXQY , QXY ) ≤ TV(PX , QX). Combining the two inequalities concludes the proof.

Proof of Theorem 6: Similar to the proof of Theorem 1, for a pair of Bayes-nets P and Q with respect to
a DAG G, we perform induction on each nodes of G. Consider the topological ordering (1, · · · , n) of the
nodes of G. Consistent with the topological ordering, consider the following Markov Chain on super-nodes:
X{1,··· ,n−1}\Πn → XΠn → Xn, where Πn is the set of parents of node n and Πn ⊆ {1, · · · , n− 1}. We distinguish
three cases:

1. Πn 6= ∅ and Πn $ {1, · · · , n − 1}: In this case, we apply Lemma 13 to get TV(P,Q) ≤
TV(P∪n−1

i=1 Xi
, Q∪n−1

i=1 Xi
) + TV(PXΠn

, QXΠn
) + TV(PXΠn∪Xn , QXΠn∪Xn).

2. Πn = {1, · · · , n − 1}: In this case, it is trivial that TV(P,Q) ≡ TV(PXΠn∪Xn , QXΠn∪Xn) ≤
TV(P∪n−1

i=1 Xi
, Q∪n−1

i=1 Xi
) + TV(PXΠn

, QXΠn
) + TV(PXΠn∪Xn , QXΠn∪Xn).
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3. Πn = ∅: In this case, Xn is independent from (X1, . . . , Xn−1) in both Bayes-nets. Thus we apply Lemma 14
to get TV(P,Q) ≤ TV(P∪n−1

i=1 Xi
, Q∪n−1

i=1 Xi
) + TV(PXn , QXn) ≡ TV(P∪n−1

i=1 Xi
, Q∪n−1

i=1 Xi
) + TV(PXΠn

, QXΠn
) +

TV(PXΠn∪Xn , QXΠn∪Xn), where TV(PXΠn
, QXΠn

) = 0 and TV(PXΠn∪Xn , QXΠn∪Xn) = TV(PX1
, QX1

) as
Πn = ∅.

We proceed by induction. For each inductive step k = 1, · · · , n − 2, we consider the follow-
ing Markov Chain on super-nodes: X{1,··· ,n−k−1}\Πn−k → XΠn−k → Xn−k. No matter what
Πn−k is, we always have: TV(P∪n−ki=1 Xi

, Q∪n−ki=1 Xi
) ≤ TV(P∪n−k−1

i=1 Xi
, Q∪n−k−1

i=1 Xi
) + TV(PXΠn−k

, QXΠn−k
) +

TV(PXΠn−k∪Xn−k , QXΠn−k∪Xn−k). In the end of the induction, we obtain: TV(P,Q) ≤ TV(PX1
, QX1

) +∑n
i=2

(
TV(PΠi∪Xi , QΠi∪Xi) + TV(PΠi , QΠi)

)
. Since Π1 ≡ ∅, we know TV(PXΠ1

, QXΠ1
) = 0 and

TV(PXΠ1
∪X1

, QXΠ1
∪X1

) = TV(PX1
, QX1

). Hence, we conclude that,

TV(P,Q) ≤
n∑
i=1

(
TV(PΠi∪Xi , QΠi∪Xi) + TV(PΠi , QΠi)

)
Now we relate this inequality to the notion of linear subadditivity. For two densities P and Q on variables X,Y ,
it holds that,

TV(PX , QX) ≡ 1

2

∫ ∣∣∣PX −QX ∣∣∣dx
=

1

2

∫ ∣∣∣ ∫ PXY dy −
∫
QXY dy

∣∣∣dx
≤ 1

2

∫ (∫ ∣∣∣PXY −QXY ∣∣∣dy) dx

≡ TV(PXY , QXY )

Applying this inequality to XΠi and Xi, for any i ∈ {1, · · · , n}, we obtain, TV(PΠi , QΠi) ≤ TV(PΠi∪Xi , QΠi∪Xi).
Thus,

TV(P,Q) ≤ 2
n∑
i=1

TV(PΠi∪Xi , QΠi∪Xi)

This concludes that Total Variation distance satisfies 2-linear subadditivity on Bayes-nets. �

A.6 Proof of Corollary 7

Proof. If Ω is a finite (and therefore bounded) metric space, there exist two-way bounds between p-Wasserstein
distance and Total Variation distance (see Theorem 20 in Appendix C.1 for details), namely,

Wp(P,Q)p/diam(Ω)p ≤ TV(P,Q) ≤Wp(P,Q)p/dpmin

where diam(Ω) = max{d(x, y)|x, y ∈ Ω} is the diameter of the space Ω and dmin = minx6=y d(x, y) is the smallest
distance between pairs of distance points in Ω. For p ≥ 1, this directly implies the (21/pdiam(Ω)/dmin)-linear
subadditivity of p-Wasserstein distance on Bayes-nets on finite Ω,

Wp(P,Q) ≤ 21/pdiam(Ω)

dmin

n∑
i=1

Wp(PXi∪XΠi
, QXi∪XΠi

)

via the 2-linear subadditivity of Total Variation distance (Theorem 6).

A.7 Proof of Theorem 8

Proof. For reference, we repeat the three conditions of the subadditivity of neural distances here:

(1) The space Ω is bounded, i.e. diam(Ω) <∞.
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(2) For any i ∈ {1, · · · , n}, discriminator class Fi is larger than the set of neural networks with a single neuron,
which have ReLU activation and bounded parameters, i.e. Fi ⊇ {max{wTx+b, 0}

∣∣w ∈ RDi , b ∈ R, ‖[w, b]‖2 =
1}, where Di is the number of dimensions of variables Xi ∪XΠi .

(3) For any i ∈ {1, · · · , n}, log(PXi∪XΠi
/QXi∪XΠi

) exists, and is bounded and Lipschitz continuous.

For two distributions P,Q and a set of discriminators F satisfying all the three conditions, by Theorem 28
we know that for any i ∈ {1, · · · , n}, log(PXi∪XΠi

/QXi∪XΠi
) is inside the closure of the linear span of Fi, i.e.

log(PXi∪XΠi
/QXi∪XΠi

) ∈ cl(spanFi). Moreover, each log(PXi∪XΠi
/QXi∪XΠi

) is approximated by the correspond-
ing Fi with an error decay function, denoted by εi(r). Using Theorem 27, we upper-bound each Symmetric KL
divergence between local marginals, SKL(PXi∪XΠi

, QXi∪XΠi
), by a linear function of the corresponding neural

distance dF (PXi∪XΠi
, QXi∪XΠi

),

SKL(PXi∪XΠi
, QXi∪XΠi

) ≤ 2εi(r) + rdFi(PXi∪XΠi
, QXi∪XΠi

) ∀r ≥ 0, ∀i ∈ {1, · · · , n}

Because of the condition (3): each log(PXi∪XΠi
/QXi∪XΠi

) is bounded and Lipschitz continuous, there exists a
constant ηi > 0, such that, ∣∣log(PXi∪XΠi

/QXi∪XΠi
)
∣∣ < ηi

and for any x, y ∈ Ωi (which is the space of variables Xi ∪XΠi), it holds that,∣∣log(PXi∪XΠi
(x)/QXi∪XΠi

(x))− log(PXi∪XΠi
(y)/QXi∪XΠi

(y))
∣∣ ≤ ηi

diam(Ωi)
‖x− y‖

Again, by Theorem 28, we get an efficient upper-bound on εi(r),

εi(r) ≤ C(Di)ηi

(
r

ηi

)− 2
Di+1

log

(
r

ηi

)
∀r ≥ R(Di) > e

Di+1

2 ηi, ∀i ∈ {1, · · · , n}

where C(Di) and R(Di) are constants that only depend on the dimensionality, Di, of variables Xi ∪XΠi . More
specifically, Di = (ki + 1)d ≤ (kmax + 1)d, where ki is the in-degree of node i, d is the dimensionality of each
variable of the Bayes-nets, and kmax is the maximum in-degree of G.

Because C(Di) and R(Di) are increasing functions of the dimensionality Di, and for r ≥ R(Di) > e
Di+1

2 ηi,
ηi (r/ηi)

− 2
Di+1 log (r/ηi) is an increasing function of ηi, summing up the inequalities for all i ∈ {1, · · · , n} gives,

n∑
i=1

εi(r) ≤ nC(Dmax)ηmax

(
r

ηmax

)− 2
Dmax+1

log

(
r

ηmax

)
∀r ≥ R(Dmax)

where Dmax = max{Di} = (kmax + 1)d and ηmax = max{ηi}.

Now, we sum up the inequalities SKL(PXi∪XΠi
, QXi∪XΠi

) ≤ 2εi(r) + rdF (PXi∪XΠi
, QXi∪XΠi

) for r ≥ R(Dmax)
for all i ∈ {1, · · · , n}. Because of the subadditivity of Symmetric KL divergence on Bayes-nets P,Q (Corollary 4),
we get,

SKL(P,Q)− 2
n∑
i=1

εi(r) ≤ r
n∑
i=1

dFi(PXi∪XΠi
, QXi∪XΠi

) ∀r ≥ R(Dmax)

That is, the neural distances defined by F1, . . . ,Fn satisfy r-linear subadditivity for,

r ≥ R(Dmax)

with error,

ε = 2
n∑
i=1

εi(r) = O
(
nr−

2
Dmax+1 log r

)
with respect to the Symmetric KL divergence on Bayes-nets.

Note that r and ε are constants independent of the Bayes-nets P,Q and the sets of discriminator classes
{F1, · · · ,Fn}. And Dmax = (kmax + 1)d where kmax is the maximum in-degree of G and d is the dimensionality
of each variable of the Bayes-nets.
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A.8 Proof of Theorem 9

Proof. We first give a proof when condition (2) holds. For a pair of MRFs P and Q with the same factorization
(thus with the same underlying graph G),

P (x) =
∏
C∈C

ψPC (XC) Q(x) =
∏
C∈C

ψQC (XC)

The Symmetric KL divergence between P and Q,

SKL(P,Q) := KL(P,Q) + KL(Q,P ) = Ex∼P [log(P/Q)]− Ex∼Q [log(P/Q)]

can be decomposed into,

SKL(P,Q) =
∑
C∈C

(
ExC∼PXC

[
log(ψPC/ψ

Q
C )
]
− ExC∼QXC

[
log(ψPC/ψ

Q
C )
])

Where each term in the summation is upper-bounded by the 1-Wasserstein distance between PXC and QXC up to
a constant factor,

ExC∼PXC
[
log(ψPC/ψ

Q
C )
]
− ExC∼QXC

[
log(ψPC/ψ

Q
C )
]

≤ ηCW1(PXC , QXC ) := ηC sup
φ 1-Lipschitz

{
ExC∼PXC [φ(x)]− ExC∼QXC [φ(x)]

}
if log(ψPC/ψ

Q
C ) is Lipschitz continuous with Lipschitz constant ηC . Summing up the inequalities for all maximal

cliques C ∈ C, we get,
SKL(P,Q) ≤ ηmax

∑
C∈C

W1(PXC , QXC )

where ηmax = max{ηC |C ∈ C} is the maximum Lipschitz constant. That is, 1-Wasserstein distance satisfies
ηmax-linear subadditivity with respect to the Symmetric KL Divergence on MRFs.

We conclude the proof by showing that condition (1) implies condition (2). For a discrete and finite space Ω, each
log(ψPC/ψ

Q
C ) maps any configuration xC in ΩC ⊆ R|C|d (the space of variables XC) to a real number, where |C| is

the size of clique C and d is the dimensionality of each variable of the MRFs. We can always extend the domain
of log(ψPC/ψ

Q
C ) to R|C|d, so that the extended function is Lipschitz continuous with Lipschitz constant,

ηC = max


∣∣∣log(ψPC (x1

C)/ψQC (x1
C))− log(ψPC (x2

C)/ψQC (x2
C))
∣∣∣

‖x1
C − x2

C‖

∣∣∣∣∣x1
C 6= x2

C ∈ ΩC


The rest of the proof follows from the proof above.

A.9 Proof of Corollary 10

Proof. The proof is similar to the proof of Theorem 8 (in Appendix A.7) with a few differences. For a pair
of MRFs P and Q with the same factorization (thus with the same underlying graph G), the Symmetric KL
divergence between P and Q can be decomposed into,

SKL(P,Q) =
∑
C∈C

(
ExC∼PXC

[
log(ψPC/ψ

Q
C )
]
− ExC∼QXC

[
log(ψPC/ψ

Q
C )
])

For two distributions P,Q and a set of discriminators F satisfying all the three conditions, by Theorem 28 we
know that for any C ∈ C, log(ψPC/ψ

Q
C ) is inside the closure of the linear span of FC , i.e. log(ψPC/ψ

Q
C ) ∈ cl(spanFC).

Moreover, each log(ψPC/ψ
Q
C ) is approximated by the corresponding FC with an error decay function, denoted by

εC(r). Using Theorem 27 and assign g = log(ψPC/ψ
Q
C ) (instead of log(PXC/QXC )), we get,

ExC∼PXC
[
log(ψPC/ψ

Q
C )
]
− ExC∼QXC

[
log(ψPC/ψ

Q
C )
]
≤ 2εC(r) + rdFC (PXC , QXC ) ∀r ≥ 0, ∀C ∈ C
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Because of the condition (3): each log(ψPC/ψ
Q
C ) is bounded and Lipschitz continuous, there exists a constant

ηC > 0, such that
∣∣∣log(ψPC/ψ

Q
C )
∣∣∣ < ηC , and for any x, y ∈ ΩC (which is the space of variables XC), it holds that∣∣∣log(ψPC (x)/ψQC (x))− log(ψPC (y)/ψQC (y))

∣∣∣ ≤ ηC
diam(ΩC)‖x− y‖.

Again, by Theorem 28, we get an efficient upper-bound on εC(r),

εC(r) ≤ C(DC)ηC

(
r

ηC

)− 2
DC+1

log

(
r

ηC

)
∀r ≥ R(DC) > e

DC+1

2 ηC , ∀C ∈ C

where C(DC) and R(DC) are constants that only depend on the dimensionality, DC , of variables XC . More
specifically, DC = |C|d ≤ cmaxd, where |C| is the size of clique C, d is the dimensionality of each variable of the
MRFs, and cmax = max{|C|

∣∣C ∈ C} is the maximum size of the cliques in G.

Because C(DC) and R(DC) are increasing functions of the dimensionality DC , and for r ≥ R(DC) > e
DC+1

2 ηC ,
ηC (r/ηC)

− 2
DC+1 log (r/ηC) is an increasing function of ηC , summing up the inequalities for all C ∈ C gives,

∑
C∈C

εC(r) ≤ |C|C(Dmax)ηmax

(
r

ηmax

)− 2
Dmax+1

log

(
r

ηmax

)
∀r ≥ R(Dmax)

where |C| is the number of maximal cliques in G, Dmax = max{DC |C ∈ C} = cmaxd, and ηmax = max{ηC |C ∈ C}.

Now, we sum up the inequalities ExC∼PXC
[
log(ψPC/ψ

Q
C )
]
−ExC∼QXC

[
log(ψPC/ψ

Q
C )
]
≤ 2εC(r) + rdFC (PXC , QXC )

for r ≥ R(Dmax) for all C ∈ C. Because of the decomposed form of the Symmetric KL divergence on MRFs P,Q,
we get,

SKL(P,Q)− 2
∑
C∈C

εC(r) ≤ r
∑
C∈C

dFC (PXC , QXC ) ∀r ≥ R(Dmax)

That is, the neural distances defined by {FC |C ∈ C} satisfy r-linear subadditivity for,

r ≥ R(Dmax)

with error,

ε = 2
∑
C∈C

εC(r) = O
(
|C|r−

2
Dmax+1 log r

)
with respect to the Symmetric KL divergence on MRFs.

Note that r and ε are constants independent of the MRFs P,Q and the sets of discriminator classes {FC |C ∈ C}.
|C| is the number of maximal cliques in G and Dmax = cmaxd where cmax = max{|C|

∣∣C ∈ C} is the maximum
size of the cliques in G and d is the dimensionality of each variable of the MRFs.

B f-Divergences and Inequalities

For two probability distributions P and Q on the same sample space Ω, the f -divergence of P from Q, denoted
Df (P,Q), is defined as,

Df (P,Q) :=

∫
Ω

f

(
dP

dQ

)
dQ

If densities exist, Df (P,Q) =
∫

Ω
f
(
P (x)
Q(x)

)
Q(x)dx. In this definition, the function f : R+ → R is a convex,

lower-semi-continuous function satisfying f(1) = 0. We can define f(0) = limt↓0 f(t) ∈ R ∪ {∞}. Every convex,
lower semi-continuous function f has a convex conjugate function f∗, defined as f∗ = supu∈domf

{ut− f(u)}.

B.1 Common f-Divergences

All commonly-used f -divergences are listed in Table 2.
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Name Notation Generator f(t)

Kullback–Leibler KL t log(t)

Reverse KL RKL − log(t)

Symmetric KL SKL (t− 1) log(t)

Jensen-Shannon JS t
2 log 2t

t+1 + 1
2 log 2

t+1

Squared Hellinger H2 1
2

(√
t− 1

)2
Total Variation TV 1

2 |t− 1|
Pearson χ2 χ2 (t− 1)2

Reverse Pearson χ2 Rχ2 1
t − t

α-Divergence Hα


tα−1
α(α−1) α 6= 0, 1

t ln t α = 1

− ln t α = 0

Table 2: List of common f -divergences with generator functions.

We always adopt the most widely-accepted definitions. Note the 1
2 coefficients in the definitions of squared

Hellinger distance and Total Variation distance, in the spirit of normalizing their ranges to [0, 1].

The α-divergences Hα (α ∈ R), popularized by (Liese and Vajda, 2006), generalize many f -divergences including
KL divergence, reverse KL divergence, χ2 divergence, reverse χ2 divergence, and Hellinger distances. More
specifically, they satisfy the following relations: H1 = KL, H0 = RKL, H2 = 1

2χ
2, H−1 = 1

2Rχ2 , and H 1
2

= 4H2.

B.2 Inequalities between f-Divergences

First, we show a general approach to obtain inequalities between f -divergences. Then, we prove the inequalities
between squared Hellinger distance and Jensen-Shannon divergence. We also list the well-known Pinsker’s
inequality for completeness.

Lemma 15. Consider two f -divergences Df1 and Df2 with generator functions f1(·) and f2(·). If there exist two
positive constants 0 < A < B, such that for any t ∈ [0,∞), it holds that,

Af2(t) ≤ f1(t) ≤ Bf2(t)

Then, for any two densities P and Q (such that P � Q), we have,

ADf2(P,Q) ≤ Df1(P,Q) ≤ BDf2(P,Q)

Proof. Note that we extend the domain of f1 and f2 by defining f1(0) = limt↓0 f1(t) (and similar for f2). We
require P � Q so that f -divergences are well-defined. In this sense, for any x ∈ Ω, P (x)/Q(x) ∈ [0,∞) is defined,
and we have Af2(P (x)/Q(x)) ≤ f1(P (x)/Q(x)) ≤ Bf2(P (x)/Q(x)). Multiply non-negative Q(x) and integrate
over Ω. We obtain the desired inequality: ADf2

(P,Q) ≤ Df1
(P,Q) ≤ BDf2

(P,Q).

Theorem 16 (Theorem 11 of (Sason and Verdu, 2016)). For any two densities P and Q, (assume natural
logarithm is used in the definition of Jensen-Shannon divergence), we have

(ln 2)H2(P,Q) ≤ JS(P,Q) ≤ H2(P,Q)

Proof. Given Lemma 15, we only need to prove that for any t ∈ [0,∞), the following inequality holds,

(ln 2)fH2(t) ≤ fJS(t) ≤ fH2(t)

where the definitions of fH2 and fJS can be found in Table 2.
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Note that when t = 1, all terms are 0 and the inequalities hold trivially. For t 6= 1, as fH2(t) > 0, we define,

ξ(t) =
fJS(t)

fH2(t)
=
t ln 2t

t+1 + ln 2
t+1(√

t− 1
)2

ξ(t) is defined on [0, 1) ∪ (1,∞), We want to prove that ln 2 ≤ ξ(t) ≤ 1 always holds. Its derivative is,

ξ′(t) =

√
t ln 2t

t+1 + ln 2
t+1√

t
(
1−
√
t
)3

Denote the numerator above by ξ(1)(t). Its derivative is,

ξ′(1)(t) =
(t+ 1) ln 2t

t+1 + 2
(
1−
√
t
)

2
√
t(t+ 1)

Again, denote the numerator above by ξ(2)(t). Its derivative is,

ξ′(2)(t) =
1

t
− 1√

t
+ ln

2t

t+ 1

Using the well-known logarithm inequality: for any x > 0, lnx > 1− 1
x , we have,

ξ′(2)(t) ≥
1

t
− 1√

t
+ 1− t+ 1

2t
=

(√
t− 1

)2
2t

≥ 0

Also, since ξ(2)(1) = 0, and the denominator of ξ′(1)(t) is always positive, hence,

ξ′(1)(t)

{
< 0 t ∈ [0, 1)

> 0 t ∈ (1,∞)

Because ξ(1)(1) = 0, this implies ξ(1)(t) ≥ 0. Thus,

ξ′(t)

{
> 0 t ∈ [0, 1)

< 0 t ∈ (1,∞)

That is, ξ(t) is strictly increasing on [0, 1), and is strictly decreasing on (1,∞). To determine its range, we only
need to compute these limits: limt↓0 ξ(t), limt↑1 ξ(t), limt↓1 ξ(t), and limt→+∞ ξ(t):

lim
t↓0

ξ(t) = ln 2

lim
t↑1

ξ(t) = lim
t↓1

ξ(t) = lim
t→1

√
t ln 2t

t+1√
t− 1

= lim
t→1

2
√
t3

t+ 1
= 1

lim
t→+∞

ξ(t) = lim
t→+∞

t ln 2t
t+1(√

t− 1
)2 = lim

t→+∞

ln 2t
t+1 + 1

t+1√
t−1√
t

= ln 2

Together with the monotonic properties of ξ(t), we know

ln 2 ≤ ξ(t) ≤ 1

Theorem 17 (Pinsker’s Inequality, Eq. (1) of (Sason and Verdu, 2016)). For any two densities P and Q, we
have,

TV(P,Q) ≤
√

1

2
KL(P,Q)

It is a well-known result. See for example Theorem 2.16 of (Massart, 2007) for a proof.
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C Wasserstein Distances: Formulas and Inequalities

Suppose Ω is a metric space with distance d(·, ·). The p-Wasserstein distance Wp is defined as,

Wp(P,Q) :=

(
inf

γ∈Γ(P,Q)

∫
Ω×Ω

d(x, y)pdγ(x, y)

) 1
p

where γ ∈ Γ(P,Q) denotes the set of all possible couplings of P and Q.

C.1 Formulas for Wasserstein Distances

We list the algorithm and the formula to calculate the Wasserstein distance when space Ω is finite or the
distributions P and Q are Gaussians.

Theorem 18. For any two discrete distributions P,Q on a finite space Ω = {x1, · · · ,xn}, the p-Wasserstein
distance Wp can be computed by the following linear program:

Wp(P,Q)p = min
∑n
i=1

∑n
j=1 d

p(xi,xj)πij
subject to

∑n
j=1 πij = P (xi) i = 1, · · · , n∑n
i=1 πij = Q(xj) j = 1, · · · , n

and πij > 0 i = 1, · · · , n and j = 1, · · · , n

Useful discussions can be found in (Oberman and Ruan, 2015).

Theorem 19. For any two non-degenerate Gaussians P = N (m1, C1) and Q = N (m2, C2) on Rn, with respective
means m1,m2 ∈ Rn and (symmetric positive semi-definite) covariance matrices C1, C2 ∈ Rn×n. The square of
2-Wasserstein distance W2 between P,Q is,

W2(P,Q)2 = ‖m1 −m2‖22 + Tr

(
C1 + C2 − 2

(
C

1/2
2 C1C

1/2
2

)1/2
)

where ‖ · ‖2 is the Euclidean norm.

See (Olkin and Pukelsheim, 1982) for a proof.

C.2 Inequalities between p-Wasserstein Distance and Total Variation Distance

Both Wasserstein distances and Total Variation distance can be regarded as optimal transportation costs. More
specifically,

Wp(P,Q) :=

(
inf

γ∈Γ(P,Q)

∫
Ω×Ω

d(x, y)pdγ(x, y)

) 1
p

TV(P,Q) := inf
γ∈Γ(P,Q)

∫
Ω×Ω

1x6=ydγ(x, y)

where Γ(P,Q) denotes the set of all measures on Ω×Ω with marginals P and Q on variable x and y respectively,
(also called the set of all possible couplings of P and Q). Bounding the distance d(x, y) directly leads to inequalities
between p-Wasserstein distance and Total Variation distance.

Theorem 20. For any two distributions P and Q on a space Ω, if Ω is bounded with diameter diam(Ω) =
max{d(x, y)|x, y ∈ Ω}, then,

Wp(P,Q)p ≤ diam(Ω)pTV(P,Q)

Moreover, if Ω is finite, let dmin = minx6=y d(x, y) be the minimum mutual distance between pairs of distinct points
in Ω, then,

Wp(P,Q)p ≥ dpminTV(P,Q)
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Proof. This theorem is a generalization of Theorem 4 of (Gibbs and Su, 2002). Since d(·, ·) is a metric of space Ω,
d(x, y) = 0 if and only if x = y. Thus d(x, y) ≡ d(x, y)1x6=y, and we have,

Wp(P,Q)p = inf
γ∈Γ(P,Q)

∫
Ω×Ω

d(x, y)p1x6=ydγ(x, y)

If Ω is bounded, then for any x, y in Ω, it holds that d(x, y) ≤ diam(Ω). Applying this inequality to the formula
above leads to Wp(P,Q)p ≤ diam(Ω)pTV(P,Q).

Similarly, if Ω is finite, then for any distinct x 6= y in Ω, it holds that d(x, y) ≥ dmin. We can generalize it
to: for any x, y in Ω, we have d(x, y)1x6=y ≥ dmin1x6=y. Applying this inequality to the formula above leads to
Wp(P,Q)p ≥ dpminTV(P,Q).

D “Breadth First Search”-Subadditivity on MRFs

Most of our theoretical results in this paper are for the subadditivity of divergences on Bayes-nets. However,
following the same recursive approach as in the proof of Theorem 1, we can develop a different version of
subadditivity on MRFs that depends on a Breadth-First Search (BFS) ordering (1, . . . , n) on the undirected
graph G, which we call BFS-Subadditivity on MRFs (to distinguish it from the version we defined in Definition 1).

For BFS-Subadditivity on MRFs, each local neighborhood is the union of a node k ∈ {1, . . . , n} and a subset
Σk = ∪ki=1Ni \ {1, . . . , k}, where Ni is the set of nodes adjacent to node i, and Σk is a separating subset between
{1, . . . , k} and {k + 1, . . . , n} \ Σk. The construction of BFS-Subadditivity of a divergence δ requires exactly
the same two properties as in Theorem 1, i.e. δ is subadditive with respect to product measures and length-3
Markov Chains. In this sense, it is not hard to verify that all the divergences we prove to satisfy subadditivity on
Bayes-net in the paper, satisfy BFS-Subadditivity on MRFs as well.

D.1 Constructing Subadditivity Upper-Bound on Generic Graphical Models

From the proof of Theorem 1 in Appendix A.1, we obtain the subadditivity upper-bound on Bayes-nets by
repeatedly applying the subadditivity inequality on Markov Chain X → Y → Z. Moreover, we allow X = ∅
or Y = ∅ (i.e., X and Z are conditional independent), as addressed by the second and third cases in the proof.
In general, for a generic probability graphical model with an underlying graph G (there may be directed and
undirected edges in G), let P and Q be two distributions characterized by such graphical model. If δ satisfy
subadditivity on Markov Chain X → Y → Z with conditionally independent variables X and Y , we can obtain a
subadditivity upper-bound on δ(P,Q) by the following procedure:

1. Choose an ordering of nodes (1, · · · , n). The ordering is valid if the induction can be proceeded form start to
end.

2. For node k = 1, · · · , n − 1, let Σk be the smallest set of nodes such that Σk $ {k + 1, · · · , n} and Xk is
conditionally independent of ∪ni=k+1Xi given XΣk , which can be written as Xk ⊥⊥ ∪ni=k+1Xi |XΣk . If we
cannot find such Σk, the ordering (1, · · · , n) is invalid and the induction cannot be proceeded. Applying
the subadditivity of δ on the Markov Chain of super-nodes X{k+1,··· ,n}\Σk → XΣk → Xk gives an inequality
δ(P∪ni=kXi , Q∪ni=kXi) ≤ δ(P∪ni=k+1Xi

, Q∪ni=k+1Xi
) + δ(PXΣk

∪Xk , QXΣk
∪Xk).

3. By combining all the inequalities obtained, we get a subadditivity upper-bound
∑n
i=1 δ(PXΣi

∪Xi , QXΣi
∪Xi) ≥

δ(P,Q).

This process is identical to the proof of Theorem 1 for Bayes-nets, except that (1) we have to manually choose a
valid ordering of nodes, and (2) the set of parents Πk is replaced by the smallest set of nodes XΣk $ {k+1, · · · , n}
such that Xk ⊥⊥ ∪ni=k+1Xi |XΣk , which depends on the ordering we choose. For Bayes-nets, the ordering we use
is the reversed topological ordering, and for each k, we have Σk = Πk.

D.2 BFS-Subadditivity on MRFs and its Application to Sequences of Words

Let us now illustrate this process on MRFs, whose underlying probability structure is described by undirected
graphs. An enumeration of the nodes of a graph G is said to be a BFS ordering if it is a possible output of the
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Figure 7: A local neighborhood according to BFS-subadditivity, {3} ∪ Σ3, of a MRF with 9 variables, if the BFS
ordering (1, · · · , 9) is used. Where (a) is the MRF and (b) is the corresponding BFS tree. It is a snapshot of the
induction process at k = 3. Where the gray nodes have been processed, the blue node is the current focus, the
orange nodes represent the separating subset Σ3, which is the smallest subset such that X3 ⊥⊥ ∪9

i=4Xi |XΣ3
, and

the green nodes are the rest.

BFS algorithm on this graph. If we use a BFS ordering (1, · · · , n), then it is not hard to prove that for any
k ∈ {1, · · · , n}, we have Σk = ∪ki=1Ni \ {1, · · · , k}, where Ni is the set of nodes adjacent to node i (i.e. the set of
nearest neighbors). As shown in Fig. 7, if we choose a BFS ordering, Σk is actually the smallest set of nodes that
surround the current and processed nodes {1, · · · , k}. Σk is called a separating subset between {1, · · · , k} and
{k + 1, · · · , n} \ Σk, as every path from a node in {1, · · · , k} to a node in {k + 1, · · · , n} \ Σk passes through Σk.
By the global Markov property of MRFs, we indeed have Xk ⊥⊥ ∪ni=k+1Xi |XΣk .

As an example, we may consider a particular type of MRFs: sequences with local dependencies but no natural
directionality, e.g., sequences of words. If we assume the distribution of a word depends on both the pre- and
post- context, and consider up to (2p + 1)-grams (i.e. consider the distribution of up to 2p + 1 consecutive
words), the corresponding MRF is an undirected graph G, where each node i is connected to its p previous
nodes and p subsequent nodes. Let (1, · · · , n) be the natural ordering of these n words. Clearly, both (1, · · · , n)
and (n, · · · , 1) are valid BFS orderings. Following the method above, and if we truncate the induction at step
k = n− p (see Appendix I.1 for details), these two orderings result in an identical subadditivity upper bound∑n−p
k=1 δ(P∪k+p

i=kXi
, Q∪k+p

i=kXi
). Each local neighborhoods contains p + 1 consecutive words. Equipped with this

theoretical-justified subadditivity upper-bound, we can use a set of local discriminators in GANs, each on a
subsequence of p+ 1 consecutive words. This is how we apply local discriminators to sequences of words.

E A Counter-Example for the Subadditivity of 2-Wasserstein Distance

In this section, we report a counter-example for the subadditivity of 2-Wasserstein distance using Gaussian
distributions in R3. Note that as we shown in Corollary 7, in a finite space Ω, 2-Wasserstein distance satisfies
(
√

2diam(Ω)/dmin)-linear subadditivity on Bayes-nets, where diam(Ω) is the diameter and dmin is the smallest
distance between pairs of distinct points in Ω. However the counter-example in this section shows that, in an
arbitrary metric space Ω, 2-Wasserstein distance does not satisfy subadditivity (with linear coefficient α = 1) on
Bayes-nets and MRFs.

Consider an non-degenerate 3-dimensional Gaussian with zero mean P = N (0, C) on variables (X,Y, Z) (C ∈ R3×3

is the covariance matrix), which are also Bayes-nets with structure X → Y → Z. From the definition of Bayes-nets:
each variable is conditionally independent of its non-descendants given its parents, we know P is a Bayes-net if
and only if for any x, y, z ∈ R, it holds that PZ|X,Y (z|x, y) = PZ|Y (z|y). Let Cij denote the element of C at the
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i-th row and j-th column. It is not hard to compute that,

PZ|Y (z|y) = N
(
C32

C22
y, C33 −

C32C23

C22

)
PZ|X,Y (z|x, y) = N

([
C31 C32

] [C11 C12

C21 C12

]−1 [
x
y

]
, C33 −

[
C31 C32

] [C11 C12

C21 C12

]−1 [
C13

C23

])

Matching the means and variances of these two 1-dimensional Gaussians of z, we know that the two conditional
distributions coincide, and therefore P is a Bayes-net, if and only if C32C21 = C31C22, i.e. the 2× 2 upper-right
(or equivalently, the lower-left) sub-matrix of C has zero determinant. This condition can also be written as
Var[Y ]Cov[X,Z] = Cov[X,Y ]Cov[Y,Z].

It is clear that this condition on the covariance matrix C is symmetric under switching variables X and Z. This
means PX|Y,Z(x|y, z) = PX|Y (x|y) holds simultaneously, and the most appropriate graphical model to describe P
is the MRF. However, as long as the Markov property PZ|X,Y (z|x, y) = PZ|Y (z|y) holds, P is a valid Bayes-net.
These 3-dimensional Gaussians are special, as they satisfy the definitions of both Bayes-nets and MRFs.

Based on the discussions above, we construct two 3-dimensional Gaussians P and Q that are valid Bayes-nets
and MRFs, as follows.

Counter-Example 1. Consider two 3-dimensional Gaussians P x = N (0, C1) and Qxy = N (0, C2) in Ω = R3

parametrized by (x, y) ∈ {(x, y) ∈ R2|0 < x, y < 1}, where,

C1 =

1 x 0
x 1 0
0 0 1

 C2 =

 1 x xy
x 1 y
xy y 1


and 0 ∈ R3 is the zero vector. The two distributions are valid Bayes-nets and MRFs with structure X → Y → Z
(when considered as Bayes-nets) or X–Y –Z (when considered as MRFs), since the 2×2 upper-right (or lower-left)
sub-matrices of C1 and C2 has zero determinants. The 2-Wasserstein distance between them, W2(P x, Qxy),
depends on parameters (x, y). For any (x, y) ∈ {(x, y) ∈ R2|0 < x, y < 1}, it holds that W2(P xXY Z , Q

xy
XY Z) >

W2(P xXY , Q
xy
XY ) + W2(P xY Z , Q

xy
Y Z), which violets the subadditivity inequality (with linear coefficient α = 1) of

2-Wasserstein distance on Bayes-nets and MRFs.

Counter-Example 1 can be numerically verified, as the 2-Wasserstein distance between Gaussians can be
exactly computed using the formula in Theorem 19 in Appendix C.1. As shown in Fig. 8, the subadditivity gap
∆ = W2(P xXY , Q

xy
XY )+W2(P xY Z , Q

xy
Y Z)−W2(P xXY Z , Q

xy
XY Z) is negative for any (x, y) ∈ {(x, y) ∈ R2|0 < x, y < 1},

thus the subadditivity inequality is violated.

This straightforward but fundamental counter-example shows that Wasserstein’s subadditivity does not hold even
if all distributions are Gaussians. For many common divergences including Jensen-Shannon divergence, Total
Variation distance, and p-Wasserstein distance, the best we can prove is linear subadditivity.

F Local Subadditivity

In this section, we consider the case when two distributions P,Q are close to each other. This can happen after
some training steps in a GAN. We consider two notions of “closeness” for distributions.

Definition 3 (One- and Two-Sided ε-Close Distributions). Distributions P,Q are one-sided ε-close for some
0 < ε < 1, if ∀x ∈ Ω ⊆ Rnd, P (x)/Q(x) < 1+ε. Moreover, P,Q are two-sided ε-close, if ∀x, 1−ε < P (x)/Q(x) <
1 + ε. Note this requires P �� Q.

F.1 Local Subadditivity under Perturbation

For the sake of theoretical simplicity, we consider the limit ε→ 0 for two-sided ε-close distributions. We call Q a
perturbation of P (Makur, 2015).

Theorem 21. For two-sided ε-close distributions P,Q with ε→ 0 on a common Bayes-net G, any f -divergence
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Figure 8: Contour maps showing the counter-example for the subadditivity of 2-Wasserstein distance. The two
distributions P x, Qxy are 3-dimensional Gaussians P x = N (0, C1), Qxy = N (0, C2) which are valid Bayes-nets
and MRFs. The contours and colors indicate the subadditivity gap ∆ = W2(P xXY , Q

xy
XY ) + W2(P xY Z , Q

xy
Y Z) −

W2(P xXY Z , Q
xy
XY Z).

Df (P,Q) such that f ′′(1) > 0 has subadditivity up to O(ε3). That is,

Df (P,Q) ≤
n∑
i=1

Df (PXi∪XΠi
, QXi∪XΠi

) +O(ε3)

Moreover, the subadditivity gap is proportional to the sum of χ2 divergences between marginals on the set of
parents of each node, up to O(ε3). That is,

∆ =
n∑
i=1

Df (PXi∪XΠi
, QXi∪XΠi

)−Df (P,Q) =
f ′′(1)

2

n∑
i=1

χ2(PΠi , QΠi) +O(ε3)

Theorem 21 indicates that when P,Q are very close, the focus of the set of local discriminators falls on the
differences between the marginals on the set of parents. We make use of the Taylor expansion of f(·) in the proof.
To prove Theorem 21, we first prove the following lemma describing the approximation behavior of nearly all
f -divergences when P,Q are perturbations with respect to each other.

Lemma 22. For two-sided ε-close distributions P,Q with ε → 0, any f-divergence Df (P,Q) with f(t) twice
differentiable at t = 1 and f ′′(1) > 0, is proportional to χ2(P,Q) up to O(ε3), i.e.

Df (P,Q) =
f ′′(1)

2
χ2(P,Q) +O(ε3)

And χ2 is now symmetric up to O(ε3), i.e. χ2(P,Q) = χ2(Q,P ) +O(ε3).

Proof. Since f(t) twice differentiable at t = 1, and P (x)/Q(x) ∈ (1− ε, 1 + ε) with 0 < ε� 1, by Taylor’s theorem
we get,

f(
P

Q
) = f ′(1)

(
P

Q
− 1

)
+

1

2
f ′′(1)

(
P

Q
− 1

)2

+O(ε3)
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Multiply by Q and integrate over Ω ∈ Rnd gives,

Df (P,Q) =
f ′′(1)

2

∫
Q

(
P

Q
− 1

)2

dx+O(ε3)

=
f ′′(1)

2
χ2(P,Q) +O(ε3)

Where the first order term vanishes because
∫
Pdx =

∫
Qdx = 1. This equation implies that all f -divergences

such that f ′′(1) > 0 behave similarly when the two distributions P and Q are sufficiently close.

Meanwhile, because P/Q = 1 +O(ε), we have,

χ2(P,Q) =

∫
(P −Q)2

P

P

Q
dx

=

∫
(P −Q)2

P
(1 +O(ε))dx

= χ2(Q,P ) +O(ε3)

Thus we can exchange P and Q freely in any O(ε2) terms (e.g. (P −Q)2/Q), while preserving the equality up to
O(ε3).

Based on Lemma 22, Theorem 21 can be proved by comparing an f -divergence with the squared Hellinger
distance.

Proof of Theorem 21: We first prove that the subadditivity inequality holds using Lemma 22. Define R(x) =
1
2

(√
PQ+ P+Q

2

)
as the average of the geometric and arithmetic means of P and Q. Clearly for any x ∈ Ω, it

holds that |R(x)−Q(x)| < |P (x)−Q(x)| < ε. Thus R/Q = 1 +O(ε), and by Lemma 22, we have,

Df (P,Q) =
f ′′(1)

2
χ2(P,Q) +O(ε3)

=
f ′′(1)

2

∫
(P −Q)2

R

R

Q
dx+O(ε3)

=
f ′′(1)

2

∫
(P −Q)2

R
dx+O(ε3)

= 2f ′′(1)

∫ (√
P −

√
Q
)

dx+O(ε3)

= 4f ′′(1)H2(P,Q) +O(ε3)

Since f ′′(1) > 0, we can re-write this equation as H2(P,Q) = 1
4f ′′(1)Df (P,Q) +O(ε3). Applying this formula

to both sides of the subadditivity inequality of H2 (Theorem 2): H2(P,Q) ≤
∑n
i=1 H2(PXi∪XΠi

, QXi∪XΠi
), we

conclude that the subadditivity inequality holds up to O(ε3):

Df (P,Q) ≤
n∑
i=1

Df (PXi∪XΠi
, QXi∪XΠi

) +O(ε3)

Then, we prove that the subadditivity gap ∆ :=
∑n
i=1Df (PXi∪XΠi

, QXi∪XΠi
) − Df (P,Q) is proportional to∑n

i=1 χ
2(PΠi , QΠi) up to O(ε3) using a different approach. Let us start from the simple case when P,Q are

Markov Chains with structure X → Y → Z. The Markov property PZ|XY = PZ|Y holds (and the same for
Q). Since the joint distributions PXY Z and QXY Z are two-sided ε-close, so are the marginal and conditional
distributions. We define the differences between the marginals and conditionals of P and Q as follows,

QX|Y = PX|Y + εJX|Y

QY = PY + εJY

QZ|Y = PZ|Y + εJZ|Y
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Clearly
∫
JX|Y dx =

∫
JY dy =

∫
JZ|Y dz = 0. Using Lemma 22, we have,

2

ε2f ′′(1)
Df (PXY Z , QXY Z) +O(ε)

=
1

ε2

∫
(PXY Z −QXY Z)2

PXY Z
dxdydz

=
1

ε2

∫ (
PX|Y PY PZ|Y −QX|YQYQZ|Y

)2
PX|Y PY PZ|Y

dxdydz

=

∫ (
J2
Y PX|Y PZ|Y

PY
+
J2
X|Y PY PZ|Y

PX|Y
+
J2
Z|Y PX|Y PY

PZ|Y

+ 2JX|Y JY PZ|Y + 2JY JZ|Y PX|Y + 2JX|Y JZ|Y PY

)
dxdydz

=

∫
J2
Y

PY
dy +

∫ J2
X|Y PY

PX|Y
dxdy +

∫ J2
Z|Y PY

PZ|Y
dydz

Similarly,

2

ε2f ′′(1)
Df (PXY , QXY ) +O(ε) =

1

ε2

∫
(PX|Y PY −QX|YQY )2

PX|Y PY
dxdy

=

∫ (J2
X|Y PY

PX|Y
+
J2
Y PX|Y

PY
+ 2JX|Y JY

)
dxdy

=

∫ J2
X|Y PY

PX|Y
dxdy +

∫
J2
Y

Py
dy

And,
2

ε2f ′′(1)
Df (PY Z , QY Z) +O(ε) =

∫ J2
Z|Y PY

PZ|Y
dydz +

∫
J2
Y

PY
dy

Thus, the subadditivity gap on the Markov Chain X → Y → Z is,

∆Markov Chain = Df (PXY , QXY ) +Df (PY Z , QY Z)−Df (PXY , QXY )

=
f ′′(1)

2

∫
J2
Y

PY
dy +O(ε3)

=
f ′′(1)

2
χ2(PY , QY ) +O(ε3)

Moreover, consider the special case when Y = ∅, thus P,Q are product measures on conditionally independent
variables X and Z. Similarly, we have,

2

ε2f ′′(1)
Df (PXZ , QXZ) +O(ε) = χ2(PX , QX) + χ2(PZ , QZ)

Hence the subadditivity gap is,

∆Product Measure = Df (PX , QX) +Df (PZ , QZ)−Df (PXZ , QXZ) = 0 +O(ε3)

Now, for any pair of generic Bayes-nets P and Q, following the approach in the proof of Theorem 1 in Appendix A.1,
we repeatedly apply the subadditivity inequality on Markov Chains of super-nodes X{1,··· ,n−k−1}\Πn−k →
XΠn−k → Xn−k, for k = 0, 1, · · · , n− 2. Consider three cases:

1. Πn−k 6= ∅ and Πn−k $ {1, · · · , n−k−1}: In this case, the subadditivity gap is f
′′(1)
2 χ2(PΠn−k , QΠn−k)+O(ε3).
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2. Πn−k = {1, · · · , n − k − 1}: In this case, as discussed in Appendix A.1, we add a redundant term
δ(P∪n−k−1

i=1 Xi
, Q∪n−k−1

i=1 Xi
) ≡ δ(PΠn−k , QΠn−k) into the subadditivity upper-bound. Thus, by Lemma 22,

the subadditivity gap is f ′′(1)
2 χ2(PΠn−k , QΠn−k) +O(ε3)

3. Πn−k = ∅: In this case, Xn−k is independent from (X1, . . . , Xn−k−1) in both Bayes-nets. Thus the
subadditivity gap is 0.

For all the three cases, the subadditivity gap at an induction step k is f ′′(1)
2 χ2(PΠn−k , QΠn−k) + O(ε3) (note

that χ2(PΠn−k , QΠn−k) = 0 when Πn−k = ∅). Along with the induction process for k = 0, 1, · · · , n − 2, the
subadditivity gaps accumulate, and we finally get,

∆ :=
n∑
i=1

Df (PXi∪XΠi
, QXi∪XΠi

)−Df (P,Q) =
f ′′(1)

2

n∑
i=1

χ2(PΠi , QΠi) +O(ε3)

�

F.2 Linear Subadditivity for Close Distributions

Now, we consider distributions that are one or two-sided ε-close with a non-infinitesimal ε > 0. This is a more
realistic setup compared to the setup in Appendix F.1. The Taylor expansion approach used there is no longer
applicable. However, using the methodology to prove general f -divergence inequalities (Lemma 15), and a
technique of equivalent f -divergences, we are able to obtain linear subadditivity for both cases, under very mild
conditions.

We first prove a lemma which reveals the connection between the notion of closeness and linear subadditivity.

Lemma 23. Consider two f-divergences Df1
and Df2

with generator functions f1(t) and f2(t), where f2 has
subadditivity on Bayes-nets with respect to Definition 1. Let I ⊆ (0,∞) be an interval. If there exists two positive
constants A < B, such that for any t ∈ I, it holds that f2(t) ≥ 0 and A ≤ f1(t)/f2(t) ≤ B. Then, for any pair of
distributions P and Q, such that for any x ∈ Ω, P (x)/Q(x) ∈ I, the linear subadditivity inequality of Df1

holds
with coefficient 0 < α = A/B < 1.

Proof. For any t ∈ I, multiplying f2(t) ≥ 0 to the inequalities A ≤ f1(t)/f2(t) ≤ B gives,

Af2(t) ≤ f1(t) ≤ Bf2(t) ∀t ∈ I

Similar to the proof of Lemma 15 in Appendix B.2, since for any x ∈ Ω, it holds that P (x)/Q(x) ∈ I, we have,

Af2(P (x)/Q(x)) ≤ f1(P (x)/Q(x)) ≤ Bf2(P (x)/Q(x)) ∀x ∈ Ω

Multiply non-negative Q(x) and integrate over Ω. Thus, for such pairs of P,Q, we obtain,

ADf2(P,Q) ≤ Df1(P,Q) ≤ BDf2(P,Q)

Now consider P,Q are Bayes-nets such that for any x ∈ Ω, P (x)/Q(x) ∈ I = [a, b], i.e. a ≤ P (x)/Q(x) ≤ b. For
any non-empty set S $ {X1, · · · , Xn}, let Ω{X1,··· ,Xn}\S be the space of the variables not in S. Then, multiplying
non-negative Q(x) to a ≤ P (x)/Q(x) ≤ b and integrating over Ω{X1,··· ,Xn}\S gives aQS ≤ PS ≤ bQS . Moreover,
QS is positive because Q is positive. Thus, for any pair of marginal distributions PS and QS of such distributions,
they also satisfy that for any x ∈ ΩS , PS(x)/QS(x) ∈ I = [a, b].

Applying the first inequality to pairs of marginals PXi∪XΠi
and QXi∪XΠi

gives,

Df2(PXi∪XΠi
, QXi∪XΠi

) ≤ 1

A
Df1(PXi∪XΠi

, QXi∪XΠi
) ∀i ∈ {1, · · · , n}

Similarly, applying the second inequality to P and Q gives,

1

B
Df1

(P,Q) ≤ Df2
(P,Q)
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Combine them with the subadditivity inequality of Df2 , i.e. Df2(P,Q) ≤
∑n
i=1Df2(PXi∪XΠi

, QXi∪XΠi
), we have,

A

B
Df1

(P,Q) ≤
n∑
i=1

Df1
(PXi∪XΠi

, QXi∪XΠi
)

This proves that Df1
satisfy A/B-linear subadditivity for such pairs of Bayes-nets P and Q.

Now, we list the two theorems characterizing the linear subadditivity of f -divergences when the distributions are
one- or two-sided ε-close.

Theorem 24. An f -divergence whose f(·) is continuous on (0,∞) and twice differentiable at 1 with f ′′(1) > 0,
satisfies α-linear subadditivity, when P,Q are two-sided ε(α)-close with ε > 0, where ε(α) is a non-increasing
function and limε↓0 α = 1.

Proof. Following Lemma 23, we consider the quotient f(t)/fH2(t), where fH2 is the generator function of squared
Hellinger distance, and fH2(t) := 1

2

(√
t− 1

)2 ≥ 0 is always non-negative. If we can bound this quotient by
positive numbers on an interval t ∈ (1 − ε, 1 + ε) for some 0 < ε < 1, then by Lemma 23, we prove that Df

satisfies linear subadditivity when the distributions P and Q are two-sided ε-close.

Because f(t) and fH2(t) are continuous functions on (0,∞), the quotient f(t)/fH2(t) is also continuous on (0,∞).
To bound the quotient in the neighborhood around t = 1, we need to prove limt→1 f(t)/fH2(t) exists and is
positive. For fH2 , we know f ′H2(1) = 1

2

(
1− 1/

√
t
) ∣∣
t=1

= 0 and f ′′H2(1) = 1
4 t
−3/2

∣∣∣
t=1

= 1
4 > 0. Thus, since f(t) is

twice differentiable at t = 1, the limit of the quotient at t = 1 exists and is positive if and only if f ′(1) = 0 and
f ′′(1) > 0. That is,

0 < lim
t→1

f(t)/fH2(t) <∞ ⇐⇒ f ′(1) = 0 and f ′′(1) > 0

The latter condition is given, but the former condition, f ′(1) = 0, does not hold even for some f -divergences
which satisfy subadditivity on any Bayes-nets, e.g. for KL divergence, f ′KL(1) = 1 + log(t)

∣∣
t=1

= 1 6= 0.

However a trick can be used to rewrite the generator function f(t) without changing the definition of Df , so
that the modified generator function satisfies the desired condition. For any k ∈ R, the modified generator
f̂(t) = f(t) + k(t− 1) defines the same f -divergence,

Df̂ (P,Q) =

∫
Qf̂

(
P

Q

)
dx =

∫
Q

(
f

(
P

Q

)
+ k

(
P

Q
− 1

))
dx

=

∫
Qf

(
P

Q

)
dx+ k

∫
(P −Q)dx = Df (P,Q)

Thus, for any f(t) twice differentiable at t = 1 with f ′′(1) > 0, we can define f̂(t) := f(t) − f ′(1)(t − 1). It is
easy to verify that f̂(t) has zero first derivative f̂ ′(1) = 0 and positive second derivative f̂ ′′(1) > 0 at t = 1. The
modified generator satisfies the two required conditions. As a consequence, we have 0 < limt→1 f̂(t)/fH2(t) <∞,
and the quotient can be bounded by positive numbers in the neighborhood of t = 1, because of the continuity of
f(t). Applying Lemma 23 to interval I = (1− ε, 1 + ε) concludes the proof.

Theorem 11 applies to all practical f -divergences, including KL, reverse KL, χ2, reverse χ2, and squared Hellinger
H2 divergences.

In addition to the requirements of Theorem 11, if f(·) is also strictly convex and f(0) = limt↓0 f(t) is finite,
∀t ∈ [0, 1), we have the following subadditivity result for one-sided close distributions.

Theorem 25. An f-divergence whose f(·) is continuous and strictly convex on (0,∞), twice differentiable at
t = 1, and has finite f(0) = limt↓0 f(t), has linear subadditivity with coefficient α > 0, when P,Q are one-sided
ε(α)-close with ε > 0, where ε(α) is an non-increasing function and limε↓0 α > 0.

Proof. From the proof of Theorem 11, let f̂(t) := f(t)− f ′(1)(t− 1) be the modified generator function. We know
the quotient f̂(t)/fH2(t) can be bounded by positive numbers for any t ∈ (1 − ε, 1 + ε) for some 0 < ε < 1. It
remains to prove that f̂(t)/fH2(t) can be bounded by positive numbers on the interval [0, 1− ε).
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The generator f(t) is a strictly convex function on (0,∞), so is the modified generator f̂(t), since their difference
is a linear function of t. Because f̂ ′(1) = 0, the tangent line of the curve of f̂(t) at t = 1 coincides with the
x-axis. Since f̂(t) is strictly convex on (0,∞), the graph of f̂(t) lies above the x-axis, i.e. for any t ∈ (0,∞) we
have f̂(t) ≥ 0, where the equality holds if and only if t = 1. Hence, for any t ∈ [0, 1− ε), it holds that f̂(t) > 0.
Moreover, f̂(0) = f(0) + f ′(1) and we know f(0) = limt↓0 f(t) is finite. In this sense, f̂(0) is finite and positive.
By the continuity of the modified generator f̂(t), we know f̂(t) can be bounded by positive numbers on [0, 1− ε).
Moreover, clearly fH2(t) := 1

2

(√
t− 1

)2
can be bounded by positive numbers [0, 1 − ε). This implies that the

quotient f̂(t)/fH2(t) can be bounded by positive numbers on [0, 1 − ε). Applying Lemma 23 to the combined
interval I = [0, 1 + ε) = [0, 1− ε) ∪ {ε} ∪ (1− ε, 1 + ε) concludes the proof.

Using Theorem 12, we can relax the condition P � Q, as long as f(0) <∞ and f(·) is strictly convex. A broad
class of f -divergences satisfy this; see Appendix G below.

G Examples of Local Subadditivity

In this section, we discuss a notable class of f -divergences that satisfy local subadditivity, namely the α-divergences.
α-Divergences are f -divergences whose generator functions fHα(·) generalize power functions (see Table 2 in
Appendix B.1). We show that all α-divergences satisfy linear subadditivity when the distributions are two-sided
close, and α-divergences with α > 0 satisfy linear subadditivity when the distributions are only one-sided close.

Since for any α ∈ R, fHα(t) is continuous with respect to t, and its second order derivative at t = 1, i.e.
f ′′Hα(1) = tα−2

∣∣
t=1

= 1 is positive, by Theorem 11 we conclude the following result.
Example 2. α-divergences,

Hα(P,Q) :=


1

α(α−1)

∫
Q ((P/Q)

α − 1) dx α 6= 0, 1

KL(P,Q) α = 1

KL(Q,P ) α = 0

which generalize KL and reverse KL divergences, χ2 and reverse χ2 divergences, and squared Hellinger distance
(see Appendix B.1 for details), satisfy linear subadditivity when the two distributions P and Q are two-sided
ε-close for some ε > 0.

For α-divergences with α > 0, apart from the above-mentioned properties, fHα(t) is strictly convex since for
any t ∈ (0,∞), we have f ′′Hα(t) = tα−2 > 0. And f(0) = limt↓0 is always finite, because when α = 1, we have
limt↓0 f(t) = 0, and when α > 0 and α 6= 1, the limit limt↓0 f(t) = − 1

α(α−1) exists. By Theorem 12, we obtain
the following.
Example 3. α-divergences with α > 0, which generalize KL divergence, χ2 divergence, and squared Hellinger
distance, satisfy linear subadditivity when the two distributions P and Q are one-sided ε-close for some ε > 0.

H Prior Work on Bounding the IPMs

We list some of the prior work on bounding the Integral Probability Metrics (IPMs). All the concepts and
theorems introduced here are used to prove the generalized subadditivity of neural distances on Bayes-nets
(Theorem 8) and on MRFs (Corollary 10).

H.1 Preliminaries and Notations

Firstly, we introduce some concepts that help us characterize the set of discriminators F . Consider F as a set of
some functions φ : Ω → R, where Ω ⊆ RD. The Banach space of bounded continuous functions is denoted by
Cb(Ω) := {φ : Ω→ R|φ is continuous and ‖φ‖∞ <∞}, where ‖φ‖∞ = supx∈X |φ(x)| is the uniform norm. The
linear span of F is defined as,

spanF :=

{
α0 +

n∑
i=1

αiφi

∣∣∣∣αi ∈ R, φi ∈ F , n ∈ N

}
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For a function g ∈ spanF , we define the F -variation norm ‖g‖F as the infimum of the L1 norm of the expansion
coefficients of g over F , that is,

‖g‖F = inf

{
n∑
i=1

|αi|
∣∣∣∣g = α0 +

n∑
i=1

αiφi, ∀αi ∈ R, φi ∈ F , n ∈ N

}

Let cl(spanF) be the closure of the linear span of F . We say g ∈ cl(spanF) is approximated by F with an error
decay function ε(r) for r ≥ 0, if there exists a φr ∈ spanF , such that ‖φr‖F ≤ r and ‖φ− φr‖∞ ≤ ε(r). In this
sense, it is not hard to show that g ∈ cl(spanF) if and only if infr≥0 ε(r) = 0.

H.2 The Universal Approximation Theorems

From Theorem 2.2 of (Zhang et al., 2018), we know that dF (P,Q) is discriminative, i.e. dF (P,Q) = 0 ⇐⇒ P = Q,
if and only if Cb(X) is contained in the closure of spanF , i.e. Cb(X) ⊆ cl(spanF). In other words, it means that
we require spanF to be dense in Cb(X), so that dF (P,Q)→ 0 implies the weak converge of the fake distribution
Q to the real distribution P .

By the famous universal approximator theorem (e.g. Theorem 1 of (Leshno et al., 1993)), the discriminative
criteria Cb(X) ⊆ cl(spanF) can be satisfied by small discriminator sets such as the neural networks with only a
single neuron, F = {σ(wTx + b)|w ∈ RD, b ∈ R}, if the activation function σ : R → R is continuous but not a
polynomial. Later, (Bach, 2017) proves that the set of single-neuron neural networks with rectified linear unit
(ReLU) activation also satisfies the criteria.

Theorem 26 (Theorem 1 of (Leshno et al., 1993), (Bach, 2017)). For the set of neural networks with a single
neuron, i.e. F = {σ(wTx+ b)|w ∈ RD, b ∈ R}. The linear span of F is dense in the Banach space of bounded
continuous functions Cb(X), i.e. Cb(x) ⊆ cl(spanF), if the activation function σ(·) is continuous but not a
polynomial, or if σ(u) = max{u, 0}α for some α ∈ N (when α = 1, σ(u) = max{u, 0} is the ReLU activation).

See (Leshno et al., 1993) and (Bach, 2017) for further details and the proofs.

H.3 IPMs Upper-Bounding the Symmetric KL Divergence

(Zhang et al., 2018) explains how IPMs can control the likelihood function, so that along with the training of
an IPM-based GAN, the training likelihood should generally increase. More specifically, they prove that if the
densities P and Q exist, and log(P/Q) is inside the closure of the linear span of F , i.e. log(P/Q) ∈ cl(spanF),
a function of the IPM dF (P,Q) can upper-bound the Symmetric KL divergence SKL(P,Q). In this sense,
minimizing the IPM leads to the minimization of Symmetric KL divergence (and thus KL divergence), which is
equivalent to the maximization of the training likelihood.

Theorem 27 (Proposition 2.7 and 2.9 of (Zhang et al., 2018)). Any function g inside the closure of the linear
span of F , i.e. g ∈ cl(spanF), is approximated by F with an error decay function ε(r). It satisfies,

∣∣∣Ex∼P [g(x)]− Ex∼Q[g(x)]
∣∣∣ ≤ 2ε(r) + rdF (P,Q) ∀r ≥ 0

Moreover, consider two distributions with positive densities P and Q, if g = log(P/Q) ∈ cl(spanF), we have,

SKL(P,Q) ≡
∣∣∣Ex∼P [log(P (x)/Q(x))]− Ex∼Q[log(P (x)/Q(x))]

∣∣∣ ≤ 2ε(r) + rdF (P,Q) ∀r ≥ 0

Proof. The proof is in Appendix C of (Zhang et al., 2018). We repeat the proof here for completeness.

Since g is approximated by F with error decay function ε(r), for any r ≥ 0, there exist some φr ∈ spanF , which
can be represented as φr =

∑n
i=1 αiφi + α0 with some αi ∈ R and φi ∈ F , such that

∑n
i=1 |αi| = ‖φr‖F ≤ r and
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‖g − φr‖∞ < ε(r). In this sense, we have,∣∣∣Ex∼P [g(x)]− Ex∼Q[g(x)]
∣∣∣

=
∣∣∣(Ex∼P [g(x)]− Ex∼P [φr(x)]

)
−
(
Ex∼Q[g(x)]− Ex∼Q[φr(x)]

)
+
(
Ex∼P [φr(x)]− Ex∼Q[φr(x)]

)∣∣∣
≤
∣∣∣Ex∼P [g(x)− φr(x)]

∣∣∣+
∣∣∣Ex∼Q[g(x)− φr(x)]

∣∣∣+
∣∣∣Ex∼P [φr(x)]− Ex∼Q[φr(x)]

∣∣∣
≤ Ex∼P

∣∣g(x)− φr(x)
∣∣+ Ex∼Q

∣∣g(x)− φr(x)
∣∣+
∣∣∣ n∑
i=1

αi
(
Ex∼P [φi(x)]− Ex∼Q[φi(x)]

)∣∣∣
≤ 2ε(r) +

n∑
i=1

|αi|
∣∣∣Ex∼P [φi(x)]− Ex∼Q[φi(x)]

∣∣∣
≤ 2ε(r) + rdF (P,Q)

Applying this inequality to g = log(P/Q) proves that, for any r ≥ 0, this linear function of IPM 2ε(r) + rdF (P,Q)
upper-bounds the Symmetric KL divergence SKL(P,Q).

The upper-bounds obtained by Theorem 27 are a set linear functions of the IPM, {2ε(r) + rdF (P,Q)
∣∣r ≥ 0}. In

order to prove that the IPM dF (P,Q) can upper-bound the Symmetric KL divergence SKL(P,Q) up to some
constant coefficient and additive error, i.e. αSKL(P,Q)− ε ≤ dF (P,Q) for some constants α, ε > 0, we have to
control both ε(r) and r simultaneously. Because limr→∞ ε(r) = 0, all we need is an efficient upper-bound on ε(r)
for large enough r, which is provided in (Bach, 2017).

Theorem 28 (Proposition 6 of (Bach, 2017)). For a bounded space Ω, let g : Ω→ R be a bounded and Lipschitz
continuous function (i.e. there exists a constant η > 0 such that ‖g‖∞ < η and for any x, y ∈ Ω ⊆ RD, it holds
that ‖g(x)− g(y)‖∞ ≤ 1

diamΩη‖x− y‖2), and let F be a set of neural networks with a single neuron, which have
ReLU activation and bounded parameters (i.e. F = {max{wTx+ b, 0}

∣∣w ∈ RD, b ∈ R, ‖[w, b]‖2 = 1}). Then, we
have g ∈ cl(spanF), and g is approximated by F with error decay function ε(r), such that,

ε(r) ≤ C(D)η

(
r

η

)− 2
D+1

log

(
r

η

)
∀r ≥ R(D)

where C(D), R(D) are constants which only depend on the number of dimensions, D.

See Proposition 3, Appendix C.3, and Appendix D.4 of (Bach, 2017) for the proof.

I Subadditivity Upper-Bounds at Different “Levels of Detail” on Sequences

The subadditivity upper-bound on a Bayes-net,
∑n
i=1 δ(PXi∪XΠi

, QXi∪XΠi
), depends on the structure of the Bayes-

net. More specifically, the underlying DAG G determines the set of local neighborhoods {{1}∪Π1, · · · , {n}∪Πn},
and consequently, determines how we construct the set of local discriminators. In this section, we discuss that
the set of local neighborhoods can be change either by truncating the induction process when deriving the
subadditivity upper-bound (see the proof of Theorem 1 in Appendix A.1 for example), or by contracting the
neighboring nodes of the Bayes-net. Both methods result in a tighter subadditivity upper-bound at a coarser
level-of-detail (i.e., with larger local neighborhoods). For the sake of simplicity, we limit the scope to sequences
describing auto-regressive time series. For such graph G, there are T nodes ({1, · · · , T}), and each node depends
on its p previous nodes; see Fig. 9(a) for an example.

I.1 Truncation of Induction

For a probability divergence δ which satisfies subadditivity on Bayes-nets, the subadditivity upper-bound∑T
t=1 δ(PXt∪XΠt

, QXt∪XΠt
) of δ(P,Q) is obtained by repeatedly applying the subadditivity of δ on Markov Chains

of super-nodes X{1,··· ,s}\Πs+1
→ XΠs+1 → Xs+1, for s = T − 1, T − 2, · · · , 1. We can truncate the induction

process and get an alternative upper-bound: δ(P,Q) < δ(P∪st=1Xt
, Q∪st=1Xt

)+
∑T
t=s+1 δ(PXt∪XΠt

, QXt∪XΠt
). This

new upper-bound is tighter, but it does not encode the conditional independence information of the sub-sequence
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𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 𝑥𝑥5
{5} ∪ Π5

{1} ∪ Π1

{4} ∪ Π4
{3} ∪ Π3

{2} ∪ Π2

(a) Local neighborhoods of auto-regressive time series
with T = 5 and p = 2. The original set of local neigh-
borhoods is represented by the red and green bars. Two
local neighborhoods {1}∪Π1 and {2}∪Π2 (red bars) can
be safely removed by truncating the induction process.

𝑥𝑥1 𝑥𝑥2 𝑥𝑥5

{4} ∪ Π4

{3, 4} ∪ Π3 ∪ Π4

{3} ∪ Π3

𝑥𝑥3 ∪ 𝑥𝑥4

(b) Change of the local neighborhoods of auto-regressive
time series with T = 5 and p = 2, if contracting neigh-
boring nodes 3 and 4 to form a super-node {3, 4}. Two
local neighborhoods {3} ∪ Π3 and {4} ∪ Π4 (red bars) are
replaced by a new neighborhood {3, 4} ∪ Π3 ∪ Π4 (green
bar).

Figure 9: Changes of the local neighborhoods of a Bayes-net representing auto-regressive time series with T = 2
and p = 2, if we (a) truncate the induction process, or (b) contract a pair of neighboring nodes. In each case, the
subadditivity upper-bound becomes tighter and characterize the Bayes-net at a coarser level-of-detail.

(X1, · · · , Xs). However, this alternative upper-bound is preferable if we choose s to be the largest number where its
set of parents is exactly its previous nodes, i.e. Πs = {1, · · · , s−1}. The subadditivity inequality that we combined
at induction step s is δ(P∪st=1Xt

, Q∪st=1Xt
) ≡ δ(PXΠs∪Xs , QXΠs∪Xs) ≤ δ(P∪s−1

t=1Xt
, Q∪s−1

t=1Xt
)+δ(PXΠs∪Xs , QXΠs∪Xs)

(corresponding to the second case in the proof of Theorem 1 in Appendix A.1). Truncating at such s avoids
introducing the redundant term δ(P∪s−1

t=1Xt
, Q∪s−1

t=1Xt
) into the upper-bound. As shown in Fig. 9(a), for this

specific example s = p + 1 = 3 is the largest number such that Π3 = {1, 2}. Truncating at s = 3 removes
{1}∪Π1 and {2}∪Π2 from the set of local neighborhoods, resulting in a more efficient subadditivity upper-bound∑5
t=3 δ(PXt∪XΠt

, QXt∪XΠt
). This is helpful for time series data, since it makes all local neighborhoods have the

same number of dimensions. If all Xt ∈ Rd, then for t = 3, 4 and 5, Xt ∪XΠt ∈ R3d. In this sense, we can share
the same neural network architecture among all the local discriminators.

I.2 Neighboring Nodes Contraction

The set of local neighborhoods is determined by the structure G of the Bayes-net. Network contraction not only
simplifies the Bayes-net but also leads to a tighter subadditivity upper-bound at a lower level-of-detail. Here, we
only consider the contraction of neighboring nodes in a time series (X1, · · · , XT ). If we merge node s with s+ 1
(s = 1, · · · , T − 1), and form a super-node {s.s+ 1}, local neighborhoods {s}∪Πs and {s+ 1}∪Πs+1 are replaced
by {s, s+ 1} ∪Πs ∪Πs+1, and the total number of neighborhoods decreases by one. As shown in Fig. 9(b), when
nodes 3 and 4 are merged, local neighborhoods {3} ∪Π3 and {4} ∪Π4 are replaced by {3, 4} ∪Π3 ∪Π4. We omit
the conditional dependence between nodes 3 and 4, but reduce one local discriminator in the GAN. Neighboring
nodes contraction allows us to control the level-of-detail that the subadditivity upper-bound encodes flexibly.
This can be useful when the variables in the Bayes-net have non-uniform dimensionalities.

J More Experiment Results

J.1 Experiments on Synthetic MRFs

We perform some additional experiments to demonstrate the benefits of exploiting the underlying MRF structure
of the data in the design of model-based GANs. We generate a synthetic Gaussian MRF dataset, the graph of
which is a 4-cycle (namely a graph with 4 nodes, each of which has degree 2). We train our model-based GAN (we
call them MRF GANs) and the standard model-free GAN on five thousand samples. The network architecture
(except for the number of inputs) and the hyper-parameters are the same as what we used on the EARTHQUAKE
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dataset (see Appendix K). We evaluate the performance of the GANs by the Energy Statistics score (for the
definition, see Section 8). We observe that the average Energy Statistics of MRF GAN is (1.3 ± 0.2) × 10−3,
which is smaller (thus better) than the standard GAN’s, (7.9± 1.2)× 10−3. This simple experiment confirms
that the benefits of exploiting the conditional independence structure apply to MRFs as well. This is consistent
with our theory. Such benefits can be reaped even in low dimensions.

J.2 Sensitivity Analysis of Bayes-net GANs

In this part, we analyze how sensitive Bayes-net GAN is to its causal structure. In Section 8.2, we know from the
experiments on two real Bayes-nets that the Bayes-net GANs with the ground truth causal DAGs consistently
outperform the standard GANs in terms of the generation quality and the convergence speed. Here, we perturb
the ground truth DAG of the EARTHQUAKE dataset by randomly rewiring 1 of its 4 edges. The graph editing
distance between the resulting noisy causal DAG and the ground truth is therefore 1. We train a Bayes-net GAN
with local discriminators constructed using this noisy DAG, and evaluate it by the four metrics as in Section 8.2
(Table 3), as well as using the causal structure predicted from its generated data (Fig. 10). In Table 3, we observe
that the energy statistics and the detection AUC scores are not sensitive to the noise in the casual structure used
by the Bayes-net GAN. The BIC score and the predicted structure are more affected. The Bayes-net GAN with
the noisy causal graph learns some redundant indirect dependence (Fig. 10(b)).

DAG used Energy Stats. (×10−2)
(smaller is better)

Detection AUC
(smaller is better)

Rel. BIC (×102)
(larger is better)

Rel. GED
(smaller is better)

Ground truth 0.24± 0.04 0.523± 0.005 +1.68± 0.17 0.4± 0.7
Noisy 0.27± 0.11 0.528± 0.002 −2.02± 0.15 2.4± 1.1

Table 3: Quality metrics of samples generated by the Bayes-net GANs with the ground truth and the noisy causal
structure.

Burglary Earthquake

Alarm

JohnCalls MaryCalls

(a) Bayes-net GAN with ground truth DAG

Burglary Earthquake

Alarm

JohnCalls MaryCalls

(b) Bayes-net GAN with noisy DAG

Figure 10: Causal structures predicted from the data generated by the Bayes-net GAN with (a) the ground truth
causal graph and (b) the noisy causal graph.

K Experimental Setups

In this section, we report the detailed setups of the experiments in Section 8. Unless otherwise stated, model
comparisons between our model-based GANs and the standard GANs are conducted using exactly the same set
of training hyper-parameters. All experiments are repeated five or ten times.

K.1 Datasets

• Experiment 1: synthetic ball throwing trajectories: The ball throwing trajectory dataset is synthetic,
consists of single-variate time-series data (y1, . . . , y15) representing the y-coordinates of ball throwing trajectories
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lasting 1 second, where yt = v0 ∗ (t/15) − g(t/15)2/2. v0 is a Gaussian random variable and g = 9.8 is the
gravitational acceleration.

• Experiment 2: real Bayes-nets: The EARTHQUAKE dataset is a small Bayes-net with 5 nodes and 4 edges
characterizing the alarm system against burglary which can get occasionally set off by an earthquake (Korb and
Nicholson, 2010). The CHILD dataset is a Bayes-net with 20 nodes and 25 edges for diagnosing congenital heart
disease in a newborn “blue baby” (Spiegelhalter, 1992). The underlying causal DAGs of two Bayes-nets are
known, and are obtained from https://www.bnlearn.com/bnrepository/. Both Bayes-nets have categorical
features. We simulate samples from the Bayes-nets and then train GANs on them.

K.2 Local Discriminators

• Experiment 1: synthetic ball throwing trajectories: Each local discriminator measures the Jensen-
Shannon divergence in the local neighborhood, following (Nowozin et al., 2016). The use of local discriminators
is justified by the (1/ ln 2)-linear subadditivity of Jensen-Shannon divergence on Bayes-nets (Corollary 5).

• Experiment 2: real Bayes-nets: Each local discriminator measures the Wasserstein distance in the local
neighborhood, following (Arjovsky et al., 2017). The use of local discriminators is justified by the generalized
subadditivity of neural distances on Bayes-nets (Theorem 8). We use Gumbel-Softmax (Jang et al., 2016) in
the output layer of the generator, so that the generator produces categorical data while allowing (approximate)
back propagation.

K.3 Network Architectures

• Experiment 1: synthetic ball throwing trajectories: For the GANs on the ball throwing trajectory dataset,
we use a 5-layer fully connected network (FCN) for the generator where the number of hidden dimensions
is set to 8 for all layers. We take a hybrid design for each local discriminator. Each local discriminator is
a combination of a 4-layer FCN and a 3-layer convolutional neural network (CNN) so that it can penalize
both inaccurate global distributions (via FCN) and inaccurate local dynamics (via CNN). The discriminator of
the standard GAN on the ball throwing trajectory dataset is the local discriminator with localization width
15 (which is equal to the length of the time-series). The local discriminators share the same architecture
(except the input layer) even if the localization width varies, but they do not share parameters. We make the
discriminators’ architecture powerful enough such that adding more neurons/layers cannot bring us any further
performance gain.

• Experiment 2: real Bayes-nets: For the GANs on the EARTHQUAKE dataset, we use a 5-layer FCN for
the generator where the number of hidden dimensions is set to 32 for all layers. We also use a 4-layer FCN
for each local discriminator where the number of hidden dimensions is set to 8. For the GANs on the CHILD
dataset, we use a 7-layer FCN with 256 hidden dimensions for the generator, and a 6-layer FCN with 32 hidden
dimensions for the discriminator. There is no parameter sharing among the local discriminators. We apply
Batch Normalization after each hidden layer in the generator, but not in the discriminator. All ReLUs are leaky,
with slope 0.2. In the experiments, we keep the architecture of the generator and the other hyper-parameters
the same, and compare our model-based GANs with the standard GANs on Bayes-nets.

K.4 Training Setups and Hyper-Parameters

The networks are implemented using the PyTorch framework. All networks are trained from scratch on one
NVIDIA RTX 2080 Ti GPU with 11GB memory.

• Experiment 1: synthetic ball throwing trajectories: We train GANs with local discriminators (with
localization width equals to 1, 2, 3, 5, 8, 11, 15) for 500 epochs, with learning rate 0.0001 and batch size 128. We
repeat each experiment 10 times and report the averages with uncertainties.

• Experiment 2: real Bayes-nets: We train the standard GANs and the Bayes-net GANs for 100 epochs,
with learning rate 0.001 and batch size 128. We repeat each experiment 5 times and report the averages with
uncertainties.

https://www.bnlearn.com/bnrepository/
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K.5 Evaluation Setups

• Experiment 1: ball throwing trajectories: We estimate the gravitational acceleration g learned by the
GANs, via degree-2 polynomial regression on the generated trajectories.

• Experiment 2: real Bayes-nets: The energy statistics are calculated using the standard torch-two-sample
package (available at https://github.com/josipd/torch-two-sample). The fake detection AUC scores are
obtained by training binary classifiers to distinguish the fake samples from the real ones. The binary classifier
is a 3-layer FCN with hidden dimensions 16 on the EARTHQUAKE dataset and a 5-layer FCN with hidden
dimension 32 on the CHILD dataset. We train the classifiers for 100 epochs, with learning rate 0.001 and batch
size 128.

L Empirical Verification of Subadditivity

In this section, we verify the subadditivity of squared Hellinger distance, KL divergence, Symmetric KL divergence,
and the linear subadditivity of Jensen-Shannon divergence, Total Variation distance, 1-Wasserstein distance, and
2-Wasserstein distance on binary auto-regressive sequences in a finite space Ω.

To construct a simple Bayes-net P on a sequence of bits (X1, · · · , Xn) ∈ {0, 1}n, consider the auto-regressive
sequence defined by,

P (Xt = 1|Xt−1, · · · , Xt−p) = σ(

p∑
i=1

ϕiXt−i)

where p ∈ N such that 0 < p < n is called the order of this auto-regressive sequence, and [ϕ1, · · · , ϕn] are the
coefficients. The marginal distributions of the initial variables X1, · · · , Xp have to be pre-defined. We assume
they are conditionally independent, and define,

P (Xi = 1) = ψi ∀i ∈ {1, · · · , p}

where for any i ∈ {1, · · · , p}, ψi ∈ [0, 1]. If the distribution of a binary sequence (X1, · · · , Xn) follows the
definitions above, we say it is a binary auto-regressive sequence of order p with coefficients [ϕ1, · · · , ϕn] and
initials [ψ1, · · · , ψn].

Binary auto-regressive sequences are Bayes-nets, because each variable Xt is conditionally independent of its
non-descendants given its parent variables Xt−1, · · · , Xt−p. The probabilistic graph G is determined by the
length n and the order p. For a statistical divergence δ satisfying subadditivity, as described in Appendix I.1, we
truncate the induction process and get a subadditivity upper-bound

∑n
t=p+1 δ(P∪ti=t−pXi , Q∪ti=t−pXi). We verify

that the subadditivity inequality (or linear subadditivity inequality) holds for various statistical divergences, on
two specific examples.
Example 4 (Binary Auto-Regressive Sequences with Different Local Dependencies). Consider binary auto-
regressive sequences (X1, X2, X3, X4) ∈ {0, 1}4 of order p = 2 with initials [ψ1, ψ2] = [ 1

2 ,
1
2 ]. Two distributions

P x (with coefficients [ϕ1, ϕ2] = [0, x]) and Qy (with coefficients [ϕ1, ϕ2] = [0, y]) are Bayes-nets with identical
underlying structure. Divergence δ(P x, Qy) is a function of the parameters (x, y). For all (x, y) ∈ {(x, y) ∈
R2|x 6= y}, we have δ(P x, Qy) <

∑n
t=p+1 δ(P

x
∪ti=t−pXi

, Qy∪ti=t−pXi
) if δ satisfies subadditivity, or α · δ(P x, Qy) <∑n

t=p+1 δ(P
x
∪ti=t−pXi

, Qy∪ti=t−pXi
) if δ satisfies α-linear subadditivity.

Example 5 (Binary Auto-Regressive Sequences with Different Initial Distributions). Consider binary auto-
regressive sequences (X1, X2, X3, X4) ∈ {0, 1}4 of order p = 2 with coefficients [ϕ1, ϕ2] = [1,−1]. Two distributions
P x (with initials [ψ1, ψ2] = [ 1

2 , x]) and Qy (with initials [ψ1, ψ2] = [ 1
2 , y]) are Bayes-nets with identical underlying

structure. Divergence δ(P x, Qy) is a function of the parameters (x, y). For all (x, y) ∈ {(x, y) ∈ R2|0 < x 6=
y < 1}, we have δ(P x, Qy) <

∑n
t=p+1 δ(P

x
∪ti=t−pXi

, Qy∪ti=t−pXi
) if δ satisfies subadditivity, or α · δ(P x, Qy) <∑n

t=p+1 δ(P
x
∪ti=t−pXi

, Qy∪ti=t−pXi
) if δ satisfies α-linear subadditivity.

We verify the subadditivity of H2, KL, SKL, and the linear subadditivity of JS, TV, W1 and W2 on these two exam-
ples, as shown in Fig. 11. We draw contour plots of the subadditivity gap ∆ =

∑n
t=p+1 δ(P

x
∪ti=t−pXi

, Qy∪ti=t−pXi
)−

δ(P x, Qy) (if δ satisfies subadditivity) or ∆ =
∑n
t=p+1 δ(P

x
∪ti=t−pXi

, Qy∪ti=t−pXi
) − α · δ(P x, Qy) (if δ satisfies

α-linear subadditivity). All the inequalities are verified as we can visually confirm all contours are positive.

https://github.com/josipd/torch-two-sample
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Figure 11: Contour maps showing the binary auto-regressive sequence examples of subadditivity or linear
subadditivity of H2, KL, SKL, JS, TV, W1, and W2. The two distributions P x, Qy are distributions of binary
auto-regressive sequences with length n = 4 and order p = 2, following definitions in Example 4 and Example 5.
The contours and colors indicate the subadditivity gap ∆ =

∑n
t=p+1 δ(P

x
∪ti=t−pXi

, Qy∪ti=t−pXi
) − δ(P x, Qy) (if δ

satisfies subadditivity) or ∆ =
∑n
t=p+1 δ(P

x
∪ti=t−pXi

, Qy∪ti=t−pXi
)−α ·δ(P x, Qy) (if δ satisfies α-linear subadditivity).

The red dotted line indicates places where the subadditivity gap is 0. White regions have too large subadditivity
gap to be colored.
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M Empirical Verification of the Local Approximations of f-Divergences

In this section, we observe the local behavior of common f -divergences when the two distributions P and Q are
sufficiently close. And we verify the conclusion of Lemma 22: all f -divergences Df with a generator function f(t)
that is twice differentiable at t = 1 and satisfies f ′′(1) > 0 have similar local approximations up to a constant
factor up to O(ε3). More specifically, for a pair of two-sided ε-close distributions P and Q, we verify all such
f -divergences satisfy:

Df (P,Q) =
f ′′(1)

2
χ2(P,Q) +O(ε3)

Let us consider a simple example of two-sided close distributions on Ω = R. Suppose Q = N (0, 1) is the
1-dimensional unit Gaussian. Let P (x) = (1 + ε sin(x))Q(x) for some ε ∈ (0, 1). It is easy to verify that
P is a valid probability distribution:

∫∞
−∞ P (x)dx =

∫∞
−∞Q(x)dx + ε

∫∞
−∞ sin(x)Q(x)dx = 1, where the term∫∞

−∞ sin(x)Q(x)dx vanishes because Q(x) is an even function and sin(x) is odd. Since for any x ∈ Ω = R, it holds
that P (x)/Q(x) = 1 + ε sin(x) ∈ [1− ε, 1 + ε], we know P and Q are two-sided ε-close.

We compute several common f -divergences between such P and Q, for different ε ∈ [0, 0.5], as shown in Fig. 12(a).
We can see that, except for Total Variation distance which has a generator fTV not differentiable at 1, all common
f -divergences behave similarly up to a constant factor. Actually, these curves cluster into three groups according
to f ′′(1). In the first cluster: f ′′SKL(1) = f ′′χ2(1) = f ′′Rχ2(1) = 2. In the second cluster: f ′′KL(1) = f ′′RKL(1) = 1.
While in the third cluster: f ′′H2(1) = f ′′JS(1) = 1

4 . Moreover, we visualize the differences between f -divergences
normalized with respect to f ′′(1) and χ2 divergence, for ε ∈ [0, 0.01]. We can see in Fig. 12(b), all the differences
are very small. This verifies that all f -divergences such that f ′′(1) > 0 satisfy 2

f ′′(1)Df (P,Q) = χ2(P,Q) up to
O(ε3).
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Figure 12: Common f -divergences between two-sided ε-close distributions P,Q, where Q is the 1-dimensional
unit Gaussian and P (x) = (1 + ε sin(x))Q(x). In (a), we compare these f -divergences for ε ∈ [0, 0.5]. In (b), we
verify the conclusion of Lemma 22: 2

f ′′(1)Df (P,Q) = χ2(P,Q) +O(ε3).
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