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Abstract

There have been two separate lines of work on estimating Ising models: (1) estimating
them from multiple independent samples under minimal assumptions about the model’s in-
teraction matrix [Bre15; Vuf+16; KM17; HKM17; WSD19]; and (2) estimating them from one
sample in restrictive settings [Cha07; BM18; GM18; DDP19]. We propose a unified framework
that smoothly interpolates between these two settings, enabling significantly richer estimation
guarantees from one, a few, or many samples.

Our main theorem provides guarantees for one-sample estimation, quantifying the estima-
tion error in terms of the metric entropy of a family of interaction matrices. As corollaries of
our main theorem, we derive bounds when the model’s interaction matrix is a (sparse) linear
combination of known matrices, or it belongs to a finite set, or to a high-dimensional manifold.
In fact, our main result handles multiple independent samples by viewing them as one sample
from a larger model, and can be used to derive estimation bounds that are qualitatively similar
to those obtained in the afore-described multiple-sample literature. Our technical approach
benefits from sparsifying a model’s interaction network, conditioning on subsets of variables
that make the dependencies in the resulting conditional distribution sufficiently weak. We
use this sparsification technique to prove strong concentration and anti-concentration results
for the Ising model, which we believe have applications beyond the scope of this paper.

http://arxiv.org/abs/2004.09370v3


1 Introduction

Markov Random Fields (MRFs) are a popular framework for representing high-dimensional dis-
tributions with conditional independence structure, represented via an undirected graph [Lau96;
WJ+08]. The explicit representation of conditional independences allows for a more succinct
representation of a distribution, decreasing the computational requirements to do inference. A
special case of MRFs studied in this paper is the celebrated Ising model [Isi25], which samples a
binary vector, x = (x1, . . . , xn) ∈ {±1}n, according to a measure of the following form:

Pr
J∗
[x] = exp

(
x⊤ J∗x/2 − F(J∗)− n log 2

)
, (1)

where J∗ is an n× n symmetric matrix with zero diagonal and F(J∗) = log
(
2−n ∑x exp(x⊤ J∗x/2)

)

is the so-called log-partition function. Notice that the term J∗ijxixj in the exponent of the density

encourages xi and xj to have equal or opposite signs depending on the sign and magnitude of J∗ij,
but this “local encouragement” can be overwritten by indirect interactions arising through paths
between i and j in the undirected graph defined by the non-zero entries of J∗. Whenever i and j
are disconnected in this graph, xi and xj are independent.

Since its introduction, the Ising model has found profound applications in a range of dis-
ciplines, including Statistical Physics, Computer Vision, Computational Biology, and the Social
Sciences; see e.g. [GG86; Ell93; Fel04; Cha05; DMR11; DDK17]. These applications have moti-
vated a long line of research aiming at estimating Ising models using samples. Some exciting
progress on this front has appeared in recent years, including [SW12; RWL10; Bre15; Vuf+16;
KM17; HKM17; WSD19]. Importantly, most prior work assumes access to multiple independent
samples, targeting estimating the interaction matrix J∗ of a model under some conditions on J∗.
Instead our focus in this work is to estimate Ising models from a single sample, which as we will
shortly explain is a more general problem:

Single-Sample Ising Model Estimation: Given a family of interaction matrices J ⊆ R
n×n and

one sample X from (1), where J∗ ∈ J , compute an estimate Ĵ(X) to minimize ‖ Ĵ(X)− J∗‖F.

Notice that estimating Ising models from one sample generalizes estimating them from multi-
ple samples. This is because ℓ independent samples from an n-node Ising model with interaction
matrix J∗ can be viewed as one sample from an Ising model with nℓ nodes, which belong to ℓ

disconnected subnetworks that each have interaction matrix J∗.
Moreover, single-sample estimation is motivated by many applications where we may real-

istically only collect a single independent sample from a distribution. E.g., in applications of
the Ising model in social network analysis, a sample from the model represents some binary
behavior of the nodes in a social network, such as using an Android phone or an iPhone, voting
for Democrats or Republicans, etc. In such applications, if we take a snapshot of the nodes’
behaviors tomorrow, chances are that very little would change compared to their behavior today,
and we certainly would not collect an independent sample. More broadly, lack of access to in-
dependent samples is ubiquitous in financial, meteorological, and geographical data, as well as
social-network data [Man93; BDF09], where it has been studied in topics as diverse as criminal
activity [GSS96], welfare participation [BLM00], school achievement [Sac01], retirement plan par-
ticipation [DS03], and obesity [CF13; TNP08]. Moreover, it has motivated a growing literature on
single-sample statistical estimation, including [Bes74; Yu94; Cha07; KR+08; Ber+09; MR09; Pes10;
MR10; Lon+13; KM15; LHG16; MS17; KR17; BM18; GM18; BN18; DDP19; Dag+19; CVV19].
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Of course, one sample from (1) only carries n bits, while the matrix J∗ to be estimated has
Ω(n2) real entries. Thus, one cannot hope to estimate J∗ well from one sample without placing
constraints on J∗. Said differently, the error in estimating J∗ from one sample should depend
on how complex J∗ might be. This is the role played by J in the definition of our estimation
problem. Our main result, presented shortly as Theorem 1, is that there exists an estimator whose
error depends on the metric entropy of J . Instantiating J in different ways, we obtain strong
estimation guarantees when: (i) J is finite; (ii) it contains linear combinations of known matrices;
(iii) it contains sparse linear combinations of known matrices; and (iv) it is a high-dimensional
manifold. These are respectively Corollaries 1, 2, 3, and 4.

Prior to our work, the single-sample Ising model estimation literature had only studied quite
restrictive special cases of our problem, namely the case J∗ = βJ, where J is a known matrix, and
β is an unknown scalar strength parameter [Cha07; BM18], or slightly more general cases studied
by follow-up work [BM18; GM18; DDP19]. Restricted to this special case, our bounds provide
quantitative improvements in the estimation error, as discussed in Section 2.4. However, our
general theorem, as well as its corollaries in Settings (i)–(iv) discussed in the previous paragraph,
provide vast extensions. E.g. (ii) and (iii) capture settings wherein we might know various social
networks that individuals belong to (Facebook, LinkedIn, etc.) and expect that these all con-
tribute to their behavior at different strengths. Setting (iv) captures settings of interest to Spatial
Econometrics [Ans01; LeS08; AF12; Ans13] wherein we might be able to postulate a functional
form for the interaction matrix and might be interested in estimating its parameters.

On the other hand, multiple-sample Ising model estimation is a widely studied problem with
a long literature, going back to at least [CL68]. Yet, an efficient algorithm that learns Ising models
on general (bounded-degree) graphs was only recently given in breakthrough work by [Bre15],
which has incited a renaissance of work on this topic [Vuf+16; KM17; HKM17; WSD19]. Since
single-sample estimation generalizes multiple-sample estimation, as we have already discussed,
our results for single-sample estimation allow us to obtain reconstruction guarantees for the
following problem for any value of ℓ:

ℓ-Sample Ising Model Estimation: Given a family of interaction matrices J ⊆ R
n×n and ℓ

independent samples from (1), where J∗ ∈ J , compute an estimate Ĵ to minimize ‖ Ĵ − J∗‖F.

Corollary 5 of Theorem 1 quantifies that access to multiple samples typically decreases the recon-

struction error by a factor of Ω̃(
√
ℓ). As such, we get reconstruction guarantees which smoothly

interpolate between the single-sample estimation setting considered by [Cha07; BM18; GM18;
DDP19] and the more common ω(1)-sample estimation setting considered by [Bre15; Vuf+16;
KM17; HKM17; WSD19]. Interestingly, instantiating our result to the latter setting we obtain
guarantees which are competitive to that work, as shown in Corollary 6 and the middle row of
Table 1. Our sample complexity is typically higher, yet we derive it as a corollary of our main
theorem which does not utilize independence between the samples. This further enables us to
obtain similar bounds given two or more dependent samples as demonstrated by Corollary 7. See
Table 1 for a summary of our results together with a comparison to prior work on estimation
from a single and multiple samples.
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Family J of matrices Single sample ℓ samples

Arbitrary family J *
√

f (J , 1/n) (Theorem 1)

√
f (J ,1/nℓ)

ℓ
(Corollary 5)

Finite J
√

log |J | (Corollary 1)
√

log |J |/ℓ (Cor 1 & 5)

Linear combination of k known matrices
√

k (Corollary 2)
√

k/ℓ (Cor 2 & 5)

s-sparse linear combination

of k known matrices
√

s log k (Corollary 3)
√

s log k/ℓ (Cor 3 & 5)

All matrices (unconstrained) impossible

n
√

log(nℓ)/ℓ (Corollary 6)√
n(log n/ℓ)1/4 [KM17]

Scalar multiples of a known matrix **

1/
√

F(J∗) (Corollary 10)

1/
√

F(J∗) (under additional

assumptions) [Cha07; BM18]

1/
√
ℓF(J∗)

(follows from our
one-sample result)

Table 1: We state the estimation error || Ĵ − J∗||F obtained by our work and prior work in different
settings, ignoring some logarithmic factors. We present bounds under the standard assumption
that ‖J∗‖∞ is bounded by some constant M. Under this assumption, since ‖J‖F ≤ √

n‖J‖∞ ≤
M
√

n, a rate smaller than M
√

n is non-trivial ; see Definition 1/Theorem 1.
* In the first row, f (J , ǫ) = log N(J , ‖ · ‖2, ǫ) is the metric entropy of family J under ‖ · ‖2.
** In the last row, we consider the setting J = {βJ : |β| = O(1)}, where J is fixed and the
estimation error is with respect to the parameter β. Here, F(J∗) is the log-partition function,
defined earlier.

2 Our Results

2.1 A general upper bound

In this section, we present a general upper bound that is a function of the covering numbers of
the set J , which represents the smallest number of elements from J that can approximate all
elements of set J . We begin with a definition.

Definition 1. Given a normed space (X , ‖ · ‖), a set V ⊆ X and ǫ > 0, we say that a set N ⊆ V is an
ǫ-cover of V if for any v ∈ V there exists u ∈ N such that ‖u − v‖ ≤ ǫ. The ǫ-covering number of V
with respect to the norm ‖ · ‖, denoted by N(V , ‖ · ‖, ǫ), is the minimum cardinality of an ǫ-cover.

Our main result is stated below. As is standard in prior work, we parametrize our error
in terms of a bound M on the infinity norm of the interaction matrices, ‖J‖∞ = maxi ∑j |Jij|,
which is called “width” in [KM17] and relaxes placing a bound on the maximum degree [Bre15;
Vuf+16]. As shown in prior work [SW12], our single exponential dependence on M is necessary.1

Theorem 1 (Follows from Theorem 4). Let M > 0 and let J ⊆ {J : ‖J‖∞ ≤ M} denote a collection of
interaction matrices. There is an algorithm which, given a single sample x ∼ PrJ∗ where J∗ ∈ J , outputs
Ĵ such that with probability ≥ 1 − δ:

‖ Ĵ − J∗‖F ≤ C(M)
√

log N(J , ‖ · ‖2, 1/n) + log(1/δ) + log log n,

1While [SW12] provide a lower bound for multiple-sample estimation, their lower bound applies to our case as
well because as we have explained single-sample estimation is more general than multiple-sample.
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where C(M) is an (single) exponential function of M and ‖ · ‖2 denotes the spectral norm on matrices.
Moreover, Ĵ is the minimizer over J of a convex function on the space of matrices, R

n×n. It can be
computed in polynomial time if J is convex and projection onto J is efficiently computable.

Theorem 1 guarantees that we can find a matrix Ĵ that is close to the true interaction matrix
J∗ in Frobenius norm. In this general formulation, the error depends on the covering numbers of
the set J . In many interesting scenarios, the ǫ-cover of J will have size of the order of (1/ǫ)k,
where k is a notion of dimension that is specific to each case. By applying Theorem 1, we obtain
an error of the order of

√
k log n for constant M. If k is significantly less than n, this is a non-

trivial bound, since both matrices Ĵ, J∗ can have a Frobenius norm as high as Ω(
√

n). We present
examples where this is the case in the next section.

Remark 1 (Tightness of the bound). It is reasonable to expect that Theorem 1 is not completely tight.
Tight upper bounds based on covering numbers are usually proved via the technique of chaining. However,
technical difficulties arise once one tries to apply it in our scenario. Still, in all examples presented in the
next section, this technique could remove only logarithmic factors, as our near-tight lower bounds provided
in Section 2.3 establish.

2.2 Applications of the upper bound

To showcase the power of Theorem 1, we now apply it to some concrete families J . The families
we consider capture both single-sample and multiple-sample Ising model estimation problems,
in Sections 2.2.1 and 2.2.2 respectively. In all cases, we parametrize our bounds in terms of a
bound M on the infinity norm of the matrices in J and a function C(M) of which appears in our
estimation error, as in Theorem 1. The detailed statements and proofs are provided in Section 7.

2.2.1 Estimation from a single sample

The simplest case is when J is finite. Then, N(J , ‖ · ‖2, ǫ) ≤ |J | for all ǫ ≥ 0 and we have:

Corollary 1. If J is finite and all its elements J satisfy ‖J‖∞ ≤ M, our estimator satisfies ‖ Ĵ − J∗‖F ≤
C(M)

√
log |J |+ log(1/δ) + log log n, with probability ≥ 1 − δ. Moreover, Ĵ can be computed in time

poly(|J |, n) (i.e. polynomial time in |J | and n).

Next, we consider settings where J∗ is a linear combination of k known matrices, with un-
known coefficients.

Corollary 2. Let J1, . . . , Jk be fixed matrices and let J = {J = ∑
k
i=1 βi Ji : ‖J‖∞ ≤ M,~β ∈ R

k}. Then,
our estimator Ĵ satisfies ‖ Ĵ − J∗‖F ≤ C(M)

√
k log n + log(1/δ), with probability ≥ 1 − δ, and Ĵ can be

computed in time poly(n, k).

This can be extended to when J∗ is a s-sparse linear combination of k known matrices, which

enables us to obtain a bound with only a logarithmic dependence on k. For any ~β ∈ R
k denote

by ‖~β‖0 the number of nonzero coordinates of ~β. The result is given below.

Corollary 3. Let J1, . . . , Jk be fixed matrices, s > 0, and let J = {J = ∑
k
i=1 βi Ji : ‖J‖∞ ≤ M, ‖~β‖0 ≤ s}.

Then, our estimator Ĵ satisfies ‖ Ĵ − J∗‖F ≤ C(M)
√

s(log n + log k) + log(1/δ), with probability ≥
1 − δ, and Ĵ can be computed in time poly(n, s) · (k

s).

4



While Corollary 2 considers linear combinations of k known matrices, one can also consider
non-linear settings, where, in general, the matrices lie in a k-dimensional manifold. We consider
manifolds that are images of Lipschitz functions from convex subsets of R

k to the set of matrices.
For this class, the following bound can be derived (see Section 7.1.4 for a general argument):

Corollary 4. Let h(~β) be a function from [−1, 1]k to the set of n × n matrices, that satisfies ‖h(~β) −
h(~β′)‖2 ≤ L‖~β − ~β′‖∞ for some L > 0. Define J = {J = h(~β) : ~β ∈ [−1, 1]k, ‖J‖∞ ≤ M}. Then our
estimator Ĵ satisfies ‖ Ĵ − J∗‖F ≤ C(M)

√
k(log n + log L) + log(1/δ), with probability ≥ 1 − δ.

2.2.2 Estimation from several samples

When we are given access to several independent or dependent samples, we can utilize them to
obtain stronger guarantees. This is done via a reduction to the single-sample setting. As a first
example, assume that ℓ independent samples from an n-dimensional Ising model are obtained.
Notice that these can be viewed as a single sample from an nℓ dimensional model. Thus, an

application of Theorem 1 results in a gain of approximately
√
ℓ in the rate.

Corollary 5 (Special case of Corollary 11). Let M > 0 and let J ⊆ {J : ‖J‖∞ ≤ M} denote a collection
of interaction matrices. Assume that ℓ independent samples are obtained from PrJ∗ where J∗ ∈ J . There
is an estimator Ĵ such that, with probability ≥ 1 − δ,

‖ Ĵ − J∗‖F ≤ C(M)

√
log N(J , ‖ · ‖2, 1/(nℓ)) + log(1/δ) + log log n

ℓ
,

where the same comments for C(M) and the complexity of computing Ĵ made in Theorem 1 apply.

Notice that Corollary 5 is phrased in terms of a general set J . In particular, it can be applied
to learn Ising models from multiple samples in the same setting studied by [KM17], where they
learn J∗ while only assuming that ‖J∗‖∞ ≤ M. Utilizing the fact that the space of interaction
matrices is an O(n2)-dimensional vector space, one obtains (similarly to Corollary 2):

Corollary 6. Let J = {J : ‖J‖∞ ≤ M} and assume that ℓ independent samples from PrJ∗ where J∗ ∈
J are obtained. Then, there is a polynomial time algorithm that finds Ĵ ∈ J such that, w.p. ≥ 1 − δ,

‖ Ĵ − J∗‖F ≤ C(M)

(√
n2 log(nℓ) + log(1/δ)

ℓ

)
.

This provides a new polynomial-time algorithm for this problem. Comparing to our error bound,
[KM17] achieved an error of

√
n(log n/ℓ)1/4, as also stated in Table 1.

Interestingly, as we discuss next, our results can be extended to settings where the samples
are not independent.

Beyond Independent Samples. In many applications the learning task involves either a few
or many dependent samples. For the sake of presentation, we assume time-series dependencies
although other dependencies of a more complex structure can be studied in a similar fashion.
Given an interaction matrix J0 that controls the dependencies within each sample and J1 that
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controls dependencies between consecutive samples, we define the following joint distribution
over samples x1, . . . , xℓ ∈ {−1, 1}n :

Pr
J0,J1,ℓ

[
x1 · · · xℓ

]
∝

ℓ

∏
t=1

exp
(
−(xt)⊤ J0xt/2

) ℓ−1

∏
t=1

exp
(
−(xt)⊤ J1xt+1/2

)
.

The following statement bounds the learning error, that can be meaningful even for ℓ = 2:

Corollary 7 (Special case of Corollary 12). Let ℓ ≥ 2, let J0 and J1 be collections of interaction
matrices of infinity norm bounded by M, and let (x1, . . . , xℓ) ∼ PrJ∗0 ,J∗1 ,ℓ for some J∗0 ∈ J0 and J∗1 ∈ J1.

Then, there exists an estimator ( Ĵ0, Ĵ1) such that, w.p. ≥ 1 − δ, both ‖J∗0 − Ĵ0‖F and ‖J∗1 − Ĵ1‖F are
bounded by

C(M)√
ℓ

√
log N

(
J0, ‖ · ‖2,

1

nℓ

)
+ log N

(
J1, ‖ · ‖2,

1

nℓ

)
+ log log n + log(1/δ).

2.3 Lower bounds

We first present a general lower bound based on the metric entropy of J and then we show that
our lower bound is strong enough to provide nearly tight results for the cases of linear subspaces
and finite sets. The following is shown in Section 11.

Theorem 2. Let r > 0 and suppose there exists some R, α > 0 and a family J of interaction matrices
such that: (1) for all J ∈ J the infinity norm of J is bounded by 1 − α and the diameter2 of J is bounded
by R; and (2) it holds that

log N(J , ‖ · ‖F, 2r)

2
≥ C(α)R2 + log 2,

where C(α) is a specific constant determined in the proof. Then, any estimator Ĵ(x) based on a single
sample attains a minimax error of maxJ∗∈J Ex∼PJ∗ [‖ Ĵ(x)− J∗‖F] ≥ r/2.

Using Theorem 2, one can derive a nearly-tight lower bound on the estimation error for linear
combinations of k known matrices J1, . . . , Jk:

Corollary 8. Let k ∈ N, let J1, . . . , Jk be interaction matrices with disjoint supports3 such that ‖Ji‖∞ ≤ 1
and ‖Ji‖F ≥ k for all i. Define J = {J = ∑i αi Ji : αi ∈ R, ‖J‖∞ ≤ 1}. Then, any one-sample estimator

Ĵ(x) has a minimax error of supJ∗∈J Ex∼PrJ∗
[
‖ Ĵ − J∗‖F

]
≥ c

√
k.

In the proof of Corollary 8, one constructs a lower bound for a family of size exp(O(k)).
Hence, we derive the following tight lower bound of Ω(

√
log |J |) on estimation from finite

families of distributions:

Corollary 9. Let m > 0. There exists a family J of cardinality |J | = m that satisfies supJ∈J ‖J‖∞ ≤
1/2, such that the minimax error satisfies maxJ∗∈J Ex∼PJ∗ [‖ Ĵ(x)− J∗‖F] ≥ c

√
log m (where c > 0 is a

universal constant).

2A set K has diameter at most R if for any A, B ∈ K we have ‖A − B‖F ≤ R.
3The support of a matrix J is defined as the set of its non-zero elements.
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2.4 Improved bounds for estimating a single parameter

We further present an application to the single-sample setting studied in prior work [Cha07;
BM18] on estimating a single parameter β (this follows from the main lemmas in the proof of
Theorem 1):

Corollary 10. Let M > 0, let J0 be a fixed matrix with ‖J0‖∞ ≤ 1 and let β∗ be some unknown parameter
satisfying |β∗| ≤ M. Then, there exists an estimator β̂ from a single sample x ∼ Prβ∗ J0

such that w.p.

≥ 1 − δ, |β̂ − β∗| ≤ C(M)F(β∗ J0)−1/2 (log log n + log(1/δ)) where F(·) is defined as in (1).

Notice that the bound is inversely proportional to the square root of the partition function
F(J∗), which captures the strength of dependencies between the nodes and this bound is gener-
ally stronger than the one obtained using the Frobenius norm. Corollary 10 improves over prior
work that required further assumptions to hold and obtained no guarantees at the vicinity of
some phase transitions (see Section 4 for a comparison).

3 Overview of Techniques

We start by presenting the main techniques used in this paper in Section 3.1 and proceed with a
proof sketch in Section 3.2.

3.1 Key Technical Insights and Vignettes

From Low-Temperature to High-Temperature (Dobrushin). While nodes of the Ising model
can be complexly dependent, when the correlations are sufficiently weak, the model shares im-
portant similarities to product measures. A well-studied mathematical formulation of weak de-
pendencies for general random vectors is Dobrushin’s uniqueness condition, defined formally in
Section B. For Ising models, a sufficient condition implying Dobrushin’s is ‖J∗‖∞ = α < 1, where
α is a constant; see e.g. [DS87; SZ92].4 While Dobrushin’s condition implies multiple desirable
properties (see e.g. [Cha05; Wei05]), we will specifically use the fact that functions of the Ising
model concentrate well under this condition; see e.g. [Cha05; DDK17; GLP17; GSS19; Ada+19].
Unfortunately, the regimes we are considering in this paper may lie well outside Dobrushin’s
condition, and the tools available to handle Ising models that do not satisfy Dobrushin’s condi-
tion are significantly weaker and restricted, and concentration does not hold in general.

In this work, we prove concentration inequalities for Ising models outside of Dobrushin’s
condition via reductions to the Dobrushin regime: we show that we can condition on a subset
of the variables, such that in the conditional distribution, the unconditioned variables satisfy
Dobrushin. A basic example where we can see such behavior is when J is the incidence matrix
of a bipartite graph, namely, there exists a set I ⊆ [n] such that Jij = 0 whenever either i, j ∈ I or
i, j ∈ [n] \ I. If we condition on x−I := x[n]\I, then {xi : i ∈ I} are conditionally independent and
particularly, satisfy Dobrushin. The following lemma generalizes this intuition. For the purposes
of this lemma, we work with Ising models with external fields. Given an interaction matrix J∗

and a vector h of external fields, we define the distribution over x ∈ {±1}n by PrJ∗,h(x) ∝

exp(xT J∗x/2 + hT x).

4Dobrushin’s condition is slightly more general and defined in terms of a bound on the total influence exercised
to any one node by the other nodes. See Section B for the general form of the condition. However, as is often done in
the literature, we use the slightly stronger but easier to interpret bound on ‖J∗‖∞.
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Informal Lemma 1 (Conditioning Trick). Let pJ∗ ,h(x) be an Ising model with interaction matrix J∗

satisfying ‖J∗‖∞ = M and any external field vector h. Then there exist ℓ = O(log n) sets I1, . . . , Iℓ ⊆ [n]
such that:

1. Each i ∈ [n] appears in exactly ℓ′ = ⌈ℓ/(16M)⌉ different sets Ij.

2. For all j ∈ [ℓ], the conditional distribution of xIj
, conditioning on any setting of x−Ij

, satisfies
Dobrushin’s condition.

We apply this lemma repeatedly in our proof, as it allows us to tap into the flexibility of
dealing with weakly dependent random variables. As a first application, given a vector a ∈ R

n,
we obtain a lower bound on the variance of a⊤x. It is well known that if x is an i.i.d. vector of
binary random variables, each with variance v, then Var(a⊤x) = v‖a‖2

2. Furthermore, if x satisfies
Dobrushin’s condition, then the entries of x are nearly independent and we can also show that
Var(a⊤x) ≥ Ω(‖a‖2

2). We will use Informal Lemma 1 to show that a similar lower bound holds
even beyond Dobrushin’s condition.

Informal Lemma 2 (Anti-Concentration). Suppose that x is sampled from an Ising model whose inter-
action matrix satisfies ‖J∗‖∞ = O(1) and whose external field vector satisfies ‖h‖∞ = O(1). Then, for
all a ∈ R

n,
Var(a⊤x) ≥ Ω(‖a‖2

2).

Proof sketch. To prove this lemma, consider the sets I1, . . . , Iℓ from Informal Lemma 1. First, we
claim that there exists j ∈ [ℓ] such that ‖aIj

‖2
2 ≥ Ω(‖a‖2

2). Indeed, by linearity of expectation, if
we draw j ∈ [ℓ] uniformly at random then,

Ej[‖aIj
‖2

2] = E

[
n

∑
i=1

1(i ∈ Ij)a
2
i

]
=

n

∑
i=1

ℓ′

ℓ
a2

i =
ℓ′

ℓ
‖a‖2

2 ≥ Ω(‖a‖2
2).

Hence, there exists a set Ij that achieves this expectation, namely, ‖aIj
‖2

2 ≥ Ω(‖a‖2
2). Now using

that, conditioning on x−Ij
, xIj

has a low Dobrushin coefficient, as implied by Informal Lemma 1,

we can bound Var[a⊤x | x−Ij
] ≥ Ω(‖aIj

‖2
2) as discussed above, using weak dependence. Since

conditioning reduces the variance on expectation, we conclude that

Var(a⊤x) ≥ Ex−Ij
[Var[a⊤x|x−Ij

]] ≥ Ω(‖aIj
‖2

2) ≥ Ω(‖a‖2
2).

Measure Concentration for Non-Polynomials. There are multiple recent works studying the
concentration of polynomial functions of the Ising model [DDK17; GLP17; GSS19; Ada+19].
Here, we would like to bound the tails of general functions, in terms of their polynomial Taylor
approximations. By a simple modification to the proof of [Ada+19], we can derive the following:

Theorem 3. Let f : {0, 1}n 7→ R be an arbitrary function and X be sampled from an Ising model which
satisfies Dobrushin’s condition. Then

Pr[| f (X)− E f (X)| > t] ≤ exp

(
−c min

(
t2

‖EX D f (X)‖2
2 + maxx ‖H f (x)‖2

F

,
t

maxx ‖H f (x)‖2

))
.
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Here Di f (x) = ( f (xi+)− f (xi−))/2 is the discrete derivative, where xi+ and xi− are obtained from x
by replacing the value of xi with 1 and −1, respectively. The vector of discrete derivatives is denoted by
D f and H f is the n × n matrix of second discrete derivatives.

Theorem 3 can be trivially extended to derive bounds based on higher order Taylor expansion,
extending [Ada+19, Theorem 2.2] for multi-linear polynomials.

3.2 Proof Sketch of our Upper Bound

Using the tools from Section 3.1, we present a sketch of the proof of our main results. We start
by describing the algorithm that is going to be used. A standard approach is maximum likelihood
estimation (MLE), which outputs the maximizer Ĵ of the probability of the given sample x, namely,
Ĵ := argmaxJ PrJ [x]. Unfortunately, for Ising models, the MLE requires computing the partition
function which is computationally hard to approximate [SS14]. A recourse, suggested by [Cha07],
is to compute the maximum pseudo-likelihood estimator (MPLE) of [Bes74; Bes75] instead. One
typically minimizes the negative log pseudo-likelihood,

ϕ(x; J) := −
n

∑
i=1

log Pr
J
[xi | x−i], (2)

where PrJ [xi | x−i] is the probability of PrJ to draw xi conditioned on the remaining entries of x,
denoted x−i. If J is a convex set, then this is a convex function which can be optimized using
appropriate first-order optimization techniques to find an optimum Ĵ.

A bound on the error can then be proved by the following steps. First, we show that for every
J0 ∈ J that is far from J∗ we have

ϕ(x; J0) ≥ ϕ(x; J∗) + Ω(1) (3)

with high probability. One can prove this using a Taylor approximation of ϕ, while utilizing the
first directional derivatives of ϕ that we define as

∂ϕ(x; J)

∂A
:= lim

t→0

ϕ(x; J + At)− ϕ(x; J)

t

and the second directed derivatives that we similarly define. Evaluating the Taylor approximation
of t 7→ J∗ + t(J0 − J∗) at t = 1, one obtains that

ϕ(x; J0) = ϕ(x; J∗) + ‖J0 − J∗‖F
∂ϕ(x; J∗)

∂A
+

1

2
‖J0 − J∗‖2

F

∂2 ϕ(x; Jx)

∂2 A
; where A =

J0 − J∗

‖J0 − J∗‖F
(4)

and Jx is a point in the segment connecting J0 with J∗. Hence, to show a large gap between
ϕ(x; J0), ϕ(x; J∗) we need a good upper bound on the absolute value of the first derivative and a
good lower bound on the second derivative.

We now turn to the specific challenges encountered when trying to prove these bounds. The
derivative ϕ′(x; J∗) takes the form

∂ϕ(x; J∗)
∂A

=
n

∑
i=1

ϕ′
i(x; J∗) ; ϕ′

i(x; J∗) := − ∂

∂A
log Pr

J
[xi | x−i]

∣∣
J=J∗ .
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We notice that E[ϕ′
i(x; J∗) | x−i] = 0, hence it suffices to show concentration of the derivative

around its mean to obtain a good upper bound. However, tail bounds on the gradient from
prior work do not lead us to the optimal bound on the derivative in our setting. Instead, we use
Lemma 1 to select a number of subsets I1, . . . , Il of [n], such that conditioned on x−Ij

, xIj
satisfies

Dobrushin’s condition. The lemma also guarantees that each i ∈ [n] belongs to ℓ′ different
subsets Ij where ℓ′ is a constant fraction of ℓ, which means we can write

∣∣∣∣
∂ϕ(x; J∗)

∂A

∣∣∣∣ =
∣∣∣∣∣

n

∑
i=1

ϕ′
i(x; J∗)

∣∣∣∣∣ =

∣∣∣∣∣∣
1

ℓ′
ℓ

∑
j=1

∑
i∈Ij

ϕ′
i(x; J∗)

∣∣∣∣∣∣
≤ ℓ

ℓ′
max

j

∣∣∣∣∣∣
∑
i∈Ij

ϕ′
i(x; J∗)

∣∣∣∣∣∣
≤ O


max

j∈[ℓ]

∣∣∣∣∣∣
∑
i∈Ij

ϕ′
i(x; J∗)

∣∣∣∣∣∣


 .

(5)
Hence, it suffices to bound each one of the terms that appear in the maximum. In fact, since each
term ∑i∈Ij

ϕ′
i(x; J∗) has zero mean conditioned on x−Ij

, it suffices to show that it concentrates

around its expectation conditioned on x−Ij
. Given that conditioning on x−Ij

, xIj
satisfies Do-

brushin’s condition, we can use the concentration inequality from Informal Theorem 3, to derive
that ∣∣∣∣∣∣

∑
i∈Ij

ϕ′
i(x; J∗)

∣∣∣∣∣∣
≤ O

(∥∥∥E

[
Ax

∣∣∣ x−Ij

]∥∥∥
2
+ ‖A‖F

)
,

with high probability. Applying (5) and union bounding over j ∈ [ℓ], we deduce that with high
probability,

|ϕ′(x; J∗)| ≤ Õ

(
max
j∈[ℓ]

∥∥∥E

[
Ax

∣∣∣ x−Ij

]∥∥∥
2
+ ‖A‖F

)
. (6)

We now show a lower bound on ∂2 ϕ(x; Jx)/∂2 A, where Jx is in the segment connecting J∗ and
J0. Some simple calculations show that for every J in this segment,

∂2 ϕ(x; J)

∂2 A
≥ Ω

(
‖Ax‖2

2

)
. (7)

We then proceed by showing that: (a) the expectation of ‖Ax‖2
2 is lower bounded appropriately;

and (b) it concentrates around its expectation. Note that (a) reduces to showing an expectation
bound for a sum of squares of linear functions. This can also be phrased as a variance bound
for linear functions of the Ising model, which is exactly the type of result that Informal Lemma 2
provides. Using it, we manage to prove that the expectation of the second derivative conditioned
on x−Ij

is at least

E

[
‖Ax‖2

2

∣∣∣x−Ij

]
≥ Ω

(∥∥∥E

[
Ax

∣∣∣ x−Ij

]∥∥∥
2

2
+ ‖A‖2

F

)
. (8)

By concentration of polynomials under Dobrushin’s condition [Ada+19], we will show that
‖Ax‖2

2 is at least the right hand side of (8) with high probability, and taking a union bound
over j ∈ [ℓ], we derive that w.h.p.,

∂2 ϕ(x; Jx)

∂2 A
≥ ‖Ax‖2

2 ≥ Ω

(
max
j∈[ℓ]

∥∥∥E

[
Ax

∣∣∣ x−Ij

]∥∥∥
2

2
+ ‖A‖2

F

)
. (9)

If ‖J∗ − J0‖F = Ω̃(1), we derive by (4), (6) and (9) that that inequality (3) holds w.h.p. Moreover,
the further J0 is from J∗, the higher is the probability.
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We now have to use (3) to derive the error bound. To do that, we would like to show that
for all J that are far from J∗ in Frobenius norm, ϕ(x; J) > ϕ(x; J∗). Since ϕ(x; Ĵ) ≤ ϕ(x; J∗), this
would imply that Ĵ is close to J∗. Proving that this statement holds with high probability for
all far enough points requires more than a union bound, since there might be infinitely many
points. Instead, we will construct a finite subset U of these points such that every point is ǫ close
to one in U (U forms an ǫ-net). By a union bound over U we prove that with high probability (3)
holds for all points in U . Since ϕ is Lipschitz as a function of the matrix J, this suffices to argue
that for all far enough points, their ϕ value is much larger than that of J∗. We note that union
bounding (3) over |U | events corresponding to all possible J ∈ U , requires each event to hold
with sufficiently high probability, and this holds whenever ‖J∗ − J‖F ≥ Ω(

√
log |U |).

4 Comparison to Prior work

Comparison with multiple-sample bounds. An important line of previous work focuses on
learning Ising models from multiple independent samples. The first work that gives a polynomial-
time algorithm for this problem is Bresler [Bre15] and improved results were obtained by [Vuf+16;
HKM17; KM17] and others. [KM17] showed that under the common assumption ‖J∗‖∞ ≤ O(1),
it is possible, using ℓ samples, to learn each row of J∗ up to an error of O((log(n)/ℓ)1/4), which
translates to a Forbenius norm error of O(n1/2(log(n)/ℓ)1/4). In comparison, Corollary 5 can
derive better guarantees even with one or a few samples, assuming additional structural assump-
tions on J∗. Further, Corollary 6 that assumes the same setting as [KM17], retains polynomial-
time learnability, while reducing to a single-sample algorithm that does not utilize independence.
This enables to consider dependent samples with only a small overhead.

Comparison with single-sample bounds. Another interesting line of work involves learning
the Ising model from a single sample of the distribution. The first to work on this problem was
Chatterjee [Cha07], who assumed a single-parameter family, J = {βJ0 : |β| ≤ M} where the goal
is to learn β. In subsequent work, [BM18] derived an improved bound and Ghosal and Mukher-
jee [GM18] presented an algorithm that jointly learns β and an external field θ, assuming that
Pr[x] ∝ exp(−βx⊤ Jx/2 + θ ∑i xi). Further, Daskalakis et al. [DDP19] studied linear regression
with Ising model dependencies, which corresponds to learning β together with multiple external
field parameters. In comparison, Theorem 1 is the first to learn Ising models using one-sample
from a complex family of matrices.

We further discuss the improvements over the prior work on single-sample estimation that
are apparent in Corollary 10 and are essential for obtaining the results of this paper: (1) Removal
of additional assumptions that require the log partition function F(J∗) to be well behaved, yielding
no guarantees in scenarios such as at the vicinity of some phase transitions. (2) Obtaining high
probability estimates on single-parameter families that enables generalizing to arbitrary families
via a union bound. These two improvements necessitates a new proof approach as presented in
Section 3.
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5 Further Notation and Definitions

This section establishes the notational conventions used and presents some background defini-
tions used throughout the paper. We start with the notational conventions.

Standard notations and definitions.

• Sets of indices: denote by [n] = {1, . . . , n}. Given I ⊆ [n], let −I := [n] \ I, and given i ∈ [n]
let −i = −{i} = [n] \ {i}.

• Indexed vectors and matrices: Given a vector a = (a1, . . . , an) and a subset I ⊆ [n], let aI

denote the |I| coordinate vector{ai : i ∈ I}. Similarly, for a matrix A of dimension n × m,
I ∈ [n] and I ′ ∈ [m], let AI I′ denote the corresponding submatrix. Similarly, let AI := AI[n]

and A·I = A[n]I , and let Ai := A{i}.

• Standard mathematical sets: Let Sk−1 denote the k-dimensional unit sphere, {x ∈ R
k : ‖x‖2 =

1}. And given m, n > 0 integers, let Mn×m(R) := Mn×m denote the space of real matrices
of dimension n × m.

• Ising model distributions: Given a symmetric matrix J with zeros on the diagonal, let PrJ

denote the Ising model with interaction matrix J, defined as in (1). We say that a random
variable x with interaction matrix J and external field h is (M, γ)-bounded, if ‖J‖∞ ≤ M,
and if mini∈[n] Var(xi|x−i) ≥ γ with probability 1. In other words, if for all x and all i,
Pr[xi = 1|x−i](1 − Pr[xi = 1|x−i]) ≥ γ.

• Absolute constants: We let the notations C, c′, C1, . . . denote constants that depend only on
M and γ, and are bounded whenever M is bounded from above and γ from below (unless
the dependence on γ and M is stated explicitly).

• Conditional variance: given two random variables X and Y, define Var[X|Y] := EX [(X −
E[X|Y])2|Y]. Since the conditional expectation E[X|Y] is a random variable which is a
function of Y, so is Var[X|Y].

Matrix norms. Given a real matrix A of dimension m × n, let ‖A‖2
F = ∑ij A2

ij denote the Frobe-

nius norm, let

‖A‖2 = max
u∈Rn\{0}

‖Au‖2

‖u‖2

and let

‖A‖∞ = max
u∈Rn\{0}

‖Au‖∞

‖u‖∞

= max
i=1,...,m

n

∑
j=1

|Aij|.

The following inequalities are known for any symmetric matrix A: ‖A‖2 ≤ ‖A‖F and ‖A‖2 ≤
‖A‖∞.
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Dobrushin’s condition. Next we define a variant of Dobrushin’s uniqueness condition (high-
temperature condition) for Ising models that we use. The more general form of the condition is
presented in Section B.

Definition 2 (Dobrushin’s condition). Given an Ising model x with interaction matrix J, we say that
it satisfies Dobrushin’s condition if ‖J‖∞ < 1, where α := ‖J‖∞ is called the Dobrushin’s coefficient.

Optimization over a vector space V . Notice that replacing the interaction matrices J1, . . . , Jk

with other matrices J′1, . . . , J′k that span the same linear subspace of Mn×n(R) does not change the
studied problem. Hence, we will forget about J1, . . . , Jk and replace them with their span V .

6 Analyzing the Maximum Pseudo-Likelihood Estimator

This section contains the proof of our main result which is the following theorem.

Theorem 4. Let J be some set of matrices of infinity norm bounded by a constant M, and let

R = min

{
r ≥ 0 : r ≥ C(M)

√
log log n + log N(J , ‖ · ‖2, cr2/n) + log(1/δ)

}

≤ C(M)
√

log log n + log N(J , ‖ · ‖2, c/n) + log(1/δ).

Then, with probability 1 − δ, it holds that any point J ∈ J that satisfies ‖J − Ĵ‖F ≥ R, also satisfies
ϕ(J) ≥ ϕ(J∗) + cR2. In particular, there exists an algorithm that, given one sample x ∼ PrJ∗ where
J∗ ∈ J , outputs Ĵ = Ĵ(x) such that

‖ Ĵ − J∗‖F ≤ R.

Theorem 4 guarantees that we can find a matrix Ĵ that is R close to the true interaction matrix
J∗ in Frobenius norm. A detailed discussion about applications of Theorem 4, including the case
where J is a k-dimensional linear subspace of R

n×n, is given in Section 7.
Section 6.1 contains an overview of the proof, while the main lemmas are presented in the

following sections.

6.1 Overview of the proof

The algorithm used to estimate J∗ will be the maximum pseudo-likelihood estimator (MPLE), as
mentioned in Section 5:

arg max
J∈J

PL(J; x) := arg max
J∈J ∏

i∈[n]
Pr

J
[xi|x−i]. (10)

In fact, the above maximization problem is concave and we are able to find an approximate
solution using first-order methods, if J is a convex set. We will address the question of how
to do this efficiently in Section A. For convenience in calculations, the function we will actually
optimize is the negative log pseudo-likelihood:

ϕ(J) := − log PL(J; x) =
n

∑
i=1

(log cosh(Jix)− xi Jix + log 2). (11)
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A standard approach for showing consistency of the MPLE is by showing high probability
upper bounds on the first derivatives of ϕ combined with a high probability lower bound on
the smallest eigenvalue of the Hessian. To formalize this intuition in our setting, we begin by
reviewing the definition of differentiation with respect to a matrix.

Definition 3. If f : Mn×n(R) 7→ R is a twice continuously differentiable function and A ∈ Mn×n(R) \
{0}, we define for all J ∈ Mn×n(R)

∂ f (J)

∂A
= lim

t→0

f (J + tA)− f (J)

t
=

d f (J + tA)

dt

∣∣∣∣
t=0

.

In the case of the MPLE, some simple calculations show that

∂ϕ(J)

∂A
=

1

2

n

∑
i=1

(Aix)(tanh(Jix)− xi);
∂2ϕ(J)

∂A2
=

1

2

n

∑
i=1

(Aix)
2 sech2(Jix). (12)

The general strategy for proving that Ĵ is a good estimator of J∗ is the following. First, since
the MPLE finds the minimum of ϕ on the set J , we know that ϕ( Ĵ) ≤ ϕ(J∗). Next, we will
show that any point J that is far from J∗ in Frobenius norm should have a much larger value
of ϕ than J∗. If we can show that this holds for all such matrices J with high probability, then
certainly Ĵ should lie close to J∗ in Frobenius norm, because ϕ( Ĵ) ≤ ϕ(J∗). Hence, the bulk of the
argument is in proving this gap between ϕ(J) and ϕ(J∗) if J is far from J∗. We will do this in two
steps. First, we prove that this gap exists with high probability for a single J ∈ J , namely, that
ϕ(J) > ϕ(J∗) with high probability. This is described in more detail in Section 6.1.1. The second
step is to show that this holds for all J that are far from J∗ with high probability. This requires
finding a suitable ǫ-net of these matrices and taking a union bound over all the elements in this
net. A crucial property in this step is the Lipschitzness of ϕ, which allows us to control the value
of ϕ for all points that are close to a point in the net. The argument is described in Section 6.1.2.

6.1.1 A single dimensional problem

In this Section, we focus on a single J1 ∈ J . We would like to show that if ‖J1 − J∗‖F is large,
then ϕ(J1)− ϕ(J∗) will also be large. This is formalized in the following Lemma.

Lemma 1. Let M > 0, let x be drawn from the distribution parametrized by J∗ and let J1 6= J∗ be such
‖J1‖∞, ‖J∗‖∞ ≤ M. Then, there are constants c, c′ > 0 depending only on M such that with probability
1 − log n exp(−c‖J∗ − J1‖2

F), it holds that

ϕ(J1) ≥ ϕ(J∗) + c′‖J1 − J∗‖2
F.

In order to prove this lemma, we have to somehow be able to compare ϕ(J∗) with ϕ(J1). A
common way to make this comparison is to view ϕ as a function on the line connecting J1, J∗.
Specifically, we define for all t ∈ [0, ‖J1 − J∗‖F],

g(t) = ϕ (J(t)) where J(t) = J∗ + t
J1 − J∗

‖J1 − J∗‖F
.
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Let A = J1−J∗

‖J1−J∗‖F
and notice that it has a unit Forbenius norm and

g′(t) =
∂ϕ(J(t))

∂A
; g′′(t) =

∂2 ϕ(J(t))

∂2 A
.

Thus, the problem becomes 1-dimensional and to compare these two values, we can just use
the Taylor expansion of g around J∗. Specifically, we have that

ϕ(J1) = g(‖J1 − J∗‖F) = g(0) + ‖J1 − J∗‖Fg′(0) +
‖J1 − J∗‖2

F

2
g′′(ξ)

= ϕ(J∗) + ‖J1 − J∗‖F
∂ϕ(J∗)

∂A
+

‖J1 − J∗‖2
F

2

∂2 ϕ(J(ξ))

∂2 A

where ξ ∈ [0, ‖J1 − J∗‖F. Based on the previous expression, to show that ϕ(J1) > ϕ(J∗), we need
an upper bound on |∂ϕ(J∗)/∂A| and also, a lower bound on ∂2 ϕ(J)/∂2 A for all J in the segment
connecting J1, J∗. Moreover, we would like these two bounds to be comparable to each other, so
that they can be combined in the Taylor formula to prove the desired inequality.

It would be desirable to prove such bounds with high probability. From the concentration
inequalities literature on Ising models, we know that such inequalities hold when the model
is in high temperature, namely, ‖J∗‖∞ < 1 (we need to extend some of these inequalities to
apply to our case). However, our assumption is just that ‖J∗‖∞ is bounded by a constant, which
might be greater than 1. Hence, we need to reduce concentration in this more general case into
concentration in high temperature. To do that, we first present a simple but powerful lemma that
converts Ising models PrJ with 1 < ‖J‖∞ ≤ C to models satisfying Dobrushins condition, namely
‖J‖∞ < 1, by conditioning on a set of nodes. While in the first setting standard concentration
inequalities are not guaranteed to hold and fundamental quantities of the distribution such as
the partition function are generally hard to approximate, the second setting resembles the i.i.d.
scenario. While this reduction is simple and has many limitations, it suffices to show that the
learning rate obtained in the constant influence regime is at least as good as the optimal rate
achievable under Dobrushin’s condition. This optimality is made precise in Section 11.

Lemma 2. Let x = (x1, . . . , xn) be an (M, γ)-Ising model, and fix η ∈ (0, M]. Then, there exist subsets
I1, . . . , Iℓ ⊆ [n] with ℓ ≤ CM2 log n/η2 such that:

1. For all i ∈ [n],

|{j ∈ [ℓ] : i ∈ Ij}| =
⌈

ηℓ

8M

⌉

.

2. For all j ∈ [ℓ] and any value of x−Ij
, the conditional distribution of xIj

conditioned on x−Ij
is an

(η, γ)-Ising model.

Furthermore, for any non-negative vector θ ∈ R
n there exists j ∈ [ℓ] such that

∑
i∈Ij

θi ≥
η

8M

n

∑
i=1

θi.

The proof of Lemma 2 is presented in Section 8. It is a simple application of the probabilistic
method and will be used multiple times throughout this work. We can now state the two lemmas
bounding the first and the second derivatives of ϕ.
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Lemma 3. Let x be drawn from the distribution parametrized by J∗ and A ∈ R
n×n. Assume ‖J∗‖∞ ≤ M.

Let I1, . . . , Iℓ be the subsets obtained by Lemma 2 for η = 1/2. Then, there exist constants C, c depending
only on M such that for any t > 0 we have

∣∣∣∣
∂ϕ(J∗)

∂A

∣∣∣∣ ≤ t

(
‖A‖F + max

j∈[l]
‖E[Ax|x−Ij

]‖2

)

with probability at least

1 − C log n exp

(
−c min

(
t2,

t‖A‖F

‖A‖2

))
.

Lemma 4. Let x be drawn from the distribution parameterized by J∗ and A ∈ R
n×n be a symmetric matrix

with zeros on the diagonal. Assume ‖J∗‖∞ ≤ M. Let I1, . . . , Iℓ be the subsets obtained by Lemma 2 for
η = 1/2. Then, there exist constants C, c depending only on M such that for any t > 0 we have that

‖Ax‖2
2 ≥ c‖A‖2

F + c max
j∈[l]

‖E[Ax | x−Ij
]‖2

2 − t

(
‖A‖F + max

j∈[l]
‖E[Ax | x−Ij

]‖2

)

with probability at least

1 − C log n exp

(
−c

min(t2, t‖A‖F)

‖A‖2
2

)
.

Consequently, for any J ∈ J we have

Pr

[
∂2 ϕ(J)

∂2 A
< c′‖A‖2

F + c′ max
j∈[l]

‖E[Ax | x−Ij
]‖2

2

]
≤ C log n exp

(
−c

‖A‖2
F

‖A‖2
2

)
.

In both of those Lemmas, we use the technique of conditioning on subsets Ii defined in
Lemma 2. Essentially, Lemma 4 states that with high probability, ‖Ax‖2

2 is lower bounded by
some specific quantity. The same quantity appears as an upper bound for the first derivative
in Lemma 3. This is not a coincidence. Indeed, we will easily show in the following sections
that ‖Ax‖2

2 is a lower bound for ∂2 ϕ(J)/∂2 A for all matrices J with bounded infinity norm. This
means that Lemma 4 is essentially a lower bound of the second derivative. Thus, combining
Lemmas 3 and 4, we can prove Lemma 1. This is done in Section 6.4.

Notice that the derivative is upper bounded by a value which is not constant, but it is rather
bounded in terms of conditional expectations with respect to x−Ij

. Similarly, the second derivative
is lower bounded in terms of the same quantity. Since in the Taylor expansion we are interested
in the difference between the second and first derivatives, such a non-constant bound suffices to
derive Lemma 1. Furthermore, one might not, in general, replace these bounds with constant
bounds, since the term maxj∈[ℓ] ‖E[Ax|x−Ij

]‖2 might not concentrate outside of Dobrushin’s con-

dition, and, ∂ϕ(J∗)/∂A and ∂2 ϕ(J)/∂A2 will fluctuate along with it. Next, we present the proofs
of Lemmas 3 and 4.

16



6.1.2 Completing the proof for multiple J’s

We will now explain how to use Lemma 1 to conclude the proof of Theorem 4. First of all, we
know that the value of Ĵ is smaller than ϕ(J∗), since the algorithm minimizes the negative log-
pseudolikelihood ϕ. On the other hand, by Lemma 1, we know that if J is far from J∗, then with
high probability it’s value ϕ(J) will be significantly larger than ϕ(J∗). And the further J is, the
higher is the probability. If we could prove that this holds with high probability for all points
that are far from J∗, then we would be able to conclude that Ĵ is close to J∗. This suggests the
following plan of attack: we should pick an R > 0 such that with high probability, all points J
with ‖J − J∗‖F ≥ R satisfy ϕ(J) > ϕ(J∗). This would imply that ‖J∗ − Ĵ‖F ≤ R.

Suppose AR is the set of points J with ‖J − J∗‖F ≥ R. One obstacle in proving such a
statement is that there is possibly an uncountable amount of matrices J that are R far from J∗.
Hence, a simple union bound over these matrices would yield meaningful result. A common
way to reason about uncountable families of objects is to define an ǫ-net on this set of objects.
An ǫ-net of the set AR is a finite subset of it, such that any point in AR is ǫ-close to some point
in the net. Clearly, a small ǫ means that the size of the ǫ-net will be larger. Suppose N is the size
of the ǫ net. As a first step in our proof, we could try to prove that for all points J in the net,
ϕ(J) > ϕ(J∗) + Ω(R). By Lemma 1 and a simple union bound, this happens with probability at
least

1 − N log ne−cR2

Notice that a larger R implies a higher probability that our claim is true. On the other hand, R
will be our final bound for ‖J∗ − Ĵ‖F, so we would like to make it as small as possible. It is clear
that for a sufficiently large probability of success we need R = Ω(

√
log N + log log n).

Suppose we chose such an R. Notice that we have only shown the desired claim for the points
in the net. Our hope is that since the remaining points are close to the points in the net, their
values will also be close. This property is characterized by the Lipschitzness of the function ϕ.
Using some straightforward computations, we bound the Lipschitzness of ϕ by n in Section 6.4.
This means that if ǫ = O(R/n), then all points in AR will have a larger value of ϕ than J∗. Thus,
the size N = N(AR, ‖ · ‖2, R/n) of the net will depend on R. Thus, in order to design a net that
takes advantage of the Lipschitzness and is guaraneed to work with high probability, we should
pick an R such that

R ≥
√

log N(R/n).

Since we would like to show that ‖J∗ − Ĵ‖F is small, we would like to choose the smallest such
R. Thus, our final error rate will be of the form

inf{R : R ≥
√

log N(E, ‖ · ‖2, R/n) + log log n}

This is exactly the guarantee that Theorem 4 gives us.

Section organization. Section 6.2 contains the proof of Lemma 3 that provides an upper bound
for the derivative of the MPLE. In Section 6.3 we present the bound on the second derivative
of the MPLE(Lemma 4). Lastly, in Section 6.4 we give a proof of Lemma 1 that compares the
value of a single J to J∗ and conclude with the proof of Theorem 4. Note that Lemma 2 will be
presented in Section 8.
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6.2 Bounding the Derivative of Log Pseudo-Likelihood

The central goal of this section is to prove Lemma 3. The general form of the derivative is a
sum of tanh functions. The first thing one notices is that its mean is 0. Hence, it is enough to
prove a strong enough concentration bound for this quantity. There are many challenges with
this approach, which we will now present.

First, most concentration bounds that are known hold for Ising models that satisfy Do-
brushin’s condition. However, our model may or may not be in this state. Thus, we utilize
Lemma 2 to find a small number of sets Ij ⊆ [n], such that each i ∈ [n] belongs to a small number
of these sets. This allows us to write the derivative sum as a sum over all the sets Ij, thus focus-
ing on the behavior of the function in each set. Lemma 2 also guarantees that if we condition on
x−Ij

, the resulting Ising model will satisfy Dobrushin’s condition. Hence, the problem reduces to
bounding the terms of the sum belonging to Ij when we condition on x−Ij

.
This brings us to the next challenge, which involves the concentration bound. Most of the

existing results on concentration inequalities for the Ising model focus on the case where the
function is a multilinear polynomial. Since this is not the case for the derivative, we introduce
a simple modification to the already existing techniques so that we obtain the desired concen-
tration in our case. This will give us a bound that depends on the conditional expectation of a
quadratic form conditioned on x−Ij

. This might seem insufficient at first, since we are not getting
a uniform bound for the derivative, but rather one that depends on the values of x−Ij

. However,
an analogous lower bound is proven for the strong convexity in Lemma 4. Hence, the two bounds
match in all instantiations of x−Ij

, allowing us to complete the proof for the concentration of the
derivative in a single direction A.

6.2.1 Proof of Lemma 3

First, we decompose the derivative according to terms corresponding to the sets I1, . . . , Iℓ as
specified by Lemma 2 for η = 1/2. Recall that each element i ∈ [n] appears in exactly ℓ′ = ⌈ηℓ/8⌉
sets:

∣∣∣∣
∂ϕ(J∗)

∂A

∣∣∣∣ =
1

2

∣∣∣∣∣ ∑
i∈[n]

Aix(xi − tanh(J∗i x))

∣∣∣∣∣ ≤
1

ℓ′ ∑
j∈[ℓ]

∣∣∣∣∣∣
∑
i∈Ij

Aix(xi − tanh(J∗i x))

∣∣∣∣∣∣
:=

1

ℓ′ ∑
j∈[ℓ]

|ψj(x; A)|.

(13)
We will bound the terms {ψj(x; A) : j ∈ [ℓ]} separately, and show that each term concentrates
around zero. In order to do so, we will show that conditioned on any value for x−Ij

, ψj(x; A)
concentrates around zero, while the radius of concentration can depend on the specific value of
x−Ij

. First, we would like to claim that this term is conditionally zero mean:

Claim 1. For any j ∈ [ℓ], E

[
ψj(x; A)

∣∣∣ x−Ij

]
= 0.

Proof. First, fix i ∈ Ij, and notice that since A and J∗ have zeros on the diagonal, both Aix and Jix
are constant conditioned on x−i, hence

E[Aix(xi − tanh(Jix))|x−i] = Aix(E[xi|x−i]− tanh(J∗i x)) = 0,
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where the last equality follows from definition of the Ising mode. Next, notice that

E

[
ψj(x; A)

∣∣∣ x−Ij

]
= ∑

i∈Ij

E

[
Aix(xi − tanh(J∗i x))

∣∣∣ x−Ij

]

= ∑
i∈Ij

ExIj
[E [Aix(xi − tanh(J∗i x)) | x−i]] = 0.

Next, we will bound the radius of concentration of ψj(x; A) conditioned on x−Ij
, and show

that it is roughly bounded by O
(

1 +
∥∥∥E

[
Ax

∣∣∣ x−Ij

]∥∥∥
2

)
. Additionally, we derive concentration

inequalities for the above term. In order to achieve this task, we utilize Lemma 2, which states
that xIj

is conditionally Dobrushin, conditioned on x−Ij
. Hence, we can utilize concentration

inequalities for Dobrushin random variables, and achieve the following bound:

Lemma 5. For any symmetric matrix A with zeros on the diagonal, we have

Pr
[
|ψj(x; A)| ≥ t

∣∣∣ x−Ij

]
≤ exp


−c min


 t2

‖E

[
Ax

∣∣∣ x−Ij

]
‖2

2 + ‖A‖2
F

,
t

‖A‖2




 .

Most existing concentration bounds for the Ising model focus on multilinear polynomials,
which is obviously not the form ψj has. Hence, in order to prove this bound, we modified slightly
the existing proof of Theorem 5 to present a concentration inequality for general functions of ising
models satisfying Dobrushin’s condition, presented in Section 9. The concentration radius we get
depend on bounds of the first and second discrete derivatives of the function. The full proof of
Lemma 5 can be found in Section C.1.

Combining Lemma 5 with (13), we obtain the proof of Lemma 3, which we restate here for
convenience.

Lemma 3. Let x be drawn from the distribution parametrized by J∗ and A ∈ R
n×n. Assume ‖J∗‖∞ ≤ M.

Let I1, . . . , Iℓ be the subsets obtained by Lemma 2 for η = 1/2. Then, there exist constants C, c depending
only on M such that for any t > 0 we have

∣∣∣∣
∂ϕ(J∗)

∂A

∣∣∣∣ ≤ t

(
‖A‖F + max

j∈[l]
‖E[Ax|x−Ij

]‖2

)

with probability at least

1 − C log n exp

(
−c min

(
t2,

t‖A‖F

‖A‖2

))
.

Proof. For any j ∈ [ℓ], Lemma 5 implies that

Pr
[
|ψj(x; A)| ≥ t

(
‖A‖F +

∥∥∥E[Ax|x−Ij
]
∥∥∥

2

)]
≤ exp

(
−c min

(
t2,

t‖A‖F

‖A‖2

))
.

By a union bound over j ∈ [ℓ], with probability at least 1−C log n exp(−c min(t2, t‖A‖F/‖A‖2)),

|ψj(x; A)| ≤ t(‖A‖F + ‖E[Ax|x−Ij
]‖2)
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holds for all j ∈ [ℓ]. By (13), whenever this holds, we also have

∣∣∣∣
∂ϕ(J∗)

∂A

∣∣∣∣ ≤
1

ℓ′ ∑
j∈[ℓ]

|ψj(x; A)| ≤ ℓ

ℓ′
t

(
‖A‖F + max

j∈[ℓ]
‖E[Ax|x−Ij

]‖2

)
.

Since ℓ/ℓ′ is at most a constant, the proof is complete.

6.3 Strong Convexity of Log Pseudo-Likelihood

The central goal of this section is to prove Lemma 4. We break it into two parts. Section 6.3.1 deals
with the overall proof of the lemma, while Section 6.3.2 contains an auxiliary lemma utilized in
the proof. The approach here is quite similar to the one for the derivative. However, the specific
tools differ, since this is an anticoncentration result. The argument begins by lower bounding
the second derivative by a quadratic form depending only on the direction A of the derivative,
namely ‖Ax‖2

2. Then, the problem reduces to showing anticoncentration for this quadratic form.
This will be accomplished by establishing two claims.

First, we show that the mean of this form is bounded away from 0 by a quantity that depends
on the Frobenius norm of Ax, conditional on the values x−Ij

. This would trivially be true if
the spins were independent. In the case of the Ising model, we use Lemma 2 to find a subset
of the nodes that has a small Dobrushin constant. This means that these nodes will be weakly
correlated conditional on the rest, hence close to independent. This translates to the covariance
matrix being diagonally dominant, from which the claim follows.

Second, we need to show that ‖Ax‖2
2 concentrates around its mean in a radius that is of

the same or less order that the mean, conditional on x−Ij
. This concentration will be easier

than the one obtained for the derivative, since we are now dealing with a quadratic function, to
which known concentration results apply [Ada+19]. Therefore, we have shown that the second
derivative in a particular direction A is sufficiently large.

6.3.1 Proof of Lemma 4

The first step will be to lower bound the second derivative by a quadratic form. This way, the
task of proving strong convexity becomes significantly easier. For all J ∈ J and any direction A,
we obtain that

4
∂2 ϕ(J)

∂A2
=

n

∑
i=1

(Aix)
2 sech2(Jix) ≥

n

∑
i=1

(Aix)
2 sech2(‖Jx‖∞)

= ‖Ax‖2
2 sech2(‖Jx‖∞) ≥ ‖Ax‖2

2 sech2(‖J‖∞‖x‖∞) (14)

≥ ‖Ax‖2
2 sech2(M), (15)

where we used the facts that sech x ≥ sech y whenever |x| ≤ |y| and ‖J‖∞ ≤ M for all J ∈ J .
Notice that the bound we get only depends on the direction A of the derivative and not on the
point J where we are calculating it. Hence, any bounds we manage to prove on this quantity will
hold for all J ∈ J . Our goal is to show that with high probability ‖Ax‖2

2 is sufficiently large.
The general strategy to showing this anticoncentration property will be to bound it’s expec-

tation away from 0 and then show that the function concentrates well around that value. We
now focus on the first goal. Since ‖Ax‖2

2 is a sum of squares of linear functions, we proceed
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with a lower bound on the second moment of any linear function. What we need essentially is a
variance lower bound. Therefore, we have the following lemma.

Lemma 6. Let y be an (M, γ)-Ising model. Then, for any vector a ∈ R
m,

Var(a⊤x) ≥ cγ2‖a‖2
2

M
.

The proof is presented in Subsection 6.3.2. Here now give a short outline of it.

Proof sketch. First, let’s examine what would happen if all the coordinates of x were independent,
each coordinate having a variance of at least γ. Then,

Var(a⊤x) = ∑
i

Var(aixi) = ∑
i

a2
i Var(xi) ≥ γ‖a‖2

2.

We would like to apply the same logic in our situation. Specifically, we would like the coordinates
of x to be as close to independent as possible. Therefore, we will use Lemma 2 to find a set of
coordinates I such that xI is an (α, γ)-Ising model conditioned on any value for x−I , where
α = cγ. In this regime, the interactions between the nodes are weak, resulting in the covariance
matrix of xI conditioned on x−I being diagonally dominant. This allows us to derive the same
variance bound as if xI was independent:

Var
[

a⊤x
∣∣∣ x−I

]
= Var

[
a⊤I xI

∣∣∣ x−I

]
≥ cγ‖aI‖2

2.

Lemma 2 guarantees that we can select the set I such that ‖aI‖2
2 ≥ α/(8M)‖a‖2

2 , by substituting
θi with a2

i in the lemma. Hence,

Var
[

a⊤x
∣∣∣ x−I

]
≥ cγ‖aI‖2

2 ≥ c′γα‖a‖2
2

M
≥ c′′γ2‖a‖2

2

M
.

Finally, since conditioning can only decrease the conditional variance on expectation, the same
bound holds for Var[a⊤x].

Now, we would like to apply Lemma 6 to obtain a lower bound for the expectation of ‖Ax‖2
2.

A simple application of the Lemma shows that:

E[‖Ax‖2
2] = ∑

i

E[(Aix)
2] ≥ ∑

i

(Var[(Aix)] + E[Aix]
2) (16)

≥ ∑
i

Ω(‖Ai‖2
2) + ‖E[Ax]‖2

2 = Ω(‖A‖2
F) + ‖E[Ax]‖2

2. (17)

Recall, however, that our goal in Lemma 4 is to lower bound the second derivative of ϕ in terms of
the conditional expectation of Ax, conditioned on x−Ij

, for j ∈ [ℓ]. The following lemma presents
a variant of (16) when we condition on x−Ij

. Its proof is an application of Lemma 2 along with
some simple calculations with conditional expectations.

Lemma 7. Fix A ∈ A. For any Ij and any x−Ij
, it holds that

E

[
‖Ax‖2

2

∣∣∣ x−Ij

]
≥ cγ2‖A·Ij

‖2
F +

∥∥∥E

[
Ax

∣∣∣ x−Ij

]∥∥∥
2

2
.
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Furthermore, there exists some j ∈ [ℓ] such that

E

[
‖Ax‖2

2

∣∣∣ x−Ij

]
≥ cγ2/M

with probability 1.

Proof. Since conditioned on x−Ij
, xIj

is a (1/2, M) Ising model, we derive by Lemma 6 that

E

[
‖Ax‖2

2 |x−Ij

]
=

n

∑
i=1

E

[
(Aix)

2|x−Ij

]
=

n

∑
i=1

(
E

[
Aix|x−Ij

]2
+ Var

[
Aix|x−Ij

])

=
∥∥∥E

[
Ax|x−Ij

]∥∥∥
2

2
+

n

∑
i=1

Var
[

Ai,Ij
xIj

|x−Ij

]
≥

∥∥∥E

[
Ax|x−Ij

]∥∥∥
2

2
+

n

∑
i=1

cγ2
∥∥∥Ai,Ij

∥∥∥
2

2

≥
∥∥∥E

[
Ax|x−Ij

]∥∥∥
2

2
+ cγ2

∥∥∥A·Ij

∥∥∥
2

F
.

To prove the second part of the lemma, it suffices to show that there exists j ∈ [ℓ] such that
‖A·Ij

‖2
F ≥ c′‖A‖2

F/M = c′/M. Recall that the sets {Ij}j∈[ℓ] were obtained from Lemma 2 with

η = 1/2. By the last part of this lemma, if we substitute θi = ‖A·i‖2
2, we derive that there exists a

j ∈ [ℓ] such that

‖A·Ij
‖2

F = ∑
i∈Ij

θi ≥
c

M ∑
i∈[n]

θi =
c‖A‖2

F

M
=

c

M
,

recalling that ‖A‖F = 1 for all A ∈ A.

According to Lemma 7, if we can show that ‖Ax‖2
2 is concentrated at a radius of

O

(∥∥∥AIj

∥∥∥
2

F
+

∥∥∥E[Ax]|x−Ij

∥∥∥
2

2

)

around its mean, conditional on x−Ij
, then anticoncentration follows. The next Lemma con-

tributes to the proof in this direction.

Lemma 8. Fix symmetric matrix A with zeros on the diagonal and j ∈ [ℓ]. Then, for any fixed value of
x−Ij

and any t > 0

Pr
[
‖Ax‖2

2 < E

[
‖Ax‖2

2

∣∣∣ x−Ij

]
− t

∣∣∣ x−Ij

]
≤ exp


− c

‖A‖2
2

min


 t2

‖A‖2
F + ‖E

[
Ax

∣∣∣ x−Ij

]
‖2

2

, t




 .

The proof is given in Section C.2. Note that by Lemma 2 we know that xIj
is conditionally

Dobrushin, conditioned on x−Ij
. The reason why Lemma 8 does not directly follow from the

concentration inequality for quadratic forms (Theorem 5) is that the matrix A⊤A does not neces-
sarily have zeroes on the diagonal. Hence, the proof consists of a simple argument that reduces
to the concentration of a polynomial of the form x⊤ Ãx where Ã has zeros on the diagonal.

By combining Lemmas 7 and 8, we are now able to prove that ‖Ax‖2
2 is lower bounded with

high probability, conditioned on x−Ij
. This allows us to complete the proof of Lemma 4.
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Lemma 4. Let x be drawn from the distribution parameterized by J∗ and A ∈ R
n×n be a symmetric matrix

with zeros on the diagonal. Assume ‖J∗‖∞ ≤ M. Let I1, . . . , Iℓ be the subsets obtained by Lemma 2 for
η = 1/2. Then, there exist constants C, c depending only on M such that for any t > 0 we have that

‖Ax‖2
2 ≥ c‖A‖2

F + c max
j∈[l]

‖E[Ax | x−Ij
]‖2

2 − t

(
‖A‖F + max

j∈[l]
‖E[Ax | x−Ij

]‖2

)

with probability at least

1 − C log n exp

(
−c

min(t2, t‖A‖F)

‖A‖2
2

)
.

Consequently, for any J ∈ J we have

Pr

[
∂2 ϕ(J)

∂2 A
< c′‖A‖2

F + c′ max
j∈[l]

‖E[Ax | x−Ij
]‖2

2

]
≤ C log n exp

(
−c

‖A‖2
F

‖A‖2
2

)
.

Proof. Let Ej denote the event that

‖Ax‖2
2 > E[‖Ax‖2

2 | x−Ij
]− t

(
‖A‖F + ‖E[Ax | x−Ij

]‖2

)
. (18)

By Lemma 8,

Pr[Ej] = Ex−Ij

[
Pr[Ej | x−Ij

]
]
≥ 1 − exp

(
−c min(t2, t‖A‖F)/‖A‖2

2

)
.

By a union bound, Pr
[⋂

j Ej

]
≥ 1 − C log n exp

(−c min(t2, t‖A‖F)/‖A‖2
2

)
.

From now onward, assume that
⋂

j Ej holds. Lemma 7 implies that

E

[
‖Ax‖2

2 | x−Ij

]
≥ c‖A·Ij

‖2
F + ‖E[Ax|x−Ij

]‖2
2

and additionally, that there exists some j such that ‖A·Ij
‖2

F ≥ c‖A‖2
F. We derive that

‖Ax‖2
2 > c‖A·Ij

‖2
F + ‖E[Ax|x−Ij

]‖2
2 − t

(
‖A‖F + ‖E[Ax | x−Ij

]‖2

)
(19)

holds for all j. Let j1 = maxj ‖E[Ax | x−Ij
]‖2 and j2 = maxj ‖A·Ij

‖F. Then, substituting j1 in (19),
we derive that

‖Ax‖2
2 > max

j
‖E[Ax | x−Ij

]‖2
2 − t

(
‖A‖F + max

j
‖E[Ax | x−Ij

]‖2

)
.

By substituting j2 in (19) we derive that

‖Ax‖2
2 > c′‖A‖2

F − t

(
‖A‖F + max

j
‖E[Ax | x−Ij

]‖2

)
.

Taking an average of the above two inequalities, we derive that

‖Ax‖2
2 > c′‖A‖2

F/2 + max
j

‖E[Ax | x−Ij
]‖2

2/2 − t

(
‖A‖F + max

j
‖E[Ax | x−Ij

]‖2

)
.

This concludes the proof for the first part of the lemma. For the second part, we substitute
t = c′′‖A‖F and use the inequality(14) for a lower bound on the second derivative.
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6.3.2 Proof of Lemma 6

We begin by proving Lemma 6. The idea is that if the total interaction strength of a node with all
of its neighbors is small compared to the variance of each node, then the behavior is similar to
that of independent samples. To prove that, we employ the following Lemma, the proof of which
can be found in [Dag+19, Lemma 4.9], and is also a direct corollary of the earlier paper [BN+19,
Theorem 3.1].

Lemma 9. Let x be an (M, γ) Ising model with M < 1. Fix i ∈ [n] and let Px−i|xi=1 denote the
conditioned distribution over x−i conditioned on xi = 1 and Px−i|xi=−1 denote the conditioned distribution
conditioned on xi = −1. Then,

W1(Px−i|xi=1, Px−i|xi=−1) ≤
2M

1 − M
,

where W1 is the ℓ1-Wasserstein distance, namely W1(P, Q) = minπ E(x,y)∼π[‖x − y‖1]. The minimum is
taken over all distributions π over {−1, 1}n ×{−1, 1}n , such that the marginals are P and Q, respectively.

This lemma essentially tells us that if M is small enough, then changing the spin of a single
node is unlikely to influence the remaining ones. Using this fact, we can proceed as in the proof
sketch of Section 6.3.1 to prove the claim. To prove it in the general case, we employ once more
the conditioning trick to reduce the Dobrushin constant of the model. Specifically, Lemma 2
guarantees that we can find a subset I of nodes that are conditionally very weakly dependent,
while still maintaining a constant fraction of the total variance of the linear function. The details
are given below.

Proof of Lemma 6. Fix a ∈ R
d. We first assume that M ≤ γ/4, and then we prove it for all M. We

start by arguing that for all i ∈ [n],

∑
j∈[n]\{i}

|Cov(xi, xj)| ≤
M

1 − M
.

The strategy will be to bound the Wasserstein distance between two Ising models conditional
on different values of a single node. Using a tensorization argument, we have that if X =
(X1, . . . , Xn), Y = (Y1, . . . , Yn) are random vectors over the same domain, then W1(X, Y) ≥
∑i∈[n] W1(Xi, Yi). Applying this on the distributions Px−i|xi=1 and Px−i|xi=−1, we derive by Lemma 9
that

∑
j∈[n]\{i}

∣∣E[xj|xi = 1]− E[xj|xi = −1]
∣∣ = ∑

j∈[n]\{i}
W1(Pxj|xi=1, Pxj|xi=−1)

≤ W1(Px−i|xi=1, Px−i|xi=−1) ≤
2M

1 − M
,

where we also used the easily established property that for any two random variables U, V
supported in a set of size 2, W1(U, V) = |E[U] − E[V]|. We will use the above bound to get a
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bound on Cov(xi, xj). Indeed,

Cov(xi, xj) = E[(xi − Exi)xj] = Exi
[(xi − Exi)Exj

[xj|xi]]

= Pr[xi = 1](1 − Exi)E[xj|xi = 1] + Pr[xi = −1](−1 − Exi)E[xj|xi = −1]

=
1

2
(1 + E[xi])(1 − Exi)E[xj|xi = 1] +

1

2
(1 − E[xi])(−1 − Exi)E[xj|xi = −1]

=
1

2
(1 − E[xi]

2)(E[xj|xi = 1]− E[xj|xi = −1]).

Combining the above inequalities, we obtain that

∑
j∈[n]\{i}

|Cov(xi, xj)| ≤
∑j∈[n]\{i} |E[xj|xi = 1]− E[xj|xi = −1]|

2
≤ M

1 − M
.

To conclude the proof for the setting where M ≤ γ/4:

Var(a⊤x) = E[a⊤(x − Ex)(x − Ex)⊤a] = ∑
i,j

aijCov(xi, xj) ≥
n

∑
i=1

a2
i Var(xi)− ∑

i 6=j

|aiajCov(xi, xj)|

≥
n

∑
i=1

a2
i Var(xi)− ∑

i 6=j

(a2
i + a2

j )|Cov(xi, xj)|
2

=
n

∑
i=1

a2
i

(
Var(xi)− ∑

j 6=i

|Cov(xi, xj)|
)

≥
n

∑
i=1

a2
i

(
γ − M

1 − M

)
≥ ‖a‖2

2

γ

2
,

where we used the fact that M ≤ γ/4 < 1/2, which implies that M/(1 − M) ≤ 2M ≤ γ/2.
In order to prove the Lemma without the above assumption, we again use the conditioning

trick. Specifically, we find a subset of the nodes that satisfies Dobrushin’s condition with a small
enough M and then apply our result. To make this formal, notice that by Lemma 2, there exists
a subset I of nodes such that conditioned on any x−I , xI is a (γ/4, γ)-Ising model. Moreover, it
is guaranteed that

∑
i∈I

a2
i ≥ c′γ

M ∑
i∈[n]

a2
i .

Hence, if we apply the previous result when conditioning on x−I we get

Var[a⊤x|x−I ] = Var[a⊤I xI |x−I ] ≥
γ‖aI‖2

2

2
≥ cγ2‖a‖2

2

M
.

Since conditioning decreases the variance in expectation, we have that

Var[a⊤x] ≥ Ex−I
[Var[a⊤x|x−I ]] ≥

cγ2‖a‖2
2

M
,

as required.

25



6.4 Proof of Lemma 1 and Theorem 4

The goal of this section is to prove the main Theorem 4. We do so in two steps. First, we use
Lemmas 3 and 4 to complete the proof of Lemma 1. The strategy here is to use a lower bound on
the Taylor approximation of ϕ around J1 to prove that it’s value will be larger than J∗. To prove

the lower bound, we utilize the lower bound on
∂2 ϕ(J)

∂2 A
fro all J and the upper bound of

∂ϕ(J∗)
∂A .

The precise argument is carried out in the following proof.

Lemma 1. Let M > 0, let x be drawn from the distribution parametrized by J∗ and let J1 6= J∗ be such
‖J1‖∞, ‖J∗‖∞ ≤ M. Then, there are constants c, c′ > 0 depending only on M such that with probability
1 − log n exp(−c‖J∗ − J1‖2

F), it holds that

ϕ(J1) ≥ ϕ(J∗) + c′‖J1 − J∗‖2
F.

Proof. Define the function J : [0, 1] → R by J(t) = J∗+ t(J1 − J∗) such that J(0) = J∗ and J(1) = J1.
Let A = J1 − J∗. Notice that

dϕ(J(t))

dt
=

∂ϕ(J)

∂A

∣∣∣∣∣
J=J(t)

;
d2 ϕ(J(t))

dt2
=

∂2 ϕ(J)

∂A2

∣∣∣∣∣
J=J(t)

.

Let µ = mint∈(0,1)
d2 ϕ(J(t))

dt2 and let r = dϕ(J(t))
dt |t=0. Then, by the fundamental theorem of calculus,

dϕ(J(t))

dt
≥ r + tµ.

This implies by the fundamental theorem of calculus that

ϕ(J(t)) ≥ ϕ(J(0)) + tr +
t2µ

2
.

Substituting t = 1, we derive that

ϕ(J1) ≥ ϕ(J∗) + r +
µ

2
.

From Lemma 4, with probability 1 − C log n exp
(
−c

‖A‖2
F

‖A‖2
2

)
, it holds that µ ≥ c0‖A‖2

F +

c0 maxj ‖E[Ax | x−Ij
]‖2

2. By applying Lemma 3 with t = O(‖A‖F), we derive that with prob-

ability 1 − C log n exp
(
−c

‖A‖2
F

‖A‖2
2

)
, |r| ≤ µ/4. Whenever these two events hold, we have

ϕ(J1)− ϕ(J∗) ≥ r +
µ

2
≥ −µ

4
+

µ

2
≥ c0‖A‖2

F/4.

This holds with probability

1 − C log n exp

(
−c

‖A‖2
F

‖A‖2
2

)
= 1 − C log n exp

(
−c

‖J1 − J∗‖2
F

‖J1 − J∗‖2
2

)

and notice that ‖J1 − J∗‖2 ≤ ‖J1‖2 + ‖J∗‖2 ≤ ‖J1‖∞ + ‖J∗‖∞ which is bounded by a constant.
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To complete the proof of Theorem 4, we need the bound of Lemma 1 to hold for all points
J ∈ J uniformly. So far we have obtained a bound for comparing a single J with J∗ that holds

with probability proportional to 1 − log ne−cr2
. Hence, by taking a union bound over a set of

points of cardinality N, we obtain a probability concentration bound of the form 1− N log ne−cr2
.

Since we would like this bound to hold for all points , we should choose this set so that it covers
the set J . A natural candidate for such a set is an ǫ-net of J . Intuitively, it is a set of points
such that every J ∈ J is close to at least one of them. Ideally, if two points are close under some
notion of distance, we would like to conclude that the values of ϕ on these two points will also
be close. This is exactly the content of the following auxiliary Lemma.

Lemma 10. Let M > 0 and J1, J2 be two matrices. Then,

|ϕ(J1)− ϕ(J2)| ≤ n‖J1 − J2‖2

Proof. We have that

ϕ(J) =
n

∑
i=1

(log cosh(Jix)− xi Jix + log 2).

We can define the function g : [0, 1] 7→ R by

g(t) = ϕ (tJ1 + (1 − t)J2)

Clearly, g is computing the values of ϕ across the line segment connecting J1, J2. Hence, the
desired inequality is equivalent to

|g(1)− g(0)| ≤ n‖J1 − J2‖2

Computing the derivative of g will thus give us a suitable bound for this difference. By the
calculations done in the previous lemmas, it is clear that

g′(t) =
∂ϕ(J)

∂A

∣∣∣∣∣
J=tJ1+(1−t)J2

where A = J1 − J2. We set J(t) = tJ1 + (1 − t)J2. By the calculations done in previous parts of
the paper, we have

∂ϕ(J)

∂A

∣∣∣∣∣
J=tJ1+(1−t)J2

=
1

2

n

∑
i=1

((J1 − J2)ix) (tanh(J(t)ix)− xi)

Using the Cauchy-Schwarz inequality, we obtain

∣∣∣∣∣
n

∑
i=1

((J1 − J2)ix) (tanh(J(t)ix)− xi)

∣∣∣∣∣ ≤
√

n

∑
i=1

((J1 − J2)ix)
2

n

∑
i=1

(tanh(J(t)ix)− xi)
2

= ‖(J1 − J2)x‖2

√
n

∑
i=1

(tanh(J(t)ix)− xi)
2
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Since the tanh funtion is bounded in [−1, 1], we have

√
n

∑
i=1

(tanh(J(t)ix)− xi)
2 ≤ 2

√
n

Also, by the infinity norm bound of J1, J2 we have

‖(J1 − J2)x‖2 ≤ ‖J1 − J2‖2‖x‖2 =
√

n‖J1 − J2‖2

We conclude that for any t ∈ [0, 1]

|g′(t)| ≤ 1

2
2
√

n
√

n‖J1 − J2‖2 = n‖J1 − J2‖2

By the mean value theorem, this implies

|g(1)− g(0)| ≤ n‖J1 − J2‖2

and the claim is complete.

We now use the preceding observations to conclude the proof of Theorem 4. The idea is
to consider the set of points Ar whose distance from J∗ is at least r in Frobenius norm. We
would like to show that all of these points will have a value of ϕ that is r larger than J∗ with
high probability. To do this, we find an r/n-net of Ar. By taking a union bound over this
set, we ensure that the concentration bound will hold for all points in this set. Also, by the
Lipschitzness argument, this implies that this holds for all points in Ar. The failure probability

is thus N(r/n) log ne−cr2
. We choose an r small enough to make this probability smaller than δ

and this gives us the final guarantee.

Theorem 4. Let J be some set of matrices of infinity norm bounded by a constant M, and let

R = min

{
r ≥ 0 : r ≥ C(M)

√
log log n + log N(J , ‖ · ‖2, cr2/n) + log(1/δ)

}

≤ C(M)
√

log log n + log N(J , ‖ · ‖2, c/n) + log(1/δ).

Then, with probability 1 − δ, it holds that any point J ∈ J that satisfies ‖J − Ĵ‖F ≥ R, also satisfies
ϕ(J) ≥ ϕ(J∗) + cR2. In particular, there exists an algorithm that, given one sample x ∼ PrJ∗ where
J∗ ∈ J , outputs Ĵ = Ĵ(x) such that

‖ Ĵ − J∗‖F ≤ R.

Proof. Let r > 0. The idea is to find an ǫ-cover N for the set of elements J≥r := {J ∈ J : ‖J∗ −
J‖F ≥ r}. Then, apply Lemma 1 for each element in this cover and argue by a union bound, that
with high probability all elements in N exceed J∗ in the cost function ϕ. Then, use Lipschitzness
of this function ϕ to generalize from the net to J≥r.

Let ǫ = c′r2/(2n) where c′ is the constant from Lemma 1, and we take N to be an ǫ-cover of
J≥r with respect to the matrix norm ‖ · ‖2.
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By applying Lemma 1, each J ∈ N satisfies with probability 1 − C log n exp(−cr2),

ϕ(J) ≥ ϕ(J∗) + c′r2.

By a union bound over the net, with probability at least 1 − |N | log n exp(−cr2), all these points
satisfy the above inequality.

Next, assume that the above holds and we generalize from the cover to all of J≥r. Take
any point J ∈ J≥r and let J0 be any point in J that satisfies ‖J0 − J‖2 ≤ ǫ. Then, we have by
Lemma 10 that

ϕ(J) ≥ ϕ(J0)− n‖J − J0‖2 ≥ ϕ(J0)− c′r2/2 ≥ ϕ(J∗) + c′r2/2.

The failure probability is

|N | log n exp(−cr2) = N(J≥r , ‖ · ‖2, c′r2/(2n)) log n exp(−cr2) ≤ N(J , ‖ · ‖2, c′r2/(4n)) log n exp(−cr2),

using the fact that for any sets U ⊆ U , any norm ‖ · ‖ and any ǫ > 0, it holds that N(U ′ , ‖ · ‖, ǫ) ≤
N(U , ‖ · ‖, ǫ/2).

Let N = N(J , ‖ · ‖2, c′r2/(4n)) and notice that r has to be sufficiently large such that

N log ne−cr2 ≤ δ,

which holds whenever
log N + log log n − cr2 ≤ log δ

or

r ≥ C
√

log log n + log N + log(1/δ).

7 Applications

We begin with applications for learning from one sample, and then move to multiple samples.

7.1 Applications for learning from one sample

7.1.1 A collection of finite candidates

Assume that J is a finite set. Then, we have N(J , ‖ · ‖2, 0) = |J |. In particular, we immediately
obtain the bound of Corollary 1:

‖ Ĵ − J∗‖F ≤ C
√

log |J |+ log(1/δ) + log log n.
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7.1.2 A Euclidean subspace of matrices

In this section, we assume that the matrix J∗ is a linear combination of k known candidate
matrices, J1, . . . , Jk, and further, that it has bounded infinity norm. In particular, define J = {J :

∑
k
i=1 βi Ji, ‖J‖∞ ≤ M, βi ∈ R}. Using standard arguments, we can obtain bounds on the covering

numbers of this set:

Lemma 11. Let J = {J : ∑
k
i=1 βi Ji, ‖J‖∞ ≤ M, βi ∈ R}, where J1, . . . , Jk are known matrices. Then

N(J , ‖ · ‖∞, ǫ) ≤
(

1 +
2M

ǫ

)k

Proof. Let B(x, r) be the ball of center x and radius r w.r.t. ‖ · ‖∞ in the subspace spanned by
J1, . . . , Jk. Then the set J is equal to B(0, M). Let |V| denote the volume of a subset V of this k-
dimensional subspace. Suppose we cover B(0, M) in the usual greedy way: each time we choose a
ball B(x, ǫ/2) that is disjoint with the previous balls, where x ∈ B(M) and we add it to the cover,
until we cannot add any more balls. Let N be the number of centers selected using this process.
Then clearly any point x in B(0, M) is within ǫ distance from some center(otherwise the ball
B(x, ǫ/2) could be added in the cover). Hence, these centers form an ǫ net of B(0, M). Moreover,
notice that all the selected balls are disjoint and fit inside the ball B(0, M + ǫ/2). Hence, their
total volume is at most |B(0, M + ǫ/2). It follows that

N|B(0, ǫ/2)| ≤ |B(0, M + ǫ/2)|

By scaling we know that

|B(0, ǫ/2)| =
( ǫ

2

)k
|B(0, 1)|

|B(0, M + ǫ/2)| =
(

M +
ǫ

2

)k
|B(0, 1)|

Notice that it doesn’t matter which norm defines the balls. As long as the balls scale exponentially
with the dimension, the volume does so too.

Consequently, we have that

N ≤ |B(0, M + ǫ/2)|
|B(0, ǫ/2)| =

(
M + ǫ/2

ǫ/2

)k

=

(
1 +

2M

ǫ

)k

By applying Theorem 4, we immediately obtain Corollary 2 :

Corollary 2. Let J1, . . . , Jk be fixed matrices and let J = {J = ∑
k
i=1 βi Ji : ‖J‖∞ ≤ M,~β ∈ R

k}. Then,
our estimator Ĵ satisfies ‖ Ĵ − J∗‖F ≤ C(M)

√
k log n + log(1/δ), with probability ≥ 1 − δ, and Ĵ can be

computed in time poly(n, k).

Proof. For the statistical quarantee, apply Theorem 4, using the covering numbers from Lemma 11.
The optimum can be found in polynomial time due to Lemma 21.
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7.1.3 Sparse estimation

Here, we assume that the true interaction matrix is a linear combination of just a few matrices in

the subspace. Hence, we are dealing with ℓ0 sparsity. Denote for any ~β ∈ R
k by ‖~β‖0 the number

of nonzero coordinates of ~β. The goal is to have a learning rate that is dominated by the number
of nonzero components of β. This is precisely the content of the following claim.

Corollary 3. Let J1, . . . , Jk be fixed matrices, s > 0, and let J = {J = ∑
k
i=1 βi Ji : ‖J‖∞ ≤ M, ‖~β‖0 ≤ s}.

Then, our estimator Ĵ satisfies ‖ Ĵ − J∗‖F ≤ C(M)
√

s(log n + log k) + log(1/δ), with probability ≥
1 − δ, and Ĵ can be computed in time poly(n, s) · (k

s).

Proof. To prove the statistical guarantee, we need to bound the covering number of the set J .
To do that, we use the fact that J is a union of (n

s) collections of matrices, each of them is an
intersection of some s-dimensional subspace with the set of matrices of bounded infinity norm.
By Lemma 11 the ǫ covering number of each such set J ′ is bounded by N(J ′, ‖ · ‖∞, ǫ) ≤(
1 + 2M

ǫ

)s
. Taking the union over the ǫ coverings over all the (k

s) collections, we get a covering

for J of size at most
(
1 + 2M

ǫ

)s
(k

s). Hence, by plugging this number into the general rate of
Theorem 4 we immediately obtain the result.

For the analysis of the runtime, notice that in order to optimize the MPLE, one has to iterate

over all (k
s) subspaces of dimension s and find the minimizer in each of those, each in polynomial

time due to Corollary 2.

7.1.4 High dimensional manifolds

There are settings where the interaction matrix lies in a nonlinear space. One such case is when
the space is a k-dimensional manifold of matrices. In this case, we have some continuous map-
ping h : D → Mn×n(R) where D ⊆ R

k is some domain and J = {h(x) : x ∈ D, ‖h(x)‖∞ ≤ M}.
We also assume that h is Lipschitz. With these assumption, we can obtain the following guaran-
tee.

Corollary 4. Let h(~β) be a function from [−1, 1]k to the set of n × n matrices, that satisfies ‖h(~β) −
h(~β′)‖2 ≤ L‖~β − ~β′‖∞ for some L > 0. Define J = {J = h(~β) : ~β ∈ [−1, 1]k, ‖J‖∞ ≤ M}. Then our
estimator Ĵ satisfies ‖ Ĵ − J∗‖F ≤ C(M)

√
k(log n + log L) + log(1/δ), with probability ≥ 1 − δ.

Proof. Since h satisfies ‖h(x) − h(y)‖2 ≤ L‖x − y‖ for some L > 0, we have that for any set
D ⊆ R

k:
N(h(D), ‖ · ‖2, ǫ) ≤ N(D, ‖ · ‖, ǫ/L).

In particular, if D = [0, 1]k and ‖ · ‖ = ‖ · ‖∞ is the infinity norm over vectors in R
k, then

N(D, ‖ · ‖∞, ǫ) ≤ ǫ−k. Hence, by a direct application of Theorem 4 we derive the following
bound with probability 1 − δ:

‖ Ĵ − J∗‖F ≤ C
√

k log(Ln) + log(1/δ).

7.2 Multiple independent samples

In this Section, we assume that we have access to multiple samples, either independent or corre-
lated. An application of Theorem 4 gives us nontrivial bounds.
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7.2.1 A general statement for independent samples

We start by giving a general bound for learning from ℓ independent samples. The following is a
slightly more general formulation of Corollary 5.

Corollary 11. Let J be a set of interaction matrices of infinity norm bounded by M. Assume that ℓ

independent samples are obtained from PrJ∗ for some J∗ ∈ J . There is an estimator Ĵ for J∗ such that for
all δ > 0, with probability 1 − δ,

‖ Ĵ − J∗‖F ≤ 1√
ℓ

min

{
r ≥ 0 : r ≥ C(M)

√

log N

(
J , ‖ · ‖2,

cr2

nℓ

)
+ log log n + log(1/δ)

}

≤ C(M)√
ℓ

√
log N

(
J , ‖ · ‖2,

1

nℓ

)
+ log log n + log(1/δ).

Proof. In the setting of ℓ independent samples, we can view the concatenation of ℓ independent
n-bit samples as a single nℓ-bit sample. Given an interaction matrix J of size n× n, denote by h(J)
the interaction matrix of size nℓ× nℓ that corresponds to the joint distribution over ℓ samples.
Formally, h(J) is block-diagonal, that contains ℓ copies of J in the diagonal and zeros otherwise:
h(J)i+nj,i′+nj = Ji,i′ for any i, i′ ∈ [n] and j ∈ {0, . . . , n − 1} and h(J)i,j = 0 otherwise. We create
the collection of interaction matrices that correspond to the joint distributions over ℓ-independent
samples by J ℓ = {h(J) : J ∈ J }. In order to learn J∗ ∈ J from ℓ samples, we will instead view
it as learning a matrix Jℓ∗ ∈ J ℓ using a single sample. We will use this to get an estimate for J∗.

First of all, we bound the error of learning a matrix from Jℓ. Start by noticing that ‖h(J)‖∞ =
‖J‖∞ , hence, assuming that ‖J‖∞ ≤ M for all J ∈ J , we derive that ‖Jℓ‖∞ ≤ M for all Jℓ ∈ J ℓ.
Further, ‖h(J)− h(J′)‖2 = ‖J − J′‖2 hence for any ǫ > 0, we have N(J , ‖ · ‖2, ǫ) = N(J ℓ, ‖ · ‖2, ǫ).
Let Ĵℓ denote the estimator of Jℓ∗ ∈ J ℓ and the learning rate for learning rate is bounded by

‖ Ĵℓ − Jℓ∗‖F ≤ min

{
r ≥ 0 : r ≥ C(M)

√
log N

(
J ℓ, ‖ · ‖2,

cr2

nℓ

)
+ log log n + log(1/δ)

}

= min

{
r ≥ 0 : r ≥ C(M)

√

log N

(
J , ‖ · ‖2,

cr2

nℓ

)
+ log log n + log(1/δ)

}
.

Lastly, notice ‖h(J) − h(J′)‖F =
√
ℓ‖J − J′‖F, hence if we define Ĵ = h−1(Jℓ) then we derive that

‖ Ĵ − J∗‖F ≤ 1√
ℓ

min

{
r ≥ 0 : r ≥ C(M)

√

log N

(
J , ‖ · ‖2,

cr2

nℓ

)
+ log log n + log(1/δ)

}
.

This proves Corollary 11.

7.2.2 Estimating the complete matrix from independent samples

Assume now that nothing is known about the matrix J, we have J = {J : ‖J‖∞ ≤ M}. Then,
J is an intersection of a vector space of dimension bounded by n2 with the set of matrices of
bounded infinity norm. We can apply Corollary 11 in combination with the covering number
bound of Lemma 11 to derive that

‖J∗ − Ĵ‖F ≤ C(M)
√

n2 log(nℓ) + log(1/δ),
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where ℓ is the number of samples. Since the optimization is over a linear space, we derive a
polynomial time algorithm. Hence, we proved the following.

Corollary 6. Let J = {J : ‖J‖∞ ≤ M} and assume that ℓ independent samples from PrJ∗ where J∗ ∈
J are obtained. Then, there is a polynomial time algorithm that finds Ĵ ∈ J such that, w.p. ≥ 1 − δ,

‖ Ĵ − J∗‖F ≤ C(M)

(√
n2 log(nℓ) + log(1/δ)

ℓ

)
.

7.2.3 Multiple samples with dependencies

We now extend the previous results in the case where the ℓ samples are not independent. Specif-
ically, assume that one obtains ℓ samples, but instead of being independent, they have some
dependency structure. We show how to formulate this as a one-sample learning problem. For
the sake of presentation, we limit the discussion to time-series dependencies. However, similar
arguments can handle general dependency structures. Assume that x1, . . . , xℓ are n-bit vectors,
let J0, J1 denote two n × n matrices and define the joint distribution over x1, . . . , xℓ by

Pr
J0,J1,ℓ

[
x1 · · · xℓ

]
∝

ℓ

∏
t=1

exp
(
−(xt)⊤ J0xt/2

) ℓ−1

∏
t=1

exp
(
−(xt)⊤ J1xt+1

)
.

Here, J0 is the interaction matrix that controls each sample xt and J1 controls the interaction
between xt and xt+1. We would like to present this distribution as an Ising model on nℓ random
bits. The joint interaction matrix, that we denote by h(J0, J1), is a block matrix with ℓ copies
of J0 on the diagonal and ℓ − 1 copies of J1 on each of the sub-diagonals. We would like to
estimate J∗0 , J∗1 from ℓ dependent samples, under the assumption that J∗0 ∈ J0 and J∗1 ∈ J1 for
some collections of interaction matrices of bounded infinity norm. The details are as follows.

Corollary 12. Let M > 0, let ℓ ≥ 2, let J0 and J1 be collections of interaction matrices of infinity norm
bounded by M and let (x1, . . . , xℓ) ∼ PrJ∗0 ,J∗1 ,ℓ for some J∗0 ∈ J0 and J∗1 ∈ J1. Then, there exists an

estimator ( Ĵ0, Ĵ1) that satisfies w.p. 1 − δ,

max(‖J∗0 − Ĵ0‖F, ‖J∗1 − Ĵ1‖F) ≤
1√
ℓ

min

{
r ≥ 0 : r ≥ C(M)

√

log N

(
J0, ‖ · ‖2,

cr2

nℓ

)
+ log N

(
J1, ‖ · ‖2,

cr2

nℓ

)
+ log log n + log(1/δ)

}

≤ C(M)√
ℓ

√
log N

(
J0, ‖ · ‖2,

1

nℓ

)
+ log N

(
J1, ‖ · ‖2,

1

nℓ

)
+ log log n + log(1/δ).

Proof. Let J01 = {h(J0, J1) : J0 ∈ J0, J1 ∈ J1} and we will reduce to the one-sample problem of
estimating J∗01 ∈ J01. We start by computing some properties of J01. First of all, it has matrices of
bounded infinity norm. Indeed, it is easy to see that ‖h(J0, J1)‖∞ ≤ ‖J0‖∞ + 2‖J2‖∞. Secondly, we
bound the covering numbers of J01. First, we bound the spectral norms of matrices h(J0, J1) in
terms of those of J0 and J1. Notice that for any nℓ dimensional vector ~u denoted by (ut

i)t∈[ℓ],i∈[n]

33



and we have

~u⊤h(J0, J1)~u =
ℓ

∑
t=1

(ut)⊤ J0ut +
ℓ−1

∑
t=1

(ut)⊤ J1ut+1 ≤
ℓ

∑
t=1

‖ut‖2
2‖J0‖2 +

ℓ−1

∑
t=1

‖(ut)‖2‖J1‖2‖ut+1‖2

≤ ‖J0‖2

ℓ

∑
t=1

‖ut‖2
2 + ‖J1‖2

ℓ−1

∑
t=1

(‖(ut)‖2
2 + ‖ut+1‖2

2)/2 ≤ (‖J0‖2 + ‖J1‖2)‖~u‖2
2.

where we used the arithmetic and geometric means inequality. This implies that ‖h(J0, J1)‖2 ≤
‖J0‖2 + ‖J1‖2. Since h is a linear function, we have that for any J0, J1, J′0, J′1, ‖h(J0, J1)− h(J′0, J′1)‖2 =
‖h(J0 − J′0, J1 − J′1)‖2 ≤ ‖J0 − J′0‖2 + ‖J1 − J′1‖2. This implies that for any ǫ > 0, one has

N(J01, ‖ · ‖2, ǫ) ≤ N(J0, ‖ · ‖2, ǫ/2)N(J1, ‖ · ‖2, ǫ/2).

Indeed, given an ǫ/2-cover N0 for J0 and N1 for J1, we can take N01 = {h(J0, J1) : J0 ∈ N0, J1 ∈
N1}, and it forms an ǫ-cover for J01. We derive that J∗01 ∈ J01 can be estimated with an error of

‖J∗01 − Ĵ01‖F ≤

min

{
r ≥ 0 : r ≥ C(M)

√
log N

(
J0, ‖ · ‖2,

cr2

nℓ

)
+ log N

(
J1, ‖ · ‖2,

cr2

nℓ

)
+ log log n + log(1/δ)

}
.

Next, we translate back to guarantees on estimating J∗0 and J∗1 . Notice that

‖h(J0, J1)− h(J′0, J′1)‖2
F = ℓ‖J0 − J′0‖2

F + 2(ℓ− 1)‖J1 − J′1‖2
F.

This immediately implies the rate given in the statement.

8 The Conditioning Trick

The main purpose of this section is to prove the following Lemma, which is used multiple times
in the proof of Theorem 4.

Lemma 2. Let x = (x1, . . . , xn) be an (M, γ)-Ising model, and fix η ∈ (0, M]. Then, there exist subsets
I1, . . . , Iℓ ⊆ [n] with ℓ ≤ CM2 log n/η2 such that:

1. For all i ∈ [n],

|{j ∈ [ℓ] : i ∈ Ij}| =
⌈

ηℓ

8M

⌉

.

2. For all j ∈ [ℓ] and any value of x−Ij
, the conditional distribution of xIj

conditioned on x−Ij
is an

(η, γ)-Ising model.

Furthermore, for any non-negative vector θ ∈ R
n there exists j ∈ [ℓ] such that

∑
i∈Ij

θi ≥
η

8M

n

∑
i=1

θi.
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Intuitively, this lemma says that we can select a small number of subsets, such that each
element i ∈ [n] is contained in at least a constant fraction of these sets. At the same time, we
want the variables in these subsets to be weakly dependent when we condition on the rest. The
proof relies on the following technical lemma.

Lemma 12. Let A be a matrix with zero on the diagonal, and ‖A‖∞ ≤ 1. Let 0 < η < 1. Then, there
exist subsets I1, . . . , Iℓ ⊆ [n], with ℓ ≤ C log n/η2 such that:

1. For all i ∈ [n],
|{j ∈ [ℓ] : i ∈ Ij}| = ⌈ηℓ/8⌉ (20)

2. For all j ∈ [ℓ] and all i ∈ Ij,

∑
k∈Ij

|Aik| ≤ η (21)

This Lemma lies in the heart of the proof. It essentially ensures that we can select subsets
of nodes that conditionally satisfy Dobrushin’s condition with an arbitrarily small constant. It
also shows that these subsets can cover all the nodes. Thus, it allows breaking up a sum over all
the nodes to a sum over all these subsets with only a logarithmic error factor. The proof is an
application of the probilistic method, using a simple, but strong technique found in [AS04].

Proof of Lemma 12. The proof uses the probabilistic method. To prove that there exists an object with
a specific property, we find a way to select the object at random so that with positive probability
the property is satisfied. In our case, the object is the collection of subsets I1, . . . , Iℓ. The properties
are 20 and 21.

We first define a way to select these subsets at random. This is done with the following
sampling procedure:

Algorithm 1 Sampling Procedure

for j := 1, . . . , ℓ do
Draw a random set I ′j of coordinates (a subset of the set of all coordinates [n]), where each

i ∈ [n] is selected to be in I ′j independently with probability
η
2 .

Set Ij to be the set of all coordinates i ∈ I ′j such that ∑k∈I′j
|Aik| ≤ η.

end for
Output (I1, . . . , Iℓ)

Notice that each subset is selected independently of the others. We are now going to prove
that the output of this sampling procedure satisfies 20 and 21 with positive probability. By the
nature of the procedure, 21 is automatically satisfied. It remains to check that 20 holds. First,
for a fixed i ∈ [n] and j ∈ [ℓ], we calculate the probability that i ∈ Ij.

Pr
[
i ∈ Ij

]
= Pr

[
i ∈ I ′j

]
Pr

[
i ∈ Ij

∣∣∣i ∈ I ′j
]
= Pr

[
i ∈ I ′j

]
Pr


∑

k∈I′j

|Aik| ≤ η

∣∣∣∣∣∣
i ∈ Ij




= Pr
[
i ∈ I ′j

]
Pr


∑

k∈I′j

|Aik| ≤ η


 =

η

2
Pr


∑

k∈I′j

|Aik| ≤ η


 .
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By linearity of expectation we have:

E


∑

k∈I′j

|Aik|

 =

η

2 ∑
k∈[n]

|Aik| ≤
η

2

Thus, by applying Markov’s inequality we get:

Pr


∑

k∈I′j

|Aik| ≥ η


 ≤ 1

2
,

which yields

Pr
[
i ∈ Ij

] ≥ η

4
.

Now, fix an i ∈ [n] and define
Si := |{j ∈ [ℓ] : i ∈ Ij}|

Notice that the events {i ∈ Ij}ℓj=1 are independent from each other. Hence, we can write

Si =
ℓ

∑
j=1

1(i ∈ Ij)

which means that Si is a sum of independent Bernoulli random variables. By the preceding
calculation, we get:

E[Si] =
ℓ

∑
j=1

E
[
1(i ∈ Ij)

]
=

ℓ

∑
j=1

Pr
[
i ∈ Ij

]
≥ ηℓ

4
.

Now, using Hoeffding’s inequality and setting ℓ = 32 log 4 log n/η2 we get:

Pr

[
Si ≤

ηℓ

8

]
≤ Pr

[
|Si − E[Si]| ≥

ηℓ

8

]
≤ 2 exp


−2

(
ηℓ
8

)2

ℓ




≤ 2 exp

(
−η2ℓ

32

)
≤ 1

2n
.

By a simple union bound we get

Pr

[
∃i ∈ [n] : Si ≤

ηℓ

8

]
≤ n

1

2n
=

1

2

That means that with positive probability we have Si ≥ ηℓ/8. Hence, there exists a collection of
subsets I1, . . . , Iℓ having this property. Notice that we do not have Equation 20 but an inequality
instead. However, for each i such that Si > ηℓ/8, we can remove i from some sets so that
the number of sets it appears is exactly ⌈ηℓ/8⌉. Clearly, by removing elements from a set,
inequality 21 still holds.
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Proof of Lemma 2. Let J be the interaction matrix of the Ising model distribution of X and let h
denote the external field. By the hypothesis, we have that ‖J‖∞/M ≤ 1. Hence, by applying
Lemma 12 for the matrix ‖J‖∞/M ≤ 1 with η′ = η/M, we obtain that there is a collection of
subsets I1, . . . , Iℓ such that

• For all i ∈ [n],

|{j ∈ [ℓ] : i ∈ Ij}| = ⌈ ηℓ

8M
⌉

• For all j ∈ [l] and all i ∈ Ij

∑
k∈Ij

|Aik|
M

≤ η

M
=⇒ ∑

k∈Ij

|Aik| ≤ η (22)

We now argue that if inequality 22 holds, then the conditional distribution of XIj
conditioned on

X−Ij
is an (η, γ)-Ising model. To show that, it suffices to argue that Pr[XIj

= y|X−Ij
= x−Ij

] ∝

exp(y⊤ J′y + h′⊤y), for some interaction matrix J′ and external field h′. Hence, we calculate the
ratio of conditional probabilities for two configurations y and y′:

Pr
[

XIj
= y|X−Ij

= x−Ij

]

Pr
[

XIj
= y′|X−Ij

= x−Ij

] =
exp

(
∑u∈Ij,v∈Ij

Juvyuyv + ∑u∈Ij,v/∈Ij
Juvyuxv + h⊤y

)

exp
(

∑u∈Ij,v∈Ij
Juvy′uy′v + ∑u∈Ij,v/∈Ij

Juvy′uxv + h⊤y′
)

By the preceding equality, it is clear that the conditional distribution of XIj
conditional on

X−Ij
= x−Ij

is an Ising model with interaction matrix J′ = {Juv}u,v∈Ij
and external field h′i =

hi + ∑v/∈Ij
Jivxv. This proves the claim.

To conclude with the last part of the lemma, fix a ∈ R
n, and drawing j ∈ [ℓ] uniformly at

random, one obtains

Ej[∑
i∈Ij

ai] = Ej[
n

∑
i=1

ai1(i ∈ Ij)] =
⌈ηℓ/(8M)⌉

ℓ

n

∑
i=1

ai. ≥
η

8M

n

∑
i=1

ai.

In particular, there exists some j ∈ [ℓ] which achieves a value of at least this expectation.

9 Concentration Inequalities for General Functions

One of the main goals of the proof is to show that the derivative of the log pseudo-likelihood
concentrates around its mean value. To do this, we rely on suitably conditioning on some of
the spins, which guarantees that the conditional distribution on the remaining spins satisfies
Dobrushin’s condition. However, the task of showing concentration of the derivative in this
regime remains. We begin with an overview of the results regarding concentration of functions
on the boolean hypercube when Dobrushin’s condition is satisfied. We then state and prove a
modification of these results that serves our purposes well.

Many concentration results in the weak dependence regime concern functions that are multi-
linear polynomials. Specifically, in [Ada+19] they prove general concentration results for arbi-
trary multilinear polynomials of weakly dependent random variables. For polynomials of degree
2, they show the following:
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Theorem 5 ([Ada+19]). Let A be a symmetric matrix with zeros in the diagonal and X be an (α, γ)-
bounded random variable. Let p(x) = x⊤Ax. Then, for any t > 0,

Pr [|p(X)− Ep(X)| > t] ≤ exp

(
−c min

(
t2

‖A‖2
F + ‖EAx‖2

2

,
t

‖A‖2

))
.

where the constant c only depends on α, γ and not on the entries of A.

This inequality is tight up to constants. A nice property of this result is that it explicitly
connects the radius of concentration with the Frobenius norm of the matrix.

Unfortunately, the derivative of the PMLE is not a polynomial. Hence, we cannot directly
apply Theorem 5. Instead, we will modify it’s proof so that it holds for arbitrary functions over
the hypercube. The original proof relied on the fact that the Hessian matrix of a second degree
polynomial is constant. Despite this not being true in our case, we will follow the same strategy
and prove concentration using the second order Taylor approximation of the function. First, we
need to define these quantities precisely. In the following, for a vector x and an index i, we
denote by xi+ the vector obtained from x by replacing that i’th coordinate with 1 and by xi− the
one that is obtained by replacing this coordinate with −1.

Definition 4. For an arbitrary function f : {0, 1}n 7→ R, we define the discrete derivative of the
function as

Di f (x) :=
f (xi+)− f (xi−)

2

Let D f (x) denote the n-coordinate vector of discrete derivatives. Similarly, the function H : {0, 1}n 7→
R

n×n defined as
Hij(x) = Di(Dj f (x))

is called the discrete Hessian of f .

As we will see, our concentration bound will depend on the discrete derivative and Hessian
of a function. However, in some cases it is more convenient to provide bounds for these quantities
rather than explicitly calculate them. Therefore, we can replace these two quantities by the ones
defined below.

Definition 5. Let f : {0, 1}n 7→ R be an arbitrary function. A function D̃ : {0, 1}n1 7→ R
n is called a

pseudo discrete derivative for f if

‖D̃(x)‖2 ≥ ‖D f (x)‖2

for all x ∈ {0, 1}n. Additionally, we say that a function H̃ : {−1, 1}n → R
n1×n2 is a pseudo discrete

Hessian with respect to the pseudo discrete derivative D̃ if for all u ∈ R
n1 , x ∈ R

n,

‖u⊤H̃(x)‖2 ≥ ‖D(u⊤D̃(x))‖2.

We are now ready to state the modification of Theorem 5.

Theorem 6. Let f : {0, 1}n 7→ R be an arbitrary function and X an (α, γ)-bounded random variable.
Then

Pr[| f (x)− E f (x)| > t] ≤ exp

(
−c min

(
t2

‖ED̃(x)‖2
2 + maxx ‖H̃(x)‖2

F

,
t

maxx ‖H̃(x)‖2

))
.
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The proof of Theorem 6 follows the structure of Theorem 5, with only slight modifications.
Hence, we are now going to describe the machinery used in the proof of Theorem 5.

The main ingredient of the proof is a discrete logarithmic Sobolev inequality, first proven in
[Mar03]. First, we need a definition.

Definition 6. For any function f : {0, 1}n 7→ R and i ∈ [n], we define

di f (x) =
1

2

(
E

((
f (X)− f (X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn)

)2
| X = x

))1/2

where the random variable X = (X1, . . . , Xn) has distribution µ and the conditional distribution of X̃i

given that X = x is µ(·|x̄i), which is the conditional distribution of Xi given that Xj = xj for j 6= i. We
denote by d f (x) the vector in R

n whose i-th coordinate is di f (x).

This quantity intuitively captures how much function f changes on average when we resam-
ple one of its input variables independently. By the classical theory of Concentration Inequalities
for i.i.d. random variables, we know that this average Lipschitzness directly affects the concentra-
tion properties of the function. This is indeed the case here, as the next lemma shows.

Lemma 13 ([Mar03; GSS19]). Let f : {0, 1}n 7→ R be an arbitrary function on the hypercube. Suppose
X is an (α, γ)-bounded random variable. Then for any p ≥ 2 it holds

‖ f (X)− E f (X)‖p :=
(
E ( f (X)− E f (X))p)1/p ≤

√
2Cp

(
E
(‖d f (X)‖p

2

))1/p

where C is a function of α, γ which is bounded when α is bounded from 1 and γ is bounded from zero.

Lemma 13 essentially tells us that in order to bound the p-th moment of the function we wish
to show concentration for, it is enough to control the p-th moment of ‖d f (X)‖2. In the proof
of Theorem 5, the authors bound this moment by the corresponding moment of a multilinear
form of gaussian random variables. In doing so, they exploit the fact that di f (X) can be very
conveniently bounded when f is a multilinear polynomial. We will follow exactly the same
technique, while relying on the discrete derivative of f instead to bound di f (X).

Proof of Theorem 6. As mentioned earlier, the proof follows the same strategy as [Ada+19], with a
small adjustment. Our general strategy will be to bound the p-th moment of f (X) − E f (X) by
the p-th moment of a gaussian multilinear form. By Jensen’s Inequality, we have:

E
(
‖d f (X)‖p

2

)
= E



(

n

∑
i=1

(
1

2

(
E

((
f (X)− f (X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn)

)2
| X = x

))))p/2



≤ E



(

n

∑
i=1

1

2

(
f (X)− f (X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn)

)2
)p/2




We now note that for each i, either Xi and X̃i will be the same or they will have opposite signs.
This means that in any case

∣∣∣ f (X)− f (X1, . . . , Xi−1, X̃i, Xi+1, . . . , Xn)
∣∣∣ ≤ |Di f (X)|
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This means that

E
(
‖d f (X)‖p

2

)
≤ E

(
‖1

2
D f (X)‖p

2

)

Combining this with the log Sobolev inequality of Lemma 13 we get:

‖ f (X)− E f (X)‖p ≤
√

Cp
(
E‖D f (X)‖p

2

)1/p ≤
√

Cp
(

E‖D̃(X)‖p
2

)1/p
(23)

Now suppose g ∼ N (0, In) is an n-dimensional gaussian vector independent of X. For a fixed

X, the random variable
D̃(X)⊤g

‖D̃(X)‖2
is a single dimensional gaussian N (0, 1). Hence, by elementary

properties of the gaussian distribution, there exists a constant M > 0 independent of p such that

(
Eg

(
D̃(X)⊤g

‖D̃(X)‖2

)p)1/p

≥ 1

M

√
p

The symbol Eg means that we are integrating only with respect to the random variable g. This
implies that for a fixed X

√
p‖D̃(X)‖2 ≤ M

(
Eg

(
D̃(X)⊤g

)p)1/p

Combining with Equation 23 , we get that for all functions f and pseudo derivatives D̃:

‖ f (X) − E f (X)‖p ≤ K
(

EX,g

(
D̃(X)⊤g

)p)1/p

(24)

where K = M
√

C. Inequality 24 is a first step in proving the bound on the p-th moment. We
want to use this inequality to make the second derivative appear on the right hand side. To do
this, we ”fix” the value of g. By Minkowski’s inequality we have:

(
EX,g

(
D̃(X)⊤g

)p)1/p

= ‖D̃(X)⊤g‖p ≤ ‖D̃(X)⊤g − EX D̃(X)⊤g‖p + ‖EX D̃(X)⊤g‖p

First, we bound the second term. By linearity of expectation, we have:

‖EX D̃(X)⊤g‖p =
(

Eg

(
(EX D̃(X))⊤g

)p)1/p

Now, the variable (EXD̃(X))⊤g is clearly a single dimensional gaussian, which means that it’s
p-th moment is bounded as:

‖EX D̃(X)⊤g‖p ≤ M
√

p‖EX D̃(X)‖2 (25)

and that concludes the bound for the second term. For the first term, fix g and define the function
h : {0, 1}n 7→ R as h(x) = D̃(x)⊤g − EXD̃(X)⊤g. Now, we apply inequality 23 to the function h,
which gives us

(
EX

(
D̃(X)⊤g − EX D̃(X)⊤g

)p)1/p

≤
√

Cp
(

EX‖D(D̃(X)⊤g)‖p
2

)1/p

≤
√

Cp
(

EX‖g⊤H̃(X)‖p
2

)1/p

≤
√

CM
(

EX,g′

∣∣∣g⊤H̃(X)g′
∣∣∣

p)1/p
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We conclude that

‖D̃(X)⊤g − EXD̃(X)⊤g‖p =
(

EX,g

(
D̃(X)⊤g − EX D̃(X)⊤g

)p)1/p

≤ K
(

EX,g,g′

∣∣∣g⊤H̃(X)g′
∣∣∣

p)1/p

Notice now that we have to bound the p-th norm of a quadratic form g⊤H̃(X)g′ where g, g′ are
independent gaussian vectors. That is precisely what the Hanson-Wright inequality gives us.
Note that the matrix H̃ need not have zeroes in the diagonal, as mentioned in [RV13; Lat+06]. 5

For a fixed X there is a constant C′ such that:

(
Eg,g′

(
g⊤H̃(X)g′

)p)1/p

≤ C′
(√

p‖H̃(X)‖F + p‖H̃(X)‖2

)
≤ C′

(√
p max

x∈{0,1}n
‖H̃(x)‖F + p max

x∈{0,1}n
‖H̃(x)‖2

)

This gives us the final inequality:

‖D̃(X)⊤g − EX D̃(X)⊤g‖p ≤ C′
(√

p max
x∈{0,1}n

‖H̃(x)‖F + p max
x∈{0,1}n

‖H̃(x)‖2

)
(26)

Putting together inequalities 25 and 26 we conclude that there exists a universal constant C′′

such that

‖ f (X)− E f (X)‖p ≤ C′′
(√

p‖EX D̃(X)‖2 +
√

p max
x∈{0,1}n

‖H̃(x)‖F + p max
x∈{0,1}n

‖H̃(x)‖2

)

To conclude the proof, we notice that by Markov’s inequality and the preceding result:

Pr

[
| f (X)− E f (X)| > eC′′

(√
p‖EX D̃(X)‖2 +

√
p max

x∈{0,1}n
‖H̃(x)‖F + p max

x∈{0,1}n
‖H̃(x)‖2

)]
≤ e−p

We now set

p = min

(
t2

‖EX D̃(X)‖2
2 + maxx∈{0,1}n ‖H̃(x)‖2

F

,
t

maxx∈{0,1}n ‖H̃(x)‖2

)

and the result follows.

10 Improved Bound for Estimating a Single Parameter

In this section, we prove Corollary 10, which we now restate for convenience.

Corollary 10. Let M > 0, let J0 be a fixed matrix with ‖J0‖∞ ≤ 1 and let β∗ be some unknown parameter
satisfying |β∗| ≤ M. Then, there exists an estimator β̂ from a single sample x ∼ Prβ∗ J0

such that w.p.

≥ 1 − δ, |β̂ − β∗| ≤ C(M)F(β∗ J0)−1/2 (log log n + log(1/δ)) where F(·) is defined as in (1).

5The standard result in [RV13; Lat+06] applies to square matrices A. Since H̃ might not be necessarily a square
matrix, we can just make it square by adding zeroes to the missing dimensions. The quadratic form doesn’t change
and the matrix norms ‖ · ‖F, ‖ · ‖2 remain the same.
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Similarly to the proof of Theorem 4, our estimator is the maximum pseudo likelihood. Define
the negative log pseudo-likelihood as

ϕ(β) = −
n

∑
i=1

log Pr
βJ
[xi | x−i].

Then, the following holds:

ϕ′(β) :=
dϕ(β)

dβ
=

1

2

n

∑
i=1

(Jix)(tanh(βJix)− xi) (27)

and further,

ϕ′′(β) :=
d2 ϕ(β)

dβ2
=

1

2

n

∑
i=1

(Jix)
2 sech2(βJix) ≥ c‖Jx‖2

2, (28)

where the last inequality holds uniformly for all |β| ≤ M, since sech2 is lower bounded whenever
its argument is bounded from above. Similarly to the arguments in Lemma 4, it suffices to bound
the ratio between the first and second derivatives of ϕ and we obtain that

|β∗ − β̂| ≤ |ϕ′(β∗)|
min|β|≤M ϕ′′(β∗)

≤ C
|ϕ′(β∗)|
‖Jx‖2

2

. (29)

We prove a lower bound on ‖Jx‖2
2 based on arguments from [Cha07; BM18], and use lemmas

from the proof of Theorem 4 to show that the derivative is bounded in terms of ‖Jx‖2.
We begin with the second part. For this purpose, we provide a restatement of the lemmas

from the proof of Theorem 4 that we will use here. First, the sub-sampling lemma, that shows
how to reduce the correlations in the Ising model by subsampling:

Lemma 2. Let x = (x1, . . . , xn) be an (M, γ)-Ising model, and fix η ∈ (0, M]. Then, there exist subsets
I1, . . . , Iℓ ⊆ [n] with ℓ ≤ CM2 log n/η2 such that:

1. For all i ∈ [n],

|{j ∈ [ℓ] : i ∈ Ij}| =
⌈

ηℓ

8M

⌉

.

2. For all j ∈ [ℓ] and any value of x−Ij
, the conditional distribution of xIj

conditioned on x−Ij
is an

(η, γ)-Ising model.

Furthermore, for any non-negative vector θ ∈ R
n there exists j ∈ [ℓ] such that

∑
i∈Ij

θi ≥
η

8M

n

∑
i=1

θi.

We create the sets I1, . . . , Iℓ from this lemma with η = 1/2. The following two lemmas would
provide an upper bound on ϕ′ and a lower bound on ‖Jx‖2, respectively, both in terms of the
same quantity, which is a function of the sets I1, . . . , Iℓ:
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Lemma 14 (A special case of Lemma 3). For any t > 0,

Pr

[∣∣ϕ′(β∗)
∣∣ > t

(
‖J‖F + max

j
‖E[Jx|x−Ij

]‖2

)]
≤ C log n exp

(
−c min

(
t2,

t‖J‖F

‖J‖2

))
.

Lemma 15 (A special case of Lemma 4). For any t > 0:

Pr

[
‖Jx‖2

2 < c‖J‖2
F + c max

j
‖E[Jx | x−Ij

]‖2
2 − t

(
‖J‖F + max

j
‖E[Jx | x−Ij

]‖2

)]

≤ C log n exp

(
−c

min(t2, t‖J‖F)

‖J‖2
2

)
.

Lemmas 14 and 15 follow from Lemma 3 and Lemma 4 by substituting J∗ with β∗ J and A

with J, and noting that the quantity
∂ϕ(Jβ∗)

∂J in Section 6 corresponds to ϕ′(β∗) in this section. As

a direct corollary, we can bound ϕ′ with respect to ‖Jx‖:

Lemma 16. For any t ≥ 1, with probability at least 1 − log ne−ct,

∣∣2ϕ′(β∗)
∣∣ =

∣∣∣∣∣x
⊤ Jx −

n

∑
i=1

Jix tanh(β∗ Jix)

∣∣∣∣∣ ≤ Ct‖Jx‖2 + Ct2.

Proof. The first equality follows from definition, hence we will prove the inequality. From
Lemma 14, it holds that for any t ≥ 1,

Pr

[∣∣ϕ′(β∗)
∣∣ > t

(
‖J‖F + max

j
‖E[Jx|x−Ij

]‖2

)]
(30)

≤ C log n exp

(
−c min

(
t2,

t‖J‖F

‖J‖2

))
(31)

≤ C log n exp(−c min(t2, t)) (32)

= C log n exp(−ct), (33)

since ‖J‖F ≥ ‖J‖2 for all J and since t2 ≥ t for all t ≥ 1. Second of all, from Lemma 15, for any
t ≥ 1, we have that

Pr

[
‖Jx‖2

2 < c‖J‖2
F + c max

j
‖E[Jx | x−Ij

]‖2
2 − t

(
‖J‖F + max

j
‖E[Jx | x−Ij

]‖2

)]
(34)

≤ C log n exp

(
−c

min(t2, t‖J‖F)

‖J‖2
2

)
(35)

≤ C log n exp(−c min(t2, t)) (36)

≤ C log n exp(−ct). (37)

using the fact that ‖J‖F ≥ ‖J‖2 and that ‖J‖2 is at most some constant.
Next, with probability at least 1 − 2 log ne−ct, both the events that their probabilities are

estimated in (30) and (34) hold, and assume that they do hold till the rest of the proof. Let
ζ = ‖J‖F + maxj ‖E[Jx | x−Ij

]‖2 and we derive that |ϕ′(β∗)| ≤ tζ and that ‖Jx‖2
2 ≥ cζ2 − tζ. It

follows that ∣∣ϕ′(β∗)
∣∣ ≤ Ct‖Jx‖2 + Ct2. (38)
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Indeed, if t ≤ cζ/2 then
‖Jx‖2

2 ≥ cζ2/2 ≥ c(|ϕ′(β∗)|/t)2/2

hence
|ϕ′(β∗)| ≤

√
2/ct‖Jx‖2 .

Otherwise,
|ϕ′(β∗)| ≤ tζ ≤ 2t2/c.

This concludes the proof.

Next, we lower bound ‖Jx‖2
2 in terms of the log partition function F(β∗ J), based on arguments

from [Cha07; BM18].

‖Jx‖2
2 =

n

∑
i=1

(Jix)
2 ≥

n

∑
i=1

Jix tanh(β∗ Jix)

β∗ , (39)

since for all y ∈ R, y and tanh(y) have the same sign and additionally, | tanh(y)| ≤ |y|. From
Lemma 16, the right hand side of (39) can be approximated by x⊤ Jx/β∗ . Further, the term x⊤ Jx
can be lower bounded by the log partition function:

Lemma 17. With probability at least 1 − e−F(Jβ∗)/2, x⊤ Jx ≥ F(Jβ∗)/β∗.

Proof. Recall that

Pr
Jβ∗

[x] = 2−neβ∗x⊤ Jx/2−F(Jβ∗)

hence,

E Jβ∗
[
e−β∗x⊤ Jx/2

]
= ∑

x

e−β∗x⊤ Jx/2 Pr
Jβ∗

[x] = e−F(Jβ∗).

Therefore, by Markov’s inequality,

Pr
Jβ∗

[
β∗x⊤ Jx < F(Jβ∗)

]
= Pr

Jβ∗

[
e−β∗x⊤ Jx/2

> e−F(Jβ∗)/2
]

≤ E Jβ∗ [e−β∗x⊤ Jx/2]/e−F(Jβ∗)/2 = e−F(Jβ∗)/2.

By the above lemmas, we derive the following:

Lemma 18. For any 1 ≤ t ≤ c
√

F(Jβ∗), with probability at least e−ct,

ϕ′(β∗)
‖Jx‖2

2

≤ Ctβ∗/
√

F(Jβ∗).

Proof. We derive from (39), Lemma 16 and Lemma 18, and from t ≤ c
√

F(β∗ J), that with proba-
bility at least log ne−ct,

‖Jx‖2
2 ≥ 1

β∗
n

∑
i=1

Jix tanh(β∗ Jix) ≥
x⊤ Jx − Ct‖Jx‖2 − Ct2

β∗ ≥ F(Jβ∗)− Ct2β∗

(β∗)2
− Ct‖Jx‖2

β∗

≥ F(Jβ∗)/2

(β∗)2
− Ct‖Jx‖2

β∗ , (40)
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where the last inequality follows from the above assumption that 1 ≤ t ≤ c
√

F(Jβ∗) for a
sufficiently small c > 0 and the |β| is bounded by a constant. Assume that (40) holds from now
onward. We derive that

(‖Jx‖2β∗)2 + ‖Jx‖2β∗Ct − F(Jβ∗)/2 ≥ 0.

By solving the quadratic inequality for ‖Jx‖2β∗, we derive that

‖Jx‖2β∗ ≥ −Ct +
√

C2t2 + 2F(Jβ∗)
2

≥
√

F(Jβ∗)/2 − Ct.

Applying the bound t ≤ c
√

F(Jβ∗), we derive that

‖Jx‖2 ≥
√

F(Jβ∗)/(2β∗). (41)

Further, from Lemma 16, with probability at least log ne−ct,

ϕ′(β∗) ≤ Ct‖Jx‖2 + Ct, (42)

and assume that this holds for the rest of the proof. By (41) and (42),

ϕ′(β∗)
‖Jx‖2

2

≤ C
t‖Jx‖2 + t

‖Jx‖2
2

=
Ct

‖Jx‖2
+

Ct

‖Jx‖2
2

≤ 2β∗Ct√
F(Jβ∗)

+
4(β∗)2Ct

F(Jβ∗)
≤ C′tβ∗

√
F(Jβ∗)

, (43)

by the assumption of this lemma that
√

F(Jβ∗) is at least a constant and since β∗ is bounded by
a constant.

By (29) and by Lemma 18, Corollary 10 follows, by taking t = log log n + log(1/δ).

11 The Lower Bound on ‖ Ĵ − J∗‖F

The estimation error of Theorem 4 is optimal in many interesting applications. In this Section, we
present the proof of the general lower bound on the estimation rate of ‖ Ĵ − J∗‖ that only depends
on the packing numbers of the set J . It is well known that the packing numbers are very related
to the covering numbers of a set. We note that the expression for the lower bound does not
match the one from the upper bound. However, this is to be expected, since for arbitrary sets
J we might need more information other than the covering number to characterize learnability.
However, in the particular case where J is a linear k-dimensional subspace of matrices, the lower
bound becomes (nearly)-optimal up to constants when ‖J∗‖ < 1. This implies that doing MPLE
in high temperature is optimal. We first present the general tool for proving our lower bounds,
which is going to be Fano’s method. The following result is adapted from [Duc16].

Lemma 19 ([Km79], Fano’s method). Let P = {PJ : J ∈ J } be a family of distributions indexed by
matrices J ∈ J . For a distribution P from this family, denote J(P) the interaction matrix corresponding
to it. Let {Pv}v∈V be a finite subset of distributions from P such that for any v 6= v′ ∈ V we have
‖J(Pv)− J(Pv′)‖F ≥ 2r for some r > 0 (this family is also called a 2r-packing for ‖ · ‖F). Assume that
V is a random variable that is uniform on the set V , and conditional on V = v, and we draw a sample
X ∼ Pv. Then the miminax risk for estimation with respect to the Frobenius norm is lower bounded by

r

(
1 − I(V; X) + log 2

log |V|

)
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A standard way of using Fano’s method is finding a r > 0 and a family {Pv}v∈V such that

I(V; X) + log 2

log |V| ≤ 1

2

This would immediately imply the lower bound r/2. To prove this statement, we need to upper
bound the mutual information I(V; X). If the mutual information is small, then this means that
by seeing the sample X we cannot infer with large probability the distribution V of the family
that generated it. To bound this quantity, we will use the following inequality, whose simple
proof can be found in Chapter 7 of [Duc16].

I(V; X) ≤ 1

|V|2 ∑
v,v′

DKL(Pv‖Pv′) (44)

Thus, if we can bound the KL-divergence between all pairs in the family, we also have the same
bound for I(V; X). The following Lemma aims to provide such a bound, when the two models
are in high temperature.

Lemma 20. Suppose PJ1
, PJ2

be the distributions of two Ising models with interaction matrices J1 and
J2, respectively. Suppose furthermore that ‖J1‖∞, ‖J2‖∞ < 1 − α for some α ∈ (0, 1). Then, there is a
constant C = C(α) such that

DKL(PJ1
‖PJ2

) ≤ C‖J2 − J1‖2
F

Proof. In the following computations, the concept of the log partition function will be useful. We
thus define

F(J) = ln ∑
y∈{−1,+1}n

exp

(
1

2
y⊤ Jy

)

which is the log partition function of a model with interaction matrix J. We also define the
following function g : [0, ‖J2 − J1‖F] → R by

g(t) = F (J1 + tS) , where S =
J2 − J1

‖J2 − J1‖F
.

First, we notice that g(0) = F(J1), g(‖J2 − J1‖F) = F(J2). Also, some simple calculations show
that

g′(t) = Ey∼J1+tS

[
1

2
y⊤Sy

]

g′′(t) = Vary∼J1+tS

[
1

2
y⊤Sy

]

where the notation y ∼ A means that y is sampled from an Ising model with interaction matrix
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A. Now, we do some simple calculations with the KL-divergence

DKL(PJ1
‖PJ2

) = Ey∼PJ1
ln

PJ1
(y)

PJ2
(y)

= Ey∼PJ1

[
1

2
y⊤(J1 − J2)y − F(J1) + F(J2)

]

= F(J2)− F(J1)− ‖J2 − J1‖FEy∼J1

[
y⊤Sy

2

]

= g(‖J2 − J1‖F)− g(0)− ‖J2 − J1‖Fg′(0)

=
‖J2 − J1‖2

F

2
g′′(ξ)

for some ξ ∈ [0, ‖J2 − J1‖F]. In the last step, we used Taylor’s Theorem on g. We have

‖J2 − J1‖2
F

2
g′′(ξ) =

‖J2 − J1‖2
F

2
Vary∼J1+ξS

[
1

2
y⊤Sy

]
=

1

2
Vary∼J1+ξS

[
1

2
y⊤(J2 − J1)y

]
.

Hence, it suffice to bound this variance in order to obtain a bound on the KL-divergence. This is
the variance of a second degree polynomial of an Ising model with interaction matrix J1 + ξS. It
is easy to see that as t varies in [0, ‖J2 − J1‖F], J1 + tS moves along the line segment connecting
J1, J2. Hence, J1 + ξS also belongs in this line segment. Since ‖J1‖∞, ‖J2‖∞ < 1 − α, it follows that
any point in the line segment connecting them has infinity norm upper bounded by 1 − α. We
conclude that ‖J1 + ξS‖∞ defines an Ising model in high temperature. The task is thus to bound
a second degree polynomial of an Ising model in high temperature. Using the bound of Theorem
2.1 in [GLP+18] we obtain that there exists a constant C = C(α) such that

Vary∼J1+ξS

[
1

2
y⊤(J2 − J1)y

]
≤ C(α)‖J2 − J1‖2

F .

This implies the result of this Lemma.

Now that we have a bound for KL-divergence between two Ising models, we can prove our
general lower bound.

Theorem 2. Let r > 0 and suppose there exists some R, α > 0 and a family J of interaction matrices
such that: (1) for all J ∈ J the infinity norm of J is bounded by 1 − α and the diameter6 of J is bounded
by R; and (2) it holds that

log N(J , ‖ · ‖F, 2r)

2
≥ C(α)R2 + log 2,

where C(α) is a specific constant determined in the proof. Then, any estimator Ĵ(x) based on a single
sample attains a minimax error of maxJ∗∈J Ex∼PJ∗ [‖ Ĵ(x)− J∗‖F] ≥ r/2.

Proof. The proof is essentially an application of the Fano method when we use the upper bound
on the KL proven in Lemma 20. Consider any r > 0 that satisfies the requirements of the
Theorem. Then, by definition, there exists an R > 0, such that the distance of any two matrices
in J is bounded by R in Frobenius norm. We need to define the following concept.

6A set K has diameter at most R if for any A, B ∈ K we have ‖A − B‖F ≤ R.
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Definition 7 ([Ver18]). A subset L of a metric space (T, d, ǫ) is ǫ-separated if d(x, y) > ǫ for any
distinct x, y ∈ L. The largest possible cardinality of an ǫ separated subset of a given set L ⊆ T is called
the packing number of L and denoted by P(L, d, ǫ)

The packing number of a set is the maximum amount of points that we can choose so that all
of them are far from each other. Notice that this concept is very related to the requirements of
Fano method. Indeed, to apply it we need a set of distributions that are far from each other.

To use these concepts, let V be a maximum cardinality 2r separated subset of J with respect
to the Frobenius norm. This means that

|V| = P(J , ‖ · ‖F, 2r)

Then, if X, V are defined as in Lemma 19, we have that

I(V; X) ≤ 1

|V|2 ∑
v,v′∈V

DKL(Pv‖Pv′) ≤ C(α)R2

which follows from Eq. (44) and Lemma 20 since V ⊆ J and J has diameter at most R in
Frobenius norm.

Now, by the assumption of this Theorem, we conclude that

I(V; X) + log 2 ≤ C(α)R2 + log 2 ≤ logN (J , ‖ · ‖F, 2r)

2
.

We would like to have |V| appear on the right hand side. The covering and packing numbers of
a set are connected by the following simple inequality, whose proof can be found in Chapter 4 of
[Ver18].

N (J , ‖ · ‖F, 2r) ≤ P(J , ‖ · ‖F, 2r)

Hence, we conclude that

I(V; X) + log 2 ≤ logP(J , ‖ · ‖F, 2r)

2
=

log |V|
2

Hence, we have that
I(V; X) + log 2

log |V| ≤ 1

2

Thus, by Lemma 19 we conclude that the minimax risk is at least r/2, which concludes the proof.

Theorem 2 offers a lower bound in terms of the covering numbers. However, the exact depen-
dence of the minimax risk on the covering numbers is not clear from this general formulation.
We now offer a simple Corollary of this theorem that gives (nearly)-optimal lower bounds when
J is a linear subspace of matrices with bounded infinity norm.

Corollary 8. Let k ∈ N, let J1, . . . , Jk be interaction matrices with disjoint supports7 such that ‖Ji‖∞ ≤ 1
and ‖Ji‖F ≥ k for all i. Define J = {J = ∑i αi Ji : αi ∈ R, ‖J‖∞ ≤ 1}. Then, any one-sample estimator

Ĵ(x) has a minimax error of supJ∗∈J Ex∼PrJ∗
[
‖ Ĵ − J∗‖F

]
≥ c

√
k.

7The support of a matrix J is defined as the set of its non-zero elements.
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Proof. Let r = c1

√
k, where c1 will be determined later. We will prove that r satisfies all the

requirements of Theorem 2 for some suitable constant c1. Suppose that we renormalize every
matrix Ji as follows

J′i =
1

2‖Ji‖F
Ji

We know that ‖Ji‖F ≥ k for all i. Thus, for any set of αi ∈ [−1, 1], we have that
∥∥∥∥∥

k

∑
i=1

αi J
′
i

∥∥∥∥∥
∞

≤ k
1

2k
=

1

2

hence ∑
k
i=1 αi J

′
i ∈ J . Also

‖J′i‖F =
1

2
.

Now consider the family

V =

{
k

∑
i=1

σi J
′
i : σi ∈ {−1, 1}

}

We will prove that the minimax risk for estimation in this family is lower bounded. Since V ⊆ J ,
this would immediately imply a lower bound for the estimation rate on J . Since the supports of
Ji are disjoint, these matrices are orthogonal with respect to the trace inner product. This means

that the maximum distance R between any pair of matrices in V is at most 2
√

k. We will show
that we can find a large number of matrices in V which are all at distance at least r from each
other. This is equivalent to finding a lower bound for the packing number of V .

To do so, we take a packing of the hypercube {−1, 1}k with respect to the Hamming distance.
Namely, we take a set U ⊆ {−1, 1}k such that for any σ, σ′ ∈ U, the Hamming distance between
σ and σ′, ‖σ − σ′‖1/2, is at least k/3. It is known that there exists such a set U with cardinality
eck for some universal constant c > 0.

Given the set U , we take the following set V ′ to be our r-packing of V :

V ′ =

{
k

∑
i=1

σi J
′
i : σ ∈ U

}
.

Since the matrices J′i have disjoint support, they are orthonormal with respect to the Forbenious
norm, hence for any σ 6= σ′ ∈ U ,

∥∥∥∥∥
k

∑
i=1

σi J
′
i −

k

∑
i=1

σ′
i J′i

∥∥∥∥∥

2

F

=
k

∑
i=1

∥∥(σi − σ′
i )

2 J′i
∥∥2

F
=

1

4

k

∑
i=1

(σi − σ′
i )

2 ≥ k

3
,

using the fact that each J′i has Forbenius norm of 1/2, and that σ, σ′ ∈ U , hence they differ in at
least k/3 coordinates. Hence, by setting r =

√
k/3/2, we just found a 2r packing on the set V

that contains at least eck elements. Hence,

logP(V , ‖ · ‖F, 2r) ≥ ck

for some c. Now notice that in order to apply Theorem 2, the inequality that we have to satisfy is

C(α)R2 + log 2 ≤ logP(V , ‖ · ‖F, 2r)

2
, (45)

49



where R = maxJ 6=J′∈V ‖J − J′‖F (in fact, the statement of Theorem 2 requires a similar inequality
with P replaced by N , but it follows from the proof that Eq. (45) suffices). We essentially want to

reduce R to a suitable multiple of
√

k so that this inequality will hold. To do that, we simply scale
down the J′i by a suitable constant. Of course, we scale down r by the same constant. Notice that
the packing numbers will not be affected by this, since we just scaled the whole space. Hence,
the right hand side remains the same, while the left hand side is properly reduced. Hence, this

inequality will hold for r = c1

√
k for some suitable c1. This means by Theorem 2 that the minimax

risk of estimation in Frobenius norm is Ω(
√

k).
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A Algorithm for Maximizing Pseudo-Likelihood

In this Section, we show that there exists a polynomial time algorithm for the MPLE, which is the
content of Lemma 21. The central problem is maximizing the pseudo-likelihood with the con-
straint that the matrix we output has low infinity norm. To achieve this, we use a regularizer of
the form λ max(0, ‖Aβββ‖∞ − M). This ensures that the optimal solution that the algorithm outputs
will have small infinity norm. We should also argue that the output of the regularized procedure
is close to the minimizer of ϕ. To do this, we need to calculate bounds for ϕ and its derivative.
Since the regularized part is not differentiable, we have to use subgradient optimization methods.

Lemma 21. There exists an algorithm that outputs Ĵ satisfying Ĵ ∈ V and ‖ Ĵ‖∞ ≤ 2M, such that

ϕ( Ĵ) ≤ ϕ(J∗) + ǫ

and runs in time O(k2n6M2/ǫ2).

Proof. The algorithm essentially solves the constrained optimization problem described in 10.
To design the optimization algorithm, it will be more convenient to work with a specific base of
matrices that span V . For this reason, let {A1, . . . , Ak} be a fixed orthonormal basis of V with
respect to the inner product induced by the frobenius norm. Then, each J ∈ V can be uniquely
written in the form

J =
k

∑
i=1

βi Ai

We use the notation βββ = (β1, . . . , βk) and Aβββ = ∑
k
i=1 βi Ai. Thus, minimizing ϕ(J) subject to

J ∈ J is the same as minimizing
ψ(βββ) = ϕ(Aβββ)
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Algorithm 2 Optimization Procedure

Input:

Basis of matrices J1, . . . , Jk

Accuracy ǫ
Sample (x1, . . . , xn)
Infinity norm bound M

Output:
Vector β̂

1: (A1, . . . , Ak) := GRAM-SCHMIDT(J1, . . . , Jk)// Find orthonormal basis
2: for i := 1, . . . , k do

3: β0
i := 0 // Initializations

4: end for

5: T = M2n4k
ǫ2 // Number of steps of gradient descent

6: η := M
n
√

k
√

T
// stepsize

7: for t := 1, . . . , T do

8: U := βt
1 A1 + . . . βt

k Ak // The interaction matrix at time t
9: for i := 1, . . . , k do

10: Si := 0
11: for j := 1, . . . , n do

12: Si := Si + ((Ai)jx)
(
tanh(Ujx)− xj

)
// Compute the derivative

13: end for
14: end for

15: if ‖U‖∞ ≥ M then

16: MAX := −∞ // If regularized part is nonzero, also need subgradient
17: ARGMAX := 1 // First find max row sum
18: for l := 1, . . . , n do

19: TEMP := 0
20: for v := 1, . . . , n do

21: TEMP := TEMP + |Ulv|
22: end for

23: if TEMP > MAX then

24: MAX := TEMP
25: ARGMAX := l
26: end if

27: end for

28: for i := 1, . . . , k do

29: for v := 1, . . . , n do

30: Si := Si + 5n · sgn(βt
i) · ‖(Ai)MAX,v|// compute subgradient for max row

31: end for

32: end for

33: end if

34: for i := 1, . . . , k do

35: βt+1
i = βt

i − ηSi // Iteration of subgradient descent
36: end for

37: end for

38: Output β̂ := 1
T ∑

T
t=1 βt
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subject to the constraint ‖Aβββ‖∞ ≤ M. Thus, in order to solve 10, we can equivalently solve

arg min
βββ:‖Aβββ‖∞≤M

ψ(βββ) (46)

One way to solve this is to use constrained optimization. However, we would like to avoid the
complicated projection procedure associated with this strategy. We note that projecting to the set
of matrices with low infinity norm does not directly translate to a similar procedure in the space
of fi, since Ai might have large infinity norm. Instead, we will solve the following regularized
optimization problem:

arg min
βββ

(
ψ(βββ) + λ max(0, ‖Aβββ‖∞ − M)

)

Set h(βββ) = ψ(βββ) + λ max(0, ‖Aβββ‖∞ − M), which is clearly a convex function. We will describe
a way to pick λ shortly after. Denote by βββ1 the solution of this optimization problem and by βββ∗

the one corresponding to J∗. Also, suppose the algorithm outputs a point β̂ββ for accuracy ǫ. The
details are given in Algorithm ??. We will prove that ‖Aβββ1

‖∞, ‖Aβ̂ββ‖∞ ≤ 3M. First, for βββ = 000 we

have ‖A000‖∞ ≤ M and by equation 11 we get ψ(000) = n log 2.
We set λ = 5n. We now examine what the value of the function is βββ such that ‖Aβββ‖∞ ≥ 3M.

If we manage to show that it is greater than the value at 0, then it is clear that the minimizer will
not lie in this set. Using the inequality cosh(x) ≥ exp−|x| and equation 11 we have:

ψ(βββ) =
n

∑
i=1

(
log cosh

(
(Aβββ)ix

)− xi(Aβββ)ix + log 2
) ≥

n

∑
i=1

(−|(Aβββ)ix| − xi(Aβββ)ix + log 2
)

Using the triangle inequality and the fact that x is a {+1,−1}n vector, we have: |(Aβββ)ix| ≤
‖Aβββ‖∞. Also, since ‖Aβββ‖2 ≤ ‖Aβββ‖∞ we have:

n

∑
i=1

xi(Aβββ)ix = x⊤Aβββx ≤ ‖Aβββ‖2‖x‖2
2 = n‖Aβββ‖2 ≤ n‖Aβββ‖∞

Overall, we get:

ψ(βββ) ≥ −n‖Aβββ‖∞ − n‖Aβββ‖∞ + n log 2 = −2n‖Aβββ‖∞ + n log 2

So, the value of the optimized function at βββ is

h(β) = ψ(β) + 5n(‖Aβββ‖∞ − M) ≥ −2n‖Aβββ‖∞ + n log 2 + 3n‖Aβββ‖∞ = n log 2 = h(000) + n‖Aβββ‖∞

Hence, we conclude that ‖Aβββ1
‖∞ ≤ 3M. Moreover, we have

h(β̂ββ)− h(βββ1) ≤ ǫ ≤ Mn =⇒ h(β̂ββ) ≤ Mn + n log 2 =⇒ ‖Aβ̂ββ‖∞ ≤ 3M

As for the guarantee of the algorithm, we notice that:

ψ(β̂ββ) ≤ h(β̂ββ) ≤ h(βββ1) + ǫ ≤ h(βββ∗) + ǫ = ψ(βββ∗) + ǫ

since ‖A∗
βββ‖∞ ≤ M. Thus, if we denote by Ĵ = Aβ̂ββ, we conclude that:

ϕ( Ĵ) ≤ ϕ(J∗) + ǫ

which is what we wanted to prove. It remains now to argue about the computational complexity
of the procedure. The algorithm we will use is subgradient descent, which performs reasonably
well when the subgradient is upper bounded. The following Theorem can be found in [Bub+15].
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Lemma 22 ([Bub+15]). Suppose f is a convex function with minimum x∗ and g ∈ ∂ f is a subgradient
such that ‖g‖ ≤ L. Suppose we are running the following iterative procedure:

xt+1 = xt − ηg(xt)

with ‖x1 − x∗‖ ≤ R. If we choose η = R/(L
√

t) then

f

(
1

t

t

∑
i=1

f (xi)

)
− f (x∗) ≤ RL√

t

Hence, if we want accuracy ǫ, we need to run the algorithm for t = O(R2L2/ǫ2) iterations. We
now argue that both R and L are polynomially bounded in our case. To bound a subgradient of h,
we begin by bounding each partial derivative of ψ, since for this function it is also a subgradient.
First of all, it is easy to see that ∂ψ(βββ)/∂βi ≤ 2

√
n. Indeed, by equation 12 we get:

∣∣∣∣
ψ(βββ)

∂βi

∣∣∣∣ =
∣∣∣∣∣

n

∑
k=1

((Ai)kx)
(
tanh((Aβββ)kx)− xk

)
∣∣∣∣∣ ≤

n

∑
k=1

|(Ai)kx|
∣∣tanh((Aβββ)kx)− xk

∣∣

≤
n

∑
k=1

|(Ai)kx| (| tanh((Aβββ)kx)|+ 1
) ≤ 2

n

∑
k=1

|(Ai)kx|

≤ 2
n

∑
k=1

n

∑
j=1

|(Ai)kj| ≤ 2
√

n‖Ai‖F = 2
√

n

In the preceding calculation, we used the Cauchy Schwarz inequality along with the fact that Ai

belongs to the orthonormal basis. Now, we turn our attention to the non-smooth part of h. We
use the following general fact about subgradients.

Lemma 23 (folklore). Suppose f1, f2 : R
n 7→ R are differentiable convex functions. Then, h =

max( f1, f2) has a subgradient of the form

g(x) =

{ ∇ f1(x) , if f1(x) ≥ f2(x)
∇ f2(x) , otherwise

}

This means that to bound the subgradient of λ max(0, ‖Aβββ‖∞ − M) we just need to bound the
gradient of each function in the max. The function 0 obviously has gradient 0. We have

‖Aβββ‖∞ = max
u∈[n]

n

∑
v=1

|(Aβββ)uv|

Hence, to bound the subgradient of this function, we focus on a fixed row u. Set

L(βββ) =
n

∑
v=1

|(Aβββ)uv| =
n

∑
v=1

∣∣∣∣∣
k

∑
i=1

βi(Ai)uv

∣∣∣∣∣

. Using the fact that a subgradient for |x| is sgn(x), we obtain that a subgradient of L w.r.t.
variable βi is sgn(βi)∑

n
v=1 |(Ai)uv|, which is clearly bounded in norm by ∑

n
v=1 |(Ai)uv| ≤

√
n.

Hence, the subgradient w.r.t. βi of the function λ max(0, ‖Aβββ‖∞ − M) is bounded in absolute
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value by λ
√

n = 5n
√

n. This means that the subgradient gi of h is O(n
√

n) in absolute value. It

follows that ‖g‖2 ≤ n
√

k
√

n. Finally, by choosing x1 = 0 we have

‖x1 − βββ∗‖ = ‖Ax1
− Aβββ∗‖F ≤

√
n‖Ax1

− Aβββ∗‖∞ ≤ M
√

n

Hence, after t = O(n4M2k/ǫ2) rounds we achieve error of at most ǫ. The only part of the
algorithm we haven’t analysed is the Gram-Schmidt computation. It is well known that for a
subspace of R

k of dimension l, the Gram-Schmidt procedure takes O(ml2). For m = k, l = n2 we
see that this is less than the complexity for the optimization part.

The last issue we should address to get the time complexity of the algorithm is the calculation
of the subgradient. The gradient of ψ amounts to the calculation of Aβββx, which takes O(n2k)
time(Aix can be precomputed for all i). The calculation of the subgradient for the nonsmooth
part is easy once we determine which row has the maximum absolute sum for the particular
value of βββ. This also takes O(kn2) time, since we have to calculate the sum of the matrices in
each row. Once we do that, a precomputation of the row sums of each matrix can give us the
subgradient in O(1) time. Overall, computation of the gradient takes O(kn2) time, which means
that our algorithm runs in O(k2n6M2/ǫ2) time.

B Dobrushin’s Uniqueness Condition

Here we present Dobrushin’s uniqueness condition in its full generality. First we define the
influence of a node j on a node i.

Definition 8 (Influence in Graphical Models). Let π be a probability distribution over some set of
variables V. Let Bj denote the set of state pairs (X, Y) which differ only in their value at variable j. Then
the influence of node j on node i is defined as

I(j, i) = max
(X,Y)∈Bj

∥∥∥πi(.|X−i)− πi(.|Y−i)
∥∥∥

TV

Now, we are ready to state Dobrushin’s condition.

Definition 9 (Dobrushin’s Uniqueness Condition). Consider a distribution π defined on a set of
variables V. Let

α = max
i∈V

∑
j∈V

I(j, i)

π is said to satisfy Dobrushin’s uniqueness condition if α < 1.

Notice that ‖J∗‖∞ < 1 implies Dobrushin’s condition and a proof can found in [Cha05]. A
generalization of this condition was given by [Hay06] who defined the generalized Dobrushin’s
condition as ‖I‖2 < 1, where I = I(i, j) is the influence matrix. This condition, while being
weaker, retains most desirable properties of the original Dobrushin’s condition.

C Technical Proofs

We begin with the proof of Lemma 5 and then move to the proof of Lemma 8.
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C.1 Proof of Lemma 5

In this section, we prove the following lemma:

Lemma 5. For any symmetric matrix A with zeros on the diagonal, we have

Pr
[
|ψj(x; A)| ≥ t

∣∣∣ x−Ij

]
≤ exp


−c min


 t2

‖E

[
Ax

∣∣∣ x−Ij

]
‖2

2 + ‖A‖2
F

,
t

‖A‖2




 .

We will decompose ψj(x; A) to parts that depend on xIj
and parts the depend on the param-

eters that we condition on, x−Ij
:

ψj(x; A) = ∑
i∈Ij

(Ai,Ij
xIj

+ Ai,−Ij
x−Ij

)(xi − tanh(J∗i,Ij
xIj

+ J∗i,−Ij
x−Ij

)) = ∑
i∈Ij

(A′
ix

′+ b′i)(x′i − tanh(J′i x′+ h′i)),

(47)
where

A′ = AIj Ij
; b′ = AIj,−Ij

x−Ij
; J′ = J∗Ij ,Ij

; h′ = J∗Ij ,−Ij
x−Ij

; and x′ = xIj
.

Notice that A′, b′, J′, h′ are fixed conditioned on x−Ij
and x′ is distributed as the conditional

distribution of xIj
conditioned on x−Ij

. Furthermore, x′ is a (1/2, γ)-Ising model, with interaction
matrix J′ and external field h′, conditioned on x−Ij

. Hence, the following lemma will imply that
the right hand size of (47) concentrates conditioned on x−Ij

.

Lemma 24. Let x be a (1/2, γ) Ising model over {−1, 1}m with interaction matrix J and external field h.
Let A be a symmetric real matrix of dimension m × m with zeros on the diagonal, let b ∈ R

m be a vector
and let

f (x) = ∑
i∈[m]

(Aix + bi)(x − tanh(Jix + h)).

Then, for any t > 0,

Pr[| f (x)| ≥ t] ≤ exp

(
−c min

(
t2

‖EAx + b‖2
2

,
t2

‖A‖2
F

,
t

‖A‖2

))
,

where c > 0 is lower bounded by a constant constant whenever ‖A‖∞, ‖b‖∞, ‖A′‖∞ and ‖b′‖∞ are
bounded from above by a constant.

First we derive Lemma 5 based on Lemma 24. Substituting A = A′, b = b′, J = J′ and h = h′

and x = x′, we derive that,

Pr
[
ψj(x; A) ≥ t

∣∣∣ x−Ij

]
≤ exp

(
−c min

(
t2

‖EA′x + b′‖2
2

,
t2

‖A′‖2
F

,
t

‖A′‖2

))

= exp

(
−c min

(
t2

‖EAIj
x‖2

2

,
t2

‖AIj,Ij
‖2

F

,
t

‖AIj,Ij
‖2

))

≤ exp

(
−c min

(
t2

‖EAx‖2
2

, t2,
t

‖A‖2

))
,

using the fact that ‖AIj,Ij
‖2 ≤ ‖A‖2 and that ‖AIj,Ij

‖F ≤ ‖A‖F = 1 for all A ∈ A. This concludes
the proof of Lemma 5. Lastly, we prove Lemma 24.
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Proof of Lemma 24. By abuse of notation, define tanh : R
m → R

m by

tanh(y1, . . . , ym) = (tanh(y1), . . . , tanh(ym)).

Decompose f (x) as
f (x) = g(x)⊤h(x),

where g(x) = Ax + b and h(x) = x − tanh(Jx + h).
We start by bounding ∑i(Di f (x))2. Decompose

2Di f (x) = f (xi+)− f (xi−) = g(xi+)
⊤(h(xi+)− h(xi−)) + (g(xi+)− g(xi−))

⊤h(xi−)

= (g(xi+)− g(x))⊤(h(xi+)− h(xi−)) + g(x)⊤(h(xi+)− h(xi−))

+ (g(xi+)− g(xi−))
⊤(h(xi−)− h(x)) + (g(xi+)− g(xi−))

⊤h(x).

By Cauchy Schwartz, for any a, b, c, d ∈ R, we have that (a + b + c + d)2 ≤ 4(a2 + b2 + c2 + d2).
Hence,

m

∑
i=1

(Di f (x))2 ≤
m

∑
i=1

((g(xi+)− g(x))⊤(h(xi+)− h(xi−)))2 +
m

∑
i=1

(g(x)⊤(h(xi+)− h(xi−)))2

+
m

∑
i=1

((g(xi+)− g(xi−))⊤(h(xi−)− h(x)))2 +
m

∑
i=1

((g(xi+)− g(xi−))⊤h(x))2. (48)

We will bound the terms in the right hand side of (48) one after the other.
Term 4:

(g(xi+)− g(xi−))⊤h(x) = (xi+ − xi−)⊤A(x − tanh(Jx + h)) = 2e⊤i A(x − tanh(Jx + h)).

Summing over all i, we get

∑
i

((g(xi+)− g(xi−))
⊤h(x))2 = 4‖A(x − tanh(Jx + h))‖2

2.

Term 3: using the fact that tanh is 1-Lipschitz and Cauchy Schwartz,

|(g(xi+)− g(xi−))⊤(h(xi−)− h(x))| = |2e⊤i A(xi− − tanh(Jxi− + h)− x − tanh(Jx + h))|
≤ 2‖e⊤i A‖2‖xi− − tanh(Jxi− + h)− x − tanh(Jx + h)‖2

≤ 2‖e⊤i A‖2(‖xi− − x‖2 + ‖ tanh(Jxi− + h)− tanh(Jx + h)‖2)

≤ 2‖e⊤i A‖2(2 + ‖Jxi− + h − Jx − h‖2)

≤ 2‖e⊤i A‖2(2 + ‖J‖2‖xi− − x‖2)

≤ C‖e⊤i A‖2.

Summing over all i, we get

∑
i

|(g(xi+)− g(xi−))⊤(h(xi−)− h(x))|2 ≤ C ∑
i

‖e⊤i A‖2
2 = C‖A‖2

F.
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Term 1:

|(g(xi+)− g(x))⊤(h(xi+)− h(xi−))| = |(xi+ − x)⊤A(xi+ − tanh(Jxi+ + h)− xi− − tanh(Jxi− + b))|
≤ ‖(xi+ − x)⊤A‖2‖xi+ − tanh(Jxi+ + h)− xi− − tanh(Jxi− + b)‖2 ≤ C‖e⊤i A‖2,

using a bound similar to the above. Summing over all i we get

∑
i

|(g(xi+)− g(x))⊤(h(xi+)− h(xi−))|2 ≤ C‖A‖2
F.

Term 2:

∑
i

(g(x)⊤(h(xi+)− h(xi−)))2 = ‖Wg(x)‖2
2,

where W is a matrix of size m × m such that

Wij = h(xi+)j − h(xi−)j = (xi+)j − (xi−)j − tanh(J⊤j xi+ + h) + tanh(J⊤j xi− + h). (49)

Using the Lipschitzness of tanh and the triangle inequality,

|Wij| ≤ |(xi+)j − (xi−)j|+ |J⊤j (xi+ − xi−)| = 2(1(i = j) + |Jij|).

We obtain that
‖W‖2 ≤ ‖W‖∞ ≤ 2‖J‖∞ + 2 ≤ C. (50)

Hence, ‖Wg(x)‖2
2 ≤ ‖W‖2

2‖g(x)‖2
2 ≤ C2‖Ax + b‖2

2.
To summarize, by (48) and the calculations below, we obtain that

∑
i

(Di f (x))2 ≤ C(‖A‖2
F + ‖Ax + b‖2

2 + ‖A(x − tanh(Jx + h)))‖2
2.

Define the pseudo discrete derivative to be a function of 2m + 1 coordinates, such that for co-
ordinate i, i ∈ [m], we have D̃i(x) = C(A⊤

i x + bi), in coordinate m + i we have D̃n+i(x) =

CA⊤
i (x − tanh(Jx + h)), and in coordinate 2m + 1 we have D̃2m+1(x) = C‖A‖F.

Next, we like to define a pseudo discrete Hessian. For this purpose, we bound ∑
m
j=1 Dj(ξ

⊤D̃(x))2,

for any fixed ξ ∈ R
2m+1. Note that using the fact that D̃2m+1 is constant in x and using Cauchy

Schwartz,

m

∑
j=1

Dj(ξ
⊤D̃(x))2 =

m

∑
j=1

(
2m+1

∑
i=1

ξi(D̃i(xj+)− D̃i(xj−))

)2

≤ 2
m

∑
j=1

(
m

∑
i=1

ξi(D̃i(xj+)− D̃i(xj−))

)2

+ 2
m

∑
j=1

(
2m

∑
i=n+1

ξi(D̃i(xj+)− D̃i(xj−))

)2

.

(51)

We will bound both terms from the right hand size of (51). Starting with the first term, for any
i ∈ [m] we have

D̃i(xj+)− D̃i(xj−) = 2Aij.
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Hence,
m

∑
j=1

(
m

∑
i=1

ξi(D̃i(xj+)− D̃i(xj−))

)2

= 4 ∑
j

(

∑
i

ξi Aij

)2

= 4‖ξ⊤1···m A‖2
2,

where ξ1···m = (ξ1, . . . , ξm). For the second term of (51), we have:

m

∑
j=1

(
2m

∑
i=n+1

ξi(D̃i(xj+)− D̃i(xj−))

)2

=

∥∥∥∥∥ξ⊤m+1···2m A

(

∑
i∈[n]

xi+ − xi− − tanh(A′xi+ + h) + tanh(A′xi− + h)

)∥∥∥∥∥

2

2

= ‖ξ⊤m+1···2m AW‖2
2,

for the matrix W that we defined in the calculations of the discrete derivative, in (49). By (50) we
get that

‖ξ⊤m+1···2m AW‖2
2 ≤ ‖ξ⊤m+1···2m A‖2

2‖W‖2
2 ≤ C‖ξ⊤m+1···2m A‖2

2.

By (51) and the bounds on both terms in its right hand side, we derive that

∑
j∈[m]

Dj(ξ
⊤D̃(x))2 ≤ ‖ξ⊤H̃‖2

2,

where H̃ = C(A|A|0)⊤ is the matrix of dimension (2m + 1) × m obtained from stacking two
copies of A one on top of each other on top of one row of zeros at the bottom, all multiplied by a
sufficiently large constant C. Hence, we can define the pseudo Hessian as the constant function
H̃(x) = H̃.

Lastly, we would like to apply Theorem 6, applying it with the pseudo discrete derivative
and Hessian defined above. We would just have to calculate:

‖Ex[D̃(x)]‖2
2 = C

m

∑
i=1

(Ex[A
⊤
i x + bi])

2 + C
m

∑
i=1

(Ex[A
⊤
i (x − tanh(Jx + h))])2 + C‖A‖2

F.

The first summand equals ‖E[Ax + b]‖2
2, while the second equals zero, from the same argument

as in Claim 1. This implies that ‖E[D̃(x)]‖2
2 ≤ C‖E[Ax + b]‖2

2 + C‖A‖2
F. Next, we bound the

terms corresponding to the pseudo Hessian: we have that ‖H̃‖2 ≤ C‖A‖2, and ‖H̃‖2
F ≤ C‖A‖2

F.
Plugging these in Theorem 6 concludes the proof.

C.2 Proof of Lemma 8

Now, we move on to the proof of Lemma 8. The function that we wish to show concentration
about is a second degree polynomial, hence Theorem 5 applies. However, this Theorem requires
the matrix to have 0 in the diagonal, which is not necessarily the case for A⊤A. Hence, we need
to modify the matrix so that it is zero-diagonal, obtain the concentration bound for the modified
matrix and then translate the result in terms of the original matrix. This is done in the following
proof.

Proof of Lemma 8. Denote p(x) = ‖Ax‖2
2 = x⊤A⊤Ax. Let E be obtained from A⊤A by zeroing

all elements of the diagonal and denote p̃(x) = x⊤Ex. Note that p̃(x)− p(x) is a constant as a
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function of x, since x2
i = 1 for all i. This means that it suffices to bound the deviation of p̃(x). By

Lemma 2, conditioning on x−Ij
yields an Ising model with Dobrushin constant 1/2. Hence, we

can apply Theorem 5 and get that for any t ≥ 0,

Pr
[∣∣∣ p̃(x)− E

[
p̃(x)

∣∣∣ x−Ij

]∣∣∣ > t
∣∣∣ x−Ij

]
≤ exp

(
−c min

(
t2

‖E‖2
F + ‖E[Ex|x−Ij

]‖2
2

,
t

‖E‖2

))
. (52)

Now, we show how E can be replaced with A⊤A in (52). First:

∥∥∥E

[
Ex

∣∣∣ x−Ij

]∥∥∥
2
≤

∥∥∥E

[
A⊤Ax

∣∣∣ x−Ij

]∥∥∥
2
+

∥∥∥E

[
(E − A⊤A)x

∣∣∣ x−Ij

]∥∥∥
2

,

which, using the inequality (a + b)2 ≤ 2a2 + 2b2, implies that

‖E‖2
F +

∥∥∥E

[
Ex

∣∣∣ x−Ij

]∥∥∥
2

2
≤ 2 ‖E‖2

F + 2
∥∥∥E

[
A⊤Ax

∣∣∣ x−Ij

]∥∥∥
2
+ 2

∥∥∥E

[
(E − A⊤A)x

∣∣∣ x−Ij

]∥∥∥
2

2

= 2
∥∥∥A⊤A

∥∥∥
2

F
+ 2

∥∥∥E

[
A⊤Ax

∣∣∣ x−Ij

]∥∥∥
2

2
.

In the last equality, we used the fact that
∥∥∥E

[
(E − A⊤A)x

∣∣∣ x−Ij

]∥∥∥
2

2
is just the sum of the squares

of the diagonal entries of A⊤A, which means that together with ‖E‖2
F they add up to ‖A‖2

F. Next,
notice that ‖E‖2 ≤ ‖A⊤A‖2. To prove this, we note that for all x ∈ R

n,

x⊤Ex = x⊤A⊤Ax − ∑
i∈[n]

(A⊤A)ii ≤ x⊤A⊤Ax.

Putting all of this together, we obtain that the right hand side of 52 is bounded by

exp


−c′ min




t2

‖A⊤A‖2
F +

∥∥∥E

[
A⊤Ax

∣∣∣ x−Ij

]∥∥∥
2

2

,
t

‖A⊤A‖2





 .

Finally, we want to make this bound depend on A rather than A⊤A. First,

‖A⊤A‖2
F ≤ ‖A‖2

F‖A‖2
2

using the well known inequality ‖AB‖F ≤ ‖A‖2‖B‖F.
Next, we have:

∥∥∥E

[
A⊤Ax

∣∣∣ x−Ij

]∥∥∥
2

2
=

∥∥∥A⊤
E

[
Ax

∣∣∣ x−Ij

]∥∥∥
2

2
≤ ‖A‖2

2

∥∥∥E

[
Ax

∣∣∣ x−Ij

]∥∥∥
2

2
(53)

Lastly,
‖A⊤A‖2 = ‖A‖2

2.

This concludes the proof.
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[BDF09] Y. Bramoullé, H. Djebbari, and B. Fortin. “Identification of peer effects through social
networks”. In: Journal of econometrics 150.1 (2009), pp. 41–55.

[Ber+09] P. Berti, I. Crimaldi, L. Pratelli, P. Rigo, et al. “Rate of convergence of predictive
distributions for dependent data”. In: Bernoulli 15.4 (2009), pp. 1351–1367.

[Bes74] J. Besag. “Spatial interaction and the statistical analysis of lattice systems”. In: Journal
of the Royal Statistical Society: Series B (Methodological) 36.2 (1974), pp. 192–225.

[Bes75] J. Besag. “Statistical analysis of non-lattice data”. In: Journal of the Royal Statistical
Society: Series D (The Statistician) 24.3 (1975), pp. 179–195.

[BLM00] M. Bertrand, E. F. Luttmer, and S. Mullainathan. “Network effects and welfare cul-
tures”. In: The Quarterly Journal of Economics 115.3 (2000), pp. 1019–1055.

[BM18] B. B. Bhattacharya and S. Mukherjee. “Inference in Ising models”. In: Bernoulli 24.1
(2018), pp. 493–525.

[BN18] G. Bresler and D. Nagaraj. “Optimal single sample tests for structured versus un-
structured network data”. In: arXiv preprint arXiv:1802.06186 (2018).

[BN+19] G. Bresler, D. Nagaraj, et al. “Stein’s method for stationary distributions of Markov
chains and application to Ising models”. In: The Annals of Applied Probability 29.5
(2019), pp. 3230–3265.

[Bre15] G. Bresler. “Efficiently learning Ising models on arbitrary graphs”. In: Proceedings of
the forty-seventh annual ACM symposium on Theory of computing. 2015, pp. 771–782.

[Bub+15] S. Bubeck et al. “Convex optimization: Algorithms and complexity”. In: Foundations
and Trends® in Machine Learning 8.3-4 (2015), pp. 231–357.

[CF13] N. A. Christakis and J. H. Fowler. “Social contagion theory: examining dynamic social
networks and human behavior”. In: Statistics in medicine 32.4 (2013), pp. 556–577.

[Cha05] S. Chatterjee. “Concentration inequalities with exchangeable pairs (Ph. D. thesis)”.
In: arXiv preprint math/0507526 (2005).

[Cha07] S. Chatterjee. “Estimation in spin glasses: A first step”. In: The Annals of Statistics 35.5
(2007), pp. 1931–1946.

[CL68] C Chow and C. Liu. “Approximating discrete probability distributions with depen-
dence trees”. In: IEEE transactions on Information Theory 14.3 (1968), pp. 462–467.

60



[CVV19] J. Y. Chen, G. Valiant, and P. Valiant. “How bad is worst-case data if you know where
it comes from?” In: arXiv abs/1911.03605 (2019).

[Dag+19] Y. Dagan, C. Daskalakis, N. Dikkala, and S. Jayanti. “Learning from Weakly Depen-
dent Data under Dobrushin’s Condition”. In: Conference on Learning Theory. 2019,
pp. 914–928.

[DDK17] C. Daskalakis, N. Dikkala, and G. Kamath. “Concentration of multilinear functions of
the Ising model with applications to network data”. In: Advances in Neural Information
Processing Systems. 2017, pp. 12–23.

[DDP19] C. Daskalakis, N. Dikkala, and I. Panageas. “Regression from dependent observa-
tions”. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Com-
puting. 2019, pp. 881–889.

[DMR11] C. Daskalakis, E. Mossel, and S. Roch. “Evolutionary Trees and the Ising Model on
the Bethe Lattice: A Proof of Steel’s Conjecture”. In: Probability Theory and Related
Fields 149.1 (2011), pp. 149–189.

[DS03] E. Duflo and E. Saez. “The role of information and social interactions in retirement
plan decisions: Evidence from a randomized experiment”. In: The Quarterly journal of
economics 118.3 (2003), pp. 815–842.

[DS87] R. Dobrushin and S. Shlosman. “Completely analytical interactions: constructive de-
scription”. In: Journal of Statistical Physics 46.5-6 (1987), pp. 983–1014.

[Duc16] J. Duchi. “Lecture notes for statistics 311/electrical engineering 377”. In: URL: https://stanford.
edu/class/stats311/Lectures/full notes. pdf. Last visited on 2 (2016), p. 23.

[Ell93] G. Ellison. “Learning, Local Interaction, and Coordination”. In: Econometrica 61.5
(1993), pp. 1047–1071.

[Fel04] J. Felsenstein. Inferring Phylogenies. Sinauer Associates Sunderland, 2004.

[GG86] S. Geman and C. Graffigne. “Markov Random Field Image Models and their Appli-
cations to Computer Vision”. In: Proceedings of the International Congress of Mathemati-
cians. American Mathematical Society, 1986, pp. 1496–1517.

[GLP17] R. Gheissari, E. Lubetzky, and Y. Peres. “Concentration inequalities for polynomials
of contracting Ising models”. In: arXiv preprint arXiv:1706.00121 (2017).

[GLP+18] R. Gheissari, E. Lubetzky, Y. Peres, et al. “Concentration inequalities for polynomials
of contracting Ising models”. In: Electronic Communications in Probability 23 (2018).

[GM18] P. Ghosal and S. Mukherjee. “Joint estimation of parameters in Ising model”. In: arXiv
preprint arXiv:1801.06570 (2018).

[GSS19] F. Götze, H. Sambale, and A. Sinulis. “Higher order concentration for functions of
weakly dependent random variables”. In: Electronic Journal of Probability 24 (2019).

[GSS96] E. L. Glaeser, B. Sacerdote, and J. A. Scheinkman. “Crime and social interactions”. In:
The Quarterly Journal of Economics 111.2 (1996), pp. 507–548.

[Hay06] T. P. Hayes. “A simple condition implying rapid mixing of single-site dynamics on
spin systems”. In: 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06). IEEE. 2006, pp. 39–46.

61



[HKM17] L. Hamilton, F. Koehler, and A. Moitra. “Information theoretic properties of Markov
random fields, and their algorithmic applications”. In: Advances in Neural Information
Processing Systems. 2017, pp. 2463–2472.

[Isi25] E. Ising. “Beitrag zur theorie des ferromagnetismus”. In: Zeitschrift für Physik 31.1
(1925), pp. 253–258.

[KM15] V. Kuznetsov and M. Mohri. “Learning theory and algorithms for forecasting non-
stationary time series”. In: Advances in neural information processing systems. 2015,
pp. 541–549.

[KM17] A. Klivans and R. Meka. “Learning graphical models using multiplicative weights”.
In: 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS). IEEE.
2017, pp. 343–354.

[Km79] R. Z. Khas’ minskii. “A lower bound on the risks of non-parametric estimates of
densities in the uniform metric”. In: Theory of Probability & Its Applications 23.4 (1979),
pp. 794–798.

[KR+08] L. A. Kontorovich, K. Ramanan, et al. “Concentration inequalities for dependent ran-
dom variables via the martingale method”. In: The Annals of Probability 36.6 (2008),
pp. 2126–2158.

[KR17] A. Kontorovich and M. Raginsky. “Concentration of measure without independence:
a unified approach via the martingale method”. In: Convexity and Concentration. Springer,
2017, pp. 183–210.

[Lat+06] R. Latała et al. “Estimates of moments and tails of Gaussian chaoses”. In: The Annals
of Probability 34.6 (2006), pp. 2315–2331.

[Lau96] S. L. Lauritzen. Graphical models. Vol. 17. Clarendon Press, 1996.

[LeS08] J. P. LeSage. “An introduction to spatial econometrics”. In: Revue d’économie indus-
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