The Complexity of Constrained Min-Max Optimization

Constantinos Daskalakis Stratis Skoulakis Manolis Zampetakis
MIT SUTD MIT
costis@csail.mit.edu efstratios@sutd.edu.sg mzampet@mit.edu
September 22, 2020
Abstract

Despite its important applications in Machine Learning, min-max optimization of objective
functions that are nonconvex-nonconcave remains elusive. Not only are there no known first-
order methods converging even to approximate local min-max points, but the computational
complexity of identifying them is also poorly understood. In this paper, we provide a charac-
terization of the computational complexity of the problem, as well as of the limitations of first-
order methods in constrained min-max optimization problems with nonconvex-nonconcave
objectives and linear constraints.

As a warm-up, we show that, even when the objective is a Lipschitz and smooth differ-
entiable function, deciding whether a min-max point exists, in fact even deciding whether an
approximate min-max point exists, is NP-hard. More importantly, we show that an approxi-
mate local min-max point of large enough approximation is guaranteed to exist, but finding
one such point is PPAD-complete. The same is true of computing an approximate fixed point
of the (Projected) Gradient Descent/Ascent update dynamics.

An important byproduct of our proof is to establish an unconditional hardness result
in the Nemirovsky-Yudin [NY83] oracle optimization model. We show that, given oracle
access to some function f : P — [~1,1] and its gradient Vf, where P C [0,1] is a known
convex polytope, every algorithm that finds a e-approximate local min-max point needs to
make a number of queries that is exponential in at least one of 1/¢, L, G, or d, where L
and G are respectively the smoothness and Lipschitzness of f and d is the dimension. This
comes in sharp contrast to minimization problems, where finding approximate local minima
in the same setting can be done with Projected Gradient Descent using O(L/¢) many queries.
Our result is the first to show an exponential separation between these two fundamental
optimization problems in the oracle model.

arX1v:2009.09623v1 [cs.CC] 21 Sep 2020

costis@csail.mit.edu
efstratios@sutd.edu.sg
mzampet@mit.edu

Contents

1 Introduction
1.1 Brief Overview of the Techniques
1.2 Local Minimization vs Local Min-Max Optimization
1.3 Further Related Work e

2 Preliminaries
3 Computational Problems of Interest
3.1 Mathematical Definitions L
3.2 First-Order Local Optimization Computational Problems
3.3 Bonus Problems: Fixed Points of Gradient Descent/Gradient Descent-Ascent
4 Summary of Results
5 Existence of Approximate Local Min-Max Equilibrium
6 Hardness of Local Min-Max Equilibrium — Four-Dimensions
6.1 The 2D Bi-Sperner Problem, .
6.2 From 2D Bi-Sperner to Fixed Points of Gradient Descent/Ascent
7 Hardness of Local Min-Max Equilibrium — High-Dimensions
7.1 The High Dimensional Bi-Sperner Problem
7.2 From High Dimensional Bi-Sperner to Fixed Points of Gradient Descent/Ascent . .
8 Smooth and Efficient Interpolation Coefficients
8.1 Smooth Step Functions — Toy Single Dimensional Example
8.2 Construction of SEIC Coefficients in High-Dimensions
8.3 Sketch of the Proof of Theorem 8.1
9 Unconditional Black-Box Lower Bounds
10 Hardness in the Global Regime
A Proof of Theorem 4.1
B Missing Proofs from Section 5
B.1 Proof of Theorem 5.1
B.2 Proof of Theorem 5.2 e
C Missing Proofs from Section 8
D Constructing the Turing Machine — Proof of Theorem 7.6
E Convergence of PGD to Approximate Local Minimum

12
12
14
15

16

18

19
19
23

31
32
34

40
41
43
45

45

47

57

58
58
60

61

74

81

1 Introduction

Min-Max Optimization has played a central role in the development of Game Theory [vIN28],
Convex Optimization [Dan51, AdI13], and Online Learning [Bla56, CBL06, SS12, BCB12, SSBD14,
Haz16]. In its general constrained form, it can be written down as follows:

min max f(x,y); (1.1)
x€R1 yeR®

s.t. g(x,y) <0.

Here, f : R" x R%2— [~B,B] with B € Ry, and g : R" x R2— R is typically taken to be a
convex function so that the constraint set ¢(x,y) < 0 is convex. In this paper, we only use linear
functions g so the constraint set is a polytope, thus projecting on this set and checking feasibility
of a point with respect to this set can both be done in polynomial time.

The goal in (1.1) is to find a feasible pair (x*, y*), i.e., g(x*,y*) < 0, that satisfies the following

f(x*,y*) < f(x,y*), forall xs.t. g(x,y")
f(x*,y*) > f(x*,y), forallys.t g(x*,y)

IAIA

0; (1.2)
0. (1.3)

It is well-known that, when f(x,y) is a convex-concave function, i.e., f is convex in x for
all y and it is concave in y for all x, then Problem (1.1) is guaranteed to have a solution, under
compactness of the constraint set [VN28, Ros65], while computing a solution is amenable to
convex programming. In fact, if f is L-smooth, the problem can be solved via first-order methods,
which are iterative, only access f through its gradient,' and achieve an approximation error of
poly(L,1/T) in T iterations; see e.g. [Kor76, Nem04].> When the function is strongly convex-
strongly concave, the rate becomes geometric [FP07].

Unfortunately, our ability to solve Problem (1.1) remains rather poor in settings where our ob-
jective function f is not convex-concave. This is emerging as a major challenge in Deep Learning,
where min-max optimization has recently found many important applications, such as train-
ing Generative Adversarial Networks (see e.g. [GPM 14, ACB17]), and robustifying deep neural
network-based models against adversarial attacks (see e.g. [MMS*18]). These applications are
indicative of a broader deep learning paradigm wherein robustness properties of a deep learning
system are tested and enforced by another deep learning system. In these applications, it is very
common to encounter min-max problems with objectives that are nonconvex-nonconcave, and
thus evade treatment by the classical algorithmic toolkit targeting convex-concave objectives.

Indeed, the optimization challenges posed by objectives that are nonconvex-nonconcave are
not just theoretical frustration. Practical experience with first-order methods is rife with frustra-
tion as well. A common experience is that the training dynamics of first-order methods is unsta-
ble, oscillatory or divergent, and the quality of the points encountered in the course of training
can be poor; see e.g. [Gool6, MPPSD16, DISZ18, MGN18, DP18, MR18, MPP18, ADLH19]. This
experience is in stark contrast to minimization (resp. maximization) problems, where even for

In general, the access to the constraints ¢ by these methods is more involved, namely through an optimization
oracle that optimizes convex functions (in fact, quadratic suffices) over g(x,y) < 0. In the settings considered in this
paper g is linear and these tasks are computationally straightforward.

%In the stated error rate, we are suppressing factors that depend on the diameter of the feasible set. Moreover, the
stated error of ¢(L, T) £ poly(L,1/T) reflects that these methods return an approximate min-max solution, wherein
the inequalities on the LHS of (1.2) and (1.3) are satisfied to within an additive ¢(L, T).

nonconvex (resp. nonconcave) objectives, first-order methods have been found to efficiently con-
verge to approximate local optima or stationary points (see e.g. [AAZB"17, JGN 17, LPP"19]),
while practical methods such Stochastic Gradient Descent, Adagrad, and Adam [DHS11, KB14,
RKK18] are driving much of the recent progress in Deep Learning.

The goal of this paper is to shed light on the complexity of min-max optimization problems, and
elucidate its difference to minimization and maximization problems—as far as the latter is concerned
without loss of generality we focus on minimization problems, as maximization problems behave
exactly the same; we will also think of minimization problems in the framework of (1.1), where
the variable y is absent, that is d = 0. An important driver of our comparison between min-max
optimization and minimization is, of course, the nature of the objective. So let us discuss:

> Convex-Concave Objective. The benign setting for min-max optimization is that where the ob-
jective function is convex-concave, while the benign setting for minimization is that where the
objective function is convex. In their corresponding benign settings, the two problems behave
quite similarly from a computational perspective in that they are amenable to convex program-
ming, as well as first-order methods which only require gradient information about the objective
function. Moreover, in their benign settings, both problems have guaranteed existence of a so-
lution under compactness of the constraint set. Finally, it is clear how to define approximate
solutions. We just relax the inequalities on the left hand side of (1.2) and (1.3) by some & > 0.

> Nonconvex-Nonconcave Objective. By contrapositive, the challenging setting for min-max op-
timization is that where the objective is not convex-concave, while the challenging setting for
minimization is that where the objective is not convex. In these challenging settings, the behav-
ior of the two problems diverges significantly. The first difference is that, while a solution to a
minimization problem is still guaranteed to exist under compactness of the constraint set even
when the objective is not convex, a solution to a min-max problem is not guaranteed to exist
when the objective is not convex-concave, even under compactness of the constrained set. A triv-
ial example is this: min,¢) max,ep,1)(x — y)2. Unsurprisingly, we show that checking whether a
min-max optimization problem has a solution is NP-hard. In fact, we show that checking whether
there is an approximate min-max solution is NP-hard, even when the function is Lispchitz and
smooth and the desired approximation error is an absolute constant (see Theorem 10.1).

Since min-max solutions may not exist, what could we plausibly hope to compute? There are
two obvious targets:

(I) approximate stationary points of f, as considered e.g. by [ALW19]; and

(I) some type of approximate local min-max solution.

Unfortunately, as far as (I) is concerned, it is still possible that (even approximate) station-
ary points may not exist, and we show that checking if there is one is NP-hard, even when
the constraint set is [0,1]%, the objective has Lipschitzness and smoothness polynomial in d,
and the desired approximation is an absolute constant (Theorem 4.1). So we focus on (II),
i.e. (approximate) local min-max solutions. Several kinds of those have been proposed in the
literature [DP18, MR18, JNJ19]. We consider a generalization of the concept of local min-max
equilibria, proposed in [DP18, MR18], that also accommodates approximation.

Definition 1.1 (Approximate Local Min-Max Equilibrium). Given f, g as above, and ¢, > 0,
some point (x*,y*) is an (¢, d)-local min-max solution of (1.1), or a (¢, d)-local min-max equilibrium,
if it is feasible, i.e. g(x*,y*) < 0, and satisfies:

f(x*,y*) < f(x,y*) +¢, for all x such that ||x —x*|| < ¢ and g(x,y*)

<
f(x*,y*) > f(x*,y) —¢, for all y such that ||y — y*|| < J and g(x*,y) <

0; (1.4)
0. (1.5)

In words, (x*,y*) is an (g, §)-local min-max equilibrium, whenever the min player cannot update
x to a feasible point within J of x* to reduce f by at least ¢, and symmetrically the max player
cannot change y locally to increase f by at least e.

We show that the existence and complexity of computing such approximate local min-max
equilibria depends on the relationship of € and § with the smoothness, L, and the Lipschitzness,
G, of the objective function f. We distinguish the following regimes, also shown in Figure 1
together with a summary of our associated results.

» Trivial Regime. This occurs when 6 < &. This regime is trivial because the G-Lipschitzness of
f guarantees that all feasible points are (¢, J)-local min-max solutions.

» Local Regime. This occurs when 6 < /%, and it represents the interesting regime for min-
max optimization. In this regime, we use the smoothness of f to show that (¢, d)-local min-max
solutions always exist. Indeed, we show (Theorem 5.1) that computing them is computationally
equivalent to the following variant of (I) which is more suitable for the constrained setting:

(I') (approximate) fixed points of the projected gradient descent-ascent dynamics (Section 3.3).

We show via an application of Brouwer’s fixed point theorem to the iteration map of the projected
gradient descent-ascent dynamics that (I)” are guaranteed to exist. In fact, not only do they exist,
but computing them is in PPAD, as can be shown by bounding the Lipschitzness of the projected
gradient descent-ascent dynamics (Theorem 5.2).

» Global Regime. This occurs when J is comparable to the diameter of the constraint set. In
this case, the existence of (g, §)-local min-max solutions is not guaranteed, and determining their
existence is NP-hard, even if ¢ is an absolute constant (Theorem 10.1).

The main results of this paper, summarized in Figure 1, are to characterize the complexity of
computing local min-max solutions in the local regime. Our first main theorem is the following;:

Informal Theorem 1 (see Theorems 4.3, 4.4 and 5.1). Computing (¢, d)-local min-max solutions of
Lipschitz and smooth objectives over convex compact domains in the local regime is PPAD-complete. The
hardness holds even when the constraint set is a polytope that is a subset of [0, 1), the objective takes values
in [—1,1] and the smoothness, Lipschitzness, 1/ and 1/ are polynomial in the dimension. Equivalently,
computing w-approximate fixed points of the Projected Gradient Descent-Ascent dynamics on smooth and
Lipschitz objectives is PPAD-complete, and the hardness holds even when the the constraint set is a polytope
that is a subset of [0, 1), the objective takes values in [—d, d) and smoothness, Lipschitzness, and 1/« are
polynomial in the dimension.

For the above complexity result we assume that we have “white box” access to the objective
function. An important byproduct of our proof, however, is to also establish an unconditional
hardness result in the Nemirovsky-Yudin [NY83] oracle optimization model, wherein we are given
black-box access to oracles computing the objective function and its gradient. Our second main
result is informally stated in Informal Theorem 2.

3

Qe

€
Vi T (i)
PPAD-hard!™m#4 |

e PPAD [Thm 4.3]
PPAD-complete *

) 4

A 4

| NPi—hardlse“' g) ;

2/1((’,(}, [Thm 4.5] %

L) queries

>
>

approximate local
min-max equilibrium
= 4

) 4

[Sec. E]

NP-hard!Se 10!
[Sec. E] 1 zh(d,G,L,s)

i 1 i € €

i .. 4 - mi £ £
| trivial £ | i <\/: c>
- - i

! regime

» 0

. [Sec. 10]
queries

-

approximate local
minimum
*

0 local regime = global regime

Figure 1: Overview of the results proven in this paper and comparison between the complexity
of computing an (g, J)-approximate local minimum and an (g, d)-approximate local min-max
equilibrium of a G-Lipschitz and L-smooth function over a d-dimensional polytope taking values
in the interval [—B, B]. We assume that ¢ < G?/L, thus the trivial regime is a strict subset of
the local regime. Moreover, we assume that the approximation parameter ¢ is provided in unary
representation in the input to these problems, which makes our hardness results stronger and
the comparison to the upper bounds known for finding approximate local minima fair, as these
require time/oracle queries that are polynomial in 1/e. We note that the unary representation
is not required for our results proving inclusion in PPAD. The figure portrays a sharp contrast
between the computational complexity of approximate local minima and approximate local min-
max equilibria in the local regime. Above the black lines, tracking the value of §, we state our
“white box” results and below the black lines we state our “black-box” results. The main result
of this paper is the PPAD-hardness of approximate local min-max equilibrium for § > v/e/L and
the corresponding query lower bound. In the query lower bound the function & is defined as
h(d,G,L,e) = (min(d,/L/e,G/¢)) ? for some universal constant p € R . With + we indicate our
PPAD-completeness result which directly follows from Theorems 4.3 and 4.4. The NP-hardess
results in the global regime are presented in Section 10. Finally, the folklore result showing the
tractability of finding approximate local minima is presented for completeness of exposition in
Appendix E. The claimed results for the trivial regime follow from the definition of Lipschitzness.

Informal Theorem 2 (see Theorem 4.5). Assume that we have black-box access to an oracle computing
a G-Lipschitz and L-smooth objective function f : P — [—1,1], where P C [0,1]% is a known polytope,
and its gradient NV f. Then, computing an (g, 6)-local min-max solution in the local regime (i.e., when
6 < +/2¢/L) requires a number of oracle queries that is exponential in at least one of the following: 1/¢,
L, G, or d. In fact, exponential in d-many queries are required even when L, G, 1/e and 1/ are all
polynomial in d.

Importantly, the above lower bounds, in both the white-box and the black-box setting, come
in sharp contrast to minimization problems, given that finding approximate local minima of
smooth non-convex objectives ranging in [—B, B] in the local regime can be done using first-
order methods using O(B - L/¢) time/queries (see Section E). Our results are the first to show an
exponential separation between these two fundamental problems in optimization in the black-
box setting, and a super-polynomial separation in the white-box setting assuming PPAD # FP.

1.1 Brief Overview of the Techniques

We very briefly outline some of the main ideas for the PPAD-hardness proof that we present
in Sections 6 and 7. Our starting point as in many PPAD-hardness results is a discrete analog
of the problem of finding Brouwer fixed points of a continuous map. Departing from previous
work, however, we do not use Sperner’s lemma as the discrete analog of Brouwer’s fixed point
theorem. Instead, we define a new problem, called BISPERNER, which is useful for showing our
hardness results. BISPERNER is closely related to the problem of finding panchromatic simplices
guaranteed by Sperner’s lemma except, roughly speaking, that the vertices of the simplicization
of a d-dimensional hypercube are colored with 2d rather than d + 1 colors, every point of the
simplicization is colored with d colors rather than one, and we are seeking a vertex of the sim-
plicization so that the union of colors on the vertices in its neighborhood covers the full set of
colors. The first step of our proof is to show that BISPERNER is PPAD-hard. This step follows
from the hardness of computing Brouwer fixed points.

The step that we describe next is only implicitly done by our proof, but it serves as useful
intuition for reading and understanding it. We want to define a discrete two-player zero-sum
game whose local equilibrium points correspond to solutions of a given BISPERNER instance.
Our two players, called “minimizer” and “maximizer,” each choose a vertex of the simplicization
of the BISPERNER instance. For every pair of strategies in our discrete game, i.e. vertices, chosen
by our players, we define a function value and gradient values. Note that, at this point, we
treat these values at different vertices of the simplicization as independent choices, i.e. are not
defining a function over the continuum whose function values and gradient values are consistent
with these choices. It is our intention, however, that in the continuous two-player zero-sum game
that we obtain in the next paragraph via our interpolation scheme, wherein the minimizer and
maximizer may choose any point in the continuous hypercube, the function value determines
the payment of the minimizer to the maximizer, and the gradient value determines the direction
of the best-response dynamics of the game. Before getting to that continuous game in the next
paragraph, the main technical step of this discrete part of our construction is showing that every
local equilibrium of the discrete game corresponds to a solution of the BISPERNER instance we are
reducing from. In order to achieve this we need to add some constraints to couple the strategies
of the minimizer and the maximizer player. This step is the reason that the constraints g¢(x,y) < 0
appear in the final min-max problem that we produce.

The third and quite challenging step of the proof is to show that we can interpolate in a
smooth and computationally efficient way the discrete zero-sum game of the previous step. In
low dimensions (treated in Section 6) such smooth and efficient interpolation can be done in
a relatively simple way using single-dimensional smooth step functions. In high dimensions,
however, the smooth and efficient interpolation becomes a challenging problem and to the best
of our knowledge no simple solution exists. For this reason we construct our novel smooth and
efficient interpolation coefficients of Section 8. These are a technically involved construction that we
believe will prove to be very useful for characterizing the complexity of approximate solutions
of other optimization problems.

The last part of our proof is to show that all the previous steps can be implemented in
an efficient way both with respect to computational but also with respect to query complexity.
This part is essential for both our white-box and black-box results. Although this seems like a
relatively easy step, it becomes more difficult due to the complicated expressions in our smooth
and efficient interpolation coefficients used in our previous step.

Closing this section we mention that all our NP-hardness results are proven using a cute
application of Lovdsz Local Lemma [EL73], which provides a powerful rounding tool that can
drive the inapproximability all the way up to an absolute constant.

1.2 Local Minimization vs Local Min-Max Optimization

Because our proof is convoluted, involving multiple steps, it is difficult to discern from it why
finding local min-max solutions is so much harder than finding local minima. For this reason, we
illustrate in this section a fundamental difference between local minimization and local min-max
optimization. This provides good intuition about why our hardness construction would fail if we
tried to apply it to prove hardness results for finding local minima (which we know don’t exist).

So let us illustrate a key difference between min-max problems that can be expressed in
the form min,cy max,cy f(x,y), i.e. two-player zero-sum games wherein the players optimize
opposing objectives, and min-min problems of the form min,cy min,cy f(x,y), i.e., two-player
coordination games wherein the players optimize the same objective. For simplicity, suppose
X =Y = R and let us consider long paths of best-response dynamics in the strategy space,
X x)Y, of the two players; these are paths along which at least one of the players improves their
payoff. For our illustration, suppose that the derivative of the function with respect to either
variable is either 1 or —1. Consider a long path of best-response dynamics starting at a pair of
strategies (xo, o) in either a min-min problem or a min-max problem, and a specific point (x,y)
along that path. We claim that in min-min problems the function value at (x,y) will have to
reveal how far from (xg, o) point (x,y) lies within the path in ¢; distance. On the other hand,
in min-max problems the function value at (x,y) may reveal very little about how far (x,y) lies
from (xo,y0). We illustrate this in Figure 2. While in our min-min example the function value
must be monotonically decreasing inside the best-response path, in the min-max example the
function values repeat themselves in every straight line segment of length 3, without revealing
where in the path each segment is.

Ultimately a key difference between min-min and min-max optimization is that best-response
paths in min-max optimization problems can be closed, i.e., can form a cycle, as shown in Figure
2, Panel (b). On the other hand, this is impossible in min-min problems as the function value
must monotonically decrease along best-response paths, thus cycles may not exist.

210 200 019
R —
\.18
15,—%—
16 17
14.\
12 5 4 3
13. * .11 (] [] []
{.lo 6.[J.z
min ° ° ° .1
I 9 8 7
<«——> min

(a) Min-min problem; the function values re-
veal the location of the points within best re-
sponse path.

1 3
. g 01 30 g 01
33— —_
|02 20[02
max ° . . 3
I 3 2 1

<——min

(b) Min-max problem; the function values do
not reveal the location of the points within
best response path.

Figure 2: Long paths of best-response dynamics in min-min problems (Panel (a)) and min-max
problems (Panel (b)), where horizontal moves correspond to one player (who is a minimizer in
both (a) and (b)) and vertical moves correspond to the other player (who is minimizer in (a) but a
maximizer in (b)). In Panels (a) and (b), we show the function value at a subset of discrete points
in a 2D grid along a long path of best-response dynamics, where for our illustration we assumed
that the derivative of the objective with respect to either variable always has absolute value 2.
As we see in Panel (a), the function value at some point along a long path of the best-response
dynamics in a min-min problem reveals information about where in the path that point lies.
This is in sharp contrast to min-max problems where only local information is revealed about
the objective as shown in Panel (b), due to the frequent turns of the path. In Panel (b) we also
show that the best-response dynamics in min-max problems can form closed paths. This cannot
happen in min-min problems as the function value must decrease along paths of best-response
dynamics, and hence it is impossible in min-min problems to build long best-response paths with
function values that can be computed locally.

The above discussion offers qualitative differences between min-min and min-max optimiza-
tion, which lie in the heart of why our computational intractability results are possible to prove
for min-max but not min-min problems. For the precise step in our construction that breaks if
we were to switch from a min-max to a min-min problem we refer the reader to Remark 6.9.

1.3 Further Related Work

There is a broad literature on the complexity of equilibrium computation. Virtually all these
results are obtained within the computational complexity formalism of total search problems in
NP, which was spearheaded by [JPY88, MP89, Pap94b] to capture the complexity of search
problems that are guaranteed to have a solution. Some key complexity classes in this land-
scape are shown in Figure 3. We give a non-exhaustive list of intractability results for equi-
librium computation: [FPT04] prove that computing pure Nash equilibria in congestion games
is PLS-complete; [DGP09] and later [CDT09] show that computing approximate Nash equilib-

ria in normal-form games is PPAD-complete; [EY10] study the complexity of computing exact
Nash equilibria (which may use irrational probabilities), introducing the complexity class FIXP;
[VY11, CPY17] consider the complexity of com-
puting Market equilibria; [Das13, Rub15, Rub16]

FNP consider the complexity of computing approximate
TFTN P Nash equilibria of constant approximation; [KM18]
0 establish a connection between approximate Nash
PTENP equilibrium computation and the SoS hierarchy;
T \ [Meh14, DFS20] study the complexity of comput-
PPA PPP ing Nash equilibria in specially structured games.
A result that is particularly useful for our work is
PLS / the result of [HPV89] which shows black-box query
PPADS lower bounds for computing Brouwer fixed points
/ of a continuous function. We use this result in
PPAD PWPP Section 9 as an ingredient for proving our black-
box lower bounds for computing approximate local
min-max solutions.
CLS Beyond equilibrium computation and its ap-
\ plications to Economics and Game Theory, the
Ep study of total search problems has found pro-

found connections to many scientific fields, in-
cluding continuous optimization [DP11, DTZ18],
combinatorial optimization [SY91], query complex-
ity [BCE"95], topology [GH19], topological com-
binatorics and social choice theory [FG18, FG19,
FRHSZ20b, FRHSZ20a], algebraic combinatorics [BIQ17, GKSZ19], and cryptography [Jei16,
BPR15, SZZ18]. For a more extensive overview of total search problems we refer the reader to
the recent survey by Daskalakis [Das18].

Figure 3: The complexity-theoretic land-
scape of total search problems in NP.

As already discussed, min-max optimization has intimate connections to the foundations
of Game Theory, Mathematical Programming, Online Learning, Statistics, and several other
fields. Recent applications of min-max optimization to Machine Learning, such as Generative
Adversarial Networks and Adversarial Training, have motivated a slew of recent work target-
ing first-order (or other light-weight online learning) methods for solving min-max optimiza-
tion problems for convex-concave, nonconvex-concave, as well as nonconvex-nonconcave ob-
jectives. Work on convex-concave and nonconvex-concave objectives has focused on obtaining
online learning methods with improved rates [KM19, L]JJ19, TINO19, NSH'19, LTHC19, OX19,
Zhal9, ADSG19, AML]G20, GPDO20, LJJ20] and last-iterate convergence guarantees [DISZ18,
DP18, MR18, MPP18, RLLY18, HA18, ADLH19, DP19, LS19, GHP"19, MOP19, ALW19], while
work on nonconvex-nonconcave problems has focused on identifying different notions of local
min-max solutions [JN]J19, MV20] and studying the existence and (local) convergence properties
of learning methods at these points [WZB19, MV20, MSV20].

2 Preliminaries

Notation. For any compact and convex K C R? and B € R, we define L(K, B) to be the set of
all continuous functions f : K — R such that maxyek |f(x)| < B. When K = [0, 1], we use Lo (B)
instead of Lo,([0,1]¢, B) for ease of notation. For p > 0, we define diam, (K) = maxy,yex [|x — y/|| o
where |[|-[|, is the usual £,-norm of vectors. For an alphabet set X, the set 2%, called the Kleene
star of &, is equal to U ;X' For any string g € £ we use |g| to denote the length of q. We use the
symbol log(-) for base 2 logarithms and In(-) for the natural logarithm. We use [n] = {1,...,n},
] —12{0,...,n—1},and [n]o = {0,...,n}.

Lipschitzness, Smoothness, and Normalization. Our main objects of study are continuously
differentiable Lipschitz and smooth functions f : P — R, where P C [0,1] is some polytope. A
continuously differentiable function f is called G-Lipschitz if |f(x) — f(y)| < G ||x — y||,, for all
x,y, and L-smooth if |V f(x) =V f(y)|, < L||x —y|,, for all x,y.

Remark 2.1 (Function Normalization). Note that the G-Lipschitzness of a function f : P — R, where
P C [0,1)% implies that for any x and y it holds that |f(x) — f(y)| < Gv/d. Whenever the range of a
G-Lipschitz function is taken to be [—B, B), for some B, we always assume that B < G+/d. This can be
accomplished by setting f(x) = f(x) — f(xo) for some fixed xq in the domain of f. For all the problems
that we consider in this paper any solution for f is also a solution for f and vice-versa.

Function Access. We study optimization problems involving real-valued functions, considering
two access models to such functions.

» Black Box Model. In this model we are given access to an oracle Oy such that given a point
x € [0,1]? the oracle Oy returns the values f(x) and Vf(x). In this model we assume that
we can perform real number arithmetic operations. This is the traditional model used to
prove lower bounds in Optimization and Machine Learning [NY83].

» White Box Model. In this model we are given the description of a polynomial-time Turing
machine Cy that computes f(x) and Vf(x). More precisely, given some input x € [0,1]%,
described using B bits, and some accuracy ¢, Cy runs in time upper bounded by some
polynomial in B and log(1/¢) and outputs approximate values for f(x) and Vf(x), with
approximation error that is at most € in ¢, distance. We note that a running time upper
bound on a given Turing Machine can be enforced syntactically by stopping the compu-
tation and outputting a fixed output whenever the computation exceeds the bound. See
also Remark 2.6 for an important remark about how to formally study the computational
complexity of problems that take as input a polynomial-time Turing Machine.

Promise Problems. To simplify the exposition of our paper, make the definitions of our compu-
tational problems and theorem statements clearer, and make our intractability results stronger,
we choose to enforce the following constraints on our function access, O ror C ¢, as a promise,
rather than enforcing these constraints in some syntactic manner.

1. Consistency of Function Values and Gradient Values. Given some oracle Oy or Turing
machine Cy, it is difficult to determine by querying the oracle or examining the description
of the Turing machine whether the function and gradient values output on different inputs
are consistent with some differentiable function. In all our computational problems, we

9

will only consider instances where this is promised to be the case. Moreover, for all our
computational hardness results, the instances of the problems arising from our reductions
satisfy these constraints, which are guaranteed syntactically by our reduction.

2. Lipschitzness, Smoothness and Boundedness. Similarly, given some oracle Of or Turing
machine Cy, it is difficult to determine, by querying the oracle or examining the description
of the Turing machine, whether the function and gradient values output by Of or Cy are
consistent with some Lipschitz, smooth and bounded function with some prescribed Lips-
chitzness, smoothness, and bound on its absolute value. In all our computational problems,
we only consider instances where the G-Lipschitzness, L-smoothness and B-boundedness
of the function are promised to hold for the prescribed, in the input of the problem, pa-
rameters G, L and B. Moreover, for all our computational hardness results, the instances
of the problems arising from our reductions satisfy this constraint, which is guaranteed
syntactically by our reduction.

In summary, in the rest of this paper, whenever we prove an upper bound for some compu-
tational problem, namely an upper bound on the number of steps or queries to the function
oracle required to solve the problem in the black-box model, or the containment of the problem
in some complexity class in the white-box model, we assume that the afore-described properties
are satisfied by the Oy or Cy provided in the input. On the other hand, whenever we prove a
lower bound for some computational problem, namely a lower bound on the number of steps/-
queries required to solve it in the black-box model, or its hardness for some complexity class
in the white-box model, the instances arising in our lower bounds are guaranteed to satisfy
the above properties syntactically by our constructions. As such, our hardness results will not
exploit the difficulty in checking whether Of or Cy satisfy the above constraints in order to in-
fuse computational complexity into our problems, but will faithfully target the computational
problems pertaining to min-max optimization of smooth and Lipschitz objectives that we aim to
understand in this paper.

2.1 Complexity Classes and Reductions

In this section we define the main complexity classes that we use in this paper, namely NP, FNP
and PPAD, as well as the notion of reduction used to show containment or hardness of a problem
for one of these complexity classes.

Definition 2.2 (Search Problems, NP, FNP). A binary relation Q C {0,1}" x {0,1}" is in the class
FNP if (i) for every x,y € {0,1}" such that (x,y) € Q, it holds that |y| < poly(|x|); and (ii) there
exists an algorithm that verifies whether (x,y) € Q in time poly(|x|,|y|). The search problem
associated with a binary relation Q takes some x as input and requests as output some y such
that (x,y) € Q or outputting L if no such y exists. The decision problem associated with Q takes
some x as input and requests as output the bit 1, if there exists some y such that (x,y) € Q,
and the bit 0, otherwise. The class NP is defined as the set of decision problems associated with
relations Q € FNP.

To define the complexity class PPAD we first define the notion of polynomial-time reductions
between search problems®, and the computational problem END-OF-A-LINE".

3In this paper we only define and consider Karp-reductions between search problems.
4This problem is sometimes called END-OF-THE-LINE, but we adopt the nomenclature proposed by [Rub16] since
we agree that it describes the problem better.

10

Definition 2.3 (Polynomial-Time Reductions). A search problem P; is polynomial-time reducible to
a search problem P, if there exist polynomial-time computable functions f : {0,1}* — {0,1}"
and g : {0,1}* x {0,1}" x {0,1}" — {0,1}" with the following properties: (i) if x is an input to
Py, then f(x) is an input to P»; and (ii) if y is a solution to P> on input f(x), then g(x, f(x),y) is
a solution to P; on input x.

END-OF-A-LINE.
InpPuUT: Binary circuits Cg (for successor) and Cp (for predecessor) with #n inputs and n outputs.

Outrut: One of the following:
0. 0 if either both Cp(Cs(0)) and Cs(Cp(0)) are equal to 0, or if they are both different than
0, where 0 is the all-0 string.
1. a binary string x € {0,1}" such that x # 0 and Cp(Cs(x)) # x or Cs(Cp(x)) # x.

To make sense of the above definition, we envision that the circuits Cs and Cp implicitly define
a directed graph, with vertex set {0,1}", such that the directed edge (x,y) € {0,1}" x {0,1}"
belongs to the graph if and only if Cs(x) = y and Cp(y) = x. As such, all vertices in the implicitly
defined graph have in-degree and out-degree at most 1. The above problem permits an output
of 0 if 0 has equal in-degree and out-degree in this graph. Otherwise it permits an output x # 0
such that x has in-degree or out-degree equal to 0. It follows by the parity argument on directed
graphs, namely that in every directed graph the sum of in-degrees equals the sum of out-degrees,
that END-OF-A-LINE is a total problem, i.e. that for any possible binary circuits Cs and Cp there
exists a solution of the “0.” kind or the “1.” kind in the definition of our problem (or both).
Indeed, if 0 has unequal in- and out-degrees, there must exist another vertex x # 0 with unequal
in- and out-degrees, thus one of these degrees must be 0 (as all vertices in the graph have in- and
out-degrees bounded by 1).

We are finally ready to define the complexity class PPAD introduced by [Pap94b].

Definition 2.4 (PPAD). The complexity class PPAD contains all search problems that are poly-
nomial time reducible to the END-OF-A-LINE problem.

The complexity class PPAD is of particular importance, since it contains lots of fundamental
problems in Game Theory, Economics, Topology and several other fields [DGP09, Das18]. A
particularly important PPAD-complete problem is finding fixed points of continuous functions,
whose existence is guaranteed by Brouwer’s fixed point theorem.

BROUWER.
INPUT: Scalars L and 7y and a polynomial-time Turing machine Cy; evaluating a L-Lipschitz
function M : [0,1]¢ — [0,1]¢.
OutpuT: A point z* € [0,1]4 such that ||z* — M(z")||, < 7.
While not stated exactly in this form, the following is a straightforward implication of the results
presented in [CDT09].

Lemma 2.5 ([CDT09]). BROUWER is PPAD-complete even when d = 2. Additionally, BROUWER is
PPAD-complete even when vy = poly(1/d) and L = poly(d).

Remark 2.6 (Respresentation of a polynomial-time Turing Machine). In the definition of the problem
BROUWER we assume that we are given in the input the description of a Turing Machine Cyy that computes

11

the map M. In order for polynomial-time reductions to and from this problem to be meaningful we need to
have an upper bound on the running time of this Turing Machine which we want to be polynomial in the
input of the Turing Machine. The formal way to ensure this and derive meaningful complexity results is to
define a different problem, say k-BROUWER, for every k € IN. In the problem k-BROUWER the input Turing
Machine Cpy has running time bounded by n* in the size n of its input. In the rest of the paper whenever
we say that a polynomial-time Turing Machine is required in the input to a computational problem PRr, we
formally mean that we define a hierarchy of problems k-PRr, k € IN, such that k-PRr takes as input Turing
Machines with running time bounded by n*, and we interpret computational complexity results for PR
in the following way: whenever we prove that PR belongs to some complexity class, we prove that k-Pr
belongs to the complexity class for all k € IN; whenever we prove that PR is hard for some complexity class,
we prove that, for some absolute constant ko determined in the hardness proof, k-PRr is hard for that class,
for all k > ko. For simplicity of exposition of our problems and results we do not repeat this discussion in
the rest of this paper.

3 Computational Problems of Interest

In this section, we define the computational problems that we study in this paper and discuss
our main results, postponing formal statements to Section 4. We start in Section 3.1 by defining
the mathematical objects of our study, and proceed in Section 3.2 to define our main compu-
tational problems, namely: (1) finding approximate stationary points; (2) finding approximate
local minima; and (3) finding approximate local min-max equilibria. In Section 3.3, we present
some bonus problems, which are intimately related, as we will see, to problems (2) and (3). As
discussed in Section 2, for ease of presentation, we define our problems as promise problems.

3.1 Mathematical Definitions

We define the concepts of stationary points, local minima, and local min-max equilibria of real val-
ued functions, and make some remarks about their existence, as well as their computational
complexity. The formal discussion of the latter is postponed to Sections 3.2 and 4.

Before we proceed with our definitions, recall that the goal of this paper is to study con-
strained optimization. Our domain will be the hypercube [0, 1], which we might intersect with
the set {x | g(x) < 0}, for some convex (potentially multivariate) function g. Although most
of the definitions and results that we explore in this paper can be extended to arbitrary convex
functions, we will focus on the case where g is linear, and the feasible set is thus a polytope.
Focusing on this case avoids additional complications related to the representation of g in the
input to the computational problems that we define in the next section, and avoids also issues
related to verifying the convexity of g.

Definition 3.1 (Feasible Set and Refutation of Feasibility). Given A € R¥*™ and b € R™, we
define the set of feasible solutions to be P(A,b) = {z € [0,1]¢ | ATz < b}. Observe that testing
whether P (A, b) is empty can be done in polynomial time in the bit complexity of A and b.

Definition 3.2 (Projection Operator). For a nonempty, closed, and convex set K C R?, we define
the projection operator ITx : R? — K as follows ITx x = argmin, . [|[x — y/[,. It is well-known
that for any nonempty, closed, and convex set K the argmin, . [|x —y||, exists and is unique,
hence Ilk is well defined.

Now that we have defined the domain of the real-valued functions that we consider in this
paper we are ready to define a notion of approximate stationary points.

12

Definition 3.3 (e-Stationary Point). Let f : [0,1]% — R be a G-Lipschitz and L-smooth function
and A € R"™, b € R™. We call a point x* € P(A,b) a e-stationary point of f if |V f(x*)||, < e

It is easy to see that there exist continuously differentiable functions f that do not have any
(approximate) stationary points, e.g. linear functions. As we will see later in this paper, deciding
whether a given function f has a stationary point is NP-hard and, in fact, it is even NP-hard to
decide whether a function has an approximate stationary point of a very gross approximation.
At the same time, verifying whether a given point is (approximately) stationary can be done
efficiently given access to a polynomial-time Turing machine that computes V f, so the problem of
deciding whether an (approximate) stationary point exists lies in NP, as long as we can guarantee
that, if there is such a point, there will also be one with polynomial bit complexity. We postpone
a formal discussion of the computational complexity of finding (approximate) stationary points
or deciding their existence until we have formally defined our corresponding computational
problem and settled the bit complexity of its solutions.

For the definition of local minima and local min-max equilibria we need the notion of closed
d-dimensional Euclidean balls.

Definition 3.4 (Euclidean Ball). For r € R we define the closed Euclidean ball of radius r to be
the set By(r) = {x € R? | ||x||, < r}. We also define the closed Euclidean ball of radius r centered at
z € R? to be the set By(r;z) = {x € R? | ||[x — z||, < r}.

Definition 3.5 ((¢,6)-Local Minimum). Let f : [0,1]Y — R be a G-Lipschitz and L-smooth func-
tion, A € R™ b € R™, and ¢, > 0. A point x* € P(A,b) is an (g,)-local minimum of f con-
strained on P (A, b) if and only if f(x*) < f(x) + € for every x € P(A,b) such that x € B;(J; x*).

To be clear, using the term “local minimum” in Definition 3.5 is a bit of a misnomer, since for
large enough values of é the definition captures global minima as well. As J ranges from large
to small, our notion of (¢, 6)-local minimum transitions from being an e-globally optimal point
to being an e-locally optimal point. Importantly, unlike (approximate) stationary points, a (g, d)-
local minimum is guaranteed to exist for all ¢,6 > 0 due to the compactness of [0,1] N P(A,b)
and the continuity of f. Thus the problem of finding an (¢, §)-local minimum is total for arbitrary
values of € and J. On the negative side, for arbitrary values of € and §, there is no polynomial-size
and polynomial-time verifiable witness for certifying that a point x* is an (g, §)-local minimum.
Thus the problem of finding an (g, ¢)-local minimum is not known to lie in FNP. As we will
see in Section 4, this issue can be circumvented if we focus on particular settings of € and J, in
relationship to the Lipschitzness and smoothness of f and the dimension 4.

Finally we define (g, §)-local min-max equilibrium as follows, recasting Definition 1.1 to the
constraint set P(A,b).

Definition 3.6 ((¢,)-Local Min-Max Equilibrium). Let f : [0,1]*1 x [0,1]% — R be a G-Lipschitz
and L-smooth function, A € R™"™ and b € R", where d = d; +dp, and ¢, > 0. A point
(x*,y*) € P(A,b) is an (¢, 6)-local min-max equilibrium of f if and only if the following hold:

> f(x*,y*) < f(x,y*) + € for every x € By, (J;x*) with (x,y*) € P(A,b); and
> f(x*,y*) > f(x*,y) — ¢ for every y € By, (J;y*) with (x*,y) € P(A,b).

13

Similarly to Definition 3.5, for large enough values of §, Definition 3.6 captures global min-max
equilibria as well. As ¢ ranges from large to small, our notion of (g, é)-local min-max equilib-
rium transitions from being an e-approximate min-max equilibrium to being an e-approximate
local min-max equilibrium. Moreover, in comparison to local minima and stationary points, the
problem of finding an (¢, §)-local min-max equilibrium is neither total nor can its solutions be
verified efficiently for all values of ¢ and &, even when P(A,b) = [0,1]?. Again, this issue can be
circumvented if we focus on particular settings of € and § values, as we will see in Section 4.

3.2 First-Order Local Optimization Computational Problems

In this section, we define the search problems associated with our aforementioned definitions
of approximate stationary points, local minima, and local min-max equilibria. We state our
problems in terms of white-box access to the function f and its gradient. Switching to the black-
box variants of our computational problems amounts to simply replacing the Turing machines
provided in the input of the problems with oracle access to the function and its gradient, as
discussed in Section 2. As per our discussion in the same section, we define our computational
problems as promise problems, the promise being that the Turing machine (or oracle) provided in
the input to our problems outputs function values and gradient values that are consistent with
a smooth and Lipschitz function with the prescribed in the input smoothness and Lipschitzness.
Besides making the presentation cleaner, as we discussed in Section 2, the motivation for doing
so is to prevent the possibility that computational complexity is tacked into our problems due
to the possibility that the Turing machines/oracles provided in the input do not output function
and gradient values that are consistent with a Lipschitz and smooth function. Importantly, all
our computational hardness results syntactically guarantee that the Turing machines/oracles
provided as input to our constructed hard instances satisfy these constraints.

Before stating our main computational problems below, we note that, for each problem, the
dimension d (in unary representation) is also an implicit input, as the description of the Turing
machine C¢ (or the interface to the oracle Oy in the black-box counterpart of each problem be-
low) has size at least linear in d. We also refer to Remark 2.6 for how we may formally study
complexity problems that take a polynomial-time Turing Machine in their input.

STATIONARYPOINT.

INPUT: Scalars ¢, G, L, B > 0 and a polynomial-time Turing machine Cy evaluating a G-Lipschitz
and L-smooth function f : [0,1]Y — [~B,B] and its gradient Vf : [0,1]? — R? a matrix
A € R™™ and vector b € R™ such that P(A,b) # Q.

Ourtpur: If there exists some point x € P(A,b) such that ||V f(x)||, < €/2, output some point
x* € P(A,b) such that |Vf(x*)|, < & if, for all x € P(A,b), |Vf(x)||, > & output L;
otherwise, it is allowed to either output x* € P(A, b) such that ||V f(x*)||, < € or to output L.

It is easy to see that STATIONARYPOINT lies in FNP. Indeed, if there exists some point x € P(A,b)
such that [|[Vf(x)||, < &/2, then by the L-smoothness of f there must exist some point x* €
P(A,b) of bit complexity polynomial in the size of the input such that |V f(x*)||, < &. On the
other hand, it is clear that no such point exists if for all x € P(A,b), ||V f(x)||, > e. We note that
the looseness of the output requirement in our problem for functions f that do not have points
x € P(A,b) such that || Vf(x)||, < ¢/2 but do have points x € P(A, b) such that ||V f(x)|, < eis
introduced for the sole purpose of making the problem lie in FNP, as otherwise we would not be
able to guarantee that the solutions to our search problem have polynomial bit complexity. As we

14

show in Section 4, STATIONARYPOINT is also FNP-hard, even when ¢ is a constant, the constraint
set is very simple, namely P(A,b) = [0, 1], and G, L are both polynomial in d.

Next, we define the computational problems associated with local minimum and local min-
max equilibrium. Recall that the first is guaranteed to have a solution, because, in particular, a
global minimum exists due to the continuity of f and the compactness of P(A, b).

LocALMIN.

INpPUT: Scalars ¢,6,G,L,B > 0 and a polynomial-time Turing machine Cf evaluating a G-
Lipschitz and L-smooth function f : [0,1]¢ — [~B, B] and its gradient Vf : [0,1] — R% a
matrix A € R¥" and vector b € R" such that P(A,b) # @.

OutruT: A point x* € P(A,b) such that f(x*) < f(x) +¢ for all x € B4(6;x*) N P(A,b).

LocaLMINMAX.
INPUT: Scalars ¢,6,G, L, B > 0; a polynomial-time Turing machine C; evaluating a G-Lipschitz
and L-smooth function f : [0,1]% x [0,1]%2 — [~B, B] and its gradient V£ : [0,1]" x [0,1]% —
R%+4%2; a matrix A € R and vector b € R™ such that P(A,b) # @, where d = d; + d>.
OutruT: A point (x*,y*) € P(A,b) such that

> f(x*,y*) < f(x,y*) + ¢ forall x € By (5;x*) with (x,y*) € P(A,b) and

> f(x*,y*) > f(x*,y) —eforall y € By, (6;y*) with (x*,y) € P(A,b),
or L if no such point exists.

Unlike STATIONARYPOINT the problems LocALMIN and LocALMINMAx exhibit vastly different
behavior, depending on the values of the inputs € and ¢ in relationship to G, L and d, as we
will see in Section 4 where we summarize our computational complexity results. This range of
behaviors is rooted at our earlier remark that, depending on the value of § provided in the input
to these problems, they capture the complexity of finding global minima/min-max equilibria, for
large values of J, as well as finding local minima/min-max equilibria, for small values of J.

3.3 Bonus Problems: Fixed Points of Gradient Descent/Gradient Descent-Ascent

Next we present a couple of bonus problems, GDFixepPoiNnT and GDAFixepPoInT, which re-
spectively capture the computation of fixed points of the (projected) gradient descent and the
(projected) gradient descent-ascent dynamics, with learning rate = 1. As we see in Section 5,
these problems are intimately related, indeed equivalent under polynomial-time reductions, to
problems LocaALMIN and LocaALMINMAX respectively, in certain regimes of the approximation
parameters. Before stating problems GDFixepPoinT and GDAF1xepPoINT, we define the map-
pings Fcp and Fgpa whose fixed points these problems are targeting.

Definition 3.7 (Projected Gradient Descent). For a closed and convex K C R“ and some contin-
uously differentiable function f : K — R, we define the Projected Gradient Descent Dynamics with
learning rate 1 as the map Fgp : K — K, where Fgp(x) = Ig(x — Vf(x)).

Definition 3.8 (Projected Gradient Descent/Ascent). For a closed and convex K C R% x R* and
some continuously differentiable function f : K — IR, we define the Unsafe Projected Gradient
Descent/Ascent Dynamic with learning rate 1 as the map Fgpa : K — R% x R%2 defined as follows

FGDA(x,y) A HK(y) (x_ fo(x,y))] A I:FGDAx(x, y):|

k@ (v + Vyf(xy))
for all (x,y) € K, where K(y) = {x' | (x/,y) € K} and K(x) = {y' | (x,¥') € K}.

B Fopay(x,y)

15

Note that Fgp4 is called “unsafe” because the projection happens individually for x — V. f(x,y)
and y + V, f(x,y), thus Fopa(x,y) may not lie in K. We also define the “safe” version Ficpa,
which projects the pair (x — Vyf(x,y),y + V,f(x,y)) jointly onto K. As we show in Section 5
(in particular inside the proof of Theorem 5.2), computing fixed points of Fgcpa and F,gpa are
computationally equivalent so we stick to Fop4 which makes the presentation slightly cleaner.

We are now ready to define GDFixepPoInT and GDAFIXEDPOINT. As per earlier discussions,
we define these computational problems as promise problems, the promise being that the Turing
machine provided in the input to these problems outputs function values and gradient values
that are consistent with a smooth and Lipschitz function with the prescribed, in the input to these
problems, smoothness and Lipschitzness.

GDFIXEDPOINT.

INpUT: Scalars &, G, L, B > 0 and a polynomial-time Turing machine C ¥ evaluating a G-Lipschitz
and L-smooth function f : [0,1]% — [~B,B] and its gradient Vf : [0,1]? — Y a matrix
A € R™™ and vector b € R such that P(A,b) # @.

OutruT: A point x* € P(A,b) such that ||x* — Fgp(x*)|, < a, where K = P(A,b) is the
projection set used in the definition of Fgp.

GDAFIXEDPOINT.

INpuT: Scalars &, G, L, B > 0 and a polynomial-time Turing machine C ¥ evaluating a G-Lipschitz
and L-smooth function f : [0,1]" x [0,1]> — [~B, B] and its gradient Vf : [0,1]% x [0,1]% —
R%+%2; 3 matrix A € R?™ and vector b € R™ such that P(A,b) # @, where d = d; + d>.
Outrut: A point (x*,y*) € P(A,b) such that ||(x*,y*) — Fepa(x*,y*)|l, < a, where K =
P(A,Db) is the projection set used in the definition of Fgpa.

In Section 5 we show that the problems GDFixepPoINT and LocALMIN are equivalent under
polynomial-time reductions, and the problems GDAFixepPoINT and LocALMINMAX are equiva-
lent under polynomial-time reductions, in certain regimes of the approximation parameters.

4 Summary of Results

In this section we summarize our results for the optimization problems that we defined in the
previous section. We start with our theorem about the complexity of finding approximate sta-
tionary points, which we show to be FNP-complete even for large values of the approximation.

Theorem 4.1 (Complexity of Finding Approximate Stationary Points). The computational problem
STATIONARYPOINT is FNP-complete, even when ¢ is set to any value < 1/24, and even when P(A,b) =
(0,1, G=+Vd, L =d,and B = 1.

It is folklore and easy to verify that approximate stationary points always exist and can be
found in time poly(B,1/¢, L) when the domain of f is unconstrained, i.e. it is the whole R?, and
the range of f is bounded, i.e., when f(RY) C [~B, B]. Theorem 4.1 implies that such a guar-
antee should not be expected in the bounded domain case, where the existence of approximate
stationary points is not guaranteed and must also be verified. In particular, it follows from our
theorem that any algorithm that verifies the existence of and computes approximate stationary
points in the constrained case should take time that is super-polynomial in at least one of G, L,
or d, unless P = NP. The proof of Theorem 4.1 is based on an elegant construction for converting
(real valued) stationary points of an appropriately constructed function to (binary) solutions of a

16

target SAT instance. This conversion involves the use of Lovasz Local Lemma [EL73]. The details
of the proof can be found in Appendix A.

The complexity of LocALMIN and LocaALMINMAX is more difficult to characterize, as the
nature of these problems changes drastically depending on the relationship of § with with ¢, G,
L and d, which determines whether these problems ask for a globally vs locally approximately
optimal solution. In particular, there are two regimes wherein the complexity of both problems
is simple to characterize.

> Global Regime. When § > 1/d then both LocaALMIN and LocaALMINMax ask for a globally
optimal solution. In this regime it is not difficult to see that both problems are FNP-hard to
solve even when ¢ = ©(1) and G, L are O(d) (see Section 10).

> Trivial Regime. When ¢ satisfies § < &/G, then for every point z € P(A,b) it holds that
|f(z) — f(z)| < € for every 2 € By(J;z) with z’ € P(A,b). Thus, every point z in the
domain P (A, b) is a solution to both LocALMIN and LocALMINMAX.

It is clear from our discussion above, and in earlier sections, that, to really capture the complexity
of finding local as opposed to global minima/min-max equilibria, we should restrict the value
of 6. We identify the following regime, which we call the “local regime.” As we argue shortly,
this regime is markedly different from the global regime identified above in that (i) a solution is
guaranteed to exist for both our problems of interest, where in the global regime only LocALMIN
is guaranteed to have a solution; and (ii) their computational complexity transitions to lower
complexity classes.

> Local Regime. Our main focus in this paper is the regime defined by § < +/2¢/L. In
this regime it is well known that Projected Gradient Descent can solve LocALMIN in
time O(B - L/¢) (see Appendix E). Our main interest is understanding the complexity of
LocaLMINMax, which is not well understood in this regime. We note that the use of the
constant 2 in the constraint 6 < 1/2¢/L which defines the local regime has a natural mo-
tivation: consider a point z where a L-smooth function f has Vf(z) = 0; it follows from
the definition of smoothness that z is both an (¢, d)-local min and an (¢, d)-local min-max
equilibrium, as long as § < v/2¢/L.

The following theorems provide tight upper and lower bounds on the computational complexity
of solving LocALMINMAX in the local regime. For compactness, we define the following problem:

Definition 4.2 (Local Regime LocaLMINMaXx). We define the local-regime local min-max equilib-
rium computation problem, in short LR-LocALMINMAYX, to be the search problem LocALMINMAx
restricted to instances in the local regime, i.e. satisfying J < /2¢/L.

Theorem 4.3 (Existence of Approximate Local Min-Max Equilibrium). The computational problem
LR-LocaLMINMax belongs to PPAD. As a byproduct, if some function f is G-Lipschitz and L-smooth,
then an (&, 6)-local min-max equilibrium is guaranteed to exist when 6 < +/2e/L, i.e. in the local regime.

Theorem 4.4 (Hardness of Finding Approximate Local Min-Max Equilibrium). The search problem
LR-LocALMINMaXx is PPAD-hard, for any & > +/¢/L, and even when it holds that 1/e = poly(d),
G = poly(d), L = poly(d), and B = d.

17

Theorem 4.4 implies that any algorithm that computes an (¢, §)-local min-max equilibrium of a G-
Lipschitz and L-smooth function f in the local regime should take time that is super-polynomial
in at least one of 1/¢, G, L or d, unless FP = PPAD. As such, the complexity of computing local
min-max equilibria in the local regime is markedly different from the complexity of computing
local minima, which can be found using Projected Gradient Descent in poly(G,L,1/¢,d) time
and function/gradient evaluations (see Appendix E).

An important property of our reduction in the proof of Theorem 4.4 is that it is a black-box
reduction. We can hence prove the following unconditional lower bound in the black-box model.

Theorem 4.5 (Black-Box Lower Bound for Finding Approximate Local Min-Max Equilibrium).
Suppose A € R>™ and b € R™ are given together with an oracle Oy that outputs a G-Lipschtz and
L-smooth function f : P(A,b) — [—1,1] and its gradient V f. Let also § > \/L/¢, ¢ < G?/L, and let
all the parameters 1/¢, 1/6, L, G be upper bounded by poly(d). Then any algorithm that has access to
f only through O and computes an (g, 6)-local min-max equilibrium has to make a number of queries to
Of that is exponential in at least one of the parameters: 1/¢, G, L or d even when P(A,b) C [0,1]7.

Our main goal in the rest of the paper is to provide the proofs of Theorems 4.3, 4.4 and 4.5.
In Section 5, we show how to use Brouwer’s fixed point theorem to prove the existence of ap-
proximate local min-max equilibrium in the local regime. Moreover, we establish an equivalence
between LocaALMINMax and GDAFIxeDPOINT, in the local regime, and show that both belong
to PPAD. In Sections 6 and 7, we provide a detailed proof of our main result, i.e. Theorem 4.4.
Finally, in Section 9, we show how our proof from Section 7 produces as a byproduct the black-
box, unconditional lower bound of Theorem 4.5. In Section 8, we outline a useful interpolation
technique which allows as to interpolate a function given its values and the values of its gradient
on a hypergrid, so as to enforce the Lipschitzness and smoothness of the interpolating function.
We make heavy use of this technically involved result in all our hardness proofs.

5 Existence of Approximate Local Min-Max Equilibrium

In this section, we establish the totality of LR-LocALMINMAX, i.e. LocALMINMAX for instances
satisfying 6 < +/2¢/L as defined in Definition 4.2. In particular, we prove that every G-Lipschitz
and L-smooth function admits an (¢, d)-local min-max equilibrium, as long as 6 < v/2¢/L. A
byproduct of our proof is in fact that LR-LocaALMINMAX lies inside PPAD. Specifically the main
tool that we use to prove our result is a computational equivalence between the problem of find-
ing fixed points of the Gradient Descent/Ascent dynamic, i.e. GDAFIXeEDpPOINT, and the problem
LR-LocaALMINMAx. A similar equivalence between GDFixepPoiNT and LocALMIN also holds,
but the details of that are left to the reader as a simple exercise. Next, we first present the equiva-
lence between GDAFIXEDPOINT and LR-LocaAtMiNMAaXx, and we then show that GDAFIxepPoINT
is in PPAD, which then also establishes that LR-LocaALMINMAX is in PPAD.

Theorem 5.1. The search problems LR-LocALMINMAX and GDAFIXEDPOINT are equivalent under
polynomial-time reductions. That is, there is a polynomial-time reduction from LR-LocALMINMAX to
GDAFxepPoINT and vice versa. In particular, given some A € R**™ and b € R™ such that P(A,b) #
@, along with a G-Lipschitz and L-smooth function f : P(A,b) — R:

1. For arbitrary ¢ > 0 and 0 < 6 < /2¢/L, suppose that (x*,y*) € P(A,b) is an a-approximate
§ < (G+6)2+4(e—502)—(G+9)
— 2 .

fixed point of Fcpa, ie., ||[(x*,y*) — Fepa(x*,y*)|l, < «, where
Then (x*,y*) is also a (g, 6)-local min-max equilibrium of f.

18

2. For arbitary « > 0, suppose that (x*,y*) is an (g, &)-local min-max equilibrium of f for ¢ = (505#[&)2

and 6 = /e/L. Then (x*,y*) is also an a-approximate fixed point of Fgpa.

The proof of Theorem 5.1 is presented in Appendix B.1. As already discussed, we use GDAFIXED-
PoINT as an intermediate step to establish the totality of LR-LocaALMINMAXx and to show its
inclusion in PPAD. This leads to the following theorem.

Theorem 5.2. The computational problems GDAFIXeEDPOINT and LR-LocaLMINMax are both total
search problems and they both lie in PPAD.

Observe that Theorem 4.3 is implied by Theorem 5.2 whose proof is presented in Appendix B.2.

6 Hardness of Local Min-Max Equilibrium — Four-Dimensions

In Section 5, we established that LR-LocALMINMax belongs to PPAD. Our proof is via the
intermediate problem GDAFIXepPOINT which we showed that it is computationally equivalent
to LR-LocaALMINMaAX. Our next step is to prove the PPAD-hardness of LR-LocALMINMAX using
again GDAFIXEDPOINT as an intermediate problem.

In this section we prove that GDAFIxepPoINT is PPAD-hard in four dimensions. To establish
this hardness result we introduce a variant of the classical 2D-SPERNER problem which we call
2D-B1SPERNER which we show is PPAD-hard. The main technical part of our proof is to show
that 2D-BISPERNER with input size n reduces to GDAFIXEDPOINT, with input size poly(n), & =
exp(—poly(n)), G = L = exp(poly(n)), and B = 2. This reduction proves the hardness of
GDAF1xepPoiNT. Formally, our main result of this section is the following theorem.

Theorem 6.1. The problem GDAF1xepPoINT is PPAD-complete even in dimension d = 4 and B = 2.
Therefore, LR-LocALMINMAX is PPAD-complete even in dimension d = 4 and B = 2.

The above result excludes the existence of an algorithm for GDAFIxepPOINT whose running
time is poly(logG,logL,log(1/«),B) and, equivalently, the existence of an algorithm for the
problem LR-LocartMInNMax with running time poly(logG,logL,log(1/¢),log(1/6), B), unless
FP = PPAD. Observe that it would not be possible to get a stronger hardness result for the four
dimensional GDAFIXEDPOINT problem since it is simple to construct brute-force search algo-
rithms with running time poly(1/«, G, L, B). We elaborate more on such algorithms towards the
end of this section. In order to prove the hardness of GDAFIxepPOINT for polynomially (rather
than exponentially) bounded (in the size of the input) values of 1/a, G, and L (See Theorem 4.4)
we need to consider optimization problems in higher dimensions. This is the problem that we
explore in Section 7. Beyond establishing the hardness of the problem for d = 4 dimensions, the
purpose of this section is to provide a simpler reduction that helps in the understanding of our
main result in the next section.

6.1 The 2D Bi-Sperner Problem

We start by introducing the 2D-BISPERNER problem. Consider a coloring of the N x N, 2-
dimensional grid, where instead of coloring each vertex of the grid with a single color (as in
Sperner’s lemma), each vertex is colored via a combination of two out of four available colors.
The four available colors are 17,1%,27,2%. The five rules that define a proper coloring of the
N x N grid are the following.

19

® @

s - ©o0000®

3 / / eoco0co0ole

e /"’r / 00000060

e O o000 e

4 [o 0000

’ / e0o00e6€

e = e00o0o0

c oeo66o0o00600060C0C

Summary of the rules Example of proper coloring

Figure 4: Left: Summary of the rules from a proper coloring of the grid. The color on the
left and the right side can be replaced with either or . Similarly the color on
the top and the bottom side can be replaced with either red or . Right: An example of a

proper coloring of a 9 x 9 grid. The brown boxes indicate the two panchromatic cells, i.e., the
cells where all the four available colors appear.

1. The first color of every vertex is either 1~ or 17 and the second color is either 2~ or 2.

N

. The first color of all vertices on the left boundary of the grid is 17.
3. The first color of all vertices on the right boundary of the grid is 1™.
4. The second color of all vertices on the bottom boundary of the grid is 2.

5. The second color of all vertices on the top boundary of the grid is 2™.

Using similar proof ideas as in Sperner’s lemma it is not hard to establish via a combinatorial
argument that, in every proper coloring of the N x N grid, there exists a square cell where each
of the four colors in {17,1%,27,2"} appears in at least one of its vertices. We call such a cell a
panchromatic square. In the 2D-BISPERNER problem, defined formally below, we are given the de-
scription of some coloring of the grid and are asked to find either a panchromatic square or the vi-
olation of the proper coloring conditions. In this paper, we will not present a direct combinatorial
argument guaranteeing the existence of panchromatic squares under proper colorings of the grid,
since the existence of panchromatic squares will be implied by the totality of the 2D-BiISPERNER
problem, which will follow from our reduction from 2D-BISPERNER to GDAFIXEDPOINT as well
as our proofs in Section 5 establishing the totality of GDAFIxepPoINT. In Figure 4 we summarize
the five rules that define proper colorings and we present an example of a proper coloring of the
grid with 9 discrete points on each side.

20

In order to formally define the computational problem 2D-BISPERNER in a way that is useful
for our reductions we need to allow for colorings of the N x N grid described in a succinct
way, where the value N can be exponentially large compared to the size of the input to the
problem. A standard way to do this, introduced by [Pap94b] in defining the computational
version of Sperner’s lemma, is to describe a coloring via a binary circuit C; that takes as input
the coordinates of a vertex in the grid and outputs the combination of colors that is used to color
this vertex. In the input, each one of the two coordinates of the input vertex is given via the
binary representation of a number in [N] — 1. Setting N = 2" we have that the representation of
each coordinate belongs to {0,1}". In the rest of the section we abuse the notation and we use a
coordinate i € {0,1}" both as a binary string and as a number in [2"] — 1 and it is clear from the
context which of the two we use. The output of C; should be a combination of one of the colors
{17,17} and one of the colors {27,2"}. We represent this combination as a pair of {—1,1}2. The
first coordinate of this pair refers to the choice of 1~ or 17 and the second coordinate refers to
the choice of 2~ or 2.

In the definition of the computational problem 2D-BISPERNER the input is a circuit C;, as de-
scribed above. One type of possible solutions to 2D-BISPERNER is providing a pair of coordinates
(i,j) € {0,1}" x {0,1}" indexing a cell of the grid whose bottom left vertex is (i,j). For this
type of solution to be valid it must be that the output of C; when evaluated on all the vertices of
this square contains at least one negative and one positive value for each one of the two output
coordinates of Cj, i.e. the cell must be panchromatic. Another type of possible solution to 2D-
BISPERNER is a vertex whose coloring violates the proper coloring conditions for the boundary,
namely 2-5 above. For notational convenience we refer to the first coordinate of the output of C;
by C} and to the second coordinate by C?. The formal definition of the computational problem
2D-BISPERNER is then the following.

2D-BISPERNER.

INPUT: A boolean circuit C; : {0,1}" x {0,1}"* — {—1,1}2.

Ourtrut: A vertex (i,j) € {0,1}" x {0,1}" such that one of the following holds
1.i#1,j#1,and

U c¢@.j)={-11} and U cf@.j)={-11}, or

i'—ie{0,1} i'—ie{0,1}
/'=je{01} j'=je{01}
2.i=0and Cl(i,j) = or
3.i=1and C}(i,]) = —1— or
4. j=0and C?(i,j) = —1, or
5. j=1and C(i,j) = +1.

Our next step is to show that the problem 2D-BiSPERNER is PPAD-hard. Thus our reduction
from 2D-B1SPERNER to GDAFIXEDPOINT in the next section establishes both the PPAD-hardness
of GDAFIxepPoOINT and the inclusion of 2D-B1SPERNER to PPAD.

Lemma 6.2. The problem 2D-BISPERNER is PPAD-hard.

Proof. To prove this Lemma we will use Lemma 2.5. Let Cj be a polynomial-time Turing machine
that computes a function M : [0,1]> — [0, 1]? that is L-Lipschitz. We know from Lemma 2.5 that

21

finding y-approximate fixed points of M is PPAD-hard. We will use Cy to define a circuit C; such
that a solution of 2D-BISPERNER with input C; will give us a y-approximate fixed point of M.

Consider the function ¢(x) = M(x) — x. Since M is L-Lipschitz, the function g : [0,1]*> —
[—1,1]2 is also (L + 1)-Lipschitz. Additionally g can be easily computed via a polynomial-time
Turing machine C, that uses Cj as a subroutine. We construct a proper coloring of a fine grid of
[0,1]? using the signs of the outputs of ¢. Namely we set n = [log(L/) + 2] and this defines
a 2" x 2" grid over [0,1]* that is indexed by {0,1}" x {0,1}". Let g, : [0,1]*> — [—1,1]? be the
function that the Turing Machine C, evaluate when the requested accuracy is 7 > 0. Now we can
define the circuit C; as follows, °

1 i=0
ol 1 i=2"—1
D=1 g (g yly) > Oand i £ —17

1 g1 (g, 57) <Oandi #0

1 i=0
C2(i i -1 =21
=N g (5 why) 2 Oandi £ -1

o ‘
| —1 8n2 (5 z57) <Oandi#0

where g; is the ith output coordinate of g. It is not hard then to observe that the coloring C; is
proper, i.e. it satisfies the boundary conditions due to the fact that the image of M is always
inside [0,1]2. Therefore the only possible solution to 2D-BISPERNER with input C; is a cell that
contains all the colors {17,1%,27,2%}. Let (i,]) be the bottom-left vertex of this cell which we
denote by R, namely

B 2 i i+1] j+1
R_{xe [0,1]° | x1 € [2,1_1,2”_1],9@6 {2"—1’2"—1 .

Claim 6.3. Let 17 =

f’ there exists x € R such that |g1(x)| < z\f and y € R such that |g(y)| < 2%@
Proof of Claim 6.3. We will prove the existence of x and the existence of y follows using an identi-
cal argument. If there exists a corner x of R such that g;(x) is in the range [—#, 7] then the claim
follows. Suppose not. Using this together with the fact that the first color of one of the corners of
Ris 17 and also the first color of one of the corners of R is 1 we conclude that there exist points
x,x" such that g, 1(x) > 0 and g,,1(x') < 0°. But we have that ||g, — g||, < #. This together with
the fact that g1(x) & [—1,71] and ¢1(x') & [—7,] implies that ¢;(x) > 0 and also g1 (x") < 0. But
because of the L-Lipschitzness of ¢ and because the distance between x and x’ is at most v2 -
we conclude that |g1(x) — g1(x")] < \7[Hence due to the 51gns of g1(x) and g1(x") we conclude

that [g1(x)| < ; \[The same way we can prove that [¢1(y)| < ; \[and the claim follows. O

5We remind that we abuse the notation and we use a coordinate i € {0,1}" both as a binary string and as a number
in ([2" —1] — 1) and it is clear from the context which of the two we use.

® The latter is inaccurate for the cases where the vertex (0, j) belongs to either facets i = 0 or i = 2" — 1. Notice that
the coloring in such vertices does not depend on the value of g,. However in case where the color of such a corner is
not consistent with the value of g, i.e. g,1(0,j) <0 and Cll(O,j) = 1 then this means that |g1(0,/)| < 5. This is due
to the fact that ¢1(0,7) > 0 and [g1(0,) — &1,;(0,7)| < 7.

22

Using the Claim 6.3 and the L-Lipschitzness of ¢ we get that for every z € R

e
4L
N
4L

g1(z) —g1(x)| < L|jx—z|, < vV2-L-
182(2) = g2(y)| < Llly -z, <v2-L-

where we have used also the fact that for any two points z,w it holds that ||z — wl|, < V27
which follows from the definition of the size of the grid. Therefore we have that ||g(z)||, < v and
hence ||[M(z) — z||, < 7 which implies that any point z € R is a y-approximate fixed point of M
and the lemma follows. O

Now that we have established the PPAD-hardness of 2D-BISPERNER we are ready to present our
main result of this section which is a reduction from 2D-BISPERNER to GDAFIXEDPOINT.

6.2 From 2D Bi-Sperner to Fixed Points of Gradient Descent/Ascent

We start with presenting a construction of a Lipschitz and smooth real-valued function f :
[0,1]? x [0,1]> — R based on a given coloring circuit C; : {0,1}" x {0,1}" — {—1,1}2. Then
in Section 6.2.1 we will show that any solution to GDAFIxepPoINT with input the representation
Cr of f is also a solution to the 2D-BISPERNER problem with input C;. Constructing Lipschitz
and smooth functions based on only local information is a surprisingly challenging task in high-
dimensions as we will explain in detail in Section 7. Fortunately in the low-dimensional case
that we consider in this section the construction is much more simple and the main ideas of our
reduction are more clear.

The basic idea of the construction of f consists in interpreting the coloring of a given point
in the grid as the directions of the gradient of f(x,y) with respect to the variables x1,y; and
x2, Y2 respectively. More precisely, following the ideas in the proof of Lemma 6.2, we divide the
[0,1)2 square in square-cells of length 1/(N — 1) = 1/(2" — 1) where the corners of these cells
correspond to vertices of the N x N grid of the 2D-BISPERNER instance described by C;. When x
is on a vertex of this grid, the first color of this vertex determines the direction of gradient with
respect to the variables x; and y;, while the second color of this vertex determines the direction
of the gradient of the variables x, and y,. As an example, if x = (x1,x2) is on a vertex of the
N x N grid, and the coloring of this vertex is (17,2"), i.e. the output of C; on this vertex is
(—1,+1), then we would like to have

of of of of
7 > 7 < 7 < 7 > 0.
o (x,y) >0, 3 (x,y) <0, o (x,y) <0, 3y, (x,y) >0

The simplest way to achieve this is to define the function f locally close to (x,y) to be equal to
fxy) = (1 —y) = (22 = ya)-

Similarly, if x is on a vertex of the N x N grid, and the coloring of this vertex is (17,27), i.e. the
output of C; on this vertex is (—1, —1), then we would like to have

of of of of
7 > 7 < 7 > 7 < 0.
o (x,y) >0, 3 (x,y) <0, o (x,y) >0, 3, (x,y) <0

The simplest way to achieve this is to define the function f locally close to (x,y) to be equal to
fxy) = (x1—y1) + (x2 = y2).

23

lit=¢ 1 = 2t = 2~ = o]

*2 (¥2) [<=>/T\ f /wa —

' — \T\f \v}/f >
x1 (Y1)

Figure 5: The correspondence of the colors of the vertices of the N x N grid with the directions
of the gradient of the function f that we design.

In Figure 5 we show pictorially the correspondence of the colors of the vertices of the grid with
the gradient of the function f that we design. As shown in the figure, any set of vertices that
share at least one of the colors 17,17, 2%, 27, agree on the direction of the gradient with respect
the horizontal or the vertical axis. This observation is one of the main ingredients in the proof of
correctness of our reduction that we present later in this section.

When x is not on a vertex of the N x N grid then our goal is to define f via interpolating
the functions corresponding to the corners of the cell in which x belongs. The reason that this
interpolation is challenging is that we need to make sure the following properties are satisfied

> the resulting function f is both Lipschitz and smooth inside every cell,

> the resulting function f is both Lipschitz and smooth even at the boundaries of every cell,
where two differect cells stick together,

> no solution to the GDAFIXEDPOINT problem is created inside cells that are not solutions to
the 2D-BISPERNER problem. In particular, it has to be true that if all the vertices of one cell
agree on some color then the gradient of f inside that cell has large enough gradient in the
corresponding direction.

For the low dimensional case, that we explore in this section, satisfying the first two properties
is not a very difficult task, whereas for the third property we need to be careful and achieving
this property is the main technical contribution of this section. On the contrary, for the high-
dimensional case that we explore in Section 7 even achieving the first two properties is very
challenging and technical.

As we will see in Section 6.2.1, if we accomplish a construction of a function f with the
aforementioned properties, then the fixed points of the projected Gradient Descent/Ascent can
only appear inside cells that have all of the colors {17,1%,27,2%} at their corners. To see this
consider a cell that misses some color, e.g. 17. Then all the corners of this cell have as first
color 17. Since f is defined as interpolation of the functions in the corners of the cells, with the
aforementioned properties, inside that cell there is always a direction with respect to x; and 4
for which the gradient is large enough. Hence any point inside that cell cannot be a fixed point
of the projected Gradient Descent/Ascent. Of course this example provides just an intuition of
our construction and ignores case where the cell is on the boundary of the grid. We provide a
detailed explanation of this case in Section 6.2.1.

The above neat idea needs some technical adjustments in order to work. At first, the inter-
polation of the function in the interior of the cell must be smooth enough so that the resulting

24

function is both Lipschitz and smooth. In order to satisfy this, we need to choose appropriate
coefficients of the interpolation that interpolate smoothly not only the value of the function but
also its derivatives. For this purpose we use the following smooth step function of order 1.

Definition 6.4 (Smooth Step Function of Order 1). We define S : [0,1] — [0,1] to be the smooth
step function of order 1 that is equal to S;(x) = 3x? — 2x3. Observe that the following hold S;(0) =
0,51(1) =1, 8}(0) =0, and S{(1) = 0.

As we have discussed, another issue is that since the interpolation coefficients depend on
the value of x it could be that the derivatives of these coefficients overpower the derivatives of
the functions that we interpolate. In this case we could be potentially creating fixed points of
Gradient Descent/Ascent even in non panchromatic squares. As we will see later the magnitude
of the derivatives from the interpolation coefficients depends on the differences x; — y; and x; —
y2. Hence if we ensure that these differences are small then the derivatives of the interpolation
coefficients will have to remain small and hence they can never overpower the derivatives from
the corners of every cell. This is the place in our reduction where we add the constraints A -
(x,y) < b that define the domain of the function f as we describe in Section 3.

Now that we have summarized the main ideas of our construction we are ready for the formal
definition of f based on the coloring circuit C;.

Definition 6.5 (Continuous and Smooth Function from Colorings of 2D-Bi-Sperner). Given a
binary circuit C; : {0,1}" x {0,1}" — {—1,1}?, we define the function f¢, : [0,1]* x [0,1]> — R as
follows. For any x € [0,1]%, let A = (ia,ja), B = (i, jg), C = (ic,jc), D = (ip, jp) be the vertices
of the cell of the N(= 2") x N grid which contains x and x%, x8, x* and xC the corresponding
points in the unit square [0,1]%, i.e. xf' = is/(2" — 1), x§ = ja/(2" — 1) etc. Let also A be
down-left corner of this cell and B, C, D be the rest of the vertices in clockwise order, then we
define

fe,(x,y) = a1 (x) - (y1 — x1) +a2(x) - (y2 — x2)

where the coefficients aq(x), az(x) € [—1,1] are defined as follows

x¢ —x x§ —x - xP —x xy — xP -
wi(x) = 51(15 1>-S1< 25 - 'Czl(A)JrSl(L 5 1>'51< 25 2>'CZI(B)

x1 — x4 x5 — x4 - x1 — xB x5 x -
+51< 5 1>‘Sl< = 2>'C;(C)+Sl< w 1>'Sl< 5 2>'C’Z(D)

where § £ 1/(N —1) =1/(2" —1).

In Figure 6 we present an example of the application of Definition 6.5 to a specific cell with some
given coloring on the corners.

An important property of the definition of the function f¢, is that the coefficients used in the
definition of «; have the following two properties

C _ C __ D __ _~D
Sl<x15x1>'51<x25m>Zolsl(xl5x1>'51(x25x2>20,
A _ LA _ B B_
S, (xl 5x1>.51<x25x2> >0, sl<x15x1>.sl<x25x2) >0, and

25

it=€¢ 1 = 2t — 2= uJ

(y1—x1) + (x2—y2) = f,(x,y) Lxy) =1 —y)+(x2—y2)
xB' i xC 4 N\
x]fxf‘éu ; /_ flxy)= S J;a) 5(5(5;17) £(xy)

(y1—x1)+ (12— %) = £,(xy) 0 £xy) = (1 —x1) + (2= 2)

Figure 6: Example of the definition of the Lipschitz and smooth function f on some cell given
the coloring on the corners of the cell. For details see Definition 6.5.

xc—x1> x§ —xo xP — x xp — xP
51<1 5 () s (5 0) s (252)
) 1) 1) 1)
A _ LA _ B B
+ 5 <X1 5x1)-51 (xz 5x2>+51 <X1 5x1>‘51 <x25x2> =1.

Hence the function f¢, inside a cell is a smooth convex combination of the functions on the
corners of the cell, as is suggested from Figure 6. Of course there are many ways to define such
convex combination but in our case we use the smooth step function S; to ensure the Lipschitz
continuous gradient of the overall function f¢,. We prove this formally in the next lemma.

Lemma 6.6. Let fc, be the function defined based on a coloring circuit C;, as per Definition 6.5. Then
fe, is continuous and differentiable at any point (x,y) € [0,1]*. Moreover, fc, is ®(1/6)-Lipschitz and
©(1/62)-smooth in the whole 4-dimensional hypercube [0,1]*, where s =1/(N —1) = 1/(2" —1).

Proof. Clearly from Definition 6.5, f¢, is differentiable at any point (x,y) € [0,1]* in which x lies
on the strict interior of its respective cell. In this case the derivative with respect to x; is

ey _ O (g) mx) + 22 (g)

where for duaq (x)/0x; we have that

g (1) (552) e
- %Si (x?;aq) s <xz;x?> .C(B)

i (27) s (2 e

s (05 s () o

Now since max,c[oq]|5](z)| < 6, we can conclude that ‘% < 24/4. Similarly we can prove

9a(x) | < 24/5, which combined with |a1(x)| < 1implies ‘W‘ < O(1/6). Using similar

E)xl
reasoning we can prove that ‘afcéij'y) ‘ < 0(1/9) and that ‘afclai(y’:’y)‘ <1fori=1,2. Hence

that

IV fe,(x,y)||, < O(1/6).

The only thing we are missing to prove the Lipschitzness of f¢, is to prove its continuity on the
boundaries of the cells of our subdivision. Suppose x lies on the boundary of some cell, e.g. let
x lie on edge (C, D) of one cell that is the same as the edge (A’, B') of the cell to the right of that
cell. Since $1(0) =0, S{(0) = 0 and S{(1) = 0 it holds that da; (x)/dx; = 0 and the same for a5.
Therefore the value of dfc, /dx; remains the same no matter the cell according to which it was
calculated. As a result, f¢, is differentiable with respect to x; even if x belongs in the boundary
of its cell. Using the exact same reasoning for the rest of the variables, one can show that the
function f¢, is differentiable at any point (x,y) € [0,1]* and because of the aforementioned bound
on the gradient V f¢, we can conclude that f¢, is O(1/6)-Lipschitz.

Using very similar calculations, we can compute the closed formulas of the second derivatives
of f¢, and using the bounds |f¢,(+)| <2, |S1(-)| < 1, |S1(:)| < 6, and [S{(-)| < 6, we can prove
that each entry of the Hessian V2 f¢, (x,y) is bounded by O(1/4%) and thus

V2 fe (x,)|, < O(1/6)
which implies the ®(1/6%)-smoothness of f,. O

6.2.1 Description and Correctness of the Reduction — Proof of Theorem 6.1

In this section, we present and prove the exact polynomial-time construction of the instance of
the problem GDAFIXEDPOINT from an instance C; of the problem 2D-BISPERNER.

(4) Construction of Instance for Fixed Points of Gradient Descent/Ascent.
Our construction can be described via the following properties.

» The payoff function is the real-valued function f¢,(x, y) from the Definition 6.5.

» The domain is the polytope P(A,b) that we described in Section 3. The matrix A and the
vector b have constant size and they are computed so that the following inequalities hold

x1—y1 <A, yi—x1 <A x—1y <A and y —x2 <A (6.1)
where A=¢/12and 6 =1/(N—-1) =1/(2" —1).
» The parameter « is set to be equal to A/3.

» The parameters G and L are set to be equal to the upper bounds on the Lipschitzness and
the smoothness of f¢, respectively that we derived in Lemma 6.6. Namely we have that
G=0(1/6) =0(2") and L = O(1/6%) = O(2*").

The first thing that is simple to observe in the above reduction is that it runs in polynomial
time with respect to the size of the the circuit C; which is the input to the 2D-BISPERNER problem
that we started with. To see this, recall from the definition of GDAF1xEpPoOINT that our reduction

27

needs to output: (1) a Turing machine Cfc, that computes the value and the gradient of the
function f¢, in time polynomial in the number of requested bits of accuracy; (2) the required
scalars «, G, and L. For the first, we observe from the definition of f¢, that it is actually a piece-
wise polynomial function with a closed form that only depends on the values of the circuit C; on
the corners of the corresponding cell. Since the size of C; is the size of the input to 2D-BISPERNER
we can easily construct a polynomial-time Turing machine that computes both function value and
the gradient of the piecewise polynomial function f¢,. Also, from the aforementioned description
of the reduction we have that log(G), log(L) and log(1/«) are linear in n and hence we can
construct the binary representation of all this scalars in time O(n). The same is true for the
coefficients of A and b as we can see from their definition in (+). Hence we conclude that our
reduction runs in time that is polynomial in the size of the circuit C;.

The next thing to observe is that, according to Lemma 6.6, the function f¢, is both G-Lipschitz
and L-smooth and hence the output of our reduction is a valid input for the promise problem
GDAFIXEDPOINT. So the last step to complete the proof of Theorem 6.1 is to prove that the vec-
tor x* of every solution (x*,y*) of GDAFIxepPoINT with input Cy,, lies in a cell that is either
panchromatic or violates the rules for proper coloring, in any of these cases we can find a solu-
tion to the 2D-BISPERNER problem. This proves that our construction reduces 2D-BISPERNER to
GDAFIXEDPOINT.

We prove this last statement in Lemma 6.8, but before that we need the following technical
lemma that will be useful to argue about solution on the boundary of P(A, b).

Lemma 6.7. Let C; be an input to the 2D-BISPERNER problem, let fc, be the corresponding G-Lipschitz
and L-smooth function defined in Definition 6.5, and let P(A,b) be the polytope defined by (6.1). If
(x*,y*) is any solution to the GDAFIXEDPOINT problem with inputs «, G, L, C fe,r As and b, defined in
(+) then the following statements hold, where recall that A = §/12. For i € {1,2}:

o Ifxr e (a,1—a)and xf € (yf —A+wa,yf + A —u«) then ’%};,y*)‘ <a
* * fC[()
o Ifxy <worxy <y;—A+athen T > —q.
* * * fC,(X y)
o Ifxr >1—aorxr >yr+A—a«then - < a.
The symmetric statements for y* hold. For i € {1,2}:
olfyre(wl—a)andyr € (xf —A+wa,xf +A— then‘fc’ y) < a

o Ifyfﬁaoryfﬁxf—A+athen%W§zx.
* * afC,(X*/y*)
olfyr >1—waory; > x7 +A— athenTz—a.

Proof. For this proof it is convenient to define ¥ = x* — V. f¢, (x*,y*), K(v*) = {x | (x,y*) €
P(A,b))}, and z = TTg(, &

We first consider the first statement, so for the sake of contradiction let’s assume that x} €
(0,1 —a), that x7 € (yf —A+a,yf + A —a), and that ‘)

tion of P(A,b) in (6.1) the set K(y*) is an axes aligned box of R? and hence the projection
of any vector x onto K(y*) can be implemented independently for every coordinate x; of x.

’ > n. Due to the defini-

28

Therefore if it happens that £; € (0,1) N (y7 — A,y + A), then it holds that #; = z;. Now
from the definition of %; and z;, and the fact that K(y*) is an axes aligned box, we get that

)
|xF —zi| = |xf — %] = ‘M‘ > « which contradicts the fact that (x*, y*) is a solution to the

problem GDAF1xepPoINT. On the other hand if £; & (y7 — A,y + A) N (0,1) then z; has to be on
the boundary of K(y*) and hence z; has to be equal to either 0, or 1, or yF — A, or yf + A. In any
of these cases since we assumed that x* € (a,1 —) and that xF € (yF —A+a,yF + A —a) we
conclude that |x} — z;| > a and hence we get again a contradiction with the fact that (x*,y*) is a
solution to the problem GDAFixepPoIiNT. Hence we have that ’ e { C‘ ‘ <.

For the second case, we assume for the sake of contradiction that x7 < & and % < —u.

These imply that £; > x 4+« and that z; = min(y} + A, £;,1) > mm(A %i,1) > mm(3tx XF 4 a).
As a result, |xF —z;| = z; — x > min(3a, %; +) — x7 which is greater than «. The latter is a
contradiction with the assumption that (x*,y*) is a solution to the GDAFIXEDPOINT problem.
Also if we assume that x < y* — A + « using the same reasoning we get that z; = min(%;, y7 +
A —a,1). From this we can again prove that |x} — z;| > a« which contradicts the fact that (x*, y*)
is a solution to GDAFIXEDPOINT.

The third case can be proved using the same arguments as the second case. Then using the
corresponding arguments we can prove the corresponding statements for the y variables. O

We are now ready to prove that solutions of GDAFIXEDPOINT can only occur in cells that are
either panchromatic or violate the boundary conditions of a proper coloring. For convenience in
the rest of this section we define R(x) to be the cell of the 2" x 2" grid that contains x.

i1 ij+1
Rx) = [274—1 zn—J 8 [2n—1’2n—1]’ (6.2)

for i,j such that x; € [ﬁ, %] and x; € { 2/ T 2,1 1} if there are multiple i, j that satisfy the

above condition then we choose R(x) to be the cell that corresponds to the i, j such that the pair
(i,) it the lexicographically first such that i, j satisfy the above condition. We also define the
corners R.(x) of R(x) a

Re(x) = {(@,7), (i,j +1), (i +1,j), (i +1), G+ 1)} (6.3)

L il
where R(x) = [5, 21;111] X [2"]—1' 2];«,1}-

Lemma 6.8. Let C; be an input to the 2D-BISPERNER problem, let f¢, be the corresponding G-Lipschitz
and L-smooth function defined in Definition 6.5, and let P(A,b) be the polytope defined by (6.1). If
(x*,y*) is any solution to the GDAFIXEDPOINT problem with inputs «, G, L, C fe,r A, and b defined in
(+) then none of the following statements hold for the cell R(x*).

1. x> 1/(2" — 1) and, for all v € Rc(x*), it holds that C} (v) = —1.
2. x7 < (2" =2)/(2" — 1) and, for all v € Rc(x*), it holds that C} (v) = +1.
3. x5 >1/(2" — 1) and, for all v € Rc(x*), it holds that C?(v) = —1.
4. x5 < (2" —=2)/(2" —1) and, for all v € R¢(x*), it holds that C?(v) = +1.

29

Proof. We prove that there is no solution (x*, y*) of GDAFIxeDPOINT that satisfies the statement
1. and the fact that (x*,y*) cannot satisfy the other statements follows similarly. It is convenient
for us to define ¥ = x* — V.fe, (x*,y"), K(y*) = {x | (x,y*) € P(A,b))}, z = Ilg% and
7=y + Vofe (" y7), K(x¥) = {y | (", y) € P(A,b))}, w = Iy

For the sake of contradiction we assume that there exists a solution of (x*,y*) such that

x; >1/(2" —1) and for all v € Rc(x*) it holds that C} (v) = —1. Using the fact that the first color
of all the corners of R(x*) is 1~, we will prove that (1) M >1/2, and (2) % =-1.
Let R(x*) = [5iy, 25] ¥ {znj_l, z],f_ll}, then since all the corners v € R.(x*) have C/(v) =

—1, from the Definition 6.5 we have that

C

* ok * * * * Xy — X7 xC_x* ..
fcl<x,y>:<x1—yl>—<x2—y2>-51< o >5< ; 2)-6?0,])

D _ .x * __ ~D
(xl 5"1) S, <x2 xz)-cf(i,jﬂ)
xp—xft
0

* B B *
1™N 20\ 2 ;
5) Sl< 5) Cl(l+1/])
1)

—y%)- S

(Y3) : 5
* _ A
~ (- 93)- S s (252) e
(y3) :

—y%)- S

where (x{',x3) = (i/(2" —1),j/(2" = 1)), (x7,x5) = (i/(2" =1),(j+1)/(2" = 1)), (x],%§) =
(i+1)/(2"=1),(j+1)/(2" = 1)), and (xP,xD) = ((i + 1)/(2” —1),j/(2" —1)). If we differen-
tiate this with respect to y; we immediately get that L é) — _1. On the other hand if we

differentiate with respect to x; we get

WX 1 s — . 5.53(1_XT;”‘A> 51(1— %= ?> C7 (i, j)

ax1 1)
1 * _ LA
+(x§—y§)-5-51<1—x15x1 (> 2(i,j+1)
P B 5 x5 — x4
—(xz—yz)'3'51 5 - 51 5 Cri+1,j+1)
* A * A
ey ses (BSE) sy (1o 220 i1,)
1) 0 b
3
> o *_*.7
>1—4|x5 —y3| 2
21—6-%21/2 (6.4)

where the last inequality follows from the fact that |S](-)| < 3/2 and the fact that, due to the
constraints that define the polytope P(A, b), it holds that |x; — y2| < A.
Hence we have established that if x7 > 1/(2" — 1) and for all v € R.(x*) it holds that

C}(v) = —1 then it holds that that (1) Z5°%” > 1/2, and (2) Z555% = 1. Now it is easy to

see that the only way to satisfy both of Cz(y)

> 1/2 and |z; —x1| < w is that either x7 < & or

30

x7 < yj — A+ a. The first case is excluded by the assumption in the first statement of our lemma

and our choice of ® = A/3 = 1/(36- (2" — 1)) thus it holds that x] < y; — A + . But then we
e, (x*y*)

can use the case 3 for the y variables of Lemma 6.7 and we get that —75-=— > —a, which cannot
. dfe, (x*y* . .
be true since we proved that %ﬂ) = —1. Therefore we have a contradiction and the first

statement of the lemma holds. Using the same reasoning we prove the rest of the statements. [

Remark 6.9. The computations presented in (6.4) is the precise point where an attempt to prove
the hardness of minimization problems would fail. In particular, if our goal was to construct a
hard minimization instance then the function f¢, would need to have the terms x; + y; instead of
x; — y; so that the fixed points of gradient descent coincide with approximate local minimum of
fe,- In that case we cannot lower bound the gradient of (6.4) below from 1/2 because the term
|x3 + y%| will be the dominant one and hence the sign of the derivative can change depending on
the value |x3 + y3|. For a more intuitive explanation of the reason why we cannot prove hardness
of minimization problems we refer to the Introduction, at Section 1.2.

We have now all the ingredients to prove Theorem 6.1.

Proof of Theorem 6.1. Let (x*,y*) be a solution to the GDAFIXEDPOINT instance that we construct
based on the instance C; of 2D-BISPERNER. Let also R(x*) be the cell that contains x*. If the
corners R.(x*) contain all the colors 17, 1%, 27, 2" then we have a solution to the 2D-BISPERNER
instance and the Theorem 6.1 follows. Otherwise there is at least one color missing from R.(x*),
let’s assume without loss of generality that one of the missing colors is 17, hence for every
v € R.(x*) it holds that C;(v) = +1. Now from Lemma 6.8 the only way for this to happen
is that x7 > (2" —2)/(2" — 1) which implies that in R.(x*) there is at least one corner of the
form v = (2" —1,j). But we have assumed that C;(v) = +1, hence v is a violation of the
proper coloring rules and hence a solution to the 2D-BISPERNER instance. We can prove the
corresponding statement if any other color from 17, 27, 2% is missing. Finally, we observe that
the function that we define has range [—2,2] and hence the Theorem 6.1 follows. O

7 Hardness of Local Min-Max Equilibrium — High-Dimensions

Although the results of Section 6 are quite indicative about the computational complexity of
GDAFxepPoINT and LR-LocaALMINMAx, we have not yet excluded the possibility of the exis-
tence of algorithms running in poly(d, G, L,1/¢) time. In this section we present a, significantly
more challenging, high dimensional version of the reduction that we presented in Section 6.
The advantage of this reduction is that it rules out the existence even of algorithms running in
poly(d,G,L,1/¢) steps unless FP = PPAD, for details see Theorem 4.4. An easy consequence
of our result is an unconditional lower bound on the black-box model that states that the running
time of any algorithm for LR-LocaALMINMax that has only oracle access to f and V f has to be
exponential in d, or G, or L, or 1/¢, for details we refer to the Theorem 4.5 and Section 9.

The main reduction that we use to prove Theorem 4.4 is from the high dimensional gener-
alization of the problem 2D-BISPERNER, which we call HIGED-BISPERNER, to GDAFIXEDPOINT.
Our reduction in this section resembles some of the ideas of the reductions of Section 6 but it has
many additional significant technical difficulties. The main difficulty that we face is how to de-
fine a function on a d-dimensional simplex that is: (1) both Lipschitz and smooth, (2) interpolated
between some fixed functions at the d + 1 corners of the simplex, and (3) remains Lipschitz and

31

smooth even if we glue together different simplices. It is well understood from previous works
how to construct such a function if we are interested only in achieving the Lipschitz continuity.
Surprisingly adding the smoothness requirement makes the problem very different and signif-
icantly more difficult. Our proof overcomes this technical difficulty by introducing a novel but
very technically involved way to define interpolation within a simplex of some fixed functions
on the corners of the simplex. We believe that our novel interpolation technique is of indepen-
dent interest and we hope that it will be at the heart of other computational hardness results of
optimization problems in continuous optimization.

7.1 The High Dimensional Bi-Sperner Problem

We start by presenting the HIGHD-BISPERNER problem. The HiGHD-BISPERNER is a straightfor-
ward d-dimensional generalization of the 2D-BISPERNER that we defined in the Section 6. Assume
that we have a d-dimensional grid N x - - - (d times) - - - x N. We assign to every vertex of this
grid a sequence of d colors and we say that a coloring is proper if the following rules are satisfied.

1. The ith color of every vertex is either the color it or the color i~.

2. All the vertices whose ith coordinate is 0, i.e. they are at the lower boundary of the ith
direction, should have the ith color equal to it.

3. All the vertices whose ith coordinate is 1, i.e. they are at the higher boundary of the ith
direction, should have the ith color equal to i ™.

Using proof ideas similar to the proof of the original Sperner’s Lemma it is not hard to prove
via a combinatorial argument that in every proper coloring of a d-dimensional grid, there exists
a cubelet of the grid where all the 2 - d colors {17,1",...,d~,d"} appear in some of its vertices,
we call such a cubelet panchromatic. In the HIGHD-BISPERNER problem we are asked to find such
a cubelet, or a violation of the rules of proper coloring. As in Section 6.1 we do not present this
combinatorial argument in this paper since the totality of the HIGHD-BISPERNER problem will
follow from our reduction from HiGHD-BISPERNER to GDAFIXEDPOINT and our proofs in Section
5 that establish the totality of GDAFIXEDPOINT.

As in the case of 2D-BISPERNER, in order to formally define the computational problem
HicHD-BISPERNER we need to define the coloring of the d-dimensional grid N x --- x N in a
succinct way. The fundamental difference compared to the definition of 2D-BISPERNER is that for
the HIGHD-BISPERNER we assume that N is only polynomially large. This difference will enable
us to exclude algorithms for GDAFIXEDPOINT that run in time poly(d,1/a,G,L). The input to
HicHD-BISPERNER is a coloring via a binary circuit C; that takes as input the coordinates of a
vertex of the grid and outputs the sequence of colors that are used to color this vertex. Each one
of d coordinates is given via the binary representation of a number in [N] — 1. Setting N = 2°,
where here / is a logarithmically in d small number, we have that the representation of each
coordinate is a member of {0,1}. In the rest of the section we abuse the notation and we use
a coordinate i € {0,1}¢ both as a binary string and as a number in [2] — 1 and which of the
two we use it is clear from the context. The output of C; should be a sequence of d colors, where
the ith member of this sequence is one of the colors {i~,i"}. We represent this sequence as a
member of {—1,+1}¢, where the ith coordinate refers to the choice of i~ or i*.

In the definition of the computational problem HiGHD-BISPERNER the input is a circuit Cj, as
we described above. As we discussed above in the HIGHD-BISPERNER problem we are asking for

32

a panchromatic cubelet of the grid. One issue with this high-dimensional setting is that in order
to check whether a cubelet is panchromatic or not we have to query all the 27 corners of this
cubelet which makes the verification problem inefficient and hence a containment to the PPAD
class cannot be proved. For this reason as a solution to the HIGHD-BISPERNER we ask not just
for a cubelet but for 2 - d vertices v, ..., o@D 41 4@ not necessarily different, such that
they all belong to the same cubelet and the ith output of C; with input v; is —1, i.e. corresponds
to the color i~, whereas the ith output of C; with input u; is +1, i.e. corresponds to the color
it. This way we have a certificate of size 2 - d that can be checked in polynomial time. Another
possible solution of HIGHD-BISPERNER is a vertex whose coloring violates the aforementioned
boundary conditions 2. and 3.. of a proper coloring. For notational convenience we refer to the
ith coordinate of C; by C;. The formal definition of HIGHD-BISPERNER is then the following.

HiGHD-BISPERNER.
INPUT: A boolean circuit C; : {0,1}° x --- x {0,1}¢ — {—1,1}¢

d times

Ourtrut: One of the following:
1. Two sequences of d vertices oW 0@ an M, . 4@ with 0@, 4 ({O, 1}5){1 such
that Ci(v')) = —1 and Ci(ul)) = +1.
2. A vertex v € ({O,l}f)d with v; = 0 such that Ci(v) = —1.
3. Avertex v € ({0,1}‘])d with v; = 1 such that C}(v) = +1.

Our first step is to establish the PPAD-hardness of HIGHD-BISPERNER in Theorem 7.2. To prove
this we use a stronger version of the BROUWER problem that is called y-SucciINcTBROUWER and
was first introduced in [Rub16].

Y-SUCCINCTBROUWER.
InruT: A polynomial-time Turing machine Cy; evaluating a 1/<-Lipschitz continuous vector-
valued function M : [0,1]% — [0,1]%.

OutpuT: A point x* € [0,1]¢ such that || M(x*) — x*||, < 1.

Theorem 7.1 ([Rub16]). y-SucCINCTBROUWER is PPAD-complete for any fixed constant -y > 0.

Theorem 7.2. There is a polynomial time reducton from any instance of the y-SUCCINCTBROUWER prob-
lem to an instance of HIGHD-BISPERNER with N = ©(d/~?).

Proof. Consider the function g(x) = M(x) — x. Since M is 1/v-Lipschitz, g : [0,1]¢ — [~1,1] is
also (14 1/v)-Lipschitz. Additionally g can be easily computed via a polynomial-time Turing
machine C, that uses Cj as a subroutine. We construct the coloring sequences of every vertex of a
d-dimensional grid with N = ©(d/+?) points in every direction using g. Let g, : [0,1]*> — [-1,1]?
be the function that the Turing Machine C, evaluate when the requested accuracy is 7 > 0.
For each vertex v = (v1,...,v,) € ([N] — 1)d of the d-dimensional grid its coloring sequence
Ci(v) € {—1,1}¥ is constructed as follows: For each coordinate j = 1,...,d,

1 Z)]':O
Cl(v) =4 -1 vj=2"-1,

sign (gj (5, 32)) otherwise

33

where sign : [~1,1] — {-1,1} is the sign function and g, (-) is the j-th coordinate of g;.
Observe that since M : [0,1]¢ — [0,1]¢, for any vertex v with v; = 0 it holds that C/(v) = +1 and

respectively for any vertex v with v; = N — 1 it holds that C/(v) = —1 due to the fact that the
value of M is always in [0,1]? and hence there are no vertices in the grid satisfying the possible
outputs 2. or 3. of the HIGHD-BISPERNER problem. Thus the only possible solution of the above
HicuD-BISPERNER instance is a sequence of 2d vertices v(l), ., v(d), u(l), ..., 1@ on the same
cubelet that certify that the corresponding cubelet is panchromatic, as per possible output 1. of
the HiGHD-BISPERNER problem. We next prove that any vertex v of that cubelet it holds that

v 2vd .
. < i =1,...,d.
g (N — 1)) SN for all coordinates j =1, ...,d

Let v be any vertex on the same cubelet with the output vertices o o@D) yd)

Fljom the guarantees of cplors Qf the sequences o) o@d 4 4(d) we have that either
Cl(v)-Cl(v)) = —10orC/(v) -C/(u)) = —1, let %) be the vertex o) or u\/) depending on which

one the jth color has product equal to —1 with Cl](). Now lety = M if gj (g%1) € [—1.7]

then the wanted inequality follows. On the other hand if g; (z%7) € [1,7] then using the fact
that ||g (5%7) — & (5%1) ||, < 7 and that from the definition of the colors we have that either

gi (71) 20, 817](1\1 1) <Oorg,7](1) <0, gﬂ](N 1) > 0 we conclude that g; (x%1) > 0,
(><Oorg] NoT 1 <O g](> 0 and thus,

o ()| <fo) - (¥5) < ()

where in the second inequality we have used the (1 4 1/)-Lipschitzness of g. As a result, the
point = v/(N — 1) € [0,1]? satisfies | M(®) — 9|, < 2d/(yN) and thus for if we pick N =
©(d/~?) then any vertex v of the panchromatic cell is a solution for y-SucCINCTBROUWER. [

o | v
N-1 N-1

2_()/N

Now that we have established the PPAD-hardness of HIGHD-BISPERNER we are ready to present
our main result of this section which is a reduction from the problem HiGHD-BISPERNER to the
problem GDAFIxepPoINT with the additional constraints that the scalars «, G, L in the input
satisfy 1/a = poly(d), G = poly(d), and L = poly(d).

7.2 From High Dimensional Bi-Sperner to Fixed Points of Gradient Descent/Ascent

Given the binary circuit C; : ([N] — 1)? — {—1,+1}4 that is an instance of HIGHD-BISPERNER,
we construct a G-Lipschitz and L-smooth function f¢, : [0,1]% x [0,1]Y — R. To do so, we divide
the [0,1]? hypercube into cubelets of length 6 = 1/(N — 1). The corners of such cubelets have
coordinates that are integer multiples of 6 = 1/(N — 1) and we call them vertices. Each vertex
can be represented by the vector v = (vy,.. .,vd) € ([N]—1)? and admits a coloring sequence
defined by the boolean circuit C; : ([N] — 1)? = {—1,41}. For every x € [0,1]%, we use R(x) to
denote the cubelet that contains x, formally

c1 c+1 ¢y cg+1
Rx) = [N—l’N—l} SR [N—l’N—l]

where ¢ € ([N —1] — 1) such that x € [Ncil, %fﬂ X e X [Ncil, ;"}f” and if there are multiple

corners ¢ that satisfy this condition then we choose R(x) to be the cell that corresponds to the ¢

34

that is lexicographically first among those that satisfy the condition. We also define R.(x) to be
the set of vertices that are corners of the cublet R(x), namely

Re(x) ={c1,c0+1} x -+ x {cq,¢5 + 1}

where ¢ € ([N —1] —1)” such that R(x) = [Ncil, ;\f_rﬂ X e X [Ncil, %f” Every y that belongs
to the cubelet R(x) can be written as a convex combination of the vectors v/(N — 1) where
v € Rc(x). The value of the function f¢,(x,y) that we construct in this section is determined
by the coloring sequences C;(v) of the vertices v € R.(x). One of the main challenges that we
face though is that the size of R.(x) is 2¢ and hence if we want to be able to compute the value
of fe,(x,y) efficiently then we have to find a consistent rule to pick a subset of the vertices of
R.(x) whose coloring sequence we need to define the function value f¢, (x,y). Although there
are traditional ways to overcome this difficulty using the canonical simplicization of the cubelet
R(x), these technique leads only to functions that are continuous and Lipschitz but they are not

enough to guarantee continuity of the gradient and hence the resulting functions are not smooth.
7.2.1 Smooth and Efficient Interpolation Coefficients

The problem of finding a computationally efficient way to define a continuous function as an
interpolation of some fixed function in the corners of a cubelet so that the resulting function
is both Lischitz and smooth is surprisingly difficult to solve. For this reason we introduce in
this section the smooth and efficient interpolation coefficients (SEIC) that as we will see in Section
7.2.2, is the main technical tool to implement such an interpolation. Our novel interpolation
coefficients are of independent interest and we believe that they will serve as a main technical
tool for proving other hardness results in continuous optimization in the future.

In this section we only give a high level description of the smooth and efficient interpolation
coefficients via their properties that we use in Section 7.2.2 to define the function f¢,. The actual
construction of the coefficients is very challenging and technical and hence we postpone a detail
exposition for Section 8.

Definition 7.3 (Smooth and Efficient Interpolation Coefficients). For every N € IN we define the
set of smooth and efficient interpolation coefficients (SEIC) as the family of functions, called coefficients,

TiN = {Pv 10,11 >R | v e ([N]— 1)d} with the following properties.

(A) For all vertices v € ([N] —1)“, the coefficient P, (x) is a twice-differentiable function and

satisfies
> | %0 < o(2/5).
> |02 < o(d/62).

(B) For all v € ([N] — 1)d, it holds that P, (x) > 0 and Zve([N]_l)d Po(x) = Toer, () Po(x) = 1.

(C) For all x € [0,1]%, it holds that all but d + 1 of the coefficients P, € T, N satisfy Py(x) =0,
VP,(x) = 0 and V?P,(x) = 0. We denote this set of d + 1 vertices by R, (x). Furthermore,
it holds that R4 (x) € R.(x) and given x we can compute the set R, (x) it time poly(d).

(D) For all x € [0,1])¢, if x; < 1/(N — 1) for some i € [d] then there exists v € R, (x) such that
v; = 0. Respectively, if x; > 1 —1/(N — 1) then there exists v € R (x) such that v; = 1.

35

An intuitive explanation of the properties of the SEIC coefficients is the following

(A) — The coefficients P, are both Lipschitz and smooth with Lipschitzness and smoothness
parameters that depends polynomially ind and N =1/6 + 1.

(B) — The coefficients P,(x) define a convex combination of the vertices R.(x).

(C) - For every x € [0,1]¢, out of the N¥ coefficients P, only d + 1 have non-zero value, or
non-zero gradient or non-zero Hessian when evaluated at the point x. Moreover, given
x € [0,1]¢ we can identify these d + 1 coefficients efficiently.

(D) - For every x € [0,1]" that is in a cubelet that touches the boundary there is at least one of
the vertices in R (x) that is on the boundary of the continuous hypercube [0, 1]%.

In Section 10 in the proof of Theorem 10.4 we present a simple application of the existence
of the SEIC coefficients for proving very simple black box oracle lower bounds for the global
minimization problem.

Based on the existence of these coefficients we are now ready to define the function fc, which
is the main construction of our reduction.

7.2.2 Definition of a Lipschitz and Smooth Function Based on a BiSperner Instance
In this section our goal is to formally define the function f¢, and prove its Lipschitzness and

smoothness properties in Lemma 7.5.

Definition 7.4 (Continuous and Smooth Function from Colorings of Bi-Sperner). Given a binary
circuit C; : ([N] — 1 = {—1,1}4, we define the function fe,:[0,1]% x [0,1)¢ — R as follows

d

fe(x,y) =) (xj —yj) - aj(x)

j=1
where aj(x) = —) _ (IN]-1)? Po(x) - C{ (v), and P, are the coefficients defined in Definition 7.3.

We first prove that the function f¢, constructed in Definition 7.4 is G-Lipschitz and L-smooth
for some appropriately selected parameters G, L that are polynomial in the dimension d and in
the discretization parameter N. We use this property to establish that f¢, is a valid input to the
promise problem GDAFIXEDPOINT.

Lemma 7.5. The function f¢, of Definition 7.4 is O(d"®/§)-Lipschitz and O(d*” / §%)-smooth.

Proof. If we take the derivative with respect to x; and y; and using property (B) of the coefficients
P, we get the following relations,

e (xy) ¢ thj(x) _ ofe,(xy)
5%, ; ox; +a;i(x) and T = —u;(x)
where du;(x) 9P, (x)
oi(x Po(x i
ai(x) =—). Py(x) and E)Jx- =—) I Cl(v)
ve([N]-1)* 1 (IN]-1) ’

36

Now by the property (C) of Definition 7.3 there are most d + 1 vertices v of R.(x) with the
property VP,(x) # 0. Then if we also use property (A) we get aa, () (d'3/ (5) and using

‘ Afe, (x, ‘ < ©(d"/s) and ‘afcz x) ‘ < O(d). Therefore

we can conclude that ||Vfe, (x,y Hz < @(d15/ (5) and hence this proves that the function fe, is
Lipschitz continuous with Lipschitz constant ®(d°/6).
To prove the smoothness of f¢,, we use the property (B) of the Definition 7.3 and we have

the property (B) we get |a;(x)| < 1. Thus

0fe (x,y) _ Oaj(x) | day(x) oai(x)
axi axg N]_X;(x] B]) . axi axg + axl- + an ’
azfc, (xr y) _ _al)é[(.X') and azfcl(x/ y) _
ax; Iy dx; dy; dyy
where 9%a;(x) ¥ 9?Py(x) -Cj()
axi an B axi an I\e
ve([N]-1)*

Again using the property (C) of Definition 7.3 we get that there are most d + 1 vertices v of R.(x)
such that V2P, (x) # 0. This together with the property (A) of Definition 7.3 leads to the fact that

% < ©(d®/6%). Using the later together with the bounds that we obtained for)aogg)

the beginning of the proof we get that | V2f¢,(x,y)||, < ©(d%”/§?), where with ||-||, we denote
the Frobenious norm. Since the bound on the Frobenious norm is a bound to the spectral norm
too, we get that the function f¢, is @(d* /6%)-smooth. O

7.2.3 Description and Correctness of the Reduction — Proof of Theorem 4.4

We start with a description of the reduction from HiGHD-BISPERNER to GDAFIXEDPOINT. Sup-
pose we have an instance of HiGHD-BISPERNER given by boolean circuit C; : ([N] —1)7 —
{—1,1}, we construct an instance of GDAFIXEDPOINT according to the following set of rules.
(*) Construction of Instance for Fixed Points of Gradient Descent/Ascent.

» The payoff function is the real-valued function f¢, (x,y) from the Definition 7.4.

» The domain is the polytope P(A, b) that we described in Section 3. The matrix A and the
vector b are computed so that the following inequalities hold

xi—yi <A, yi—x <A forall i€ [d] (7.1)

P, (x

where A = t-5/d"*, with t € IR, be a constant such that ‘ .0t < %, for all v €

Fiv
([N] —1)? and x € [0,1]%. The fact that such a constant f exists follows from the property
(A) of the smooth and efficient coefficients.

» The parameter « is set to be equal to A/3.

» The parameters G and L are set to be equal to the upper bounds on the Lipschitzness and
the smoothness of f¢, respectively that we derived in Lemma 7.5. Namely we have that
G =0(d®/6) and L = O(d*" /5?).

37

The first thing to observe is that the afore-described reduction is polynomial-time. For this
observe that all of «, G, L, A, and b have representation that is polynomial in d even if we use
unary instead of binary representation. So the only thing that remains is the existence of a Turing
machine C fe, that computes the function and the gradient value of f¢, in time polynomial to the
size of C; and the requested accuracy. To prove this we need a detailed description of the SEIC
coefficients and for this reason we postpone the proof of this to the Appendix D. Here we state
the formally the result that we prove in the Appendix D which together with the discussion
above proves that our reduction is indeed polynomial-time.

Theorem 7.6. Given a binary circuit C; : ([N] — 1)d — {—1,1}9 that is an input to the HiGHD-
BISPERNER problem. Then, there exists a polynomial-time Turing machine C fe,r that can be constructed
in polynomial-time from the circuit C; such that for all vector x,y € [0,1] and accuracy e > 0, Cfc,
computes both z € R and w € R? such that

z—fo(xy)|<e |w-Viexy)|,<e
Moreover the running time of C fe, 18 polynomial in the binary representation of x, y, and log(1/e).

We also observe that according to Lemma 7.5, the function f¢, is both G-Lipschitz and L-
smooth and hence the output of our reduction is a valid input for the constructed instance of
the promise problem GDAFIXepPoINT. The next step is to prove that the vector x* of every
solution (x*,y*) of GDAFIxenPoINT with input as we described above, lies in a cubelet that
is either panchromatic according to C; or is a violation of the rules for proper coloring of the
HiGHD-BISPERNER problem.

Lemma 7.7. Let C; be an input to the HIGHD-BISPERNER problem, let fc, be the corresponding G-
Lipschitz and L-smooth function defined in Definition 7.4, and let P(A,b) be the polytope defined by
(7.1). If (x*,y*) is any solution to the GDAFIXEDPOINT problem with input «, G, L, Cfcl, A, and b,

defined in (x) then the following statements hold, where we remind that A = t - 6 /d™.

oIfxre(w,1—a)andxf € (yf —A+a,yr +A—)then’%x]) <

o Ifxr <worx;y <y;—A+athen fc’()Z—a.
* * * ch](x*,y*)
o lIfxf >1—worxy >y +A—athen =5~ <

The symmetric statements for y7 hold.

olIfyre(w,l—a)andyr € (xf — A+, xf +A— then}M <
a ‘k/*
o Ifyl-*gocoryi*gxi*—A—l—octhen%gtx.
* * * 3fc,(X*,y*)
o Ifyr > 1—woryr > x; —l—A—octhenTZ—a,

Proof. The proof of this lemma is identical to the proof of Lemma 6.7 and for this reason we skip
the details of the proof here. O

38

Lemma 7.8. Let C; be an input to the HIGHD-BISPERNER problem, let fc, be the corresponding G-
Lipschitz and L-smooth function defined in Definition 7.4, and let P(A,b) be the polytope defined by
(7.1). If (x*,y*) is any solution to the GDAFIXEDPOINT problem with input o, G, L, Cfcl, A, and b,
defined in (*), then none of the following statements hold for the cubelet R(x*).

1. x¥ >1/(N —1) and for any v € R (x*), it holds that C}(v) = —1.
2. xf <1—1/(N—1) and for any v € Ry (x*), it holds that C}(v) = +1.

Proof. We prove that there is no solution (x*, y*) of GDAFIXEDPOINT that satisfies the statement
1. and the fact that (x*,y*) cannot satisfy the statement 2. follows similarly. It is convenient
for us to define ¥ = x* — Vife, (x*,y"), K(y*) = {x | (x,y*) € P(A,b))}, z = Ilg)%, and
=y = Vyfe,(x"y"), K(x) = {y | (xy) € P(A,]))}, w = Tlg .

For the sake of contradiction we assume that there exists a solution of (x*,y*) such that
xt >1/(N —1) and for any v € Ry (x*) it holds that C}(v) = —1. Using this fact, we will prove
that (1) Z4%) > 172, and (2) 255020 = .

Let R(x*) = [Ncll, ;}f” X e X [Ncil, %fl} then since all the corners v € R (x*) have
Ci(v) = —1, from the Definition 7.4 we have that

d
fC;(x*/y) x _yz + Z x _]/] ()

J=Lj#

%’;'V*) = —1. On the other

If we differentiate this with respect to y; we immediately get that
hand if we differentiate with respect to x; we get

L d dai(x
Ohelsy) 1+ L -w) .
> 1-) |x—yl- aogi@
j#i l
o™
> 1/2
aa]()

where the above follows from the following facts: (1) that (d'3/5), which is proved in
the proof of Lemma 7.5, (2) |xj — yj| < A, and (3) the deflrutlon of A. Now it is easy to see that the

only way to satisfy both L >1/2and |z; — x7| < ais that either x* < worxf <y’ —A+a.

The first case is excluded by the assumption of the first statement of our lemma and our choice

of & = A/3 < 1/(N — 1), thus it holds that x7 < y* — A + a. But then we can use the case 3.

.) Y . .
for the y variables of Lemma 6.7 and we get that /o é;l v) > —ux, which cannot be true since

we proved that M = —1. Therefore we have a contradiction and the first statement of the

lemma holds. Using the same reasoning we prove the second statement too. O

We are now ready to complete the proof that the our reduction from HiGHD-BISPERNER to
GDAFIXEDPOINT is correct and hence we can prove Theorem 4.4.

39

Proof of Theorem 4.4. Let (x*,y*) be a solution to the GDAFIXEDPOINT problem with input a Tur-
ing machine that represents the function f¢, « = A/3, where A =t -5/ a4 G = G)(d15 /6),
L =©(d*/6%),and A, b as described in ().

For each coordinate i, there exist the following three mutually exclusive cases,

> g < af <1— A Since [Ry(x*)| > 1, it follows directly from Lemma 7.8 that there

exists v € Ry (x*) such that C}(v) = —1 and v’ € Ry (x*) such that C}(v) = +1.

> 0<xf < 55 Let C{(v) = —1 for all v € Ry(x*). By the property (D) of the SEIC
coefficients, we have that there exists v € Ry (x*) with v; = 0. This node is hence a solution
of type 2. for the HIGHD-BISPERNER problem.

>1— x5 <xf <1: Let C/(v) = +1 for all v € Ry (x*). By the property (D) of the SEIC
coefficients, we have that there exists v € R4 (x*) with v; = 1. This node is hence a solution
of type 3. for the HIGHD-BISPERNER problem.

Since R4 (x*) computable in polynomial time given x*, we can easily check for every i € [d]
whether any of the above cases hold. If at least for some i € [d] the 2nd or the 3rd case from
above hold, then the corresponding vertex gives a solution to the HiGHD-BISPERNER problem
and therefore our reduction is correct. Hence we may assume that for every i € [d] the 1st of
the above cases holds. This implies that the cubelet R(x*) is pachromatic and therefore it is a
solution to the problem HiGHD-BISPERNER. Finally, we observe that the function that we define
has range [—d, d] and hence the Theorem 4.4 follows using Theorem 5.1. O

8 Smooth and Efficient Interpolation Coefficients

In this section we describe the construction of the smooth and efficient interpolation coefficients
(SEIC) that we introduced in Section 7.2.1. After the description of the construction we present
the statements of the lemmas that prove the properties (A) - (D) of their Definition 7.3 and we
refer to the Appendix C. We first remind the definition of the SEIC coefficients.

Definition 7.3 (Smooth and Efficient Interpolation Coefficients). For every N € IN we define the
set of smooth and efficient interpolation coefficients (SEIC) as the family of functions, called coefficients,

TiN = {Pz, 10,11 >R | v e ([N]— 1)d} with the following properties.

(A) For all vertices v € ([N] —1)“, the coefficient P, (x) is a twice-differentiable function and

satisfies
> | %] < 0(2/5).
> | 9P| < @(a2/42).

(B) For all v € ([N] — 1)d, it holds that P, (x) > 0 and Zve([N]_l)d Po(x) = Toer,(x) Po(x) = 1.

(C) For all x € [0,1]%, it holds that all but d + 1 of the coefficients P, € T, N satisfy Py(x) =0,
VP,(x) = 0 and V?P,(x) = 0. We denote this set of d + 1 vertices by R, (x). Furthermore,
it holds that R4 (x) € R.(x) and given x we can compute the set R, (x) it time poly(d).

(D) For all x € [0,1])¢4, if x; < 1/(N — 1) for some i € [d] then there exists v € R, (x) such that
v; = 0. Respectively, if x; > 1 —1/(N — 1) then there exists v € R (x) such that v; = 1.

40

Our main goal in this section is to prove the following theorem.

Theorem 8.1. For every d € IN and every N = poly(d) there exist a family of functions L, that
satisfies the properties (A) - (D) of Definition 7.3.

One important component of the construction of the SEIC coefficients is the smooth-step func-
tions which we introduce in Section 8.1. These functions also provide a toy example of smooth
and efficient interpolation coefficients in 1 dimension. Then in Section 8.2 we present the con-
struction of the SEIC coefficients in multiple dimensions and in Section 8.3 we state the main
lemmas that lead to the proof of Theorem 8.1.

8.1 Smooth Step Functions — Toy Single Dimensional Example

Smooth step functions are real-valued function ¢ : R — R of a single real variable with the
following properties

Step Value. For every x < 0 it holds that g(x) = 0, for every x > 1 it holds that g(x) = 1 and for
every x € [0,1] it holds that S(x) € [0,1].

Smoothness. For some k it holds that g is k times continuously differentiable and its kth deriva-
tive satisfies g¥)(0) = 0 and g (1) = 0.

The largest number k such that the smoothness property from above holds is characterizes the
order of smoothness of the smooth step function g.

In Section 6 we have already defined and used the smooth step function of order 1. For the
construction of the SEIC coefficients we use the smooth step function of order 2 and the smooth
step function of order co defined as follows.

Definition 8.2. We define the smooth step function S : R — R of order 2 as the following function

6x° — 15x* + 10x° x€(0,1)
S(x) =<0 x<0
1 x>1

We also define the smooth step function S : R — R of order oo as the following function

271/;\‘

sy ©€(01)
Seo(x) =<0 x<0
1 X

We note that we use the notation S instead of S, for the smooth step function of order 2 for
simplicitly of the exposition of the paper.

We present a plot of these step function in Figure 7, and we summarize some of their prop-
erties in Lemma 8.3. A more detailed lemma with additional properties of S, that are useful for
the proof of Theorem 8.1 is presented in Lemma C.5 in the Appendix C.

Lemma 8.3. Let S and Se be the smooth step functions defined in Definition 8.2. It holds both S and
Seo are monotone increasing functions and that S(0) = 0, S(1) = 1 and also S'(0) = S'(1) = S”(0) =
S"(1) = 0. It also holds that Se(0) = 0, Seo(1) = 1 and also ng)(O) = Sc(if)(l) = 0 for every
k € IN. Additionally it holds for every x that |S'(x)| < 2, and |S"(x)| < 6 whereas |S.,(x)| < 16, and
St(x)] < 32.

41

10 — 10
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
02 04 0.6 0.8 1.0 H H 2 4 1
(a) Functions S and Sc.. (b) The function P; from Example 8.4.

Figure 7: (a) The smooth step function S of order 1 and the smooth step function S, of order cc.
As we can see both S and S, are continuous and continuously differentiable functions but S, is
much more flat around 0 and 1 since it has all its derivatives equal to 0 both at the point 0 and at
the point 1. This makes the S., function infinitely many times differentiable. (b) The constructed
Ps function of the family of SEIC coefficients for single dimensional case with N = 5. For details
we refer to the Example 8.4.

Proof. For the function S we compute S'(x) = 30x* — 60x> + 30x2 for x € [0,1] and S'(x) = 0
for x ¢ [0,1]. Therefore we can easily get that |S'(x)| < 2 for all x € R. We also have that
S"(x) = 120x® — 180x2 + 60x for x € (0,1) and S”(x) = 0 for x ¢ [0,1] hence we can conclude
that |S”(x)| <.

The calculations for S, are more complicated. We have that

exp(1(“@)) (1-2x(1—x))
(exp(())+exp(())>2(1—x)2x2.

We set i(x) £ (exp (n(2)) + exp < n(2))) (1- x)2 2 for x € [0,1] and doing simple calculations

we get that for x < 1/2 it holds that h(x) > exp (n(2)> x2. But the later can be easily lower
bounded by 1/4. Applying the same argument for x > 1/2 we get that in general h(x) > 1/4.

Also it is not hard to see that for x < 1/2 it holds that exp (i n@))> < 4exp (n()> whereas for

x > 1/2 it holds that exp (x(l(_zi)) < 4exp (n(2)> Combining all these we can conclude that
|SL,(x)| < 16. Using similar argument we can prove that |SJ,(x)| < 32. For all the derivatives of

S« We can inductively prove that

Sio(x) =1n(2)

k—1
= Zhl(x) S(l)
=0

where ho(1) = 0 and all the functions /;(x) are bounded. Then the fact that all the derivatives of
S vanish at 0 and at 1 follows by a simple inductive argument. O

Example 8.4 (Single Dimensional Smooth and Efficient Interpolation Coefficients). Using the
smooth step functions that we described above we can get a construction of SEIC coefficients for

42

the single dimensional case. Unfortunately the extension to multiple dimensions is substantially
harder and invokes new ideas that we explore later in this section. For the single dimensional
problem of this example we have the interval [0, 1] divided with N discrete points and our goal
is to design N functions P; - Py that satisfy the properties (A) - (D) of Definition 7.3. A simple
construction of such functions is the following

p.(x) Seo (N-x—(i—1)) xgﬁ
: Sw(i+1—N-x) A

Based on Lemma 8.3 it is not hard then to see that P; is twice differentiable and it has bounded
tirst and second derivatives, hence it satisfies property (A) of Definition 8. Using the fact that
1 — Se(x) = Seo(1 — x) we can also prove property (B). Finally properties (C) and (D) can be
proved via the definition of the coefficient P; from above. In Figure 7 we can see the plot of P3
for N = 5. We leave the exact proofs of this example as an exercise for the reader.

8.2 Construction of SEIC Coefficients in High-Dimensions

The goal of this section is to present the construction of the family Z; 5 of smooth and efficient
interpolation coefficients for every number of dimensions d and any discretization parameter N.
Before diving into the details of our construction observe that even the 2-dimensional case with
N = 2 is not trivial. In particular, the first attempt would be to define the SEIC coefficients based
on the simple split of the square [0, 1] to two triangles divided by the diagonal of [0,1]?. Then
using any soft-max function that is twice continuously differentiable we define a convex combi-
nation at every triangle. Unfortunately this approach cannot work since the resulting coefficients
have discontinuous gradients along the diagonal of [0,1]?. We leave the presice calculations of
this example as an exercise to the reader.

We start with some definitions about the orientation and the representation of the cubelets of
the grid ([N] —1)*. Then we proceed with the definition of the Q, functions in Definition 8.7.
Finally using Q, we can proceed with the construction of the SEIC coefficients.

Definition 8.5 (Source and Target of Cubelets). Each cubelet [N/ i}fﬂ X e X [it %},

where c € ([N —1] — 1)d admits a source vertex s = (s1,...,54) € ([N] — 1)d and a target vertex
¢ = (t1,...,t5) € ([N] — 1) defined as follows,

ci+1 c¢;isodd Ci ci is odd
S; = J] and f = j j
] :] :

Cj Cj 1s even Cj +1 Cj 1s even

Notice that the source s and the target ¢° are vertices of the cubelet whose down-left corner is c.

Definition 8.6. (Canonical Representation) Let x € [0,1]? and R(x) = [N ;}fﬂ X+ X [Nci 1r ;‘}ﬂ]

where ¢ € ([N — 1] — 1)%. The canonical representation of x under cubelet with down-left cor-
ner ¢, denoted by pS = (p1,..., pa) is defined as follows,

pj =
tj—S]'

where t¢ = (t1,...,t;) and s = (s1,...,54) are respectively the target and the source of R(x).

43

Definition 8.7 (Defining the functions Q,(x)). Let x € [0,1]? lying in the cublet

| a a+l g cg+1
R<x)_[N—1’N—1]X X[N—l’N—l

with corners Re(x) = {c1,c1 +1} x -+ x {cq,cq + 1}, where ¢ € ([N —1] —1)%. Let also s° =
(s1,...,54) be the source vertex of R(x) and pS = (p1,...,pa) be the canonical representation of
x. Then for each vertex v € R.(x) we define the following partition of the set of coordinates [d],

AS={j: |vj—sj|:0}andBf,:{j: |vj—sj\:1}

If there exist j € AS and £ € B such that p; > p, then Q5(x) = 0. Otherwise we define’

[Ticas TTrepe Seo(S(pe) — S(pj)) Ag, Bf; # O
Q5(x) = { ITf_; Seo(1 = S(py)) B =
I171 S(S(p))) A =0

where So(x) and S(x) are the smooth step function defined in Definition 8.2.

To provide a better understanding of the Definitions 8.5, 8.6, and 8.7 we present the following
3-dimensional example.

Example 8.8. We consider a case where d = 3 and N = 3. Let x = (1.3/3,2.5/3,0.3/3) lying
in the cubelet R(x) = [%,%] X [%,1] X [0,%], and let ¢ = (1,2,0). Then the source of R(x) is
s = (2,2,0) and the target t* = (1,3,1) (Definition 8.5). The canonical representation of x is
pS = (0.7,0.5,0.3) (Definition 8.6). The only vertices with no-zero coefficients QS (x) are those
belonging in the set Ry (x) = {(1,3,1),(1,3,0),(1,2,0),(2,2,0)} and again by Definition 8.7 we
have that

(5(0.3)) - 5(5(0.5)) - 5 (5(0.7)),

5(0.3)) - Seo(S(0.

(%) = 5(5(0.3) (

(x) = S0(5(0.5) — 7) = 5(03)),
> Q(m,o)(x):sw(S(oy)—S(o.s)) (5(0.7) — 5(0.5)),

(%) = Seo(1 = 5()

wo(1=5(0.3)) - Seo(1 = S(0.5)) - Seo (1 — 5(0.7)).

Now based on the Definitions 8.5, 8.6, and 8.7 we are ready to present the construction of the
smooth and efficient interpolation coefficients.

Definition 8.9 (Construction of SEIC Coefficients). Let x € [0,1]? lying in the cubelet R(x) =
¢ qﬂ] X oo X [fd C"ﬂ]. Then for each vertex v € ([N] —1) the coefficient P, (x) is

N-1’/ N— N-1’N
defined as follows,

P (x) = { Q5(x)/ (Toer.(x) Q5(x) if v € Re(x)
’ 0 ifv ¢ Re(x)

where the functions QS (x) > 0 are defined in Definition 8.7 for any v € R.(x).

"We note that in the following expression] denotes the product symbol and should not be confused with the
projection operator used in the previous sections.

44

8.3 Sketch of the Proof of Theorem 8.1

First it is necessary to argue that P,(x) is a continuous function since it could be the case that
Q5 (%) / (Loer.(x) Q0(x)) # Qf,/(x)/(zvevt, Q¢ (x)) for some point x that lies in the boundary of
two adjacent cubelets with down-left corners ¢ and ¢’ respectively. We specifically design the
coefficients Q5(x) such as the latter does not occur and this is the main reason that the definition
of the function Qf(x) is slightly complicated. For this reason we prove the following lemma.

Lemma 8.10. For any vertex v € ([N] — 1), Py(x) is a continuous and twice differentiable function
and for any v ¢ R.(x) it holds that P,(x) = VP,(x) = V2P,(x) = 0. Moreover, for every x € [0,1]*
the set R, (x) of vertices v € ([N] — 1) such that P,(x) > 0 satisfies |R (x)| = d + 1.

Based on Lemma 8.10 and the expression of P, we can prove that the P, coefficients defined in
Definition 8.9 satisfy the properties (B) and (C) of the definition 7.3. To prove the properties (A)
and (D) we also need the following two lemmas.

Lemma 8.11. For any vertex v € ([N] — 1), it holds that

1 || < @@2/0),
2. ing"]) < O(d*/82).

Lemma 8.12. Let a point x € [0,1]% and R, (x) the set of vertices with P, (x) > 0, then we have that
1. If 0 < x; < 1/(N — 1) then there always exists a vertex v € Ry (x) such that v; = 0.
2. If1-1/(N —1) < x; <1 then there always exists a vertex v € Ry (x) such that v; = 1.

The proofs of Lemmas 8.10, 8.11, and 8.12 can be found in Appendix C. Based on Lemmas 8.10,
8.11, and 8.12 we are now ready to prove Theorem 8.1.

Proof of Theorem 8.1. The fact that the coefficients P, satisfy the property (A) follows directly
from Lemma 8.11. Property (B) follows directly from the definition of P, in Definition 8.9 and
the simple fact that Q5 (x) > 0. Property (C) follows from the second part of Lemma 8.10. Finally
Property (D) follows directly from Lemma 8.12. O

9 Unconditional Black-Box Lower Bounds

In this section our goal is to prove Theorem 4.5 based on the Theorem 4.4 that we proved in
Section 7 and the known black box lower bounds that we know for PPAD by [HPV89]. In this
section we assume that all the real number operation are performed with infinite precision.

Theorem 9.1 ([HPV89]). Assume that there exists an algorithm A that has black-box oracle access to the
value of a function M : [0,1)% — [0,1)% and outputs w* € [0,1]. There exists a universal constant ¢ > 0
such that if M is 2-Lipschitz and |M(w*) — w*||, < 1/(2c), then A has to make at least 2 different
oracle calls to the function value of M.

It is easy to observe in the reduction in the proof of Theorem 7.2 is a black-box reduction and
in every evaluation of the constructed circuit C; only requires one evaluation of the input function
M. Therefore the proof of Theorem 7.2 together with the Theorem 9.1 imply the following
corollary.

45

e00000000
e00000000
f eec0o00o0coe

— > _eee0ceeee —

m—> — > ‘000000000 — > y’
Yy e00o000000
vf e00000000
e00000000
TR XXXX)

X1
1 query to f(x,y), Vf(x,y) ——>» d+ 1 queries to BI-SPERNER — d + 1 queries to BROUWER
d

dZ\;I_ 1 lower bound e M* lower bound R M* lower bound

Figure 8: Pictorial representation on the way the black box lower bound follows from the white
box PPAD-completeness that presented in Section 7 and the known black box lower bounds for
the BROUWER problem by [HPV89]. In the figure we can see the four dimensional case of Section
6 that corresponds to the 2D-BISPERNER and the 2-dimensional Brouwer. As we can see, in that
case 1 query to Oy can be implemented with 3 queries to 2D-BISPERNER and each of these can
be implemented with 1 query to 2-dimensional BROUWER. In the high dimensional setting of
Section 7, every query (x,y) to the oracle Oy to return the values f(x,y) and Vf(x,y) can be
implemented via d 4 1 oracles to an HIGHD-BISPERNER instance. Each of these oracles to HicHD-
BISPERNER can be implemented via 1 oracle to a BROUWER instance. Therefore an M¢ query
lower bound for BROUWER implies an M query lower bound for HiGHD-BISPERNER which in
turn implies an M?/ (d + 1) query lower bound for our GDAFixepPoINT and LR-LocALMINMAX
problems.

Corollary 9.2 (Black-Box Lower Bound for Bi-Sperner). Let C; : ([N] — D! = {—1,1}d be an
instance of the HIGHD-BISPERNER problem with N = O(d). Then any algorithm that has black-box
oracle access to C; and outputs a solution to the corresponding HIGHD-BISPERNER problem, needs 2°
different oracle calls to the value of C;.

Based on Corollary 9.2 and the reduction that we presented in Section 7, we are now ready
to prove Theorem 4.5.

Proof of Theorem 4.5. This proof follows the steps of Figure 8. The last part of that figure is es-
tablished in Corollary 9.2. So what is left to prove Theorem 4.5 is that for every instance of
HicHD-BISPERNER we can construct a function f such that the oracle Oy can be implemented via
d + 1 queries to the instance of HIGHD-BISPERNER and also every solution of GDAFIXEDPOINT
with oracle access Oy to f and V f reveals one solution of the starting HIGHD-BISPERNER instance.

To construct this oracle O we follow exactly the reduction that we described in Section
7. The correctness of the reduction that we provide in Section 7 suffices to prove that every
solution of the GDAFixepPoINT with oracle access Oy to f and V f gives a solution to the initial
HicHD-BISPERNER instance. So the only thing that remains is to bound the number of queries
to the HIGHD-BISPERNER instance that we need in order to implement the oracle Of. To do
this consider the following definition of f based on an instance C; of HIGHD-BISPERNER from

46

Definition 7.4 with a scaling factor to make sure that the range of the function is [—1, 1]

1 4
fcl X, y E Z)
j=1
where aj(x) = -} _ (IN]-1)f Po(x) - Clj (v), and P, are the coefficients defined in Definition 7.3.

From the property (C) of the coefficients P, we have that to evaluate aj(x) we only need the

values Clj (v) for d + 1 coefficients v and the same coefficients are needed to evaluate a;(x) for
every j. This implies that for every (x,y) we need d + 1 oracle calls to the instance C; of HIGHD-
BISPERNER so that Oy returns the value of f¢,(x,y). If we take the gradient of f¢, with respect to
(x,y) then an identical argument implies that the same set of d + 1 queries to HIGHD-BISPERNER
are needed so that Oy returns the value of V f¢, (x, y) too. Therefore every query to the oracle Oy
can be implemented via d + 1 queries to C;. Now we can use Corollary 9.2 to get that the number
of queries that we need in order to solve the GDAFixepPoINT with oracle access Of to f and V f
is at least 27/ (d + 1). Finally observe that the proof of the Theorem 5.1 applies in th the black box
model too. Hence finding solution of GDAFIXepPoINT in when we have black box access Oy to f
and Vf is equivalent to finding solutions of LR-LocALMINMAx when we have exactly the same
black box access Oy to f and Vf. Therefore to find solutions of LR-LocaALMiNMax with black
box access Oy to f and V f we need at least 27/(d + 1) queries to O ¢ and the theorem follows by
observing that in our proof the only parameters that depend on d are L, G, ¢, and possibly é but
1/6 = O(+/L/¢) and hence the dependence of 6 can be replaced by dependence on L and e. [

10 Hardness in the Global Regime

In this section our goal is to prove that the complexity of the problems LocALMINMaXx and
LocALMIN is significantly increased when ¢, J lie outside the local regime, in the global regime.
We start with the following theorem where we show that FNP-hardness of LocALMINMAX.

Theorem 10.1. LocALMINMAX is FNP-hard even when ¢ is set to any value < 1/384, J is set to any
value > 1, and even when P(A,b) = [0,1]%, G = Vd, L=d, and B =d.

Proof. We now present a reduction from 3-SAT(3) to LocALMINMaXx that proves Theorem 10.1.
First we remind the definition of the problem 3-SAT(3).

3-SAT(3).
InpuT: A boolean CNF-formula ¢ with boolean variables x1, ..., x, such that every clause of ¢
has at most 3 boolean variables and every boolean variable appears to at most 3 clauses.

OutpruT: An assignment x € {0,1}" that satisfies ¢, or _L if no such assignment exists.

Given an instance of 3-SAT(3) we first construct a polynomial P;(x) for each clause ¢; as
follows: for each boolean variable x; (there are n boolean variables x;) we correspond a respective
real-valued variable x;. Then for each clause ¢; (there are m such clauses), let l;, b, by denote the
literals participating in ¢;, P;j(x) = Pji(x) - Pi(x) - Pjn,(x) where

1—X1' iffl' = X;
Bi(x) = { i ifli=%

47

Then the overall constructed function is

m
2

flx,w,z) =) Pi(x) - (w; —z)

j=1

where each wj, z; are additional variables associated with clause ¢;. The player that wants to

minimize f controls x, w vectors while the maximizing player controls the z variables.

Lemma 10.2. The formula ¢ admits a satisfying assignment if and only if there exist an (g,6)-local
min-max equilibrium of f(x,w) with e < 1/384, 6 = 1 and (x,w) € [0,1]" ™.

Proof. Let us assume that there exists a satisfying assignment. Given such a satisfying assignment
we will construct ((x*, w*),z*) that is a (0,1)-local min-max equilibrium of f. We set each
variable x7 £ 1 if and only if the respective boolean variable is true. Observe that this implies that
P;(x*) = 0 for all j, meaning that the strategy profile ((x*, w*), z*) is a global Nash equilibrium
no matter the values of w*, z*.

On the opposite direction, let us assume that there exists an (g, §)-local min-max equilibrium
of f with e =1/384 and § = 1. In this case we first prove that foreachj=1,...,m

Pi(x*) < 16-¢.

. . X _ o
Fix any clause j. In case ‘w]- z]

> 1/4 then the minimizing player can further decrease f by at

least Pj(x) /16 by setting w* = z. On the other hand in case ‘w]* —zF

< 1/4 then the maximizing

player can increase f by at least P;(x*)/16 by moving z7 either to 0 or to 1. We remark that both
of the options are feasible since § = 1.

Now consider the probability distribution over the boolean assignments where each boolean
variable x; is independently selected to be true with probability x¥. Then,

IP (clause ¢; is not satisfied) = P;(x*) < 16-¢ =1/24

Since each ¢; shares variables with at most 6 other clauses, the event of ¢; not being satisfied
is dependent with at most 6 other events. By the Lovadsz Local Lemma [EL73], we get that the
probability none of these events occur is positive. As a result, there exists a satisfying assignment.

O

Hence the formula ¢ is satisfiable if and only if f has a (1/384,1)-local min-max equilibrium
point. What is left to prove the FNP-hardness is to show how we can find a satisfying assign-
ment of ¢ given an approximate stationary point of f. This can be done using the celebrated
results that provide constructive proofs of the Lovdsz Local Lemma [Mos09, MT10]. Finally
to conclude the proof observe that since the f that we construct is a polynomial of degree 6
which can efficiently be described as a sum of monomials, we can trivially construct a Turing
machine that computes the values of both f and Vf in the polynomial time in the requested
number of bits accuracy. The constructed function f is v/d-Lipschitz and d-smooth, where d is
the number of variables that is equal to n 4+ 2m. More precisely since each variable x; partici-

pates in at most 3 clauses, the real-valued variable x; appears in at most 3 monomials P;. Thus
-3 < %ﬁ’x) < 3. Similarly it is not hard to see that —2 < of (;;;”x), of (g’;;”x) < 2. All the

latter imply that ||V f(x, w,z)|, < ©(y/n+ m), meaning that f(x, w,z) is ©(n + m)-Lipschitz.

48

Using again the fact that each x; participates in at most 3 monomials Pj(x), we get that all

f(xwz) Pf(xwz) Pf(xwz) 3f(xwz) 3*f(xwz) ?f(xw,z)
P Pw, @ ow 0w o ow oz 0w om © [—6,6]. Thus the absolute

value of each entry of V2f(x,w,z) is bounded by 6 and thus ||V2f(x,w,z)|, < ©O(n+ m),
which implies the ®(n 4 m)-smoothness. Therefore our reduction produces a valid instance of
LocaLMINMax and hence the theorem follows. O

the terms

Next we show the FNP-hardness of LocALMIN. As we can see there is a gap between Theorem
10.1 and Theorem 10.3. In particular, the FNP-hardness result of LocALMINMAX is stronger since
it holds for any 6 > 1 whereas for the FNP-hardness of LocALMIN our proof needs § > v/d when
the rest of the parameters remain the same.

Theorem 10.3. LocALMIN is FNP-hard even when ¢ is set to any value < 1/24, ¢ is set to any value
> \/d, and even when P(A,b) = [0,1]%, G =+Vd, L =d, and B = d.

Proof. We follow the same proof as in the proof of Theorem 10.1 but we instead set f(x) =
Lj~1 Pj(x) where x € [0,1]" (the number of variables is d := 7). We then get that if the initial
formula is satisfiable then there exist x € P (A, b), such that f(x) = 0. On the other hand if there
exist x € P(A,b) such that f(x) < 1/24 then the formula is satisfiable due to the Lovész Local
Lemma [EL73]. Therefore the FNP-hardness follows again from the constructive proof of the
Lovész Local Lemma [Mos09, MT10]. Setting § > /1 which equals the diameter of the feasibility
set implies that in case there exists & with f(&) = 0 then all (¢, §)-LocALMIN x* must admit value
f(x*) <1/24 and thus a satisfying assignment is implied. O

Next we prove a black box lower bound for minimization in the global regime. The proof
of following lower bound illustrates the strength of the SEIC coefficients presented in Section 8.
The next Theorem can also be used to prove the FNP-hardness of LocALMIN in the global regime
but with worse Lipschitzness and smoothness parameters than the once at Theorem 10.3 and for
this reason we present both of them.

Theorem 10.4. In the worst case, Q) (29/d) value/gradient black-box queries are needed to determine a
(¢,0)-LocALMIN for functions f(x) : [0,1]* — [0,1] with G = ©(d"%), L = @(d*?),e < 1,6 = /4.

Proof. The proof is based on the fact that given just black-box access to a boolean formula ¢ :
{0,1}* — {0,1}, at least Q(29) queries are needed in order to determine whether ¢ admits a
satisfying assignment. The term black-box access refers to the fact that the clauses of the formula
are not given and the only way to determine whether a specific boolean assignment is satisfying
is by quering the specific binary string.

Given such a black-box oracle for a satisfying assignment d, we construct the function f,(x) :
[0,1]% — [0, 1] as follows:

1. for each corner v € V of the [0,1]? hypercube, i.e. v € {0,1}", we set f5(v) := 1 — ¢(v).

2. for the rest of the points x € [0,1]9/V, f3(x) := Lyey Po(x) - fo(v) where P, are the coeffi-
cients of Definition 8.9.

We remind that by Lemma 8.11, we get that ||V fs(x)||, < ©(d"?) and |V*fs(x)||, < O@>),
meaning that fy(-) is ©(d'?)-Lipschitz and ©(d*)-smooth. Moreover by Lemma 8.7 , for any

49

x € [0,1]" the set V(x) = {v € V : P,(x) # 0} has cardinality at most d + 1, while at the same
time Y, cy Pp(x) = 1.

In case ¢ is not satisfiable then fy(x) = 1 for all x € [0,1]" since fy(v) = 1 forallv € V. In
case there exists a satisfying assignment v* then fy(v*) = 0. Since 6 > V/d that is the diameter
of [0,1]%, any (g, 6)-LocALMIN x* must have f5(x) < & < 1. Since fy(x*) £ Lyey(x) Po(x*) -
fo(v*) < 1, there exists at least one vertex # € V(x) with f,(?) = 0, meaning that ¢(v*) = 1.
As a result, given an (g, 6)-LocALMIN x* with f,(x*) < 1, we can find a satisfying @ by querying
¢(v) for each vertex v € V(x*). Since |V(x*)| < d + 1, this will take at most d + 1 additional
queries.

Up next, we argue that in case an (¢, J)-LocALMIN could be determined with less than
O(29/d) value/gradient queries, then determining whether ¢ admits a satisfying assignment
could be done with less that O(2%) queries on ¢ (the latter is obviously impossible). Notice that
any value/gradient query both f,(x) and V f(x) can be computed by querying the value f;(v)
of the vertices v € V(x). Since |V(x)| < d + 1, any value/gradient query of fs can be simulated
by d + 1 queries on ¢. O

Acknowledgements

This work was supported by NSF Awards 1IS-1741137, CCF-1617730 and CCF-1901292, by a
Simons Investigator Award, by the DOE PhILMs project (No. DE-AC05-76RL01830), and by the
DARPA award HR00111990021. M.Z. was also supported by Google Ph.D. Fellowship. S.S. was
supported by NRF 2018 Fellowship NRF-NRFF2018-07.

References

[AAZB'17] Naman Agarwal, Zeyuan Allen-Zhu, Brian Bullins, Elad Hazan, and Tengyu Ma.
Finding approximate local minima faster than gradient descent. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 1195-1199,
2017.

[ACB17] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative ad-
versarial networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 214-223, 2017.

[AdI13] Ilan Adler. The equivalence of linear programs and zero-sum games. International
Journal of Game Theory, 42(1):165-177, 2013.

[ADLH19] Leonard Adolphs, Hadi Daneshmand, Aurelien Lucchi, and Thomas Hofmann. Lo-
cal saddle point optimization: A curvature exploitation approach. In The 22nd
International Conference on Artificial Intelligence and Statistics, pages 486—495, 2019.

[ADSG19] Mohammad Alkousa, Darina Dvinskikh, Fedor Stonyakin, and Alexander Gas-
nikov. Accelerated methods for composite non-bilinear saddle point problem. arXiv
preprint arXiv:1906.03620, 2019.

[ALW19] Jacob Abernethy, Kevin A Lai, and Andre Wibisono. Last-iterate convergence rates
for min-max optimization. arXiv preprint arXiv:1906.02027, 2019.

50

[AML]JG20] Waiss Azizian, Ioannis Mitliagkas, Simon Lacoste-Julien, and Gauthier Gidel. A

[BCB12]

[BCE+95]

[BIQ+17]

[Bla56]

[BPR15]

[Bre76]

[CBLO6]

[CDT09]

[CPY17]

[Dan51]

[Das13]

[Das18]

[DFS20]

tight and unified analysis of extragradient for a whole spectrum of differentiable
games. In Proceedings of the 23rd International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and non-
stochastic multi-armed bandit problems. Foundations and Trends in Machine Learning,
5(1):1-122, 2012.

Paul Beame, Stephen A. Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann
Pitassi. The relative complexity of NP search problems. In Proceedings of the Twenty-
Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las
Vegas, Nevada, USA, pages 303-314, 1995.

Aleksandrs Belovs, Gabor Ivanyos, Youming Qiao, Miklos Santha, and Siyi Yang.
On the polynomial parity argument complexity of the combinatorial nullstellensatz.
In Proceedings of the 32nd Computational Complexity Conference, pages 1-24, 2017.

David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific J.
Math., 6(1):1-8, 1956.

Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a nash equilibrium. In Proceedings of the 56th Annual Symposium on Founda-
tions of Computer Science, (FOCS), 2015.

Richard P Brent. Fast multiple-precision evaluation of elementary functions. Journal
of the ACM (JACM), 23(2):242-251, 1976.

Nikolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing
two-player nash equilibria. Journal of the ACM (JACM), 56(3):1-57, 2009.

Xi Chen, Dimitris Paparas, and Mihalis Yannakakis. The complexity of non-
monotone markets. |]. ACM, 64(3):20:1-20:56, 2017.

George B. Dantzig. A proof of the equivalence of the programming problem and
the game problem. In Koopmans, T. C., editor(s), Activity Analysis of Production and
Allocation. Wiley, New York, 1951.

Constantinos Daskalakis. On the complexity of approximating a nash equilibrium.
ACM Transactions on Algorithms (TALG), 9(3):1-35, 2013.

Constantinos Daskalakis. Equilibria, Fixed Points, and Computational Complexity
- Nevanlinna Prize Lecture. Proceedings of the International Congress of Mathematicians
(ICM), 1:147-209, 2018.

Argyrios Deligkas, John Fearnley, and Rahul Savani. Tree polymatrix games are
ppad-hard. CoRR, abs/2002.12119, 2020.

51

[DGP09]

[DHS11]

[DISZ18]

[DP11]

[DP18]

[DP19]

[DTZ18]

[EL73]

[EY10]

[FG18]

[FG19]

[FPO7]

[FPT04]

Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The
complexity of computing a nash equilibrium. SIAM Journal on Computing, 39(1):195-
259, 2009.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for
online learning and stochastic optimization. Journal of machine learning research,
12(Jul):2121-2159, 2011.

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng.
Training gans with optimism. In International Conference on Learning Representations
(ICLR 2018), 2018.

Constantinos Daskalakis and Christos Papadimitriou. Continuous local search. In
Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete Algorithms,
pages 790-804. SIAM, 2011.

Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gra-
dient descent in min-max optimization. In Advances in Neural Information Processing
Systems, pages 9236-9246, 2018.

Constantinos Daskalakis and Ioannis Panageas. Last-iterate convergence: Zero-sum
games and constrained min-max optimization. Innovations in Theoretical Computer
Science, 2019.

Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. A converse
to banach’s fixed point theorem and its CLS-completeness. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing (STOC), 2018.

Paul Erdés and Laszl6 Lovédsz. Problems and results on 3-chromatic hypergraphs
and some related questions. In Colloquia Mathematica Societatis Janos Bolyai 10. Infinite
and Finite Sets, Keszthely (Hungary). Citeseer, 1973.

Kousha Etessami and Mihalis Yannakakis. On the complexity of nash equilibria
and other fixed points. SIAM Journal on Computing, 39(6):2531-2597, 2010.

Aris Filos-Ratsikas and Paul W. Goldberg. Consensus halving is ppa-complete.
In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
(STOC), 2018.

Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces
and bisecting ham sandwiches. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing (STOC), 2019.

Francisco Facchinei and Jong-Shi Pang. Finite-dimensional variational inequalities and
complementarity problems. Springer Science & Business Media, 2007.

Alex Fabrikant, Christos H. Papadimitriou, and Kunal Talwar. The complexity of
pure nash equilibria. In Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC), 2004.

52

[FRHSZ20a]

[FRHSZ20b]

[GH19]

[GHP+19]

[GKSZ19]

[Gool6]

[GPDO20]

[GPMT14]

[HA18]

[Haz16]

[HPV89]

[Jei16]

[JGN*17]

Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zam-
petakis. Consenus-halving: Does it ever get easier? arXiv preprint arXiv:2002.11437,
2020.

Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zam-
petakis. A topological characterization of modulo-p arguments and implications
for necklace splitting. arXiv preprint arXiv:2003.11974, 2020.

Paul W. Goldberg and Alexandros Hollender. The hairy ball problem is ppad-
complete. In Proceedings of the 46th International Colloquium on Automata, Languages,
and Programming (ICALP), 2019.

Gauthier Gidel, Reyhane Askari Hemmat, Mohammad Pezeshki, Rémi Le Priol,
Gabriel Huang, Simon Lacoste-Julien, and Ioannis Mitliagkas. Negative momen-
tum for improved game dynamics. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1802-1811, 2019.

Mika Goos, Pritish Kamath, Katerina Sotiraki, and Manolis Zampetakis. On the
complexity of modulo-q arguments and the chevalley-warning theorem. arXiv
preprint arXiv:1912.04467, 2019.

Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

Noah Golowich, Sarath Pattathil, Constantinos Daskalakis, and Asuman E.
Ozdaglar. Last iterate is slower than averaged iterate in smooth convex-concave
saddle point problems. CoRR, abs/2002.00057, 2020.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative Adversarial Nets.
In Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 2672-2680, 2014.

Erfan Yazdandoost Hamedani and Necdet Serhat Aybat. A primal-dual algorithm
for general convex-concave saddle point problems. arXiv preprint arXiv:1803.01401,
2018.

Elad Hazan. Introduction to online convex optimization. Foundations and Trends in
Optimization, 2(3-4):157-325, 2016.

M. D. Hirsch, C. H. Papadimitriou, and S. A. Vavasis. Exponential lower bounds
for finding brouwer fixed points. Journal of Complexity, 5:379-416, 1989.

Emil Jefdbek. Integer factoring and modular square roots. Journal of Computer and
System Sciences, 82(2):380-394, 2016.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How
to escape saddle points efficiently. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pages 1724-1732. JMLR. org, 2017.

53

[JNJ19]

[JPY88]

[KB14]

[KM18]

[KM19]

[Kor76]

[LJ]19]

[LJJ20]

[LPP*19]

[LS19]

[LTHC19]

[Meh14]

[MGN18]

[MMS*18]

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. What is local optimality in
nonconvex-nonconcave minimax optimization? arXiv preprint arXiv:1902.00618,
2019.

David S Johnson, Christos H Papadimitriou, and Mihalis Yannakakis. How easy is
local search? Journal of computer and system sciences, 37(1):79-100, 1988.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Pravesh K. Kothari and Ruta Mehta. Sum-of-squares meets Nash: lower bounds for
finding any equilibrium. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing (STOC), 2018.

Weiwei Kong and Renato DC Monteiro. An accelerated inexact proximal

point method for solving nonconvex-concave min-max problems. arXiv preprint
arXiv:1905.13433, 2019.

GM Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 12:747-756, 1976.

Tianyi Lin, Chi Jin, and Michael I Jordan. On gradient descent ascent for nonconvex-
concave minimax problems. arXiv preprint arXiv:1906.00331, 2019.

Tianyi Lin, Chi Jin, and Michael Jordan. Near-optimal algorithms for minimax
optimization. arXiv preprint arXiv:2002.02417, 2020.

Jason D. Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I.
Jordan, and Benjamin Recht. First-order methods almost always avoid strict saddle
points. Math. Program., 176(1-2):311-337, 2019.

Tengyuan Liang and James Stokes. Interaction matters: A note on non-asymptotic
local convergence of generative adversarial networks. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages 907-915, 2019.

Songtao Lu, Ioannis Tsaknakis, Mingyi Hong, and Yongxin Chen. Hybrid block
successive approximation for one-sided non-convex min-max problems: algorithms
and applications. arXiv preprint arXiv:1902.08294, 2019.

Ruta Mehta. Constant rank bimatrix games are ppad-hard. In Proceedings of the 46th
Symposium on Theory of Computing (STOC), 2014.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods
for gans do actually converge? In International Conference on Machine Learning, pages
3481-3490, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
International Conference on Learning Representations, 2018.

54

[MOP19]

[Mos09]

[MP89]

[MPP18]

[MPPSD16]

[MR18]

[MSV20]

[MT10]

[MV20]

[NemO4]

[NSH*19]

[NY83]

[0X19]

[Pap94a]
[Pap94b]

Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of
extra-gradient and optimistic gradient methods for saddle point problems: Proxi-
mal point approach. arXiv preprint arXiv:1901.08511, 2019.

Robin A Moser. A constructive proof of the lovész local lemma. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 343-350, 2009.

N Meggido and CH Papadimitriou. A note on total functions, existence theorems,
and computational complexity. Technical report, Tech. report, IBM, 1989.

Panayotis Mertikopoulos, Christos H. Papadimitriou, and Georgios Piliouras. Cy-
cles in adversarial regularized learning. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018.

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative
adversarial networks. arXiv preprint arXiv:1611.02163, 2016.

Eric Mazumdar and Lillian J Ratliff. On the convergence of gradient-based learning
in continuous games. arXiv preprint arXiv:1804.05464, 2018.

Oren Mangoubi, Sushant Sachdeva, and Nisheeth K Vishnoi. A provably conver-
gent and practical algorithm for min-max optimization with applications to gans.
arXiv preprint arXiv:2006.12376, 2020.

Robin A Moser and Gabor Tardos. A constructive proof of the general lovasz local
lemma. Journal of the ACM (JACM), 57(2):1-15, 2010.

Oren Mangoubi and Nisheeth K Vishnoi. A second-order equilibrium in
nonconvex-nonconcave min-max optimization: Existence and algorithm. arXiv
preprint arXiv:2006.12363, 2020.

Arkadi Nemirovski. Interior point polynomial time methods in convex program-
ming. Lecture notes, 2004.

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D Lee, and Meisam Raza-
viyayn. Solving a class of non-convex min-max games using iterative first order
methods. In Advances in Neural Information Processing Systems, pages 14905-14916,
2019.

Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity
and method efficiency in optimization. Chichester: Wiley, 1983.

Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order meth-
ods for convex-concave bilinear saddle-point problems. Mathematical Programming,
pages 1-35, 2019.

C Papadimitriou. Computational Complexity. Addison Welsey, 1994.

Christos H Papadimitriou. On the complexity of the parity argument and other
inefficient proofs of existence. Journal of Computer and system Sciences, 48(3):498-532,
1994.

55

[RKK18]

[RLLY18]

[Ros65]

[Rub15]

[Rub16]

[SS12]

[SSBD14]

[SY91]

[SZZ18]

[TJNO19]

[vN28]

[VY11]

[WZB19]

[Zhal9]

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and
beyond. In Proceedings of the 6th International Conference on Learning Representations
(ICLR), 2018.

Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Non-convex min-
max optimization: Provable algorithms and applications in machine learning. arXiv
preprint arXiv:1810.02060, 2018.

J Ben Rosen. Existence and uniqueness of equilibrium points for concave n-person
games. Econometrica: Journal of the Econometric Society, pages 520-534, 1965.

Aviad Rubinstein. Inapproximability of nash equilibrium. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing (STOC), 2015.

Aviad Rubinstein. Settling the complexity of computing approximate two-player
nash equilibria. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 258-265. IEEE, 2016.

Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations
and Trends in Machine Learning, 4(2):107-194, 2012.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

Alejandro A. Schiffer and Mihalis Yannakakis. Simple local search problems that
are hard to solve. SIAM J. Comput., 20(1):56-87, 1991.

Katerina Sotiraki, Manolis Zampetakis, and Giorgos Zirdelis. Ppp-completeness
with connections to cryptography. In Proceddings of the 59th IEEE Annual Symposium
on Foundations of Computer Science (FOCS), 2018.

Kiran K Thekumparampil, Prateek Jain, Praneeth Netrapalli, and Sewoong Oh. Effi-
cient algorithms for smooth minimax optimization. In Advances in Neural Information
Processing Systems, pages 12659-12670, 2019.

John von Neumann. Zur Theorie der Gesellschaftsspiele. In Math. Ann., pages
295-320, 1928.

Vijay V. Vazirani and Mihalis Yannakakis. Market equilibrium under separable,
piecewise-linear, concave utilities.]. ACM, 58(3):10:1-10:25, 2011.

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solving minimax optimiza-
tion locally: A follow-the-ridge approach. In International Conference on Learning
Representations, 2019.

Renbo Zhao. Optimal algorithms for stochastic three-composite convex-concave
saddle point problems. arXiv preprint arXiv:1903.01687, 2019.

56

A Proof of Theorem 4.1

We first remind the definition of the 3-SAT(3) problem that we will use for our reduction.
3-SAT(3).
InpuT: A boolean CNF-formula ¢ with boolean variables xy, ..., x, such that every clause of ¢
has at most 3 boolean variables and every boolean variable appears to at most 3 clauses.

OutpruT: An assignment x € {0,1}" that satisfies ¢, or L if no such assignment exists.

It is well known that 3-SAT(3) is FNP-complete, for details see §9.2 of [Pap94a]. To prove
Theorem 4.1, we reduce 3-SAT(3) to e-STATIONARYPOINT.

Given an instance of 3-SAT(3) we construct the function f : [0,1]"*" — [0,1], where m is the
number of clauses of ¢. For each literal x; we assign a real-valued variable which by abuse of
notation we also denote x; and it would be clear from the context whether we refer to the literal
or the real-valued variable. Then for each clause ¢; of ¢, we construct a polynomial Pj(x) as
follows: if ¢;, £y, {, are the literals participating in ¢;, then Pj(x) = Pj;(x) - Pjx(x) - Pjs(x) where

- . 1—x1- iffi:xi
Bji(x) = { x, ifli=%

The overall constructed function is f(x,w) = ¥’ w; - Pj(x), where each w; is an additional

variable associated with clause ¢;. Notice that 0 < %U’jw) <land -3 < %x’,-w) < 3 since the

boolean variable x; participates in at most 3 clauses. As a result, ||Vf(x, w)|, < O(v/n+m),
meaning that f(x,w) is G-Lipschitz with G = ©(y/n + m). Also notice that all the entries of

V2f(x,w), ie. Praw) _ Fflxw) Pflxw) 2flxw) Pfxw) [—3,3]. As a result, V‘Zf(x,w)H2 <

02x; Q2w; 7 0x; owj 7 Ox; Oxy / 0wy 0w,

©(n + m), meaning that f(x, w) is L-smooth with L = @(n + m).

Lemma A.1. There exists a satisfying assignment for the clauses ¢y, ..., ¢y, if and only if there solution
of the constructed STATIONARYPOINT with ¢ = 1/24 a admits solution (x*,w*) € [0,1]"*™ such that
|V f(x*, w*)||, <1/24.

Proof. By the definition of STATIONARYPOINT, in case there exists a pair of points (%, @) € [0,1)" ™"
with [|[Vf(&, @), < /2 = 1/48, then a pair of points (x*, w*) with ||V f(x*, w*)||, < e =1/24
must be returned. In case ||V f(x,w)|, > ¢ = 1/24 for all (x,w) € [0,1]"™, the null symbol L
is returned.

Let us assume that there exists a satisfying assignment of ¢. Consider the solution (&, @)
constructed as follows: each variable £; is set to 1 iff the respective boolean variable is true and
w; = 0 for all j = 1,...,m. Since the assignment satisfies the CNF-formula ¢, there exists at
least one true literal in each clause ¢; which means that Pj(x) = O forall j = 1,...,m. Asa
afé’;’;b) = P]-(fc) =0 forall j =1,...,m. At the same time, afgi’iw) = 0 since @; = 0 for
all j =1,...,m. Overall we have that Vf(& @) = 0 < 1/48 = ¢/2. As a result, the constructed
STATIONARYPOINT instance must return a solution (x*, w*) with ||V f(x*, w*)||, < 55 =&

On the opposite direction, the existence of a pair of points (x*, w*) with |V f(x*, w*)|, <
1/24 implies P;(x*) < 1/24 for all j = 1...m. Consider the probability distribution over the
boolean assignments in which each boolean variable x; is independently selected to be true with proba-
bility x;. Then,

result

IP (clause ¢; is not satisfied) = P;(x*) < 1/24

57

Since ¢; shares variables with at most 6 other clauses, the bad event of ¢; not being satisfied is
dependent with at most 6 other bad events. By Lovdsz Local Lemma [EL73], we get that the
probability none of the events occurs is positive. As a result, there exists a satisfying assignment.

O

Using Lemma A.1 we can conclude that ¢ is satisfiable if and only if f has a 1/24-approximate
stationary point. What is left to prove the FNP-hardness is to show how we can find a satis-
tying assignment of ¢ given an approximate stationary point of f. This can be done using the
celebrated results that provide constructive proofs of the Lovadsz Local Lemma [Mos09, MT10].

Finally, we remind that the constructed function f is ® (\/;i) -Lipschitz and © (d)-smooth, where
d is the number of variables that is equal to n + m.

B Missing Proofs from Section 5

In this section we give proofs for the statements presented in Section 5. These statements establish
the totality and inclusion to PPAD of LR-LocALMINMAx and GDAFIXEDPOINT.

B.1 Proof of Theorem 5.1

We start with establishing claim “1.” in the statement of the theorem. It will be clear that our
proof will provide a polynomial-time reduction from LR-LocALMINMax to GDAFIXEDPOINT.
Suppose that (x*,y*) is an a-approximate fixed point of F;ps, where « is the specified in the
theorem statement function of §, G and L. To simplify our proof, we abuse notation and define
flx) = f(x,y*), Vf(x) = Vaf(x,y), K= {x | (x,y*) € P(A,b)} and & = Tk (x" — Vf(x")).
Because (x*,y*) is an a-approximate fixed point of Frpg,, it follows that ||% — x*||, < a.

Claim B.1. (Vf(x*),x* —x) < (G+d+a)-a, forall x € KN By, (6;x%).

Proof. Using the fact that & = I'lg(x* — V f(x*)) and that K is a convex set we can apply Theorem
1.5.5 (b) of [FP07] to get that

(x* —=Vf(x*)—xx—18) <0,Vx e K. (B.1)
Next, we do some simple algebra to get that, for all x € KN By, (4; x*),
(Vi(x*),x*—x) =(x*—Vf(x") —2x—8&) + (x—x—Vf(x),&—x")
(2) (x —&—=Vf(x"),x—x)
< (e =&l + IV 1% =27, < (G++a) -,

where the second to last inequality follows from Cauchy-Schwarz inequality and the triangle
inequality, and the last inequality follows from the triangle inequality and the following facts: (1)
|la* — &|, <&, (2) x € By, (5;x*), and 3) |V f(x,y)|, < G forall (x,y) € P(A,D). O

For all x € KN By, (J;x*), from the L-smoothness of f we have that

f(x) = (f(x") +(Vf(x7),x —x7))[< % I =13 (B.2)

We distinguish two cases:

58

1. f(x*) < f(x): In this case we stop, remembering that
f(x") < flx). (B.3)
2. f(x*) > f(x): In this case, we consider two further sub-cases:

(@) (Vf(x*),x —x*) > 0: in this sub-case, Eq (B.2) gives

2
(B b

f(x) = f(x) + (Vf(x"), x —x7) <

N~

Thus
F) < £l + 5 e =23 < fx) + 50 < flx) e (B.4)

where for the last inequality we used that x € By, (J;x*), and that § < \/2¢/L.
(b) (Vf(x*),x —x*) < 0: in this sub-case, Eq (B.2) gives

fx®) = f(x) = (Vf(x"),x" —x) < % I — %3 -
Thus

f(x7) < fx) +(Vf(x7), 2" —x) + % I — 213

<)+ (V) ¥ 2+ 58
<f(x)+(G+d+n) -(x+§-52
< f(x)+e, (B.5)

where the second inequality follows from the fact that x € By (4;x*), the third in-
equality follows from Claim B.1, and the last inequality follows from the constraints

§ < VEETT and n < VETFHAT (6+4)

In all cases, we get from (B.3), (B.4) and (B.5) that f(x*) < f(x) +¢, for all x € KN By, (6;x*).
Thus, lifting our abuse of notation, we get that f(x*,y*) < f(x,y*)+¢ forall x € {x | x €
By, (6;x*) and (x,y*) € P(A,b)}. Using an identical argument we can also show that f(x*, y*) >
f(x*,y)—eforally € {y | y € By, (4;y*) and (x*,y) € P(A,b)}. The first part of the theorem
follows.

Now let us establish claim “2.” in the theorem statement. It will be clear that our proof will
provide a polynomial-time reduction from GDAFIXeEpPoOINT to LR-LocaALMINMaXx. For the choice
of parameters € and ¢ described in the theorem statement, we will show that, if (x*, y*) isan (¢, 6)-
local min-max equilibrium of f, then [|Fepax(x*,y*) — x*||, < a/2 and ||Fepay(x*,y*) — y*||, <
«/2. The second part of the theorem will then follow. We only prove that || Fopax(x*, y*) — x*|, <
«/2, as the argument for y* is identical. In the argument below we abuse notation in the same
way we described earlier. With that notation we will show that ||* — x*||, < a/2.

Proof that || — x*|| < a/2. From our choice of ¢ and J, it is easy to see that § = a/(5L +2) <
a/2. Thus, if ||& —x*|| < ¢, then we automatically get || — x*|| < a/2. So it remains to handle

59

the case ||& — x*|| > 6. We choose x, = x* + (Sﬁ It is easy to see that x, € By, (6;x*) and
2

hence we get that

F#) —e < fxe) < F0x) 4 V() 5= 2) 5 e = P

< FE)HTFE) 2= 2) + 5,

where the first inequality follows from the fact that (x*, y*) is an (¢, §)-local min-max equilibrium,
the second inequality follows from the L-smoothness of f, and the third inequality follows from
||xc — x*|| < ¢ and our choice of § = v/e/L. The above implies:

(Vf(x"),x* —xc) < 3e/2.
Since & — x* = (x; — x*) - ||& — x*||, /J we get that (Vf(x*), x* — &) < 3£ ||x* — &||,. Therefore
I =23 = (¥ = Vf(x") —&a" — %) + (Vf(x"), 2" %)
% e~ s,
where in the above inequality we have also used (B.1). As a result, ||x* — &||, < 3% < a/2.

B.2 Proof of Theorem 5.2

We provide a polynomial-time reduction from GDAFixepPoiNT to BROUWER. This establishes
both the totality of GDAFixepPoINT and its inclusion to PPAD, since BROUWER is both total
and lies in PPAD, as per Lemma 2.5. It also establishes the totality and inclusion to PPAD of
LR-LocaLMINMAYX, since LR-LocALMINMAXx is polynomial-time reducible to GDAFIXEDPOINT,
as shown in Theorem 5.1.

We proceed to describe our reduction. Suppose that f is the G-Lipschitz and L-smooth func-
tion provided as input to GDAFIXEDPOINT. Suppose also that « is the approximation parameter
provided as input to GDAFIxepPoINT. Given f and «, we define function M : P(A,b) — P(A,b),
which serves as input to BROUWER, as follows:

M(x,y) = Tpap) [(x = Vaf(x,y),y + Vyf(x,y))] .

Given that f is L-smooth, it follows that M is (L + 1)-Lipschitz. We set the approximation
parameter provided as input to BROUWER be ¢ = &2 /4(G + 2V/d).

To show the validity of the afore-described reduction, we prove that every feasible point
(x*,y*) € P(A,b) that is a y-approximate fixed point of M, i.e. ||[M(x*,y*) — (x*,y*)||, < 7 is
also an a-approximate fixed point of Fgpa. Observe that since P(A,b) C [0,1]% it holds that
[(x,y) — (x,y")|l, < Vd for all (x,y),(x,y') € P(A,b). Hence, if v > /d, then finding 7-
approximate fixed points of M is trivial and the same is true for fiding a-approximate fixed
points of Fgpa, since v = a?/4(G + 2\/3) which implies that, if 7 > Vd, then « > v/d. Thus, we
may assume that ¢y < V.

Next, to simplify notation we define (x5,y,) = (x* — Vo f(x*,y*),y* + V,f(x*,y*)) and
(%,) = argmin,) p(ap) [(X2, ¥a) = (x,) |,- Given that (x*,y*) is a y-approximate fixed point
of M, we have that

1% y%) = (&P, <7 (B-6)

60

Using Theorem 1.5.5 (b) of [FP07], we get that
(xa,y5) = (%,9), (x,y) — (&,9)) < Oforall (x,y) € P(A,b). (B.7)

Next we show the following:
Claim B.2. Forall (x,y) € P(A,b), ((xp,y,) — (x5, y%), (x,y) — (x*, y*)) < (G+2Vd) -y
Proof. We have that:

((xa,ya) — (x5 y7), (2, y) — (%, ¥7)) = (xa,y) (9), (xy) — (%, y7))
(%9) — (% y"), (v, y) — (x%,y"))
(xa,y) (9), (x,y) — (£,9))
(xa,y8) = (£9), (%,9) — (", y"))
(%9) — (% y"), (x,y) — (x%,y"))

< 1(xa,ya) = (20,y +7-Vd
1Gea ya) = (5 y)y + 97+ Vd

= IVFS)y + 77+ Vd

< (G+2Vd) -7
where (1) for the first inequality we use (B.6), (B.7), the Cauchy-Schwarz inequality, and the fact
that the ¢, diameter of P(A,b) is at most v/d; (2) for the second inquality we use the triangle
inequality and (B.6); (3) for the equality that follows we use the definition of (xa,ya); and (4) for
the last inequality we use that G, the Lipschitzness of f, bounds the magnitude of its gradient,
and that ¢y < V. O

Now let x' = argminxeK(y* |x — xa|l, where K(y*) = {x | (x,y*) € P(A,b))}. Using Theorem
1.5.5 (b) of [FP07] for x’ we get that (xy —x’,x* — ") < 0. Using Claim B.2 for vector (x',y*) €
P(A,b) we get that (x* — xp,x* — x') < (G +2v/d)7y. Adding the last two inequalities and using
the fact that ¢ = a2/4(G +2v/d) we get the following

¥ = Ty (" = Vaf e y) |, < V(G +2Va) -y = /2,

Using the exact same reasoning we can also prove that

Hy* — Uk (¥ — Vyf(x*,y*))H2 <a/2

where K(x*) = {y | (x*,y) € P(A,b))}. Combining the last two inequalities we get that (x*, y*)
is an a-approximate fixed point of Fgpa.

{
{
= {
{
{

IN

C Missing Proofs from Section 8

In this section we present the missing proofs from Section 8 and more precisely in the following
sections we prove the Lemmas 8.10, 8.11, and 8.12. For the rest of the proofs in this section we
define L(c) to be the cubelet which has the down-left corner equal to ¢, formaly

C1 c1+1 y « Cq cg+1
N-1"N-1 N-1"N-1

and we also define L.(c) to be the set of corners of the cubelet L(c), or more formally

Le(e) = {c1,c1+1} x -+ x {cg,¢4 + 1}

L(c) =

61

C.1 Proof of Lemma 8.10

We start with a lemma about the differentiability properties of the functions Q¢ which we defined
in Definition 8.7.

Lemma C.1. Let x € [0,1]? lying in cublet R(x) = [Cil,;l,fﬂ X e X [Ncil,%fl}, where ¢ €
([N] — 1% Then for any vertex v € R.(x), the function QS (x) is continuous and twice differentiable.
Moreover if Q5 (x) = 0 then also d%%cg %) — 0 and dd%d(x]) =0.

Proof. 1st order differentiability: We remind from the Definition 8.7 that if we let s¢ = (s1,...,54)
be the source vertex of R(x) and pS = (p1, ..., pa) be the canonical representation of x. Then for
each vertex v € R.(x) we define the following partition of the set of coordinates [d],

Ay =1{j: |vj—sj| =0} and By = {j: |vj—s;| =1}

Now in case B = @, which corresponds to v being the source node s¢ then Q5 (x) = H}i:1 Seo(1—
S(pj)) which is clearly differentiable as product of compositions of differentiable functions. The
exact same holds for A = & which corresponds to v being the target vertex £ of the cubelet
R(x). We thus focus on the case where AS, BS # @. To simplify notation we denote Q5 (x) by

Q(x), AS by A and B by B for the rest of this proof. We prove that in case i € B then %
always exits. The case i € A follows then symmetrically. We have the following cases

» Letj € Aand / € B\ {i} such that p; > p,. By Deﬁnition 8.7, if ¢ is sufficiently small then
Q(xi—ex_;) =Q(xi+¢&x_;) = Q(x;,x_;) =0. Thus () exists and equals 0.

» Let p, > pjforall £ € B\ {i} and j € A. In this case we have the following subcases.

> p; > p; forall j € A: Then aQ() exists since both S, (-) and S(-) are differentiable.

> p; < pj for some j € A: By Def1n1t1on 8 7, if € is sufficiently small then Q(x; — ¢, x_;) =
Q(xi+¢x_;) = Q(x;,x_;) = 0. Thus () exists and equals 0.

> p; = pj for some j € A and p; > p; for all // € A\ {j}: By Definition 8.7, if ¢ is
sufficiently small then Q(x; —¢,x_;) = 0 and also Q(x;, x_;) = 0, thus

Q(xi,x—i) — Q(x; —&,x_;)

lim =0.
e—0t €
At the same time
lim Qxi +&x_;) — Q(x;, x_;) _0

e—0*t €

since both S« (-) and S(-) are differentiable functions, S (S(pi) — S(p;)) = Sx(0) =0,
and S, (S(pi) — S(p;j)) = S&(0) = 0.

2nd order differentiability: Let Q'(x) be equal to (k) for convenience. As in the previous
analysis in case A5 = @ or B = & then Q'(x) is dlfferentlable with respect to x; since S(+), Seo(+)
are twice differentiable. Thus we again focus in the case where A, B # <. Notice that by the
previous analysis Q'(x) = 0 if there exists / € B and j € A such that p, > p;. Without loss of

/ 2
generality we assume that i € B and we prove that a%x(ix) £ % always exists.

62

» Let j € Aand ¢ € B\ {i} such that p; > p,. By Definition 8.7, Q"(x; —¢&,x_;) = Q'(x; +
/ 2
e,x_;) = Q'(x;,x_;) = 0. Thus a%x(i *) & aagia(x) exists and equals 0.

» Let p; > pjforall{ € B\ {i} and j € A.

> p; > pj forall j € A: Then a%;(l_x) = %zx%(;k) exists since both S () and S(-) are twice
differentiable.

> p; < pj for some j € A. By Definition 8.7, Q'(x; —ex_;) = Q'(x; +&x_;) =
Q'(x;,x_;) = 0. Thus aQ() 2 % exists and equals 0.

> p; = p; for some j € A and p; > py for all j/ € A\ {j}. By Definition 8.7, if ¢ is
sufficiently small then Q'(x; — ¢,x_;) = 0 and thus

lim Qi x) = Q'xi —ex)

e—0t 3

At the same time lim,_,+ Qlxitex) Qxix-i) exists since both Seo(+) and S(+) are twice
differentiable. Moreover equals 0 since S (S(p;) — S(pj)) = Se(0) = 0and S, (S(p;) —
S(pj)) = 55(0) = 55(0) = 5(0) = 0.

In every step of the above proof where we use properties of S, and S we use Lemma 8.3. O

So far we have established the fact that the functions Q¢ (x) are twice differentiable when x moves
within the same cubelet. Next we will show that when x moves from one cubelet to another then
the corresponding Q¢ functions changes value smoothly.

Lemma C.2. Let x € [0,1]% such that there exists a coordinate i € [d] with the property R(x; +¢&,x_;) =

o+l g cgtl N [g+t o cgtl : /
[N_I,N_l] X X [N_l,N_ and R(x; —&,x_;) = |59, v=1 | X X | N5, 3= |, with ¢, ¢’ €

(IN —1] = 1)? and ¢ sufficiently small, i.e. x lies in the boundary of two cubelets. Then the following
statements hold.

1. For all vertices v € Rc(x; + € x_;) N Re(x; —€,x_;), it holds that

(@) Q5(x) = Q5 (v),
(b) an(_ aQ”) for all i € [d], and

P05 (P)
(c) afax] = a%)ax foralli,je [d]

2. For all vertices v € Re(x; +¢,x_;) \ Re(x; — &,x_;), it holds that Q%(x) = a%agx) = B;Sga(;_) =0.

3. for all vertices v € Ro(x; —¢&,x_;) \ Re(x; +¢,x_;), it holds that QS (x) = aQagxfx) = a;g’a(;;) =0.

Lemma C.2 is crucial since it establishes that P, (x) is a continuous and twice differentiable even
when x moves from one cubelet to another. Since the proof of Lemma C.2 is very long and
contains the proof of some sublemmas, we postpone it for the end of this section in Section C.1.1.
We now proceed with the proof of Lemma 8.10.

63

Proof of Lemma 8.10. We first prove that P,(x) is a continuous function. Let x € [0,1] lying on
the boundary of the following cubelets

cgl) cgl)—kl_ o o [cgl) cfil)+l
N—-1 N-1 N—-1 N-1
cgi) cgi)%—l_ " " [cg) cg)%—l
N—-1" N-1 N—-—1" N—-1

N—-1" N-1

cgm) cgm)ﬁ-l
N—-1 N-1

(m) — (m) 4 ¢
X---chd c; +

where ¢, ..., ¢ e ([N —1] —1)%. This means that for every i € [m] there exists a coordinate
ji € [d] and a value #; € R with sufficiently small absolute value such that
@) @)
' ool a g+l c;’ ¢y +1
R(X]i‘f"?z,x_]i)— [N_ll N—l [

N—-1"N-1

We then consider the following cases.

> v ¢ U?Lch(xji + ﬂi,x_ji). By Definition 8.9, in all the m aforementioned cubelets, the
coefficient P, takes value 0 and hence it is continuous in this part of the space.

» v € NjeuRe(xj, +1i,x_;) and v & U,z Re(xj, + 173, x_j,), for some U C [m] with U = [m] \ U.
In this case Py (xj, + 1, xj,) was computed according to a cubelet with v € Rc(xj, + 7, x_j,).
Then Lemma C.2 implies that Q<" (x) = 0'since v € Re(xj, +mi,2,) \ Re(xj, +ni,2j,)
where i’ € [m] and i # i’. Therefore we conclude that P,(x) = 0 and

lim Py (xj, +1;,x_;) = 0.
1’]i*>0
» v € N Re(xj, +1i,x_j;). By Lemma C.2 for all i € [m] it holds that

Q5" (x) B Q5" (x)

0 - (@)
ZveRc(xji+17i,x,ji) Q% (x) Zveﬂ{”:]Rc(xji-i-m,x,ji) ng (x>

Q<" (x) ~ Q<" (x)

- (i) - (i)
Zveﬂf”lec(xjier,x,ji) Q%I (x) ZvGRC(xj[er,x,]-i) chzl (x)

which again implies the continuity of P, (x) at x.

Next we prove that P, (x) is differentiable for all v € ([N] —1)%. Fix some i € [d] we will
prove that ag}(:) always exists. Let C be the set of down-left corners of the cubelets in which
lim, o+ (x; + ¢, x_;) belongs to and C~ be the set of down-left corners of the cubelets in which
lim, o+ (x; — &,x_;) belongs to. It easy to see that C™ and C~ are non-empty and fixed for € > 0

and sufficiently small.
9P, (x)

Bxi

To prove that always exists, we consider the following 3 mutually exclusive cases.

64

» v L(cW) for ¢V € Ct and v € L(c?) for ¢® € C~. Since the coefficient P, (x) is a con-
tinuous function, we have that

)

205" ()) a0et! (x

> lim,_ g+ Po(xitex_i)—Po(xix_j) _ — 9% “vele(c QC (Y- @) Lo/ er(el) — 9%
e—0 € (Z Qc(l) (x))z
v’ELC ol
@) a0t ()
905 (x) /
> lim,_ g+ Po(xjx_i)—Po(xi—gx_i) _ T Ly QC x ¥ () Lyfere(cl?) o5
£—0 € (E QC(Z) (x))Z
v’ELC ol

Both of the above limits exists due to the fact that Qf(x) is differentiable (Lemma C.1).
Moreover, since v € L.(c) N L,(c?), Case 1 of Lemma C.2 implies that the two limits
above have exactly the same value and hence P, is differentiable at x.

» v ¢ L(cW) for all ¢V) € C*. In the case where v ¢ L.(c) for all the down-left corners
c of the cubelets at which x lies, then by Definition 8.9 P,(x;,x_;) = Py(x; +¢x_;) =
Po(xi—¢,x_;) =0. Thus 2 () exists and equals 0. Therefore we may assume that v € L(c)
for some down-left corner ¢ of a cubelet at which x lies. Due to the fact that P o(x) is a
continuous function and that v ¢ Lc(c(l)) for all ¢V € C*, we get that

Po(xi+ex ;) =0 and Py(x;,x_;)=0.

We also have that v € L(c)/ L.cV) where ¢, ¢(V) are down-left corners of cubelets at which
x lies and (x; + ¢ x_;) lies respectively. Therefore we get by Case 1 of Lemma C.2 that
Q5 (x) = 0 implying that P, (x;,x_;) = 0. As a result,

lim Po(xi +€x_;) — Po(x;, x_;)

e—071 €

=0

Py (xix_i)— Pv(xz &x_;)

We now need to argue that lim,_,o+ exists and equals 0. At first observe
that 0 < x; — ¢; < ¢ since x lies in the cubelet with down-left corner c. In case x; — ¢; < ¢
then (x; +¢,x_;) hes m c for arbitrarily small ¢, meaning that ¢ € C*. The latter contradicts
the fact that v ¢ L.c™V for all ¢ € C*. As a result, x; — ¢; = 6 which implies that c € C~

and hence
c c c an/()
lim Pv(xi' xii) — Pv(xi - & x*i) _ aQ Zv 'eLc(Qv/ (x> - Qv(x) ZU/ELL‘(C) Tlx
0+ € - - 5
B (Zv’eLC(c) Qv/ (x)>

The above limit equals to 0 since Q5(x) = a%a(ix) = 0 by applying Lemma C.2 due to the

fact that v € Lc(c) \ Le(cM).

> v ¢ L(c?) for all ¢ € C~. Symmetrically with the previous case.

The second order differentiability of P,(x) can be established using exactly the same arguments
for computing the following limit

lim Po(xi +&xj+¢&,x_;;) — Py(x) .
g€/ —0 2

65

The last thing that we need to show to prove Lemma 8.10 is that the set R (x) has cardinality
at most d + 1 and that it can be computed in poly(d) time. Let pS € [0,1]¢ be the canonical
representation of x with the respect to a cubelet L(c) in which x belongs to. We define the source
vertex s = (s1,...,s;) and the target vertex t© = (#1,...,t;) of L(c). Once this is done the vertices
in R4 (v) are exactly the vertices of L.(c) for which it holds that

pe>p; forallle Aj,j€ By

since for all the others v € ([N] —1)? it holds that Q%(x) = 0, VQ¢(x) = 0, and V2Q¢(x) = 0.
These vertices v € R (x) can be computed in polynomial time as follows: i) the coordinates
P1,- .., pa are sorted in increasing order, and ii) for each m = 0,...,d compute the vertex o(m e
Lc(c),

m { sj if coordinate j belongs in the first m coordinates wrt the order of pg
]

0 = . . .
tj if coordinate j belongs in the last d — m coordinates wrt the order of p

By Definition 8.7 it immediately follows that R (x) C {vV),...,2(™} from which we get that
|R+(x)| <d+1 and also they can be computed in poly(d) time. O

To finish the proof of Lemma 8.10 we only need the proof of Lemma C.2 which we present in the
following section.
C.1.1 Proof of Lemma C.2

Lemma C.3. Let a point x € [0,1]% lying in the boundary of the cubelets with down-left corners
c = (c1, -, Cm-1,Cm, Cms1,---,¢4) and ¢ = (c1,...,cm-1,m +1,¢ms1,--.,¢4). Then the canoni-
cal representation of x in the cubelet L(c) is the same with the the canonical representation of x in the
cubelet L(c'). More precisely, p& = pS.

Proof. Let c,;, be even. By the definition of the canonical representation in Definition 8.6, the
source and target of the cubelets L(c) and L(c’) are respectively,

o 8¢ = (51/-~-/Sm71/CWZ/Sm+1/'"Isd)/

o 1 = (tl,..-,Sm,LCm —|—1,tm+1,...,td>,
/

© 8 =(S1,--,Sm-1,Cm+2,Sm41,---,54),

<o tcl = (tl,...,tm_l,Cm +1rtm+1/---/td)-

Hence we get that p; = p; for j 7 m. Since x belongs to the boundary of both cublets L(c) and
L(c") we get that x,, = ¢, + 1 which implies that p,, = p;, = 1. In case ¢, is odd we get that
pS = p< but with p,, = p,, = 0. O

Lemma C.4. Let x € [0,1])4 lying at the intersection of the cubelets L(c), L(c") with down-left corners
c=(c1,) Cm-1,Cm, Cns1,---,¢4), and ¢ = (c1,...,cm—1,cm +1,Ccm+1,...,¢q4). Then the following
statements are true.

1. For all vertices v € L¢(¢) N L¢(c') it holds that

(@) Q5(x) = QF (x),

66

(b)
(c)

Q5 (x) _ aQ4 (x)
8xl - ox;
PQ5(x) _ QY (x)

ox; ax] dx; aX] :

2. For all vertices v € Lc(c) \ Lc(c’) it holds that Q5(x) = a%a(i Y — aazga(xj) =0.

3. For all vertices v € L(c')/Lc(c) it holds that QF (x) = aQaf,xfx) = a;g;a%) =0.

Proof.
(a)

(b)

(©)

1. Let v € Ls(c) N Lc(c’) then we have that

Q%(x) = QS (x). By Lemma C.3 we get that the canonical representation p¢ = p¢.
Since Qf(x) is a function of the canonical representation p< (see Definition 8.9), it
holds that Q% (x) = QF (x) for all vertices v € L¢(c) N L¢(c).

2Q5(x) _ w%) aw>_gﬁwn_1a%m_wW)

= . For i # m, we get that = hs o9 T i g = o% since
ti =t and sl =] for all i # m. The latter argument cannot be applied for the m-th
coordinate since t,, — s, = —(t,, — s},). However since x belongs to the boundary of

both the cubelets L(c) and L(c’) it is implied that p,, = p,, is either 0 or 1, meaning
that %(x) = %ix) = 0 since S’(0) = S'(1) = 0 from Lemma 8.3.

m

PQ5(x) _ QY (x) . PO5(x) 1 1 PQ5(x) _ 1la¢m_
Bx,-vaxj - ax,-vax]- - For L] 7& m, we get that Bx,-vaxj T ti—siti—s; Bp,-vap]- T ti—s] t’ ;ap;vap]'. -
Q5 (x)

. o o , : . _
ax, ax; Since ti =t and s; = s/ for all i # m. As in the previous case, p,, = p,, equals

either 0 or 1. As a result, 32;32;();() 207 () = 0 since §'(0)=8(1)=5"(0)=S5"(1)=0

— dxy O X

by Lemma 8.3.

2. Since v € L¢(c) \ Lc(¢’), we get that v,, = ¢;. In case ¢y, is even, we get that s, = ¢, = Uy,
and thus the coordmate the coordinate m belongs in the set Af,. Since x coincides with one
of the corners in L.(c) \ L.(¢’) we get that p,, = 1 which combined with the fact that m € A§

implies that QS(x) = 0 (see Definition 8.7). Then by Lemma C.1, a%c’xfx) = a;fo &) — 0. In

X aX]

case is odd, we get that s, = c;; + 1. The latter combined with the fact that v,, = ¢, implies
that the m-th coordinate belongs in BS. Now p,, = 0 and by Definition 8.7, Q5 (x) = 0. Then

again by Lemma C.1,

005 (x) _ Q5 (x) _
ax; - -

ax,‘ aX]

3. This case follows with the same reasoning with previous case 2.

We are now ready to prove Lemma C.2.

Proof of Lemma C.2. 1. Letv € L.(c) N Lc(c"). There exists a sequence of corners

c=cb,...

such that Hc(f) — U+l Hl =1land v € L.(¢/) for all j € [m]. By Lemma C.4 we get that,

(a)
(b)

Q" = Q" ().

an (x) _ 00" M)
dx; :

67

() azQﬁ(j)() an]+1 (x)
Jx; dx; — Ox; dx;

which implies Case 1 of Lemma C.2.

2. Let v € Lc(c)\ Le(c'). There exists a sequence of corners ¢ = ¢V ...,¢c() such that
Hc(j) - c(f“)Hl =1land v ¢ Lec® and v € Lo(cV) for all j < i. By case 2 of Lemma

. i-1) 1)
C.4 we get that Qg(Y (x) = anaxi () — azgj{]_ ax]_(x) = 0. Then case 2 of Lemma C.2 follows

by case 1 of Lemma C.4.

3. Similarly with case 2.

C.2 Proof of Lemma 8.11

We start this section with some fundamental properties of the smooth step function S, that are
more fine-grained than the properties we presented in Lemma 8.3.

Lemma C.5. For d > 10 there exists a universal constant ¢ > 0 such that the following statements hold.
1. If x > 1/d then Seo(x) > c-274,
2. Ifx < 1/d then SL,(x) < c-d?>-274.

Seo (%) 2

ey < c-d-.

4. Ifx <1/d then |S”(x)| < c-d*-274.

3.

5. Ifx > 1/d then Eg' <c-dt

Proof. We compute the derivative of S., and we have that

Sto(x) = 1In(2)Seo(x)Seo(1 — x) (3{12 + (1—1x)2>

from which we immediately get S, (x) > 0. Then we can compute the second derivative of S
as follows
Seo(x) = In(2)Seo(x)Seo(1 — x)-

2
- <1n<z> (51 =) = 5) (33 + oz 2 <x13) <1—1>3>) |

We next want to prove that S,(x) > 0 for x < 1/10. To see this observe that 1 —2- Se(x) > 1/2
for x < 1/d and therefore

s (x) > Mg 5001 x) <1“(2> - 2)

x3 2x

hence for x < 4/1n(2) it holds that SJ,(x) > 0. By similar but more tedious calculations we can
conclude that S (x) > 0 for x < 1/10. Hence in the interval x € [0,1/10] all the functions S,
S.., S, are all increasing functions of x.

68

Next we show that the function h(x) = 2-1/x 4 2=1/(1=%) js upper and lower bounded. First
observe that #(x) > max{2-1/%,2-1/(0-)1 Now if we set t(x) = 2~1/* then #'(x) = In(2)t(x) /x?
and hence t(x) > t(1/2) = 1/4 for x > 1/2. The same way we can prove that 2-/(1=%) > 1/4
for x < 1/2. Therefore h(x) > 1/4 for all x € [0,1]. Also it is not hard to see that 2-/x < 1/2
and 271/(1=%) < 1/2 which implies h(x) < 1. Hence overall we have that h(x) € [1/4,1] for all
x € [0,1]. We are now ready to prove the statements.

1. We have shown that S, (x) > 0 for all x € [0,1]. Hence S is an increasing function and
therefore Seo(x) > Seo(1/d) for x > 1/d. Now we have that Se(1/d) = 2_d/h(l/d) >4,

2. Since S, (x) is increasing for x € [0,1/10], we have that S, (x) < S, (1/d) for x < 1/d and
therefore

S;(x)fghﬂz)sw(l——l/d)sw(l/d)(dZ%—112)

2—d
< 8In(2)277.

3. We have that for x < 1/d

S00(¥) _ 11(2)5(1—) <xlz+(!

1
S a) 1_x>2> < 21n(2)E < 2In(2)d>.

4. Follows directly from the statement 1., the fact that S, (x) is increasing for x € [0,1/10] and
the above expression of S, this statement follows.
5. This statement follows using the same reasoning with statement 3.
O

In this section we establish the bounds on the gradient and the hessian of P,(x). These
bounds are formally stated in Lemma 8.11 the proof of which is the main goal of the section.

Lemma 8.11. For any vertex v € ([N] — 1), it holds that

1. ‘31’1;(x) (d12/5>

9Py (x)

Bx E)x

2. < O(d?/8).

In order to prove Lemma 8.11. We first introduce several technical lemmas.

Lemma C.6. Let x € [0,1)? lying in cublet L(c), with ¢ € ([N] —1)? and let p& = (p1,...,py) be the
canonical representation of x. Then for all vertices v € L.(c), it holds that

'aQé(x)

pi

dll Z QC

veV,

69

Proof. To simplify notation we use Q,(x) instead of Q5(x), A instead of AS and B instead of B
for the rest of the proof. Without loss of generality we assume that for all j € A and ¢ € B,

pe > pj since otherwise % = 0 trivially by the Definition 8.7. Let i € B (symmetrically for
i € A) then,
9Q5(x)| _
api
= JTI18(5(pe) =S(pi)) - | X2 Se(S(pi) =S(p))| 1 Sw = S(py))| S'(pi)
(#£iJEA JEA €A/ {j}
< 6) Su(s Skl T1 Se(S(pe) = S(py))
jeA (7' 0)# (i)

where the last inequality follows by the fact that |S’(-)| < 6. Since |A| < d the proof of the lemma
will be completed if we are able to show that for any j € A, it holds that

[Sec (S (pi) = S(p))] - H Seo(S(pe) = S(py)) <O - Y Qu(x
" 0)#(id) v'eLlc(c)
In case S(p;) — S(pj) > 1/d° then by case 3. of Lemma C.5 we get that |S,(S(pi) — S(pj))| <
c-d" - So(S(pi) — S(p;)), which implies gthe following

|Seo(S(pi) = S(p))] - H Seo(S(pe) = S(py)) <

(7 0)#(j.0)
§C~d1°-5w(5(Pi)—5(Pj))' Seo(S(pe) — S(pjr))
(7" 0)# i)
=c-d". Qv()
<c-: le Z Qv

v'€L.(c)

Now consider the case where S(p;) — S(p;) < 1/d°. Using case 2. of Lemma C.5, we have that

_ 5
1556(S(p) =S(p))| - TT Se(S(pe) = S(py)) < [Se(S(pi) = S(pj))| < O -27)
(7O # (i)
Consider the sequence of points in the [0,1] interval 0, p1, ..., ps, 1. There always exist two con-
secutive points with distance greater that 1/(d + 1). As a result, there exists v* € L.(c) such that
pe—p; > 1/(d+1) forall £ € B, and j € Ay-. Then S(py) — S(pj) > 1/(d +1)? and by case 1.
of Lemma C.5, Seo(S(pr) — S(pj)) > 2= (@+1* If we also use the fact that |Ag:| - |By:| < d2, we
get that
Qe (x) > (c-27 @) # = (Pp-(dr1pa

Then it holds that
1

e |55 (S(pi) = S(p))]| - nis Sw(S(pe) — S(py)) <

<O <d10 . <(1/C> . 2d3+(d+1)2>d2> < @(dl(])

Combining the later with the discussion in the rest of the proof the lemma follows. O

70

Lemma C.7. For any vertex v € ([N] — 1)% it holds that ()

(dlz /5)

Proof. To simplify notation we use Q,(x) instead of Q5 (x) for the rest of the proof. Without loss

of generality we assume that x lies on a cubelet L(c) with ¢ € ([N] —1)? and v € Lc(c), since

otherwise apaix(_) = 0. Let pS = (p1,...,pa) be the canonical representation of x in the cubelet

L(c). Then it holds that

’an [Zv e Qv,(x)} Qo(x) - [Zv’eLc(c) an;;,.(x)H
(Zv’eL () 2
20:(0) .

dP,(x)
ar)i

op; Z‘U GLC Br,),(
< +
ZU/ELC(C) Qu (x) ZU'ELC(C) Qu (x)
< (d+2) 031 =0@d'?)

where the last inequality follows by Lemma C.6 and the fact that at most d + 1 vertices v of L.(c)
have non-zero gradient as we have proved in Lemma 8.10. Then the proof of Lemma C.7 follows
by the fact that p; = 7= O

ts,

Lemma C.8. Let ¢ € ([N] —1)? and v € L.(c) then it holds that ‘

(dZZ) ZveR Qv()

Proof. To simplify the notation we use CS(p; — pm) to denote Soo((pg) —S(pm)), CS'(pe — pm)
to denote |SL,(S(pe) — S(pm))|, A to denote AS and B to denote BS for the rest of the proof. As

in Lemma C.7, we assume that py > p,, for all / € B and m € A since otherwise a Q”() =0. We

have the following cases for the indices i and j

» Ifi,j € B then

asz (x> _
dp; dp;
= Y. CS'(pi—pm)CS (pj— pmy) - I1 CS(pe— pm) - S'(pi)S' (1))
my,my€A (m,0)#{ (ma,i),(ma,j) }
<36 Y, CS'(pi—pm)CS (pj— pms)- [T CSe—pm).
e A (m,0) £ (), ()}

2U(i,f)

If additionally it holds that S(p;) — S(pm,) < 1/d° or S(p;) — S(pm,) < 1/d°, then by the
case 2. of Lemma C.5, we have that

Ui, j) < CS'(pi = pm) - CS'(p; = pmy) < ©(d%e™).

The latter follows from the fact that the function S/, (-) is bounded in the [0, 1] interval and
that CS(py — pm) < 1. With the exact same arguments as in Lemma C.6, we hence get that

CS'(pi = Py)CS' (= Pis) * Wi 012 (o, (m2,py CS (P = pm) < O(@) Y7 Q5i(

v'€L¢(c)

92Qyp(x)
Thus ‘ ap, ap, | =

(dlz) ZZI’GLC(C) ;’ (x)

71

On the other hand if S(p;) — S(pm,) > 1/d° and S(pj) — S(pm,) > 1/d° then by case 1. of
Lemma C.5, CS'(p; — pm,) < c-d'*-CS(p; — pm,) and CS’ (p] Pmy) < c-d0-CS(pj — pm,)

and thus U(i,j) < ©(d?®) - Q5(x). Overall we get that ‘a Qo (x (@) - Lorero(x) Q5 (%).

» Ific Band j € A then

asz(x)
dp; Ip;
< CS'(pi — pm,)CS'(pe, — pj) - I CS(pe —pm) - S'(pi)S'(p))
m €A, LEB (mlé)#{(l/ml)/(€2/])}
+1CS" (pi—pi)- TI CS(pe—pm)-S'(p1)S (p))

(m,) #(i,j)

) Y. Q5(x)+36

vELc(c)

cS'(pi—p)- T1 CS(pe—pm)-
(m2)£(i)

Q"(x)

In case S(p;) — S(pj) > 1/d° then by case 4. of Lemma C.5, we get that)CS"(pi - pj)
cd® - CS(p; — p;) which implies that Q" < @(d%°) - Q5 (x).

On the other hand if S(p;) — S(pj) < 1/d° then by case 5. of Lemma C.5, we get that
Cs"(pi — pj)‘ < ¢-d®e . As in the proof of Lemma C.6, there exists a vertex
v* € R(x) such that Q% (x) > ¢®e~(*+1*® and thus Q" < ©(d20) Yver(c) Q5 (x). Overall

we get that
92Q, (x) 2)
Od?) Yy Q5(x
dpi Ip; veLy(c)
» If i =j € B then
0°Qy (x)
82;91- -
< Y |CS'(pi— pm)CS' (i — pm) - IT CS(pe—pm) - S'(pi)S'(p:)
my,my€A (m,0)#{ (my,i),(ma,i)}
+ Y |CS" (pi—pm)- TI CS(pe—pm)S'(pi)S (pi)
meA (m,0)# (L)
<O@2+d-d0)- Y Q5(x).
v€EL:(c)
If we combine all the above cases then the Lemma follows. O

Lemma C.9. For any vertex v € ([N] — 1), it holds that ’A

(d24/(52)

72

Proof. Without loss of generality we assume that v € Lc(c), where ¢ € ([N —1] —1)? such that
9P, (x)

x € L(c), since otherwise - ax, = 0.
aZPv(x) _ 02 Qv (Z Q)3. 1
apl a]?] apl ap] v EL) (ZU,GLC(C) Qv’ (x)>4
2
n Qs (x) Z an (Z Q > . 1
. v 4
apl v'eLe(c) ap] v’ €L ((Z”(J’ELC(C) Qv’(x)>

L)y (Z O (x 1

2
p op;)' !
Pi wér(e) ©°P v'ELc(c) (Zv/eLc(c) Qur (x))

2
PQu (%) L
— Oy QU ’
(x) ’U’G;c() apl aP] (ZJ 6;) > (20 EL,: Qv ())4
an an’() 1
— Z Qv -2 Z Qur (x Z -
apz Vel v'€L.(c) v'eLl(c) ap] (Zv’eLc(c) Qv (x)>4
0Qy (x 9Qy (x) 1
+ Qulx) Qu(x '
v’G%(C) apl v’ G; v’ G;c(c) ap] (Zv 'eLe(QU <)>4

Using Lemma C. 8 and Lemma C.6 we can bound every term in the above expression and hence

we get that ‘a Py (x (d?*). Then the lemma follows from the fact that ap L=1/6. O

Finally using Lemma C.7 and Lemma C.9 we get the proof of Lemma 8.11.

C.3 Proof of Lemma 8.12

Let0 <x;<1/(N—-1)and ¢ = (cy,...,¢,...,¢q) denote down-left corner of the cubelet R(x)
at which x € [0,1]4 11es, ie. x € L(c). Since x < 1/(N — 1), this means that ¢; = 0. By the
definition of sources and targets in Definition 8.6, we have thats; = 0 and t; = 1/(N — 1), where s;,
t; are respectively the i-th coordinate of the source s, and the target ¢, vertex. Let the canonical
representation p§ = (p1,...,p4) of x in the cubelet L(c). Now partition the coordinates [d] in the
following sets

A={jlpi<pi} and B={jlpi<pj}.
If B = @ then notice that Ps_ (x) > 0, since p; < 1, by the fact that x; < 1/(N — 1). Thus the
lemma follows since s; = 0. So we may assume that B # . In this case consider the corner
v = (v1,...,04) defined as follows
_ [je4
%_{tjEB'
)

Observe that Q5 (x) > 0 and thus v € R, (x). Moreover the coordinate i € A and therefore it
holds that v; = s; = 0. This proves the first statement of the Lemma.

For the second statement let 1 —1/(N—-1) < x; < 1/(N—1) and ¢ = (¢1,...,¢i,..-,C4)
denote down-left corner of the cubelet R(x) at which x € [0,1] lies, i.e. x € L(c). This means
that ¢; = {=3.

73

» Let N be odd. In this case by the definition of sources and targets in Definition 8.6, we have
thats; = 1—1/(N —1) and t; = 1, where s;, t; are respectively the i-th coordinate of the
source and target vertex. Let p§ = (p1,..., ps) be the canonical representation of x under
in the cubelet L(c). Now partition the coordinates [d] as follows,

A={jlpj<pi} and B={j|pi<p;}

If A = & then notice that for the target vertex t., Pt (x) > 0, since p; > 0, by the fact that
x; >1—1/(N —1). Thus the lemma follows since t; = 1. So we may assume that A # @.
In this case consider the corner v = (vy,...,v,) defined as follows,

_J s jEA
%I\t jeB
i
Observe that Q5(x) > 0 and thus v € Ry (x). Moreover the coordinate i € B and thus

Ui:tizl.

» Let N be even. In this case we have that t; =1 —1/(N — 1) and s; = 1. Now partition the
coordinates [d] as follows,

A={jlpi<pi} and B={j|pi<pj}

If B = @ then notice that for the source vertex s., Ps,(x) > 0, since p; < 1, by the fact that
x; > 1—1/(N —1). Thus the lemma follows since s; = 1. In case B # & consider the
corner v = (v1,...,v,) defined as follows,

. Sj] €A
T\t jeB
i
Observe that Q5(x) > 0 and thus v € R4 (x). Moreover the coordinate i € A and thus
U, =8; = 1.

If we put together the last two cases then this implies the second statement of the lemma.

D Constructing the Turing Machine — Proof of Theorem 7.6

In this section we prove Theorem 7.6 establishing that both the function f¢, (x, y) of Definition 7.4
and its gradient, is computable by a polynomial-time Turing Machine. We prove Theorem 7.6
through a series of Lemmas. To simplify notation we set b = log1/e.

Definition D.1. For a x € R, we denote by [x], € IR, a value represented by the b bits such that
[x]y — x| <27

Lemma D.2. There exist Turing Machines Ms_, Mg, that given input x € [0,1] and e in binary form,
compute [Seo(x)], and [SL,(x)], in time polynomial in b = log(1/¢) and the binary representation of x.

Proof. The Turing Machine Ms_ outputs the fist b bits of the following quantity,

+ﬁ]b/}
vy

where b’ will be selected sufficiently large. Notice it is possible to compute the above quantity
due to the fact that all functions % + %, 27 and ﬁ can be computed with accuracy 2% in

polynomial time with respect to b’ and the binary representation of v [Bre76]. Moreover,

1 1
1

+x%]b/} 1+2 xte
vy

E Ll Y
—_

1+ [2[= ﬂ%]b,} 1+ [2[*%3?1];,/]
L vy v

1 B 1
1+ [2[—%+HL,/L, 1420

=

+541]

=

b/

1 1
142+l 1423t
<27t 4 [2[—%%]4 _oli+hly
< ”

el)
+In2||—=+ — |-zt
x x—1], x x-—1

<4.27Y

+

where the first inequality follows from triangle inequality and the second follows from the facts
that 1/(1 + 7) is a 1-Lipschitz function of 7y for v > 0, and 1/(1 + 27) is an In(2)-Lipschitz
function of 7 for v > 0. The last inequality follows from the definition of [],,. Hence W(x) is
indeed equal to [Se(x)], if we choose b’ = b+ 2.

Next we explain how Mg, computes [S,(x)],. First notice that S{,(x) is equal to
1p1 T
%2 x+x—1 — 1 2 X+X*1

S (x) = In2- i
(2—% + ZH)

To describe how to compute S, (x) we first assume that we have computed the following quan-
tities. Then based on these quantities we show how S/ (x) can be computed and finally we
consider the computation of these quantities.

75

Then Mg, outputs the fist b bits of the quantity [[In2], - [#} b'] - We now prove that

[ln2]b/ [M] — 11’12A +5 S Q) <2ib/>
C b/ C
—_————

Sto(%)
Consider the function g(«, B, v) = # where |a|, |B| < c1 and |y| > c2 where c1, ¢ are universal
constants. Notice that g¢(«, 8,) is c-Lipschitz for ¢ = C% + ZC% Since for sulfficiently large b’

2 2
2

all the quantities |A|, |B|, %2’%% , ﬁZ’iﬂlﬁ < ¢ and [C|, (2*% +2ﬁ) > ¢ where

c1, ¢ are universal constants we get that

A+B A+B _y
— - <0O|(2 .
7], =)

Now consider the function g(«,) = « - f where |a|,|B| < ¢ where ¢ is a universal constant.
In this case g(a, B) is v/2c-Lipschitz continuous. Since for b’ sufficiently large all the quantities
|[In2]y|, [#] ,In2, #‘ are bounded by a universal constant ¢, we have that,

A+B A+B i
;| —— — <
Unﬂb[.]H 2= '__@(2)

b/

Next we explain how the values A, B and C are computed while [In(2)], can easily be computed
via standard techniques [Bre76].

» Computation of A. The Turing Machine Mg, will compute A by taking the first b’ bits of
the following quantity,
[2[—%+x%1+21nx/ an]b,,}
b//
where b” will be taken sufficiently large. We remark that both where both the exponenti-
ation and the natural logarithm can be computed in polynomial-time with respect to the

number of accuracy bits and the binary representation of the input [Bre76]. The function
%27%4561—1 — 27%+%+21nx/1n2
X

is c-Lipschitz where c is a universal constant. Thus,

’ [2[—%+ﬁ+21nx/ln2]h,,:| 1 2—%4—%

o <2).

» Computation of B. Using the same arguments as for A.

» Computation of C. To compute C we first compute b” bits of the following quantity,
2
1

+ [l

)

b b b

We first argue that
2

1 1 2 i
2B],, + 2] (7w | = o)

b b |y

The latter follows by applying the triangle inequality and the following 3 inequalities.

76

2 2

O] <], |\] <,

this holds since for " > 1 we have

1 1
and

({TG]HILH + [Z[I%l]h”}bf) b ([Z_Hbﬂ}bﬂ + [2[%]17”}1’”)

are both upper-bounded by 2 while the function g(a) = a? is 4-Lipschitz for |a| < 2.

2

2
1 1 Y
]]) (z—th ; zmw> <o (2)

The latter follows since for b” larger than a universal constant, both [2_[%]%}”’

[Z[le]b”} o and 2" [+ + 2l#l are greater than a universal constant ¢, while the
function g(a, B) = 1/(a + B)? is © (c®)-Lipschitz for a + > c.

1 ? 1 2
. s S @ 2_b//
(2“];/’ -|-2[x]1]b”> (2_:1c —}-27611) ()

The latter follows since for b” larger than a universal constant it holds that both the
quantities in the left hand side are greater than a positive universal constant ¢, while
the function g(a,) = 1/(27* +2F) for 27 +2F > ¢, a > 0, and B < 0is O (1/c3)-
Lipschitz.

This concludes the proof of the lemma. O

Lemma D.3. There exist Turing Machines Mg and Mg that given x € [0,1]% and e > 0 in binary form,
respectively compute [QS(x)], and [VQS(x)], for all vertices v € ([N] —1)* with Q5(x) > 0, where
b =log(1/¢). These vertices are most d + 1. Moreover both Mg and My run in polynomial time with
respect to b, d and the binary representation of x.

Proof. Both Mg, My firsts compute the canonical representation pS € [0,1]? with the respect to
the cell R(x) in which x lies. Such a cell R(x) can be computed by taking the first (log N + 1)-bits
at each coordinate of x. The source vertex s = (s1,...,s;) and the target vertex t¢ = (t1,..., 1)
with respect to R(x) are also computed. Once this is done we are only interested in vertices
v € R¢(x) for which

pe>p; forallle€ Aj,j€ By

77

since for all the other v € ([N] — 1)d both Q5(x) = 0 and VQ5(x) = 0. These vertices, that are
denoted by R4 (x), are at most d + 1 and can be computed in polynomial time.

The vertices v € Ry (x) can be computed in polynomial time as follows: (i) the coordinates
pi,--.,pa are sorted in increasing order ii) for each m =0, ..., d compute the vertex v € R.(x),

om— | i if coordinate j belongs in the first m coordinates wrt the order of p¢
] t; if coordinate j belongs in the last d — m coordinates wrt the order of pg

By Definition 8.7 it immediately follows that R, (x) C % _,{v"} which also establish that
IRy (x)| <d+1.

Once R4 (x) is computed, Mg computes for each pair (¢, j) € BS x AS the value of the number
[Seo(S(pe) — S(pj))],, for some accuracy b’ that we determine later but depends polynomially on
b, d and the input accuracy of x. Then each v € R4 (x), Mg outputs as [Q5(x)], the fist b bits of
the following quantity

[11 [Sw(s(m)—s(m))}b,l

leBg,je AS b

where b’ is selected sufficiently large. We next prove that this computation indeed outputs
[Q5(x)], accurately.

To simplify notation let S« (S(p¢) — S(pj)) be denoted by Sy;, Ag denoted by A and B denoted
by B. Then,

‘ [HZEB,jeA [Sei] b/]b’ - HéeB,jeASej’ < ’ {HEGB,jGA [Sei] b,h, —Tlyejea [Sel,
+ ‘erB,jeA (S, — HéeB,jeASEj‘

< 27V 4

Iyepjea [Sel, — HZGB,jeAsej‘

Consider the function g(y) = [Tsepjeca ysj- Fory € [0,1+ 1/d?) AL Wg(y) ||, < ©(d). Asa
result, for all y, z € [0,1 + 1/d?]/AI*IB],

1/2
1g(y) —g(2)] < O(d) - [Y (e — sz)]
leB,je A

In case the accuracy b’ > ©(logd) then [S;], < Sy +1/d*> <14 1/d* and the above inequality
applies. Thus,

1/2
IT [S¢lp —iepjeaSsy| < O@) |) <[S€J‘]BI_S€J')]
leB,jeA leB,jeA
< @) 27"

Overall, [HZGBJGA [Sei] b,} o ngB/jGAng’ < O(d?) - 27" which concludes the proofof the cor-
rected of [Q5(x)], by selecting b’ = b+ O(logd).

78

In order to compute %xix) where ¢ € Bj (symmetrically for j € Af), My additionally

computes the [S,(S(p¢) —S(pj))],, with accuracy b'. To simplify notation we denote with
Se(S(pe) — S(pj)) with S and S’ (pi) by S!. Then My outputs,

1 [0Q5(x)
|: ax, :|b’% |:ti_si' |: apl :|b/:|b’
Q5

where [ap(>L' A lg [ng} . [S;]b’ Weayjien [Sfm]b’]

b/

Observe that t; —s; = Sig?\;tj;s") [a%i(ix)] ,, can be exactly computed. We next prove
that these computations of [a%;iy} y and [%} , are correct.

We first bound ([s;]} [y Thcas(jyeen [Semly — i+ S1 - Tneas {j},@eBsm’.
Consider the function g(y1,y2,¥) = y1- Y2 - [Tnea, (j},teB Yem- As previously done, for yq,y2 €
[0,6] and y € [0,1 + 1/d?]IA1*IBI=1 we have that, || Vg(y1,y2,y)|, < O(d). If b’ < @(logd) then
ng ,S <6and Sy, € [0,1+1/d%. As a result,

’ [Sz{j] - 1Sily Thweaygjyees [Somly — Sii - Si- HmeA/{j},éeBsém’ < o) 27"

We can now use the above inequality to bound ’ [BQ”I)} v a%f;y(ix) .
’ [aQi(x)} 05 (x)
<2+ |V lsy] (S T [Swly— L8 II Swm
jeA meA/{j}(eB jeA meA/{j},I{eB
<027
We finally get that
‘ |:an('7€):| _ an(x) < 2711’ +N ‘ |:an(3€):| o an(x) < @(Nd3) . Z*b’.
oxi |y ox; aipi |y api
Thus the analysis is completed by selecting b’ = b+ ©(logd) + O(log N). O

Lemma D.4. There exist Turing Machines Mp and Mp: that given x € [0,1]% and & > 0 in binary form
compute [Py (x)], and [VPy(x)], respectively for all vertices v € ([N] — 1)? with P,(x) > 0, where
b = log(1/¢). These vertices are most d + 1. Moreover both Mp and Mp: run in polynomial time with
respect to b, d and the binary representation of x.

Proof. Mp first runs Mg of Lemma D.3 to find the coefficients Q5 (x) > 0. We remind that these
vertices are denoted with R (x) and |Ry(x)| < d+ 1. Then for each v € R (x), Mp outputs as
[Py (x)], the fist b bits of the quantity,

[[Q5(x)]]
ZU'ER+(x) [Q;/(x)]b’ b

79

where we determine the value of b’ later in the proof but it is chosen to be polynomial in b and
d. We next present the proof that the above expression correctly computes [Py (x)],.

For accuracy b’ > ®(d?logd) we get that,

Y e, > Y Qu(x)-0@) 27

v'€R (x) v'E€R (x)
= Y Q) -0e@- 27"
v/ ER.(x)
C)(l/dyﬂ)——CXd)-Z’y
c><(1/d)ﬂ)

Consider the function g(y) = y; (Z;i 1 vj). Notice that for y € [0,1]"! and Zd 1 y] > u then
IVg(y) |, < ©(d*?/u?). The latter implies that for y,z € [0,1]%"! such that Zd 1Yyj > pand
that Y% z; > p, it holds that

d3/2
g@() ly - =ll,.

Yi Zj
u?

d+1 d+1
Zj:l Yj 2

Since there are at most d + 1 vertices v’ € R (x) while both the term Y, g, () Q5 (x)], and
the term Y-, e, (r) Q5 (%) are greater than ® ((1 / d)dz), we can apply the above inequality with

=0 ((1 / d)dz) and we get the following

[Qs ()] Qo (x)
27} "eR4 (x [Q }b’ Ev 'ERy (x Q ()

v €Ry (x)
d2d2+2> -t

1/2
(2d2+3/2)) [E (1QS ()], —Qf,/(x))zl
<o

Overall, we have that

[Q5 ()] Q5 (x)
ZveR+ [Q ()]h’ b ZvGR Q ()

- Q5 (x)]y] [Q5(x)]y
Zv 'eRy(x [Q ()] vy Zv "eR 4 (x) [Q (x)]b/
NECER Q5 (x)
Zv’eRJr(x) [Q;/(x)] b Zv '€R4 (x) Q ()

<0 <d2d2+1) b

The proof is completed via selecting b’ = b + @(d?logd).

80

()

In order to compute
an()

the Turing machine Mp computes all vertices R (x) the coefficients

with accuracy '. Then for each v € R, (x) the Turing Machine Mp' outputs,

Sl Li = 5L,

d v d o\ X
P (v)] | Erern Qo @)l — [y - Ever. |5,
0 i / 2
Pi o (zv er () [Qu(®)]y)
Similarly as above and as in Lemma D.3 we can prove that if b’ > b+ @(d?logd) + ®(log N),

[, - m

where [

b/

Proof of Theorem 7.6. Let R(x) be the cell at which x lies. The Turing Machine My, initially cal-
culates the vertices v € R.(x) with coefficient P,(x) > 0. We remind that this set is denoted by
Ry (x) and R (x)| <d+1. Then My, outputs the first b bits of the following quantity,

M&

—yj) where [a(x,j)]y =)}, Ci(v,))-[Po(x)]y
]:l v'€R(x)

[fa(x,y)}

we next prove that the above computation is correct.

d d
‘ feen] y ey ’ Z —¥j) — Z; a(x,f) - (xj = y))
]: j=
d
< Yo a(x)] = alx,)]
j=1
d .
=) Z Py — L Ci()) Polx)
J=1|v'eRy v'€R, (x)
d
<) Z |[Po ()] — Po(x)]
j=1v'€Ry(x)
<d-(d+1)-27"
Setting b’ = b+ © (logd) we get the desired result. Similarly for afcal;j’y) and af%’;j’y). O

E Convergence of PGD to Approximate Local Minimum

In this section we present for completeness the folklore result that the Projected Gradient Descent
with convex projection set converges fast to a first order stationary point. Using the same ideas
that we presented in Section 5 this result implies that Projected Gradient Descent solves the
LocALMIN problem in time poly(1/¢, L, G,d) when (g, 6) in the input are in the local regime.
Also observe that although the following proof assumes access to the exact value of the gradient
V f it is very simple to adapt the proof to the case where we only have access to V f with accuracy
3. We leave this as an exercise to the reader.

81

Theorem E.1. Let f : K — R be an L-smooth function and K C R? be a convex set. The projected
gradient descent algorithm started at xo, with step size 1, after at most T > w steps outputs
a point X such that

12 =Tk (X =y V(&) <7-e

where y = 1/L and x* is a global minimum of f.

Proof. 1f we run the Projected Gradient Descent algorithm on f then we have
xp1 4 Ui (xr =7V f(x1))
then due to the L-smoothness of f we have that
Fn) < £(0) + (V) 2 —30) + 2 e —]2
We can now apply Theorem 1.5.5 (b) of [FP07] to get that
(- V), —x) < = 5 - ul; =

1
(Vf (), aa = 30) < = llme = x5

If we combine these then we have that

1 L

Flonia) < flax) = (5= 5) s =3,

So if we pick 7 = 1/L then we get

Fwi) < Fl) = 5 e — .

If sum all the above inequalities and divide by T then we get

which implies that

min_[lte1 — 3l < |/ =27 (Fx0) — flxr)

0<t<T-1

Therefore for T > w we have that

. ol <7 /L
on ey — el <7-e=e/L

82

	1 Introduction
	1.1 Brief Overview of the Techniques
	1.2 Local Minimization vs Local Min-Max Optimization
	1.3 Further Related Work

	2 Preliminaries
	2.1 Complexity Classes and Reductions

	3 Computational Problems of Interest
	3.1 Mathematical Definitions
	3.2 First-Order Local Optimization Computational Problems
	3.3 Bonus Problems: Fixed Points of Gradient Descent/Gradient Descent-Ascent

	4 Summary of Results
	5 Existence of Approximate Local Min-Max Equilibrium
	6 Hardness of Local Min-Max Equilibrium – Four-Dimensions
	6.1 The 2D Bi-Sperner Problem
	6.2 From 2D Bi-Sperner to Fixed Points of Gradient Descent/Ascent

	7 Hardness of Local Min-Max Equilibrium – High-Dimensions
	7.1 The High Dimensional Bi-Sperner Problem
	7.2 From High Dimensional Bi-Sperner to Fixed Points of Gradient Descent/Ascent

	8 Smooth and Efficient Interpolation Coefficients
	8.1 Smooth Step Functions – Toy Single Dimensional Example
	8.2 Construction of SEIC Coefficients in High-Dimensions
	8.3 Sketch of the Proof of Theorem 8.1

	9 Unconditional Black-Box Lower Bounds
	10 Hardness in the Global Regime
	A Proof of Theorem 4.1
	B Missing Proofs from Section 5
	B.1 Proof of Theorem 5.1
	B.2 Proof of Theorem 5.2

	C Missing Proofs from Section 8
	C.1 Proof of Lemma 8.10
	C.2 Proof of Lemma 8.11
	C.3 Proof of Lemma 8.12

	D Constructing the Turing Machine – Proof of Theorem 7.6
	E Convergence of PGD to Approximate Local Minimum

