
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

AdaFilter: Adaptive Filter Fine-Tuning for Deep Transfer Learning

Yunhui Guo,† Yandong Li,‡ Liqiang Wang,‡ Tajana Rosing†
University of California, San Diego, CA†, University of Central Florida, Orlando, FL‡

yug185@eng.ucsd.edu, lyndon.leeseu@outlook.com, lwang@cs.ucf.edu, tajana@ucsd.edu

Abstract
There is an increasing number of pre-trained deep neural net-
work models. However, it is still unclear how to effectively
use these models for a new task. Transfer learning, which
aims to transfer knowledge from source tasks to a target
task, is an effective solution to this problem. Fine-tuning is a
popular transfer learning technique for deep neural networks
where a few rounds of training are applied to the parameters
of a pre-trained model to adapt them to a new task. Despite
its popularity, in this paper we show that fine-tuning suffers
from several drawbacks. We propose an adaptive fine-tuning
approach, called AdaFilter, which selects only a part of the
convolutional filters in the pre-trained model to optimize on
a per-example basis. We use a recurrent gated network to se-
lectively fine-tune convolutional filters based on the activa-
tions of the previous layer. We experiment with 7 public im-
age classification datasets and the results show that AdaFil-
ter can reduce the average classification error of the standard
fine-tuning by 2.54%.

1 Introduction
Inductive transfer learning (Pan, Yang, and others 2010) is
an important research topic in traditional machine learning
that attempts to develop algorithms to transfer knowledge
from source tasks to enhance learning in a related target
task. While transfer learning for traditional machine learn-
ing algorithms has been extensively studied (Pan, Yang, and
others 2010), how to effectively conduct transfer learning
using deep neural networks is still not fully exploited. The
widely adopted approach, called fine-tuning, is to continue
the training of a pre-trained model on a given target task.
Fine-tuning assumes the source and target tasks are related.
Thus, we would expect the pre-trained parameters from the
source task to be close to the optimal parameters for the tar-
get target.

In the standard fine-tuning, we either optimize all the pre-
trained parameters or freeze certain layers (often the initial
layers) of the pre-trained model and optimize the rest of
the layers towards the target task. This widely adopted ap-
proach has two potential issues. First, the implicit assump-
tion behind fine-tuning is that all the images in the target

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

dataset should follow the same fine-tuning policy (i.e., all
the images should fine-tune all the parameters of the pre-
trained model), which may not be true in general. Recent
work (Shazeer et al. 2017) points out that activating parts
of the network on a per-example basis can better capture the
diversity of the dataset to provide better classification perfor-
mance. In transfer learning, some classes in the target dataset
may have overlap with the source task, so directly reusing
the pre-trained convolutional filters without fine-tuning can
benefit the learning process due to the knowledge transfer.
The second issue is that deep neural networks often have
millions of parameters, so when the pre-trained model is be-
ing applied on a relatively small target dataset, there is a
danger of overfitting since the model is overparameterized
for the target dataset. Solving either of the issues is of great
practical importance due to the wide use of fine-tuning for a
variety of applications.

In this paper, we propose a deep transfer learning model,
called AdaFilter, which automatically selects reusable filters
from the pre-trained model on a per-example basis. This is
achieved by using a recurrent neural network (RNN) gate
(Graves, Mohamed, and Hinton 2013), which is conditioned
on the activations of the previous layer, to layerwisely de-
cide which filter should be reused and which filter should be
further fine-tuned for each example in the target dataset. In
AdaFilter, different examples in the target dataset can fine-
tune or reuse different convolutional filters in the pre-trained
model. The adaptive fine-tuning scheme implicitly consid-
ers the similarity between the source task and the target task.
Moreover, AdaFilter mitigates the overfitting issue by reduc-
ing the number of trainable parameters for each example in
the target dataset via reusing pre-trained filters. We exper-
iment on 7 publicly available image classification datasets.
The results show that the proposed AdaFilter outperforms
fine-tuning on all the datasets and achieves much faster con-
vergence speed.

The contributions of this paper can be summarized as fol-
lows,

• We propose AdaFilter, a deep transfer learning algo-
rithm which aims to improve the performance of the
widely used fine-tuning method. We propose filter selec-
tion, layer-wise recurrent gated network and gated batch

4060



normalization techniques to allow different images in the
target dataset to fine-tune different convolutional filters in
the pre-trained model.

• We experiment with 7 publicly available datasets and the
results show that the proposed method can reduce the av-
erage classification error by 2.54% compared with the
standard fine-tuning.

• We also show that AdaFilter can consistently perform bet-
ter than the standard fine-tuning during the training pro-
cess due to more efficient knowledge transfer.

2 Related Work
Transfer learning addresses the problem of how to transfer
the knowledge from source tasks to a target task (Pan, Yang,
and others 2010). It is closely related to life-long learn-
ing (Parisi et al. 2019), multi-domain learning (Guo et al.
2019) and multi-task learning (Ruder 2017). Transfer learn-
ing has achieved great success in a variety of areas, such
as computer vision (Raina et al. 2007), recommender sys-
tems (Pan, Yang, and others 2010) and natural language pro-
cessing (Min, Seo, and Hajishirzi 2017). Traditional transfer
learning approaches include subspace alignment (Gong et
al. 2012), instance weighting (Dudı́k, Phillips, and Schapire
2006) and model adaptation (Duan et al. 2009).

Recently, a slew of works (Kumar et al. 2018; Ge and Yu
2017; Li et al. 2018; 2019) are focusing on transfer learn-
ing with deep neural networks. The most widely used ap-
proach, called fine-tuning, is to slightly adjust the param-
eters of a pre-trained model to allow knowledge transfer
from the source task to the target task. Commonly used
fine-tuning strategies include fine-tuning all the pre-trained
parameters and fine-tuning the last few layers (Long et al.
2015). In (Yosinski et al. 2014), the authors conduct exten-
sive experiments to investigate the transferability of the fea-
tures learned by deep neural networks. They showed that
transferring features is better than random features even if
the target task is distant from the source task. Kornblith
et al. (Kornblith, Shlens, and Le 2018) studied the prob-
lem that whether better ImageNet models transfer better.
Howard et al. (Howard and Ruder 2018) extended the fine-
tuning method to natural language processing (NLP) tasks
and achieved the state-of-the-art results on six NLP tasks.
In (Ge and Yu 2017), the authors proposed a selective joint
fine-tuning scheme for improving the performance of deep
learning tasks with insufficient training data. In order to get
the parameters of the fine-tuned model close to the original
pre-trained model, (Li, Grandvalet, and Davoine 2018) ex-
plicitly added regularization terms to the loss function.

The proposed AdaFilter is complementary to previous
works. For example, the works that are based on fine-
tuning can utilize AdaFilter to further improve the results. In
AdaFilter, we allow different examples in the target dataset
to fine-tune different convolutional filters in the pre-trained
model. The adaptive fine-tuning scheme takes the similarity
between the source task and the target task into considera-
tion. The examples in the target dataset which are similar to
the source task can reuse more pre-trained filters to achieve
better knowledge transfer.

3 AdaFilter
In this work, we propose a deep transfer learning method
which finds the convolutional filters in a pre-trained model
that are reusable for each example in the target dataset. Fig-
ure 1 shows the overview of the proposed approach. We first
use a filter selection method to achieve per-example fine-
tuning scheme. We therefore leverage a recurrent gated net-
work which is conditioned on the activations of the previous
layer to layerwisely decide the fine-tuning policy for each
example. Finally, we propose gated batch normalization to
consider the different statistics of the output channels pro-
duced by the pre-trained layer and the fine-tuned layer.

To this end, we first introduce the filter selection method
in Sec. 3.1. Then we introduce our recurrent gated network
in Sec. 3.2. Finally we present the proposed gated batch nor-
malization method in Sec. 3.3. In Sec. 3.4, we discuss how
the proposed method can achieve better performance by mit-
igating the issues of the standard fine-tuning.

Filter Selection
In convolutional neural network (CNN), convolutional fil-
ters are used for detecting the presence of specific features
or patterns in the original images. The filters in the initial
layers of CNN are used for detecting low level features such
as edges or textures while the filters at the end of the net-
work are used for detecting shapes or objects (Zeiler and
Fergus 2014). When convolutional neural networks are used
for transfer learning, the pre-trained filters can be reused to
detect similar patterns on the images in the target dataset.
For those images in the target dataset that are similar to the
images in the source dataset, the pre-trained filters should
not be fine-tuned to prevent from being destructed.

The proposed filter selection method allows different im-
ages in the target dataset to fine-tune different pre-trained
convolutional filters. Consider the i-th layer in a con-
volutional neural network with input feature map xi ∈
R

ni×wi×hi , where ni the number of input channels, wi is the
width of the feature map and hi is the height of the feature
map. Given xi, the convolutional filters in the layer i pro-
duce an output xi+1 ∈ R

ni+1×wi+1×hi+1 . This is achieved
by applying ni+1 convolutional filter F ∈ R

ni×k×k on the
input feature map. Each filter F ∈ R

ni×k×k is applied on xi

to generate one channel of the output. All the ni+1 filters in
the i-th convolutional layer can be stacked together as a 4D
tensor.

We denote the 4D convolutional filters in the i-th layer
as Fi. Given xi ∈ R

ni×wi×hi , Fi(xi) is the output xi+1 ∈
R

ni+1×wi+1×hi+1 . To allow different images to fine-tune dif-
ferent filters, we initialize a new 4D convolutional filter Si

from Fi and freeze Si during training. We use a binary vector
Gi(xi) ∈ {0, 1}ni+1 , called the fine-tuning policy, which is
conditioned on the input feature map xi to decide which fil-
ters should be reused and which filters should be fine-tuned.
With Gi(xi), the output of the layer i can be calculated as,

xi+1 = Gi(xi) ◦ Fi(xi) + (1−Gi(xi)) ◦ Si(xi) (1)

where ◦ is the Hadamard product. Each element of
Gi(xi) ∈ {0, 1}ni+1 is multiplied with the correspond-

4061



Figure 1: The overview of AdaFilter for deep transfer learning. Layerwise recurrent gated network (the middle row) decides
how to select the convolutional filters from the fine-tuned layer (the first row) and the pre-trained layer (the last row) conditioned
on activations of the previous layer. Note that the RNN gate is shared across all the layers.

ing channel of Fi(xi) ∈ R
ni+1×wi+1×hi+1 and Si(xi) ∈

R
ni+1×wi+1×hi+1 . Essentially, the fine-tuning policy Gi(xi)

selects each channel of xi+1 either from the output produced
by the pre-trained layer Si (if the corresponding element is
0) or the fine-tuned layer Fi (if the corresponding element is
1). Since Gi(xi) is conditioned on xi, different examples in
the target dataset can fine-tune different pre-trained convo-
lutional filters in each layer.

Figure 2: The proposed recurrent gated network.

Layerwise Recurrent Gated Network
There are many possible choices to generate the fine-tuning
policy Gi(xi). We adopt a recurrent gated network to both
consider the dependencies between different layers and the
model size. Figure 2 illustrates the proposed recurrent gated
network which takes activations from the previous layer as
input and discretizes the output of sigmoid function as the
fine-tuning policy.

Recurrent neural network (RNN) (Graves, Mohamed, and
Hinton 2013) is a powerful tool for modelling sequential
data. The hidden states of the recurrent neural network can
remember the correlations between different timestamps. In
order to apply the RNN gate, we need to map the input fea-
ture map xi into a low-dimensional space. We first apply
a global average pooling on the input feature map xi and
then use a 1 × 1 convolution which translates the 3D in-
put feature map into a one-dimensional embedding vector.
The embedding vector is used as the input of the RNN gate
to generate the layer-dependent fine-tune policy Gi(xi). We
translate the output of the RNN gate using a linear layer fol-
lowed by a sigmoid function. To obtain the binary fine-tuned
policy Gi(xi), we use a hard threshold function to discretize
the output of the sigmoid function.

The discreteness of Gi(xi) makes it hard to optimize the
network using gradient-based algorithm. To mitigate this
problem, we use the straight-through estimator which is a
widely used technique for training binarized neural network
in the field of neural network quantization (Guo 2018). In
the straight-through estimator, during the forward pass we
discretize the sigmoid function using a threshold and during
backward we compute the gradients with respect to the input
of the sigmoid function,

Forward: xb =

{
1, sigmoid(x) ≥ 0.5,

0, otherwise

Backward:
∂E

∂x
=

∂E

∂xb

(2)

4062



where E is the loss function. The adoption of the straight-
through estimator allows us to back-propagate through the
discrete output and directly use gradient-based algorithms to
end-to-end optimize the network. In the experimental sec-
tion, we use Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber 1997) which has shown to be useful
for different sequential tasks. We also compare the proposed
recurrent gated network with a CNN-based gated network.
The experimental results show that we can achieve higher
classification accuracy by explicitly modelling the cross-
layer correlations.

Gated Batch Normalization
Batch normalization (BN) (Ioffe and Szegedy 2015) layer is
designed to alleviate the issue of internal covariate shifting
of training deep neural networks. In BN layer, we first stan-
dardize each feature in a mini-batch, then scale and shift the
standardized feature. Let Xp,n denote a mini-batch of data,
where p is the batch size and n is the feature dimension. BN
layer normalizes a feature dimension xj as below,

x̂j =
xj − E[X.j ]√

V ar[X.j ]
(3)

yj = γj x̂j + βj (4)

The scale parameter γj and shift parameter βj are trained
jointly with the network parameters. In convolutional neu-
ral networks, we use BN layer after each convolutional layer
and apply batch normalization over each channel (Ioffe and
Szegedy 2015). Each channel has its own scale and shift pa-
rameters.

In the standard BN layer, we compute the mean and vari-
ance of a particular channel across all the examples in the
mini-batch. In AdaFilter, some examples in the mini-batch
use the channel produced by the pre-trained filter while the
others use the channel produced by the fine-tuned filter. The
statistics of the channels produced by the pre-trained filters
and the fine-tuned filters are different due to domain shift.
To consider this fact, we maintain two BN layers, called
Gated Batch normalization, which normalize the channels
produced by the pre-trained filters and the fine-tuned filters
separately. To achieve this, we apply the fine-tuning policy
learned by the RNN gate on the output of the BN layers to
select the normalized channels,

xi+1 = Gi(xi) ◦BN1(xi+1) + (1−Gi(xi)) ◦BN2(xi+1)
(5)

where BN1 and BN2 denote the BN layer for the pre-
trained filters and the fine-tuned filters separately and ◦ is
the Hadamard product. In this way, we can deal with the
case when the target dataset and the source dataset have very
different domain distribution by adjusting the corresponding
shift and scale parameters.

Discussion
The design of the proposed AdaFilter mitigates two issues
brought by the standard fine-tuning. Since the fine-tuning
policy is conditioned on the activations of the previous layer,

Dataset Training Evaluation Classes
Stanford Dogs 12000 8580 120

UCF-101 7629 1908 101
Aircraft 3334 3333 100

Caltech 256 - 30 7680 5120 256
Caltech 256 - 60 15360 5120 256

MIT Indoors 5360 1340 67
Omniglot 19476 6492 1623

Table 1: Datasets used to evaluate AdaFilter against other
fine-tuning baselines.

different images can fine-tune different pre-trained filters.
The images in the target dataset which are similar to the
source dataset can reuse more filters from the pre-trained
model to allow better knowledge transfer. On the other hand,
while the number of parameters compared with standard
fine-tuning increase by a factor of 2.2x with AdaFilter, the
trainable parameters for a particular image are much fewer
than the standard fine-tuning due to the reuse of the pre-
trained filters. This alleviates the issue of overfitting which
is critical if the target dataset is much smaller than the source
dataset.

All the proposed modules are differentiable which allows
us to use gradient-based algorithm to end-to-end optimize
the network. During test time, the effective number of filters
for a particular test example is equal to a standard fine-tuned
model, thus AdaFilter has similar test time compared with
the standard fine-tuning.

4 Experimental Settings
Datasets
We compare the proposed AdaFilter method with other fine-
tuning and regularization methods on 7 public image clas-
sification datasets coming from different domains: Stanford
dogs (Khosla et al. 2011), Aircraft (Maji et al. 2013), MIT
Indoors (Quattoni and Torralba 2009), UCF-101 (Bilen et
al. 2016), Omniglot (Lake, Salakhutdinov, and Tenenbaum
2015), Caltech 256 - 30 and Caltech 256 - 60 (Griffin, Holub,
and Perona 2007). For Caltech 256 - x (x = 30 or 60), there
are x training examples for each class. The statistics of the
datasets are listed in Table 1. Performance is measured by
classification accuracy on the evaluation set.

Baselines
We consider the following fine-tuning variants and regular-
ization techniques for fine-tuning in the experiments,

• Standard Fine-tuning: this is the standard fine-tuning
method which fine-tunes all the parameters of the pre-
trained model.

• Fine-tuning half: only fine-tune second half of the layers
of the pre-trained model and freeze the first half of layers.

• Random Policy: use AdaFilter with a random fine-tuning
policy. This shows the effectiveness of fine-tuning policy
learned by the recurrent gated network.

4063



Method Stanford-Dogs UCF-101 Aircraft Caltech256-30 Caltech256-60 MIT Indoors Omniglot
Standard Fine-tuning 77.47% 73.10% 52.59% 78.09% 82.25% 76.42% 87.06%

Fine-tuning half 79.61% 76.43% 53.61% 78.86% 82.55% 76.94% 87.29%
Random Policy 81.84% 75.15% 54.15% 79.90% 83.35% 76.71% 85.78%

L2-SP 79.69% 74.33% 56.52% 79.33% 82.89% 76.41% 86.92%
AdaFilter 82.44% 76.99% 55.41% 80.62% 84.31% 77.53% 87.46%

Table 2: The results of AdaFilter and all the baselines.

• L2-SP (Li, Grandvalet, and Davoine 2018): this is a
recently proposed regularization method for fine-tuning
which explicitly adds regularization terms in the loss
function to encourage the fine-tuned model to be similar
to the pre-trained model.

Pretrained Model
To compare AdaFilter with each baseline. We use ResNet-
50 which is pre-trained on ImageNet. The ResNet-50 starts
with a convolutional layer followed by 16 blocks with resid-
ual connection. Each block contains three convolutional lay-
ers and are distributed into 4 macro blocks (i.e, [3, 4, 6, 3])
with downsampling layers in between. The ResNet-50 ends
with an average pooling layer followed by a fully connected
layer. For a fair comparison with each baseline, we use the
pre-trained model from Pytorch which has a classification
accuracy of 75.15% on ImageNet.

Implementation Details
Our implementation is based on Pytorch. All methods are
trained on 2 NVIDIA Titan Xp GPUs. We use SGD with
momentum as the optimizer. The initial learning rate is 0.01
for the classification network and the initial learning rate for
the recurrent gated network is 0.1. The momentum rate is 0.9
for both classification network and recurrent gated network.
The batch size is 64. We train the network with a total of
110 epochs. The learning rate decays three times at the 30th,
60th and 90th epoch respectively.

5 Results and Analysis
Quantitative Results
AdaFilter vs Baselines We show the results of AdaFilter
and all the baselines in Table 2. AdaFilter achieves the best
results on 6 out of 7 datasets. It outperforms the standard
fine-tuning on all the datasets. Compared with the standard
fine-tuning, AdaFilter can reduce the classification error by
up to 5%. This validates our claim that by exploiting the
idea of per-example filter fine-tuning, we can greatly boost
the performance of the standard fine-tuning method by mit-
igating its drawbacks. While fine-tuning half of the layers
generally performs better than the standard fine-tuning, it
still performs worse than AdaFilter since it still applies the
same fine-tuning policy for all the images which ignores the
similarity between the target task and the source task.

Compared with Random policy and L2-SP, AdaFilter ob-
tains higher accuracy by learning optimal fine-tuning policy
for each image in the target dataset via the recurrent gated
network. The results reveal that by carefully choosing dif-
ferent fine-tuning for different images in the target dataset,

we can achieve better transfer learning results. With AdaFil-
ter, we can automatically specialize the fine-tuning policy
for each test example which cannot be done manually due to
the huge search space.

Test accuracy curve We show the test accuracy curve on
four benchmark datasets in Figure 4. We can clearly see
that the proposed AdaFilter consistently achieves higher ac-
curacy than the standard fine-tune method across all the
datasets. For example, after training for one epoch, AdaFil-
ter reaches a test accuracy of 71.96% on the Stanford Dogs
dataset while the standard fine-tuning method only achieves
54.69%. Similar behavior is also observed on other datasets.
The fact that AdaFilter can reach the same accuracy level
as standard fine-tuning with much fewer epochs is of great
practical importance since it can reduce the training time on
new tasks.

Qualitative Results
Visualization of Policies In this section, we show the fine-
tuning policies learned by the recurrent gated network on
Caltech256-30 and Caltech256-60 in Figure 4. The x-axis
denotes the layers in the ResNet-50. The y-axis denotes the
percentage of images in the evaluation set that use the fine-
tuned filters in the corresponding layer. As we can see, there
is a strong tendency for images to use the pre-trained fil-
ters in the initial layers while fine-tuning more filters at the
higher layers of the network. This is intuitive since the fil-
ters in the initial layers can be reused on the target dataset to
extract visual patterns (e.g., edges and corners). The higher
layers are mostly task-specific which need to be adjusted fur-
ther for the target task (Lee, Ekanadham, and Ng 2008). We
also note that the policy distribution is varied across different
datasets, this suggests that for different datasets it is prefer-
able to design different fine-tuning strategies.

Ablation Study
Gated BN vs Standard BN In this section, an ablation
study is performed to demonstrate the effectiveness of the
proposed gated batch normalization. We compare gated
batch normalization (Gated BN) against the standard batch
normalization (Standard BN). In Gated BN, we normalize
the channels produced by the pre-trained filters and fine-
tuned filters separately as in Equation 5. In standard batch
normalization, we use one batch normalization layer to nor-
malize each channel across a mini-batch,

xi+1 = BN(xi+1) (6)

Table 3 shows the results of the Gated BN and the stan-
dard BN on all the datasets. Clearly, Gated BN can achieve

4064



�������	
��� ����������
�� ����������
�� ��� ��	���

0 10 20 30 40 50 60 70 80 90100
Epoch

65

70

75

80
T

es
t A

cc
ur

ac
y

AdaFilter
Finetune

0 10 20 30 40 50 60 70 80 90100
Epoch

70

75

80

T
es

t A
cc

ur
ac

y

AdaFilter
Finetune

0 10 20 30 40 50 60 70 80 90100
Epoch

65

70

75

80

85

T
es

t A
cc

ur
ac

y

AdaFilter
Finetune

0 10 20 30 40 50 60 70 80 90100
Epoch

65

70

75

T
es

t A
cc

ur
ac

y

AdaFilter
Finetune

Figure 3: The test accuracy curve of AdaFilter and the standard fine-tuning on Stanford-Dogs, Caltech256-30, Caltech256-60
and MIT Indoors.

Figure 4: The visualization of fine-tuning policies on Caltech256-30 and Caltech256-60.

Dataset Stanford-Dogs Aircraft Omniglot UCF-101 MIT Indoors Caltech-30 Caltech-60
Gated BN 82.44% 55.41% 87.46% 76.99% 77.53% 80.06% 84.31%

Standard BN 82.02% 54.33% 87.27% 76.02% 77.01% 79.84% 83.84%

Table 3: Comparison of Gated BN and the standard BN

higher accuracy by normalizing the channels produced by
the pre-trained filters and fine-tuned filters separately. This
suggests that although we can reuse the pre-trained filters on
the target dataset, it is still important to consider the differ-
ence of the domain distributions between the target task and
the source task.

Recurrent Gated Network vs CNN-based Gated Net-
work In this section, we perform an ablation study to show
the effectiveness of the proposed recurrent gated network.
We compare the recurrent gated network against a CNN-
based policy network. The CNN-based policy network is
based on ResNet-18 which receives images as input and pre-
dicts the fine-tuning policy for all the filters at once. In the
CNN-based model, the input image is directly used as the
input for the CNN. The output of the CNN is a list of fully
connected layers (one for each output feature map in the
original backbone network) followed by sigmoid activation
function. We show the results of the recurrent gated network
and CNN-based policy network in Table 4. Recurrent gated
network performs better than the CNN-based policy network
on most of the datasets by explicitly considering the depen-
dency between layers. More importantly, predicting the pol-

Dataset Stanford-Dogs Aircraft Omniglot UCF-101 MIT Indoors Caltech-30 Caltech-60
RNN-based 82.44% 55.41% 87.46% 76.99% 77.53% 80.06% 84.31%
CNN-based 83.05% 54.63% 87.04% 76.33% 77.46% 80.25% 83.41%

Table 4: Comparison of recurrent gated network and a CNN-
based policy network. The “RNN-based” means the recur-
rent gated network.

icy layerwisely and reusing the hidden states of the recurrent
gated network can greatly reduce the number of parameters.
The lightweight design of the recurrent gated network is also
faster to train than the CNN-based alternative.

6 Conclusion

In this paper, we propose a deep transfer learning method,
called AdaFilter, which adaptively fine-tunes the convolu-
tional filters in a pre-trained model. With the proposed fil-
ter selection, recurrent gated network and gated batch nor-
malization techniques, AdaFilter allows different images in
the target dataset to fine-tune different pre-trained filters to
enable better knowledge transfer. We validate our methods
on seven publicly available datasets and show that AdaFilter
outperforms the standard fine-tuning on all the datasets. The
proposed method can also be extended to lifelong learning
(Yoon et al. 2017) by modelling the tasks sequentially.

4065



7 Acknowledgment
This work is supported in part by CRISP, one of six cen-
ters in JUMP, an SRC program sponsored by DARPA. This
work is also supported by NSF CHASE-CI #1730158, NSF
#1704309 and Cyber Florida Collaborative Seed Award.

References
Bilen, H.; Fernando, B.; Gavves, E.; Vedaldi, A.; and Gould,
S. 2016. Dynamic image networks for action recognition.
In CVPR.

Duan, L.; Tsang, I. W.; Xu, D.; and Maybank, S. J. 2009.
Domain transfer SVM for video concept detection. In
CVPR.

Dudı́k, M.; Phillips, S. J.; and Schapire, R. E. 2006. Cor-
recting sample selection bias in maximum entropy density
estimation. In NIPS.

Ge, W., and Yu, Y. 2017. Borrowing treasures from the
wealthy: Deep transfer learning through selective joint fine-
tuning. In CVPR.

Gong, B.; Shi, Y.; Sha, F.; and Grauman, K. 2012. Geodesic
flow kernel for unsupervised domain adaptation. In CVPR.

Graves, A.; Mohamed, A.-r.; and Hinton, G. 2013. Speech
recognition with deep recurrent neural networks. In Acous-
tics, speech and signal processing (icassp), 2013 ieee inter-
national conference on, 6645–6649. IEEE.

Griffin, G.; Holub, A.; and Perona, P. 2007. Caltech-256
object category dataset.

Guo, Y.; Li, Y.; Feris, R.; Wang, L.; and Rosing, T. 2019.
Depthwise convolution is all you need for learning multiple
visual domains. arXiv preprint arXiv:1902.00927.

Guo, Y. 2018. A survey on methods and theories of quan-
tized neural networks. arXiv preprint arXiv:1808.04752.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.

Howard, J., and Ruder, S. 2018. Universal language model
fine-tuning for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), volume 1, 328–339.

Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167.

Khosla, A.; Jayadevaprakash, N.; Yao, B.; and Fei-Fei, L.
2011. Novel dataset for fine-grained image categorization.
In First Workshop on Fine-Grained Visual Categorization,
IEEE Conference on Computer Vision and Pattern Recogni-
tion.

Kornblith, S.; Shlens, J.; and Le, Q. V. 2018. Do
better imagenet models transfer better? arXiv preprint
arXiv:1805.08974.

Kumar, A.; Sattigeri, P.; Wadhawan, K.; Karlinsky, L.; Feris,
R. S.; Freeman, W. T.; and Wornell, G. 2018. Co-regularized
alignment for unsupervised domain adaptation. In NIPS.

Lake, B. M.; Salakhutdinov, R.; and Tenenbaum, J. B. 2015.
Human-level concept learning through probabilistic pro-
gram induction. Science 350(6266):1332–1338.

Lee, H.; Ekanadham, C.; and Ng, A. Y. 2008. Sparse deep
belief net model for visual area v2. In Advances in neural
information processing systems, 873–880.

Li, Z.; Wei, Y.; Zhang, Y.; and Yang, Q. 2018. Hierarchical
attention transfer network for cross-domain sentiment clas-
sification. In Thirty-Second AAAI Conference on Artificial
Intelligence.

Li, Z.; Li, X.; Wei, Y.; Bing, L.; Zhang, Y.; and Yang, Q.
2019. Transferable end-to-end aspect-based sentiment anal-
ysis with selective adversarial learning. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP),
4582–4592. Hong Kong, China: Association for Computa-
tional Linguistics.

Li, X.; Grandvalet, Y.; and Davoine, F. 2018. Explicit induc-
tive bias for transfer learning with convolutional networks.
In ICML.

Long, M.; Cao, Y.; Wang, J.; and Jordan, M. I. 2015. Learn-
ing transferable features with deep adaptation networks. In
ICML.

Maji, S.; Rahtu, E.; Kannala, J.; Blaschko, M.; and Vedaldi,
A. 2013. Fine-grained visual classification of aircraft. arXiv
preprint arXiv:1306.5151.

Min, S.; Seo, M.; and Hajishirzi, H. 2017. Question answer-
ing through transfer learning from large fine-grained super-
vision data. arXiv preprint arXiv:1702.02171.

Pan, S. J.; Yang, Q.; et al. 2010. A survey on transfer learn-
ing. IEEE Transactions on knowledge and data engineering
22(10):1345–1359.

Parisi, G. I.; Kemker, R.; Part, J. L.; Kanan, C.; and Wermter,
S. 2019. Continual lifelong learning with neural networks:
A review. Neural Networks.

Quattoni, A., and Torralba, A. 2009. Recognizing indoor
scenes. In CVPR, 413–420. IEEE.

Raina, R.; Battle, A.; Lee, H.; Packer, B.; and Ng, A. Y.
2007. Self-taught learning: transfer learning from unlabeled
data. In Proceedings of the 24th international conference on
Machine learning, 759–766. ACM.

Ruder, S. 2017. An overview of multi-task learning in deep
neural networks. arXiv preprint arXiv:1706.05098.

Shazeer, N.; Mirhoseini, A.; Maziarz, K.; Davis, A.; Le, Q.;
Hinton, G.; and Dean, J. 2017. Outrageously large neu-
ral networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538.

Yoon, J.; Yang, E.; Lee, J.; and Hwang, S. J. 2017. Life-
long learning with dynamically expandable networks. arXiv
preprint arXiv:1708.01547.

Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014.
How transferable are features in deep neural networks? In
NIPS.

Zeiler, M. D., and Fergus, R. 2014. Visualizing and under-
standing convolutional networks. In European conference
on computer vision, 818–833. Springer.

4066


