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Abstract

The use of min-max optimization in the adversarial training of deep neural network classifiers, and the training

of generative adversarial networks has motivated the study of nonconvex-nonconcave optimization objectives, which

frequently arise in these applications. Unfortunately, recent results have established that even approximate first-

order stationary points of such objectives are intractable, even under smoothness conditions, motivating the study of

min-max objectives with additional structure. We introduce a new class of structured nonconvex-nonconcave min-

max optimization problems, proposing a generalization of the extragradient algorithm which provably converges to a

stationary point. The algorithm applies not only to Euclidean spaces, but also to general ℓp-normed finite-dimensional

real vector spaces. We also discuss its stability under stochastic oracles and provide bounds on its sample complexity.

Our iteration complexity and sample complexity bounds either match or improve the best known bounds for the same

or less general nonconvex-nonconcave settings, such as those that satisfy variational coherence or in which a weak

solution to the associated variational inequality problem is assumed to exist.

1 Introduction

Min-max optimization and min-max duality theory lie at the foundations of game theory and mathematical program-

ming, and have found far-reaching applications across a range of disciplines, including complexity theory, statistics,

control theory, and online learning theory. Most recently, min-max optimization has played an important role in ma-

chine learning, notably in the adversarial training of deep neural network classifiers and the training of generative deep

neural network models. These recent applications have heightened the importance of solving min-max optimization

problems with nonconvex-nonconcave objectives, taking the following general form:

min
x

max
y

f(x,y), (1.1)

where x and y are real-valued vectors and f is not (necessarily) convex in x for all y and/or not (necessarily) concave

in y for all x. There may also be constraints on x and y, and in many applications x and y are high-dimensional

vectors.

When the objective function is not convex-concave, von Neumann’s celebrated min-max theorem fails to apply, and

so do most standard optimization methods for solving (1.1). This has motivated several lines of investigation, which

include extensions of the min-max theorem beyond convex-concave objectives (e.g. Sion’s theorem for quasiconvex-

quasiconcave objectives), and the pursuit of computational procedures that target solutions to (1.1) even in the absence

of a min-max theorem; see Section 1.1 for a review of recent work. Of course, without strong assumptions on f , (1.1)

is an intractable problem, at least as intractable as general nonconvex optimization. Thus, the literature has targeted

locally optimal solutions, in the same spirit as the targeting of local optima in non-convex optimization. Naturally,

there are various notions of local optimality that have been studied in the literature. Our focus here will be on the

simplest such notion, namely first-order local optimality, for which, despite the apparent simplicity, many challenges

arise (Daskalakis and Panageas, 2018, Mazumdar et al., 2020).
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In contrast to classical optimization problems, where useful results can be obtained with very mild assumptions on

the objective function, in min-max optimization it is necessary to impose non-trivial assumptions on f , even when the

goal is only to compute locally optimal solutions. Indeed, Daskalakis et al. (2021) establish intractability results in the

constrained setting of the problem, wherein first-order locally optimal solutions are guaranteed to exist whenever the

objective is smooth. Moreover, they show that even the computation of approximate solutions is PPAD-complete and,

if the objective function is accessible through value-queries and gradient-queries, exponentially many such queries

are necessary (in particular, exponential in at least one of the following: the inverse approximation parameter, the

smoothness constant of f , or the diameter of the constraint set).

We expect similar intractability results to hold in the unconstrained case, which is the case considered in this

paper, even when restricting to smooth objectives that have a non-empty set of optimal solutions.1 Indeed, fixed-point

complexity-based intractability results for the constrained case are typically extendable to the unconstrained case, by

embedding the hard instances within an unbounded domain.

Relatedly, we already know that the unconstrained Stampacchia variational inequality (SVI) problem for Lipschitz

continuous operators F : Rd → R
d—a problem which includes the unconstrained case of (1.1) by setting F ([xy]) =[ ∇xf(x,y)

−∇yf(x,y)

]
—is computationally intractable, even when restricting to operators that have a non-empty set of SVI

solutions.2 This is because: (i) F is Lipschitz-continuous if and only if the operator T (u) = u − F (u) is Lipschitz-

continuous; (ii) for ǫ ≥ 0, points ū ∈ R
d such that ‖F (ū)‖2 ≤ ǫ satisfy ‖T (ū)− ū‖2 ≤ ǫ, i.e. they are ǫ-approximate

fixed points of T , and vice versa; and (iii) it is known that finding approximate fixed points of Lipschitz operators over

R
d is PPAD-hard, even when the operators are guaranteed to have fixed points (Papadimitriou, 1994). Moreover, if

we restrict attention to algorithms that only make value queries to T (i.e. F , which corresponds to the type of access

that all first-order algorithms have), the query complexity becomes exponential in the dimension (Hirsch et al., 1989).

Finally, by the equivalence of norms, these results extend to arbitrary ℓp-normed finite dimensional real vector spaces.

Of course, for these intractability results for SVI to apply to the nonconvex-nonconcave min-max problem (1.1), one

would need to prove that these complexity results extend to operators F constructed from a smooth function f by

setting F ([xy]) =
[ ∇xf(x,y)
−∇yf(x,y)

]
.

Our contributions. Given the aforedescribed intractability results, our goal is to identify structural properties that

make it possible to solve min-max optimization problems with smooth objectives. Focusing on the unconstrained

setting of (1.1), we view it as a special case (obtained by considering the operator F ([xy]) =
[ ∇xf(x,y)
−∇yf(x,y)

]
) of the

unconstrained variational inequality problem (SVI), and consider instead this more general problem. We identify

conditions for F under which a generalized version of the extragradient method of Korpelevich (1976), which we

propose, converges to a solution of (SVI) (or, in the special case of (1.1), to a stationary point of f ) at a rate of

1/
√
k in the number of iterations k. Our condition, presented as Assumption 1, postulates that there exists a solution

to (SVI) that only violates the stronger (MVI) requirement in a controlled manner that we delineate. Our generalized

extragradient method is based on an aggressive interpolation step, as specified by (EG+), and our main convergence

result is Theorem 3.2. We additionally show, in Theorems 4.2 and 4.5, that the algorithm converges in non-Euclidean

settings, under the stronger condition that an (MVI) solution exists, or when we only have stochastic oracle access to

F (or, in the special case of (1.1), to the gradient of f ).

The condition on F under which our main result applies is weaker than the assumption that a solution to (MVI) ex-

ists (Malitsky, 2019, Mertikopoulos et al., 2019, Song et al., 2020, Zhou et al., 2017), an assumption which is already

satisfied by several interesting families of min-max objectives, including quasiconvex-concave families or starconvex-

concave families. Our significantly weaker condition applies in particular to (min-max objectives f with correspond-

ing) operatorsF that are negatively comonotone (Bauschke et al., 2020) or positively cohypomonotone (Combettes and Pennanen,

2004). These conditions have been studied in the literature for at least a couple of decades, but only asymptotic conver-

gence results were available prior to our work for computing solutions to (SVI). In contrast, our rates are asymptotically

identical to the rates that we would get under the stronger assumption that a solution to (MVI) exists, and sidestep the

intractability results for (1.1) suggested by Daskalakis et al. (2021) for general smooth objectives.
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Table 1: Comparison of iteration complexities required to find a point x with ‖F (x)‖p∗ ≤ ǫ using deterministic

algorithms, where ǫ > 0, F : Rd → R
d is a Lipschitz operator satisfying Assumption 1 (Section 2) with ρ ≥ 0.

Parameter p determines the ℓp setup, and p∗ = p
p−1 is the exponent conjugate to p. Only the dependence on ǫ and

possibly the dimension d is shown; the dependence on other problem parameters is comparable for all the results. Õ
hides logarithmic factors. ‘—’ indicates that the result does not exist/is not known.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳

Paper

Setup
ρ ∈ (0, 1

4L), p = 2 ρ = 0, p = 2 ρ = 0, p ∈ (1, 2) ρ = 0, p > 2

(Dang and Lan, 2015) — O( 1
ǫ2 ) O(poly(d

1/p−1/2)
ǫ2 ) O(poly(d

1/2−1/p)
ǫ2 )

(Lin et al., 2018) — Õ( 1
ǫ2 ) — —

(Song et al., 2020) — O( 1
ǫ2 ) O( 1

ǫ2 ) —

This Paper O( 1
ǫ2 ) O( 1

ǫ2 ) O( 1
ǫ2 ) O( 1

ǫp )

1.1 Further Related Work

A large number of recent works target identifying practical first-order, low-order, or efficient online learning methods

for solving min-max optimization problems in a variety of settings, ranging from the well-behaved setting of convex-

concave objectives to the challenging setting of nonconvex-nonconcave objectives. There has been substantial work

for convex-concave and nonconvex-concave objectives, targeting the computation of min-max solutions to (1.1) or,

respectively, stationary points of f or Φ(x) := maxy f(x,y). This work has focused on attaining improved conver-

gence rates (Alkousa et al., 2019, Azizian et al., 2020, Diakonikolas, 2020, Golowich et al., 2020, Kong and Monteiro,

2019, Lin et al., 2020a,b, Lu et al., 2020, Nouiehed et al., 2019, Thekumparampil et al., 2019, Zhao, 2019) and/or ob-

taining last-iterate convergence guarantees (Abernethy et al., 2019, Adolphs et al., 2019, Daskalakis and Panageas,

2018, 2019, Daskalakis et al., 2018, Gidel et al., 2019, Hamedani and Aybat, 2018, Liang and Stokes, 2019, Lin et al.,

2018, Liu et al., 2020, Mazumdar et al., 2020, Mertikopoulos et al., 2018, Mokhtari et al., 2020).

In the nonconvex-nonconcave setting, research has focused on identifying different notions of local min-max so-

lutions (Daskalakis and Panageas, 2018, Jin et al., 2020, Mangoubi and Vishnoi, 2021, Mazumdar et al., 2020) and

studying the existence and (local) convergence properties of learning methods to these points (Mangoubi and Vishnoi,

2021, Mangoubi et al., 2020, Wang et al., 2019). As already discussed, recent work of Daskalakis et al. (2021) shows

that, for general smooth objectives, the computation of even approximate first-order locally optimal min-max solu-

tions is intractable, motivating the identification of structural assumptions on the objective function for which these

intractability barriers can be bypassed.

An example such assumption, which is closely related to the one made in this work, is that an (MVI) solution

exists for the operator F ([xy]) =
[ ∇xf(x,y)
−∇yf(x,y)

]
, as studied by Lin et al. (2018), Liu et al. (2020), Malitsky (2019),

Mertikopoulos et al. (2019), Song et al. (2020), Zhou et al. (2017). As we have already discussed, the assumption we

make for our main result in this work is weaker. Table 1 provides a comparison of our results to those of existing

works, considering the deterministic setting (i.e. having exact value access to F ).

In unconstrained Euclidean setups, the best known convergence rates are of the order 1/
√
k (Dang and Lan, 2015,

Song et al., 2020), under the assumption that an (MVI) solution exists. We obtain the same rate under our weaker

Assumption 1. Moreover, under our weaker assumption, we show that the accumulation points of the sequence of

iterates of our algorithm are (SVI) solutions. This was previously established for alternative algorithms and under the

stronger assumption that an (MVI) solution exists (Malitsky, 2019, Mertikopoulos et al., 2019).

When it comes to more general ℓp norms, Mertikopoulos et al. (2019) establish the asymptotic convergence of the

iterates of an optimistic variant of the mirror descent algorithm, under the assumption that an (MVI) solution exists, but

they do not provide any convergence rates. On the other hand, Dang and Lan (2015) prove a 1/
√
k rate of convergence

for a variant of the mirror-prox algorithm in general normed spaces. This result, however, requires the regularizing

(prox) function to be both smooth and strongly convex w.r.t. the same norm, and the constant in the convergence

bound scales at least linearly with the condition number of the prox function. It is well-known that no function can be

simultaneously smooth and strongly convex w.r.t. an ℓp norm with p 6= 2 and have a condition number independent

of the dimension (Borwein et al., 2009). In fact, unless p is trivially close to 2, we only know of functions whose

1Note that these are stationary points of f in this case.
2We formally define the Stampacchia variational inequality problem, (SVI), in Section 2. We also define the harder Minty variational inequality

problem, (MVI), in the same section.
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condition number would scale polynomially with the dimension.

Very recent (and independent) work of Song et al. (2020) proposes an optimistic dual extrapolation method with

linear convergence for a class of problems that have a “strong” (MVI) solution. (In particular, their assumption is that

there exists u∗ ∈ R
d such that ∀u ∈ R

d: 〈F (u),u− u
∗〉 ≥ m‖u− u

∗‖2 for some constant m ≥ 0; the case m = 0
recovers the existence of a standard (MVI) solution.) Their result only applies to norms that are strongly convex, which

in the case of ℓp norms is true only for p ∈ (1, 2]. In that case, our results match those of Song et al. (2020). For the

case of stochastic oracle access to F, our bounds also match those of Song et al. (2020) for p ∈ (1, 2], and we also

handle the case p > 2 which is not covered by Song et al. (2020).

Finally, it is worth noting that Malitsky (2019), Mertikopoulos et al. (2019), Song et al. (2020), Zhou et al. (2017)

consider constrained optimization setups, which are not considered in our work. We believe that generalizing our

results to constrained setups is possible, and defer such generalizations to future work.

2 Notation and Preliminaries

We consider real d-dimensional spaces (Rd, ‖ · ‖p), where ‖ · ‖p is the standard ℓp norm for p ≥ 1. In particular,

‖ · ‖2 =
√
〈·, ·〉 is the ℓ2 (Euclidean) norm and 〈·, ·〉 denotes the inner product. When the context is clear, we omit the

subscript 2 and just write ‖ ·‖ for the Euclidean norm ‖ ·‖2. Moreover, we denote by p∗ = p
p−1 the exponent conjugate

to p.
We are interested in finding stationary points for min-max problems of the form:

min
x∈Rd1

max
y∈Rd2

f(x,y), (P)

where f is a smooth (possibly nonconvex-nonconcave) function and d1 + d2 = d. In this case, stationary points can

be defined as the points at which the gradient of f is the zero vector. As is standard, the ǫ-approximate variant of this

problem for ǫ > 0 is to find a point (x,y) ∈ R
d1 × R

d2 such that ‖∇f(x,y)‖p∗ ≤ ǫ.
We will study Problem (P) through the lens of variational inequalities, described in Section 2.1. To do so, we

consider the operator F : Rd → R
d defined via F (u) =

[ ∇xf(x,y)
−∇yf(x,y)

]
, where u =

[
x

y

]
and where ∇xf (respectively,

∇yf ) denotes the gradient of f w.r.t. x (respectively, y). It is clear that F is Lipschitz-continuous whenever f is

smooth and that ‖F (u)‖p∗ ≤ ǫ for u =
[
x

y

]
holds if and only if ‖∇f(x,y)‖p∗ ≤ ǫ.

2.1 Variational Inequalities and Structured (Possibly Non-Monotone) Operators

Let F : Rd → R
d be an operator that is L-Lipschitz-continuous w.r.t. ‖ · ‖p:

(∀u,v ∈ R
d) : ‖F (u)− F (v)‖p∗ ≤ L‖u− v‖p. (A1)

F is said to be monotone if:

(∀u,v ∈ R
d) : 〈F (u)− F (v),u− v〉 ≥ 0. (2.1)

Given a closed convex set U ⊆ R
d and an operator F, the Stampacchia Variational Inequality problem consists in

finding u
∗ ∈ R

d such that:

(∀u ∈ U) : 〈F (u∗),u− u
∗〉 ≥ 0. (SVI)

In this case, u∗ is referred to as the strong solution to the variational inequality corresponding to F and U . When

U ≡ R
d (the case considered here), it must be the case that ‖F (u∗)‖p∗ = 0. We will assume that there exists at least

one (SVI) solution, and will denote the set of all such solutions by U∗.
The Minty Variational Inequality problem consists in finding u

∗ such that:

(∀u ∈ U) : 〈F (u),u∗ − u〉 ≤ 0, (MVI)

in which case u
∗ is referred to as the weak solution to the variational inequality corresponding to F and U . If we

assume that F is monotone, then (2.1) implies that every solution to (SVI) is also a solution to (MVI), and the two

solution sets are equivalent. More generally, if F is not monotone, all that can be said is that the set of (MVI) solutions

is a subset of the set of (SVI) solutions. In particular, (MVI) solutions may not exist even when (SVI) solutions exist.

These facts follow from Minty’s theorem (see, e.g., (Kinderlehrer and Stampacchia, 2000, Chapter 3)).

We will not, in general, be assuming that F is monotone. Note that the Lipschitzness of F on its own is not

sufficient to guarantee that the problem is computationally tractable, as discussed in the introduction. Thus, additional

structure is needed, which we introduce in the following.
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Weak MVI solutions. We define the class of problems with weak (MVI) solutions as the class of problems in which

F satisfies the following assumption.

Assumption 1 (Weak MVI). There exists u∗ ∈ U∗ such that:

(∀u ∈ R
d) : 〈F (u),u− u

∗〉 ≥ −ρ

2
‖F (u)‖2p∗ , (A2)

for some parameter ρ ∈
[
0, 1

4L

)
.

We will only provide results for ρ > 0 in the case of the ℓ2 norm. For p 6= 2, we will require a stronger assumption;

namely, that an (MVI) solution exists, which holds when ρ = 0.

2.2 Example Settings Satisfying Assumption 1

The class of problems that have weak (MVI) solutions in the sense of Assumption 1 generalizes other structured

non-monotone variational inequality problems, as we discuss in this section.

When ρ = 0, we recover the class of problems that have an (MVI) solution. This class contains all unconstrained

variationally coherent problems studied in, e.g., Mertikopoulos et al. (2019), Zhou et al. (2017), which encompass all

min-max problems with objectives that are bilinear, pseudo-convex-concave, quasi-convex-concave, and star-convex-

concave.

When ρ > 0 and p = 2, Assumption 1 is implied by F being − ρ
2 -comonotone (Bauschke et al., 2020) or ρ

2 -

cohypomonotone (Combettes and Pennanen, 2004), defined as follows:

(∀u,v ∈ R
d) :

〈F (u)− F (v),u− v〉 ≥ −ρ

2
‖F (u)− F (v)‖22. (2.2)

In particular, Assumption 1 is equivalent to requiring that (2.2) be satisfied for general u and v = u
∗, where u

∗

is a solution to (SVI) (in which case F (u∗) = 0). Note that Assumption 1 does not imply that a solution to (MVI)

exists, unless ρ = 0. It is further important to note that cohypomonotone operators arise as inverses of operators that

only need to be Lipschitz-continuous. (In fact, even a weaker property suffices; see Bauschke et al. (2020).) This

is particularly interesting as, combined with our main result, it implies that we can efficiently find zeros of inverses

of Lipschitz-continuous operators, as long as those inverses are sufficiently Lipschitz, even though finding zeros of

Lipschitz-continuous operators is computationally intractable, in general, as we have discussed.

It is interesting to note that Assumption 1 does not imply that, in the min-max setting, f is convex-concave (or,

more generally, that F is monotone), even in a neighborhood of an (SVI) solution u
∗ =

[
x
∗

y
∗

]
, i.e., a stationary point

of f . To see this, fix y = y
∗ and consider f(x,y∗) for x in a small neighborhood of x

∗. Using the fact that a

continuously-differentiable function is well-approximated by its linear approximation within small neighborhoods, all

that we are able to deduce from Assumption 1 is that

f(x∗,y∗)− f(x,y∗) ≈
〈[

∇xf(x,y
∗)

∇yf(x,y
∗)

]
,
[
x
∗−x

y
∗−y

∗

]〉
≤ ρ

2
‖∇f(x,y∗)‖2p∗ .

In particular, Assumption 1 does not preclude that f(x∗,y∗) is larger than f(x,y∗); it only bounds how much larger it

can be by a quantity proportional to ‖∇f(x,y∗)‖2p∗ . Compare this also to the Polyak-Łojasiewicz condition (see, e.g.,

Nouiehed et al. (2019), Yang et al. (2020)), which imposes the opposite inequality, namely, that f(x,y∗)− f(x∗,y∗)
is bounded above by a multiple of ‖∇f(x,y∗)‖2p∗ .

One way that a generic operator F may satisfy Assumption 1 is when there is a constant λ > 0 such that for some

u
∗ ∈ U∗ we have

(∀u ∈ R
d) 〈F (u),u− u

∗〉 ≥ −λ

2
‖u− u

∗‖2p, (2.3)

and when the operator F does not plateau or become too close to a linear operator around u
∗; namely, ‖F (u) −

F (u∗)‖p∗ ≥ µ‖u − u
∗‖p. (Note that (2.3) is always satisfied with λ = 2L for L-Lipschitz operators, but we may

need λ to be smaller than 2L). Then Assumption 1 would be satisfied with ρ = λ
µ . For a min-max problem, assuming f

is twice differentiable, this would mean that the lowest eigenvalue of the symmetric part of the Jacobian of
[ ∇xf(x,y)
−∇yf(x,y)

]
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is bounded below by −λ/2 in any direction u−u
∗ and the function f is sufficiently “curved” (not close to a linear or

a constant function) around u
∗ =

[
x
∗

y
∗

]
.

Finally, we discuss a concrete min-max application wherein there are no (MVI) solutions, but there do exist (SVI)

solutions satisfying the weak (MVI) condition of Assumption 1. This application arises in the context of two-agent

zero-sum reinforcement learning problems studied by many authors, including recently by Daskalakis et al. (2020). In

Section 5.1 of that work, the authors consider a special case of the general two-agent zero-sum RL problem, called von

Neumann’s ratio game, for which they observe that, even on a random example, the (MVI) solution set is empty, yet the

extragradient method still converges in practice (albeit at a slower rate). Interestingly, it is easy to construct examples

of the von Neumann ratio game for which no (MVI) solution exists, but the weak (MVI) condition of Assumption 1 does

hold, and yet the stronger cohypomonotonicity condition of (2.2) does not hold. Indeed, one such example is obtained

for the game shown in Proposition 2 of their paper, setting s = 1/2 and ǫ = .49. Here (MVI) fails, the weak (MVI)

condition of Assumption 1 is satisfied, and cohypomonotonicity fails to hold, e.g., for u = (x,y) = (0.1, 0.3) and

v = (x′,y′) = (0.8, 0.3). To be clear, the von Neumann ratio game gives rise to a constrained min-max problem

while our algorithm targets the unconstrained setting. While extending our result to the constrained setting remains

open, our example here demonstrates that there is value in further studying the weak (MVI) condition of Assumption 1

in the constrained setting as well.

2.3 Useful Definitions and Facts

We now list some useful definitions and facts that will subsequently be used in our analysis. We start with a presenta-

tion of uniformly convex functions, convex conjugates, and Bregman divergence, and then specialize these basic facts

to the ℓp setups used in Section 4.

Definition 2.1 (Uniform convexity). Given p ≥ 2, a differentiable function ψ : R
d → R ∪ {+∞} is said to be

p-uniformly convex w.r.t. ‖ · ‖ and with constant m if ∀x,y ∈ R
d,

ψ(y) ≥ ψ(x) + 〈∇ψ(x),y − x〉+ m

p
‖y− x‖p.

Observe that when p = 2, we recover the standard definition of strong convexity. Thus, uniform convexity is a

generalization of strong convexity.

Definition 2.2 (Convex conjugate). Given a convex function ψ : Rd → R∪{+∞}, its convex conjugateψ∗ is defined

by:

(∀z ∈ R
d) : ψ∗(z) = sup

x∈Rd

{〈z,x〉 − ψ(x)}.

The following standard fact can be derived using the Fenchel-Young inequality, which states that ∀x, z ∈ R
d :

ψ(x)+ψ∗(z) ≥ 〈z,x〉 , and it is a simple corollary of Danskin’s theorem (see, e.g., (Bertsekas, 1971, Bertsekas et al.,

2003)).

Fact 2.3. Let ψ : Rd → R ∪ {+∞} be a closed convex proper function and let ψ∗ be its convex conjugate. Then,

∀g ∈ ∂ψ∗(z),
g ∈ argsup

x∈Rd

{〈z,x〉 − ψ(x)},

where ∂ψ∗(z) is the subdifferential set (the set of all subgradients) of ψ∗ at point z. In particular, if ψ∗ is differentiable,

then argsup
x∈Rd{〈z,x〉 − ψ(x)} is a singleton set and ∇ψ∗(z) is its only element.

Definition 2.4 (Bregman divergence). Let ψ : Rd → R be a differentiable function. Then its Bregman divergence

between points x,y ∈ R
d is defined by

Dψ(x,y) = ψ(x) − ψ(y)− 〈∇ψ(y),x − y〉 .

It is immediate that the Bregman divergence of a convex function is non-negative.
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Useful facts for ℓp setups. We now outline some useful auxiliary results used specifically in Section 4, where we

study the case that p is not necessarily equal to 2.

Proposition 2.5. Given, z,u ∈ R
d, p ∈ (1,∞) and q ∈ {p, 2}, let

w = argmin
v∈Rd

{
〈z,v〉 + 1

q
‖u− v‖qp

}
.

Then, for p∗ = p
p−1 , q

∗ = q
q−1 :

w = u−∇
( 1

q∗
‖z‖q

∗

p∗

)
and

1

q
‖w− u‖qp =

1

q
‖z‖q

∗

p∗ .

Proof. The statements in the proposition are simple corollaries of conjugacy of the functions ψ(u) = 1
q ‖u‖qp and

ψ∗(z) = 1
q∗ ‖z‖

q∗

p∗ . In particular, the first part follows from

ψ∗(z) = sup
v∈Rd

{〈z,v〉 − ψ(v)},

by the definition of a convex conjugate and using that 1
q ‖u‖qp and 1

q∗ ‖z‖
q∗

p∗ are conjugates of each other, which are stan-

dard exercises in convex analysis for q ∈ {p, 2} (see, e.g., (Borwein and Zhu, 2004, Exercise 4.4.2) and (Boyd et al.,

2004, Example 3.27)).

The second part follows by ∇ψ∗(z) = arg sup
v∈Rd{〈z,v〉 − ψ(v)}, due to Fact 2.3 (ψ and ψ∗ are both con-

tinuously differentiable for p ∈ (1,∞)). Lastly, 1
q ‖w − u‖qp = 1

q ‖z‖
q∗

p∗ can be verified by setting w = u −
∇
(

1
q∗ ‖z‖

q∗

p∗

)
.

Another useful result is the following proposition, which will allow us to relate Lipschitzness of F to uniform

convexity of the prox mapping 1
q ‖ · ‖qp in the definition of the algorithm. The ideas used in the proof can be found

in the proofs of (d’Aspremont et al., 2018, Lemma 5.7), (Nesterov, 2015, Lemma 2), and in (Devolder et al., 2014,

Section 2.3). The proof is provided for completeness.

Proposition 2.6. For any L > 0, κ > 0, q ≥ κ, t ≥ 0, and δ > 0,

L

κ
tκ ≤ Λ

q
tq +

δ

2
,

where

Λ =
(2(q − κ)

δqκ

) q−κ
κ

Lq/κ.

Proof. The proof is based on the Fenchel-Young inequality and the conjugacy of functions
|x|r
r and

|y|s
s for r, s ≥ 1,

1
r + 1

s = 1, which implies xy ≤ xr

r + ys

s , ∀x, y ≥ 0. In particular, setting r = q/κ, s = q/(q − κ), and x = tκ, we

have
L

κ
tκ ≤ Ltq

qy
+

L(q − κ)

qκ
y

κ
q−κ .

It remains to set δ
2 = L(q−κ)

qκ y
κ

q−κ , which, solving for y, gives y =
(

δqκ
2L(q−κ)

)q−κ
, and verify that, under this choice,

Λ = Ltq

qy .

3 Generalized Extragradient for Problems with Weak MVI Solutions

In this section, we consider the setup with the Euclidean norm ‖ · ‖ = ‖ · ‖2, i.e., p = 2. To address the class of prob-

lems with weak (MVI) solutions (see Assumption 1), we introduce the following generalization of the extragradient

algorithm, to which we refer as Extragradient+ (EG+).

ūk = argmin
u∈Rd

{ak
β

〈F (uk),u− uk〉+
1

2
‖u− uk‖2

}
= uk − ak

β
F (uk),

uk+1 = argmin
u∈Rd

{
ak 〈F (ūk),u− uk〉+

1

2
‖u− uk‖2

}
= uk − akF (ūk),

(EG+)
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where β ∈ (0, 1] is a parameter of the algorithm and ak > 0 is the step size. When β = 1, we recover standard EG.

The analysis relies on the following merit (or gap) function:

hk := ak

(
〈F (ūk), ūk − u

∗〉+ ρ

2
‖F (ūk)‖2

)
, (3.1)

for some u∗ ∈ U∗ for which F satisfies Assumption 1. Then Assumption 1 implies that hk ≥ 0, ∀k.
The first (and main) step is to bound all hk’s above, as in the following lemma.

Lemma 3.1. Let F : Rd → R
d be an arbitrary L-Lipschitz operator that satisfies Assumption 1 for some u

∗ ∈ U∗.

Given an arbitrary initial point u0, let the sequences of points {ui}i≥1, {ūi}i≥0 evolve according to (EG+) for some

β ∈ (0, 1] and positive step sizes {ai}i≥0. Then, for any γ > 0 and any k ≥ 0, we have:

hk ≤ 1

2
‖u∗ − uk‖2 −

1

2
‖u∗ − uk+1‖2 +

ak
2

(
ρ− ak(1− β)

)
‖F (ūk)‖2

+
ak

2

2β2

(
akLγ − β

)
‖F (uk)‖2 +

1

2

(akL
γ

− β
)
‖ūk − uk+1‖2,

(3.2)

where hk is defined as in Eq. (3.1).

Proof. Fix any k ≥ 0 and write hk equivalently as

hk = ak 〈F (ūk),uk+1 − u
∗〉+ ak 〈F (uk), ūk − uk+1〉

+ ak 〈F (ūk)− F (uk), ūk − uk+1〉+ ak
ρ

2
‖F (ūk)‖2.

(3.3)

The proof proceeds by bounding from above individual terms on the right-hand side of Eq. (3.3). For the first term,

the first-order optimality in the definition of uk+1 gives:

akF (ūk) + uk+1 − uk = 0.

Thus, we have

ak 〈F (ūk),uk+1 − u
∗〉 = −〈uk+1 − uk,uk+1 − u

∗〉

=
1

2
‖u∗ − uk‖2 −

1

2
‖u∗ − uk+1‖2 −

1

2
‖uk − uk+1‖2.

(3.4)

For the second term on the right-hand side of Eq. (3.3), the first-order optimality in the definition of ūk implies:

ak
β

〈F (uk) + ūk − uk,uk+1 − ūk〉 = 0,

which, similarly as for the first term, leads to:

ak 〈F (uk), ūk − uk+1〉 =
β

2
‖uk − uk+1‖2 −

β

2
‖uk − ūk‖2 −

β

2
‖uk+1 − ūk‖2. (3.5)

For the third term on the right-hand side of Eq. (3.3), applying the Cauchy-Schwarz inequality, L-Lipschitzness of

F, and Young’s inequality, respectively, we have:

ak 〈F (ūk)− F (uk), ūk − uk+1〉 ≤ ak‖F (ūk)− F (uk)‖‖ūk − uk+1‖
≤ akL‖ūk − uk‖‖ūk − uk+1‖

≤ akLγ

2
‖ūk − uk‖2 +

akL

2γ
‖ūk − uk+1‖2, (3.6)

where the last inequality holds for any γ > 0.
Using the fact that ūk−uk = −ak

β F (uk), uk+1−uk = −akF (ūk) and combining Eqs. (3.4)-(3.6) with Eq. (3.3),

we have:

hk ≤ 1

2
‖u∗ − uk‖2 −

1

2
‖u∗ − uk+1‖2 +

ak
2

(
ρ− ak(1− β)

)
‖F (ūk)‖2

+
ak

2

2β2

(
akLγ − β

)
‖F (uk)‖2 +

1

2

(akL
γ

− β
)
‖ūk − uk+1‖2,

as claimed.
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Using Lemma 3.1, we can now draw conclusions about the convergence of EG+ by choosing parameters β, γ and

the step sizes ak to guarantee that hk < 1
2‖u∗ − uk‖2 − 1

2‖u∗ − uk+1‖2 as long as ‖F (ūk)‖ 6= 0.

Theorem 3.2. Let F : Rd → R
d be an arbitrary L-Lipschitz operator that satisfies Assumption 1 for some u

∗ ∈ U∗.

Given an arbitrary initial point u0 ∈ R
d, let the sequences of points {ui}i≥1, {ūi}i≥0 evolve according to (EG+) for

β = 1
2 and ak = 1

2L . Then:

(i) all accumulation points of {ūk}k≥0 are in U∗.

(ii) for all k ≥ 1 :

1

k + 1

k∑

i=0

‖F (ūi)‖2 ≤ 2L‖u0 − u
∗‖2

(k + 1)(1/(4L)− ρ)
.

In particular, we have that

min
0≤i≤k

‖F (ūi)‖2 ≤ 2L‖u0 − u
∗‖2

(k + 1)(1/(4L)− ρ)

and

Ei∼Unif{0,...,k}
[
‖F (ūi)‖2

]
≤ 2L‖u0 − u

∗‖2
(k + 1)(1/(4L)− ρ)

,

where i ∼ Unif{0, . . . , k} denotes an index i chosen uniformly at random from the set {0, . . . , k}.

Proof. Applying Lemma 3.1 with the choice of ak and β from the theorem statement and with γ = 1, we get

hk ≤ 1

2
‖u∗ − uk‖2 −

1

2
‖u∗ − uk+1‖2 +

1

4L

(
ρ− 1

4L

)
‖F (ūk)‖2.

By Assumption 1, ρ < 1
4L , and, thus, the constant multiplying ‖F (ūk)‖2 is strictly negative.

As hk ≥ 0 (by Assumption 1), we can conclude that

1

2
‖u∗ − uk+1‖2 −

1

2
‖u∗ − uk‖2 ≤ − 1

4L

( 1

4L
− ρ

)
‖F (ūk)‖2 ≤ 0. (3.7)

As 1
4L

(
1
4L −ρ

)
> 0, Eq. (3.7) implies that ‖F (ūk)‖ converges to zero as k → ∞. Further, as ūk−uk = −ak

β F (uk),

using triangle inequality and F (u∗) = 0 :

‖ūk − u
∗‖ ≤ ‖uk − u

∗‖+ ak
β
‖F (uk)− F (u∗)‖

≤
(
1 + L

ak
β

)
‖uk − u

∗‖ = 2‖uk − u
∗‖,

(3.8)

where we have used that F is L-Lipschitz. Now, as ‖uk − u
∗‖ is bounded (by ‖u0 − u

∗‖, from Eq. (3.7)), it follows

that the sequence {ūk} is bounded as well, and thus has a converging subsequence. Let {ūki} be any converging

subsequence of {ūk} and let ū∗ be its corresponding accumulation point. Then, as ‖F (ūk)‖ converges to zero as

k → ∞, it follows that ‖F (ūki)‖ converges to zero as i → ∞, and so it must be ū∗ ∈ U∗.
For Part (ii), telescoping Eq. (3.7), we get:

1

4L

( 1

4L
− ρ

) k∑

i=0

‖F (ūi)‖2 ≤ 1

2
‖u0 − u

∗‖2 − 1

2
‖uk+1 − u

∗‖2

≤ 1

2
‖u0 − u

∗‖2.

Rearranging the last inequality:

1

k + 1

k∑

i=0

‖F (ūi)‖2 ≤ 2L‖u0 − u
∗‖2

(k + 1)(1/(4L)− ρ)
.
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It remains to observe that

Ei∼Unif{0,...,k}[‖F (ūi)‖2] =
1

k + 1

k∑

i=0

‖F (ūi)‖2

and 1
k+1

∑k
i=0 ‖F (ūi)‖2 ≥ min0≤i≤k ‖F (ūi)‖2.

Remark 3.3. Due to Eq. (3.8), we have that all the iterates of EG+ with the parameter setting as in Theorem 3.2

remain in the ball centered at u∗ and of radius at most 2‖u0−u
∗‖. Thus, Assumption 1 does not need to hold globally

for the result to apply; it suffices that it only applies locally to points from the ball around u
∗ with radius 2‖u0 −u

∗‖.

Remark 3.4. It is possible to obtain similar convergence results as those of Theorem 3.2 under different parameter

choices. In particular, for γ ∈ (0, 1], it suffices that ak ≤ βγ
L and ρ < ak(1 − β). We settled on the choice made in

Theorem 3.2 as it is simple and requires tuning only one parameter, L.

Remark 3.5. Note that, in fact, we did not need to assume that u∗ from Assumption 1 is from U∗; it could have been

any point from R
d for which Assumption 1 is satisfied. All that would change in the proof of Theorem 3.2 is that in

Eq. (3.8), using ‖F (uk)‖ ≤ ‖F (uk) − F (u∗)‖ + ‖F (u∗)‖ (by triangle inequality) we would have 2‖uk − u
∗‖ +

1
L‖F (u∗)‖ on the right-hand side. Since u∗ ∈ R

d and F is Lipschitz-continuous, if F is bounded at any point u ∈ R
d,

‖F (u∗)‖ is bounded as well. Thus, we can still conclude that ‖ūk − u
∗‖ is bounded and proceed with the rest of the

proof. An interesting consequence of this observation and the proof of Theorem 3.2 is that Assumption 1 guarantees

existence of an (SVI) solution.

4 Extensions: ℓp Norms and Stochastic Setups

In this section, we show how to extend the results of Section 3 to non-Euclidean, ℓp-normed setups (for ρ = 0) and

stochastic evaluations of F . In particular, we let ‖ · ‖ = ‖ · ‖p for p ∈ (1,∞)3 and p∗ = p
p−1 . Further, we let F̃ denote

the stochastic estimate of F that at iteration k satisfies:

E[F̃ (ūk)|F̄k] = F (ūk), E[‖F̃ (ūk)− F (ūk)‖2∗|F̄k] ≤ σ̄2
k

E[F̃ (uk+1)|Fk+1] = F (uk+1), E[‖F̃ (uk+1)− F (uk+1)‖2∗|Fk+1] ≤ σk+1
2,

(4.1)

where Fk and F̄k denote the natural filtrations, including all the randomness up to the construction of points uk and

ūk, respectively, and σ̄2
k, σk+1

2 are the variance constants. Observe that Fk ⊆ F̄k and F̄k ⊆ Fk+1. To simplify the

notation, we denote:

η̄k = F̃ (ūk)− F (ūk), ηk+1 = F̃ (uk+1)− F (uk+1). (4.2)

The variant of the method we consider here is stated as follows:

ūk = argmin
u∈Rd

{ak
β

〈
F̃ (uk),u− uk

〉
+

1

q
‖u− uk‖qp

}
,

uk+1 = argmin
u∈Rd

{
ak

〈
F̃ (ūk),u− uk

〉
+ φp(u,uk)

}
,

(EGp+)

where

q =

{
2, if p ∈ (1, 2],

p∗ = p
p−1 , if p ∈ (2,∞)

(4.3)

and

φp(u,uk) =

{
D 1

2‖·−u0‖2
p
(u,uk), if p ∈ (1, 2],

1
p‖u− uk‖pp, if p ∈ (2,∞).

(4.4)

Notice that for p = 2, EGp+ is equivalent to EG+. Thus, EGp+ generalizes EG+ to arbitrary ℓp norms. However,

EGp+ is different from the standard Extragradient or Mirror-Prox, for two reasons. First is that, as is the case for

3Note that the norms ‖ · ‖1 and ‖ · ‖∞ are within a constant factor of the ℓp-norm for p = 1 + 1
log(d)

and p = log(d), respectively, and so

taking p ∈ (1,∞) is w.l.o.g.—for any p < 1 + 1
log(d)

or p > log(d), we can run the algorithm with p = 1+ 1
log d

or p = log d, losing at most a

constant factor in the convergence bound.
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EG+, the step sizes that determine ūk and uk+1 (i.e., ak/β and ak) are not the same in general, as we could (and

will) choose β 6= 1. Second, unless p = q = 2, the function 1
q ‖u − uk‖qp in the definition of the algorithm is not a

Bregman divergence between points u and uk of any function ψ. Further, when p > 2, 1
q ‖u − uk‖qp is not strongly

convex. Instead, it is p-uniformly convex with constant 1. Additionally, no function whose gap between the maximum

and the minimum value is bounded by a constant on any ball of constant radius can have constant of strong convexity

w.r.t. ‖ · ‖p that is larger than O( 1
d1−2/p ) (d’Aspremont et al., 2018). When p ∈ (1, 2], 1

q ‖u− uk‖qp is strongly convex

with constant p− 1 (Nemirovski, 2004). We let mp denote the constant of strong/uniform convexity of 1
q ‖u− uk‖qp,

that is:

mp = max{p− 1, 1}. (4.5)

Observe that

φp(u,uk) ≥
mp

q
‖u− uk‖qp. (4.6)

This is immediate for p > 2, by the definition of φp and using that q = p and mp = 1 when p > 2. For p ∈ (1, 2], we

have that q = 2, and Eq. (4.6) follows by strong convexity of 1
2‖ · ‖2p.

As in the case of Euclidean norms, the analysis relies on the following merit function:

hk := ak

(
〈F (ūk), ūk − u

∗〉+ ρ

2
‖F (ūk)‖2p∗

)
. (4.7)

Moreover, as before, Assumption 1 guarantees that hk ≥ 0, ∀k.
We start by first proving a lemma that holds for generic choices of algorithm parameters ak and β. We will then use

this lemma to deduce the convergence bounds for different choices of p > 1 and both deterministic and the stochastic

oracle access to F.

Lemma 4.1. Let p > 1 and let F : R
d → R

d be an arbitrary L-Lipschitz operator w.r.t. ‖ · ‖p that satisfies

Assumption 1 for some u
∗ ∈ U∗. Given an arbitrary initial point u0, let the sequences of points {ui}i≥1, {ūi}i≥0

evolve according to (EGp+) for some β ∈ (0, 1] and positive step sizes {ai}i≥0. Then, for any γ > 0 and any k ≥ 0:

hk ≤ − ak 〈η̄k, ūk − u
∗〉 − ak 〈η̄k − ηk, ūk − uk+1〉+

akρ

2
‖F (ūk)‖2p∗

+ φp(u
∗,uk)− φp(u

∗,uk+1) +
β −mp

q
‖uk+1 − uk‖qp

+
akΛkγ − β

q
‖ūk − uk‖qp +

akΛk/γ − βmp

q
‖ūk − uk+1‖qp + akδk,

where hk is defined as in Eq. (4.7), δk is any positive number, and Λk =
(

q−2
δkq

) q−2
2

Lq/2. When q = 2, the statement

also holds with δk = 0 and Λk = L.

Proof. We begin the proof by writing hk equivalently as:

hk = ak

〈
F̃ (ūk), ūk − u

∗
〉
− ak 〈η̄k, ūk − u

∗〉+ akρ

2
‖F (ūk)‖2p∗

= ak

〈
F̃ (ūk),uk+1 − u

∗
〉
+ ak

〈
F̃ (uk), ūk − uk+1

〉

+ ak

〈
F̃ (ūk)− F̃ (uk), ūk − uk+1

〉
− ak 〈η̄k, ūk − u

∗〉+ akρ

2
‖F (ūk)‖2p∗ .

(4.8)

The proof now proceeds by bounding individual terms on the right-hand side of the last equality.

Let Mk+1(u) = ak

〈
∇F̃ (ūk),u− uk

〉
+ φp(u,uk), so that uk+1 = argmin

u∈Rd Mk+1(u). By the definition

of Bregman divergence of Mk+1 :

Mk+1(u
∗) = Mk+1(uk+1) + 〈∇Mk+1(uk+1),u

∗ − uk+1〉+DMk+1
(u∗,uk+1).

As uk+1 = argmin
u∈Rd Mk+1(u), we have∇Mk+1(uk+1) = 0. Further, DMk+1

(u∗,uk+1) = Dφp(·,uk)(u
∗,uk+1).

When p ≤ 2, φp itself is a Bregman divergence, and we have DMk+1
(u∗,uk+1) = φp(u

∗,uk+1). When p > 2,
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φp(u,uk) = 1
p‖u − uk‖pp, and as φp is p-uniformly convex with constant 1, it follows that DMk+1

(u∗,uk+1) ≥
1
p‖u∗ − uk+1‖pp = φp(u

∗,uk+1). Thus:

Mk+1(u
∗) ≥ Mk+1(uk+1) + φp(u

∗,uk+1).

Equivalently, applying the definition of Mk+1(·) to the last inequality:

ak

〈
∇F̃ (ūk),uk+1 − u

∗
〉
≤ φp(u

∗,uk)− φp(u
∗,uk+1)− φp(uk+1,uk

)

≤ φp(u
∗,uk)− φp(u

∗,uk+1)−
mp

q
‖uk+1 − uk‖qp,

(4.9)

where the last inequality follows from Eq. (4.6).

Now let M̄k(u) =
ak

β

〈
F̃ (uk),u− uk

〉
+ 1

q ‖u− uk‖qp so that ūk = argmin
u∈Rd M̄k(u). By similar arguments

as above,

M̄k(uk+1) = M̄k(ūk) +
〈
∇M̄k(ūk),uk+1 − ūk

〉
+DMk

(uk+1, ūk)

≥ M̄k(ūk) +
mp

q
‖uk+1 − ūk‖qp,

where the inequality is by ∇M̄k(ūk) = 0 and the fact that 1
q ‖ · ‖qp is q-uniformly convex w.r.t. ‖ · ‖p with constant mp,

by the choice of q from Eq. (4.3). Applying the definition of M̄k(u) to the last inequality:

ak

〈
F̃ (uk), ūk − uk+1

〉
≤ β

q

(
‖uk+1 − uk‖qp − ‖ūk − uk‖qp −mp‖uk+1 − ūk‖qp

)
. (4.10)

The remaining term that we need to bound is
〈
F̃ (ūk)− F̃ (uk), ūk − uk+1

〉
. Using the definitions of η̄k,ηk, we

have:
〈
F̃ (ūk)− F̃ (uk), ūk − uk+1

〉
= 〈F (ūk)− F (uk), ūk − uk+1〉 − 〈η̄k − ηk, ūk − uk+1〉
(i)

≤ −〈η̄k − ηk, ūk − uk+1〉+ ‖F (ūk)− F (uk)‖p∗‖ūk − uk+1‖p
(ii)

≤ −〈η̄k − ηk, ūk − uk+1〉+ L‖ūk − uk‖p‖ūk − uk+1‖p
(iii)

≤ −〈η̄k − ηk, ūk − uk+1〉+
Lγ

2
‖ūk − uk‖2p +

L

2γ
‖ūk − uk+1‖2p,

where (i) is by Hölder’s inequality, (ii) is by L-Lipschitzness of F, and (iii) is by Young’s inequality, which holds

for any γ > 0. Now, let δk > 0 and Λk =
(

2(q−κ)
δkqκ

) q−κ
κ

Lq/κ. Then, applying Proposition 2.6 to the last two terms in

the last inequality:
〈
F̃ (ūk)− F̃ (uk), ūk − uk+1

〉
≤ − 〈η̄k − ηk, ūk − uk+1〉

+
Λkγ

q
‖ūk − uk‖qp +

Λk

qγ
‖ūk − uk+1‖qp + δk.

(4.11)

Observe that when q = 2, there is no need to apply Proposition 2.6, and the last inequality is satisfied with δk = 0 and

Λk = L.
Combining Eqs. (4.9)-(4.11) with Eq. (4.8), we have:

hk ≤ − ak 〈η̄k, ūk − u
∗〉 − ak 〈η̄k − ηk, ūk − uk+1〉+

akρ

2
‖F (ūk)‖2p∗

+ φp(u
∗,uk)− φp(u

∗,uk+1) +
β −mp

q
‖uk+1 − uk‖qp

+
akΛkγ − β

q
‖ūk − uk‖qp +

akΛk/γ − βmp

q
‖ūk − uk+1‖qp + akδk,

as claimed.

12



We are now ready to state and prove the main convergence bounds. For simplicity, we start with the case of exact

oracle access to F . We then show that we can build on this result by separately bounding the error terms due to the

variance of the stochastic estimates F̃ .

Deterministic oracle access. The main result is summarized in the following theorem.

Theorem 4.2. Let p > 1 and let F : R
d → R

d be an arbitrary L-Lipschitz operator w.r.t. ‖ · ‖p that satisfies

Assumption 1 with ρ = 0 for some u
∗ ∈ U∗. Assume that we are given oracle access to the exact evaluations of F,

i.e., η̄i = ηi = 0, ∀i. Given an arbitrary initial point u0 ∈ R
d, let the sequences of points {ui}i≥1, {ūi}i≥0 evolve

according to (EGp+) for β ∈ (0, 1] and step sizes {ai}i≥0 specified below. Then, we have:

(i) Let p ∈ (1, 2]. If β = mp = p − 1, ak =
mp

3/2

2L , then all accumulation points of {uk}k≥0 are in U∗, and,

furthermore ∀k ≥ 0:

1

k + 1

k∑

i=0

‖F (ui)‖2p∗ ≤ 16L2φp(u
∗,u0)

mp
2(k + 1)

= O
( L2‖u∗ − u0‖2p
(p− 1)

2
(k + 1)

)
.

In particular, within k = O
(L2‖u∗−u0‖2

p

(p−1)2ǫ2

)
iterations EGp+ can output a point u with ‖F (u)‖p∗ ≤ ǫ.

(ii) Let p ∈ (2,∞). If β = 1
2 , δk = δ > 0, Λ =

(
q−2
δq

) q−2
2 Lq/2, and ak = 1

2Λ = a, then, ∀k ≥ 0:

1

k + 1

k∑

i=0

‖F (ūi)‖p
∗

p∗ ≤
2‖u∗ − u0‖pp
ap∗(k + 1)

+
2pδ

ap∗−1
.

In particular, for any ǫ > 0, there is a choice of δ = ǫ2

CpL
, where Cp is a constant that only depends on p, such

that EGp+ can output a point u with ‖F (u)‖p∗ ≤ ǫ in at most

k = Op

((L‖u∗ − u0‖p
ǫ

)p
)

iterations. Here, the Op notation hides constants that only depend on p.

Proof. Observe that, as η̄i = ηi = 0, ∀i ≥ 0 and ρ = 0, Lemma 4.1 and the definition of hk give:

0 ≤ hk ≤ φp(u
∗,uk)− φp(u

∗,uk+1) +
β −mp

q
‖uk+1 − uk‖qp

+
akΛkγ − β

q
‖ūk − uk‖qp +

akΛk/γ − βmp

q
‖ūk − uk+1‖qp + akδk.

(4.12)

Proof of Part (i). In this case, we can set δk = 0 (see Lemma 4.1), Λk = L, and q = 2. Therefore, setting β = mp,

ak =
mp

3/2

2L , and γ = 1√
mp

we get from Eq. (4.12) that

φp(u
∗,uk+1) ≤ φp(u

∗,uk)−
mp

4
‖ūk − uk‖2p. (4.13)

It follows that ‖ūk −uk‖2p converges to zero as k → ∞. By the definition of ūk and Proposition 2.5, 1
2‖ūk −uk‖2p =

ak
2

2β2 ‖F (uk)‖2p∗ , and so ‖F (uk)‖p∗ converges to zero as k → ∞. Further, as φp(u
∗,uk) ≤ φp(u

∗,u0) < ∞ and

φp(u
∗,uk) ≥ mp

2 ‖u∗ − uk‖2p, mp > 0, it follows that ‖u∗ − uk‖p is bounded, and, thus, {uk}k≥0 is a bounded

sequence. The proof that all accumulation points of {uk}k≥0 are in U∗ is standard and omitted (see the proof of

Theorem 3.2 for a similar argument).
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To bound 1
k+1

∑k
i=0 ‖F (ui)‖2p∗ , we telescope the inequality from Eq. (4.13) to get:

mp

k∑

i=0

‖ūi − ui‖2p ≤ 4(φp(u
∗,u0)− φp(u

∗,uk+1)) ≤ 4φp(u
∗,u0).

To complete the proof of this part, it remains to use the fact that ‖ūi −ui‖2p = ak
2

β2 ‖F (ui)‖2p∗ (already argued above),

the definitions of ak and β, and mp = p− 1. The bound on φp(u
∗,u0) follows from the definition of φp in this case.

In particular, if we denote ψ(u) = 1
2‖u − u0‖2p, then φp(u

∗,u0) = Dψ(u
∗,u0). Using the definition of Bregman

divergence and the fact that, for this choice of ψ, we have ‖∇ψ(u)‖p∗ = ‖u − u0‖p, ∀u ∈ R
d, (see the last part of

Proposition 2.5) it follows that:

φp(u
∗,u0) =

1

2
‖u∗ − u0‖2p −

1

2
‖u0 − u0‖2p −

〈
∇u

(1
2
‖u− u0‖2p

)∣∣∣
u=u0

,u∗ − u0

〉

=
1

2
‖u∗ − u0‖2p.

Proof of Part (ii). In this case, q = p, φp(u,v) =
1
p‖u− v‖pp, and mp = 1. Using Proposition 2.5, ‖uk − ūk‖pp =

ak
p∗

βp∗ ‖F (uk)‖p
∗

p∗ and ‖uk+1 − uk‖pp = ak
p∗‖F (ūk)‖p

∗

p∗ . Combining with Eq. (4.12), we have:

0 ≤ 1

p
‖u∗ − uk‖pp −

1

p
‖u∗ − uk+1‖pp +

(β − 1)ak
p∗

p
‖F (ūk)‖p

∗

p∗

+
(akΛkγ − β)ak

p∗

pβp∗
‖F (uk)‖p

∗

p∗ +
akΛk/γ − β

p
‖ūk − uk+1‖pp + akδk.

(4.14)

Now let γ = 1, β = 1
2 , δk = δ > 0, and ak = 1

2Λk
= 1

2Λ = a. Then akΛkγ − β = akΛk/γ − β = 0 and Eq. (4.14)

simplifies to:

ap
∗

2p
‖F (ūk)‖p

∗

p∗ ≤ 1

p
‖u∗ − uk‖pp −

1

p
‖u∗ − uk+1‖pp + aδ.

Telescoping the last inequality and then dividing by
ak

p∗(k+1)
2p , we have:

1

k + 1

k∑

i=0

‖F (ūi)‖p
∗

p∗ ≤
2‖u∗ − u0‖pp
ap∗(k + 1)

+
2pδ

ap∗−1
. (4.15)

Now, for EGp+ to be able to output a point u with ‖F (u)‖p∗ ≤ ǫ, it suffices to show that for some choice of δ and

k we can make the right-hand side of Eq. (4.15) at most ǫp
∗

. This is true because then EGp+ can output the point

ūi = argmin0≤i≤k ‖F (ūi)‖p∗ . For stochastic setups, the guarantee would be in expectation, and EGp+ could output

a point ūi with i chosen uniformly at random from {0, . . . , k}, as discussed in the proof of Theorem 3.2.

Observe first that, as Λ =
(
p−2
pδ

) p−2
2 Lp/2 and p∗ = p

p−1 , we have that:

δ

ap∗−1
= δ(2Λ)p

∗−1 = δ2
1

p−1Λ
1

p−1

= 2
1

p−1 δ
p

2(p−1)

(p− 2

p

) p−2
2(p−1)

L
p

2(p−1) .

Setting 2pδ
ap∗−1 ≤ ǫp

∗

2 , recalling that p∗ = p
p−1 , and rearranging, we have:

δ
p∗

2 ≤ ǫp
∗

2
2p−1

p p

( p

p− 2

) p−2
2p p∗

L−p∗/2.

Equivalently:

δ ≤ ǫ2

L · 2
2(2p−1)

p p
2(p−1)

p (p−2
p )

p−2
p

.
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It can be verified numerically that (p−2
p )

p−2
p is a constant between 1

e and 1, while it is clear that 2
2(2p−1)

p p
2(p−1)

p =

O(p2) is a constant that only depends on p. Hence, it suffices to set δ = ǫ2

CpL
, where Cp = 2

2(2p−1)
p p

2(p−1)
p .

It remains to bound the number of iterations k so that
2‖u∗−u0‖p

p

ap∗ (k+1)
≤ ǫp

∗

2 . Equivalently, we need k+1 ≥ 4‖u∗−u0‖p
p

ap∗ǫp∗
.

Plugging δ = ǫ2

CpL
into the definition of Λ, using that p∗ = p

p−1 , and simplifying, we have:

ap
∗

= (2Λ)p
∗

= 2
p

p−1

(p− 2

pδ

) p−2
2 · p

p−1

L
p
2 ·

p
p−1

= Op

((1
ǫ

) p(p−2)
p−1

Lp

)
.

Thus,

k = Op

((1
ǫ

) p(p−2)
p−1 + p

p−1

Lp‖u∗ − u0‖pp
)

= Op

((L‖u∗ − u0‖p
ǫ

)p
)
,

as claimed.

Remark 4.3. There are significant technical obstacles in generalizing the results from Theorem 4.2 to settings with

ρ > 0. In particular, when p ∈ (1, 2), the proof fails because we take φp(u
∗,u) to be the Bregman divergence of

‖ · −u0‖2p, and relating ‖ūk − uk‖p to ‖F (uk)‖p∗ would require ‖ · ‖2p to be smooth, which is not true. If we had,

instead, used ‖u∗−u‖2p in place of φp(u
∗,u), we would have incurred 1

2‖u∗−uk‖2p− mp

2 ‖u∗−uk+1‖2p in the upper

bound on hk, which would not telescope, as in this case mp < 1. In the case of p > 2, the challenges come from

a delicate relationship between the step sizes ak and error terms δk. It turns out that it is possible to guarantee local

convergence (in the region where ‖F (ūk)‖2 is bounded by a constant less than 1) with ρ > 0, but ρ would need to

scale with poly(ǫ) in this case. As this is a weak result whose usefulness is unclear, we have omitted it.

Stochastic oracle access. To obtain results for stochastic oracle access to F, we only need to bound the terms Es def
=

−ak 〈η̄k, ūk − u
∗〉− ak 〈η̄k − ηk, ūk − uk+1〉 from Lemma 4.1 corresponding to the stochastic error in expectation,

while for the rest of the analysis we can appeal to the results for the deterministic oracle access to F. In the case of

p = 2, there is one additional term that appears in hk due to replacing F (ūk) with F̃ (ūk). This term is simply equal

to: akρ

2
E[‖F̃ (ūk)‖22 − ‖F (ūk)‖22|F̄k] =

akρ

2
E[‖F (ūk) + η̄k‖22 − ‖F (ūk)‖22|F̄k] =

akρ

2
σ̄2
k. (4.16)

We start by bounding the stochastic error Es in expectation.

Lemma 4.4. Let Es = −ak 〈η̄k, ūk − u
∗〉 − ak 〈η̄k − ηk, ūk − uk+1〉, where η̄k and ηk are defined as in Eq. (4.2)

and all the assumptions of Theorem 4.5 below apply. Then, for q defined by Eq. (4.3) and any τ > 0:

E[Es] ≤ 2q
∗/2ak

q∗(σk
2 + σ̄2

k)
q∗/2

q∗τq∗
+ E

[τq
q
‖ūk − uk+1‖qp

]
,

where the expectation is w.r.t. all the randomness in the algorithm.

Proof. Let us start by bounding −ak 〈η̄k, ūk − u
∗〉 first. Conditioning on F̄k, η̄k is independent of ūk and u

∗, and,

thus:

E[−ak 〈η̄k, ūk − u
∗〉] = E

[
E[−ak 〈η̄k, ūk − u

∗〉 |F̄k]
]
= 0.

The second term, −ak 〈η̄k − ηk, ūk − uk+1〉 , can be bounded using Hölder’s inequality and Young’s inequality as

follows:

E
[
− ak 〈η̄k − ηk, ūk − uk+1〉

]
≤ E

[
ak‖η̄k − ηk‖p∗‖ūk − uk+1‖p

]

≤ E

[akq
∗‖η̄k − ηk‖q

∗

p∗

q∗τq∗
]
+ E

[τq
q
‖ūk − uk+1‖qp

]
.
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It remains to bound E
[
‖η̄k − ηk‖q

∗

p∗

]
. Using the triangle inequality,

E
[
‖η̄k − ηk‖q

∗

p∗

]
≤ E

[(
‖η̄k‖p∗ + ‖ηk‖p∗

)q∗]

= E

[((
‖η̄k‖p∗ + ‖ηk‖p∗

)2)q∗/2]

≤
(
E
[(
‖η̄k‖p∗ + ‖ηk‖p∗

)2])q∗/2

,

where the last line is by Jensen’s inequality, as q∗ ∈ (1, 2], and so (·)q∗/2 is concave. Using Young’s inequality and

linearity of expectation:

E
[(
‖η̄k‖p∗ + ‖ηk‖p∗

)2] ≤ 2
(
E
[
‖η̄k‖2p∗

]
+ E

[
‖ηk‖2p∗

])

≤ 2(σk
2 + σ̄2

k).

Putting everything together:

E
[
‖η̄k − ηk‖q

∗

p∗

]
≤ 2q

∗/2(σk
2 + σ̄2

k)
q∗/2

and

E[Es] = E
[
− ak 〈η̄k − ηk, ūk − uk+1〉

]

≤ 2q
∗/2ak

q∗(σk
2 + σ̄2

k)
q∗/2

q∗τq∗
+ E

[τq
q
‖ūk − uk+1‖qp

]
,

as claimed.

We are now ready to bound the total oracle complexity of EGp+ (and its special case EG+), as follows.

Theorem 4.5. Let p > 1 and let F : R
d → R

d be an arbitrary L-Lipschitz operator w.r.t. ‖ · ‖p that satisfies

Assumption 1 for some u
∗ ∈ U∗. Given an arbitrary initial point u0 ∈ R

d, let the sequences of points {ui}i≥1,

{ūi}i≥0 evolve according to (EGp+) for some β ∈ (0, 1] and positive step sizes {ai}i≥0. Let the variance of a single

query to the stochastic oracle F̃ be bounded by some σ2 < ∞.

(i) Let p = 2 and ρ ∈
[
0, ρ̄

)
, where ρ̄ = 1

4
√
2L

. If β = 1
2 and ak = 1

2
√
2L

, then EGp+ can output a point u with

E[‖F̃ (u)‖2] ≤ ǫ with at most

O
(L‖u∗ − u0‖22

ǫ2(ρ̄− ρ)

(
1 +

σ2

Lǫ2(ρ̄− ρ)

))

oracle queries to F̃ .

(ii) Let p ∈ (1, 2] and ρ = 0. If ak =
mp

3/2

2L and β = mp, then EGp+ can output a point u with E[‖F̃ (u)‖p∗ ] ≤ ǫ
with at most

O
(L2‖u∗ − u0‖2p

mp
2ǫ2

(
1 +

σ2

mpǫ2

))

oracle queries to F̃ , where mp = p− 1.

(iii) Let p > 2 and ρ = 0. If β = 1
2 and ak = a = 1

4Λ , then EGp+ can output a point u with E[‖F̃ (u)‖p∗ ] ≤ ǫ with

at most

Op

((L‖u∗ − u0‖p
ǫ

)p(
1 +

(σ
ǫ

)p∗))

oracle queries to F̃ , where p∗ = p
p−1 .
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Proof. Combining Lemmas 4.1 and 4.4, we have, ∀k ≥ 0:

0 ≤ E[hk] ≤
2q

∗/2ak
q∗(σk

2 + σ̄2
k)

q∗/2

q∗τq∗
+ E

[τq
q
‖ūk − uk+1‖qp

]
+

akρσ̄k
2

2
+ E

[akρ
2

‖F̃ (ūk)‖2p∗

]

+ E

[
φp(u

∗,uk)− φp(u
∗,uk+1) +

β −mp

q
‖uk+1 − uk‖qp

]

+ E

[akΛkγ − β

q
‖ūk − uk‖qp +

akΛk/γ − βmp

q
‖ūk − uk+1‖qp + akδk

]
,

(4.17)

Proof of Part (i). In this case, q = 2, mp = 1, δ = 0, Λk = L, and φp(u
∗,u) = 1

2‖u∗ − u‖22, and, further,

uk+1 − uk = −akF (ūk), so Eq. (4.17) simplifies to

0 ≤ E[hk] ≤
2ak

2(σ̄k
2 + σ̄2

k)

2τ2
+

akρσk
2

2

+ E

[1
2
‖u∗ − uk‖22 −

1

2
‖u∗ − uk+1‖22 +

ak
2(β − 1) + akρ

2
‖F̃ (ūk)‖22

]

+ E

[akLγ − β

2
‖ūk − uk‖22 +

akL/γ − β + τ2

2
‖ūk − uk+1‖22

]
.

Taking β = 1
2 , τ

2 = 1
4 , γ =

√
2, and ak = 1

2
√
2L

, and recalling that ρ̄ = 1
4
√
2L

, we have:

ak(ρ̄− ρ)E
[
‖F̃ (ūk)‖22

]
≤ E

[
‖u∗ − uk‖22 − ‖u∗ − uk+1‖22

]
+ 4ak

2(σk
2 + σ̄k)

2 +
akρσ̄k

2

2
.

Telescoping the last inequality and dividing both sides by ak(ρ̄− ρ)(k + 1), we get:

1

k + 1

k∑

i=0

E
[
‖F̃ (ūi)‖22

]
≤ 2

√
2L‖u∗ − u0‖22

(k + 1)(ρ̄− ρ)
+

√
2
∑k

i=0(σi
2 + σ̄2

i )

L(ρ̄− ρ)(k + 1)
+

ρ
∑k

i=0 σ̄
2
i

2(k + 1)(ρ̄− ρ)
.

In particular, if the variance of a single sample of F̃ evaluated at an arbitrary point is σ2 and we take n samples of F̃
in each iteration, then:

1

k + 1

k∑

i=0

E
[
‖F̃ (ūi)‖22

]
≤ 2

√
2L‖u∗ − u0‖22

(k + 1)(ρ̄− ρ)
+

σ2(4
√
2/L+ ρ)

2n(ρ̄− ρ)
.

To finish the proof of this part, we require that both terms on the right-hand side of the last inequality are bounded by
ǫ2

2 . For the first term, this leads to:

k =

⌈
4
√
2L‖u∗ − u0‖22
ǫ2(ρ̄− ρ)

− 1

⌉
= O

(L‖u∗ − u0‖22
ǫ2(ρ̄− ρ)

)
.

For the second term, the bound is:

n =

⌈
2σ2(4

√
2/L+ ρ)

ǫ2(ρ̄− ρ)

⌉
= O

( σ2

Lǫ2(ρ̄− ρ)

)
.

Thus, the total number of required oracle queries to F̃ is bounded by:

k(1 + n) = O
(L‖u∗ − u0‖22

ǫ2(ρ̄− ρ)

(
1 +

σ2

Lǫ2(ρ̄− ρ)

))
.

As discussed before, ūi with i chosen uniformly at random from {0, . . . , k} will satisfy ‖F̃ (ūi)‖2 ≤ ǫ in expectation.
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Proof of Part (ii). In this case, q = 2, mp = p− 1, δ = 0, Λk = L, and ρ = 0. Thus, Eq. (4.17) simplifies to:

0 ≤ E[hk] ≤
2ak

2(σk
2 + σ̄2

k)

2τ2

+ E

[
φp(u

∗,uk)− φp(u
∗,uk+1) +

β −mp

2
‖uk+1 − uk‖2p

]

+ E

[akLγ − β

2
‖ūk − uk‖2p +

akL/γ − βmp + τ2

2
‖ūk − uk+1‖2p

]
.

In this case, the same choices for ak and β as in the deterministic case suffice. In particular, let ak =
mp

3/2

2L , β = mp,

γ = 1√
mp

, and τ2 =
mp

2

2 . Then, using the fact that 1
2‖ūk − uk‖2p = ak

2

2β2 ‖F̃ (uk)‖2p∗ , from Proposition 2.5, we have

ak
2mp

4β2
E
[
‖F̃ (uk)‖2p∗

]
≤ E

[
φp(u

∗,uk)− φp(u
∗,uk+1)

]
+

ak
2(σk

2 + σ̄2
k)

τ
.

Telescoping the last inequality and dividing both sides by (k + 1)
ak

2mp

4β2 , we have:

1

k + 1

k∑

i=0

E
[
‖F̃ (ui)‖2p∗

]
≤ 16L2φp(u

∗,u0)

(k + 1)mp
2

+
8
∑k

i=0(σi
2 + σ̄i

2)

(k + 1)mp
. (4.18)

Now let σi
2 = σ̄2

i = σ2/n, where σ2 is the variance of a single sample of F̃ and n is the number of samples taken

per iteration. Then, similarly as in Part (i), to bound the total number of samples it suffices to bound each term on the

right-hand side of Eq. (4.18) by ǫ2

2 . The first term was already bounded in Theorem 4.2, and thus we obtain:

k = O
(L2‖u∗ − u0‖2p

mp
2ǫ2

)
.

For the second term, it suffices that:

n = O
( σ2

mpǫ2

)
,

and the bound on the total number of samples follows.

Proof of Part (iii). In this case, q = p, mp = 1, ρ = 0, φp(u
∗,u) = 1

p‖u∗ − u‖pp, and we take δk = δ > 0,

Λk = Λ =
(
p−2
pδ

) p−2
2 L

p
2 . Eq. (4.17) now simplifies to:

0 ≤ E[hk] ≤
2p

∗/2ak
p∗

(σk
2 + σ̄2

k)
p∗/2

p∗τp∗

+ E

[1
p
‖u∗ − uk‖pp −

1

p
‖u∗ − uk+1‖pp +

β − 1

p
‖uk+1 − uk‖pp

]

+ E

[akΛγ − β

p
‖ūk − uk‖pp +

akΛ/γ + τp − β

p
‖ūk − uk+1‖pp + akδ

]
.

(4.19)

Recall that, by Proposition 2.5, 1
p‖uk+1 − uk‖pp = ap∗

p ‖F̃ (ūk)‖p
∗

p∗ . Let β = 1
2 , ak = a = 1

4Λ , τ
p = 1

4 , and γ = 1.

Then β − 1 = − 1
2 , akΛγ − β = − 1

4 < 0, and akΛ/γ + τp − β = 0, and Eq. (4.19) leads to:

ap
∗

2p
E
[
‖F̃ (ūk)‖p

∗

p∗

]
≤ E

[1
p
‖u∗ − uk‖pp −

1

p
‖u∗ − uk+1‖pp

]
+

2
4+p

2(p−1) ap
∗

(σk
2 + σ̄2

k)
p∗/2

p∗
+ aδ.

Telescoping the last inequality and then dividing both sides by ap∗

2p (k + 1), we have:

1

k + 1

k∑

i=0

E
[
‖F̃ (ūi)‖p

∗

p∗

]
≤

2‖u∗ − u0‖pp
ap∗(k + 1)

+
2

3p+2
2(p−1) p

∑k
i=0(σi

2 + σ̄2
i )

p∗/2

p∗(k + 1)
+

2pδ

ap∗ − 1
.
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Now let σ2 be the variance of a single sample of F̃ and suppose that in each iteration we take n samples to estimate

F (ūi) and F (ui). Then σi
2 = σ̄i

2 = σ2

n , and the last equation simplifies to

1

k + 1

k∑

i=0

E
[
‖F̃ (ūi)‖p

∗

p∗

]
≤

2‖u∗ − u0‖pp
ap∗(k + 1)

+
2

p+2
p−1 pσp∗

p∗n
+

2pδ

ap∗ − 1
.

To complete the proof, as before it suffices to show that we can choose k and n so that
2p‖u∗−u0‖p

p

ap∗ (k+1)
+ 2pδ

ap∗−1
≤ ǫp

∗

2

and 2
p+2
p−1 pσp∗

p∗n ≤ ǫp
∗

2 . For the former, following the same argument as in the proof of Theorem 4.2, Part (ii), it suffices

to choose δ = Op(
ǫ2

L ), which leads to:

k = Op

((L‖u∗ − u0‖p
ǫ

)p
)
.

For the latter, it suffices to choose:

n =
2

p+2
p−1+1pσp∗

p∗ǫp∗
= O

(
pσp∗

ǫp∗

)
.

The total number of queries to the stochastic oracle is then bounded by k(1 + n).

5 Discussion

We introduced a new class of structured nonconvex-nonconcave min-max optimization problems and proposed a

new generalization of the extragradient method that provably converges to a stationary point in Euclidean setups.

Our algorithmic results guarantee that problems in this class contain at least one stationary point (an (SVI) solution,

see Remark 3.5). The class we introduced generalizes other important classes of structured nonconvex-nonconcave

problems, such as those in which an (MVI) solution exists. We further generalized our results to stochastic setups

and ℓp-normed setups in which an (MVI) solution exists. An interesting direction for future research is to understand

to what extent we can further relax the assumptions about the structure of nonconvex-nonconcave problems, while

maintaining computational feasibility of algorithms that can address them.
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