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Abstract. Recent progress on few-shot learning largely relies on annotated data

for meta-learning: base classes sampled from the same domain as the novel classes.

However, in many applications, collecting data for meta-learning is infeasible

or impossible. This leads to the cross-domain few-shot learning problem, where

there is a large shift between base and novel class domains. While investiga-

tions of the cross-domain few-shot scenario exist, these works are limited to nat-

ural images that still contain a high degree of visual similarity. No work yet

exists that examines few-shot learning across different imaging methods seen

in real world scenarios, such as aerial and medical imaging. In this paper, we

propose the Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL)

benchmark, consisting of image data from a diverse assortment of image ac-

quisition methods. This includes natural images, such as crop disease images,

but additionally those that present with an increasing dissimilarity to natural im-

ages, such as satellite images, dermatology images, and radiology images. Ex-

tensive experiments on the proposed benchmark are performed to evaluate state-

of-art meta-learning approaches, transfer learning approaches, and newer meth-

ods for cross-domain few-shot learning. The results demonstrate that state-of-art

meta-learning methods are surprisingly outperformed by earlier meta-learning

approaches, and all meta-learning methods underperform in relation to simple

fine-tuning by 12.8% average accuracy. In some cases, meta-learning even un-

derperforms networks with random weights. Performance gains previously ob-

served with methods specialized for cross-domain few-shot learning vanish in

this more challenging benchmark. Finally, accuracy of all methods tend to cor-

relate with dataset similarity to natural images, verifying the value of the bench-

mark to better represent the diversity of data seen in practice and guiding fu-

ture research. Code for the experiments in this work can be found at https:
//github.com/IBM/cdfsl-benchmark.
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1 Introduction
Training deep neural networks for visual recognition typically requires a large amount

of labelled examples [28]. The generalization ability of deep neural networks relies
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Fig. 1: The Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL) benchmark. Ima-

geNet is used for source training, and domains of varying dissimilarity from natural images are

used for target evaluation. Similarity is measured by 3 orthogonal criteria: 1) existence of perspec-

tive distortion, 2) the semantic content, and 3) color depth. No data is provided for meta-learning,

and target classes are disjoint from the source classes.

heavily on the size and variations of the dataset used for training. However, collecting

sufficient amounts of data for certain classes may be impossible in practice: for exam-

ple, in dermatology, there are a multitude of instances of rare diseases, or diseases that

become rare for particular types of skin [48,1,25]. Or in other domains such as satel-

lite imagery, there are instances of rare categories such as airplane wreckage. Although

individually each situation may not carry heavy cost, as a group across many such

conditions and modalities, correct identification is critically important, and remains a

significant challenge where access to expertise may be impeded.

Although humans generalize to recognize new categories from few examples in cer-

tain circumstances, such as when categories exhibit predictable variations across exam-

ples and have reasonable contrast from background [32,31], even humans have trouble

recognizing new categories that vary too greatly between examples or differ from prior

experience, such as for diagnosis in dermatology, radiology, or other fields [48]. Be-

cause there are many applications where learning must work from few examples, and

both machines and humans have difficulty learning in these circumstances, finding new

methods to tackle the problem remains a challenging but desirable goal.

The problem of learning how to categorize classes with very few training examples

has been the topic of the “few-shot learning” field, and has been the subject of a large

body of recent work [34,43,60,13,53,5,55]. Few-shot learning is typically composed of

the following two stages: meta-learning and meta-testing. In the meta-learning stage,

there exists an abundance of base category classes on which a system can be trained

to learn well under conditions of few-examples within that particular domain. In the

meta-testing stage, a set of novel classes consisting of very few examples per class is

used to adapt and evaluate the trained model. However, recent work [5] points out that

meta-learning based few-shot learning algorithms underperform compared to traditional

pre-training and fine-tuning when there exists a large shift between base and novel class

domains. This is a major issue that occurs commonly in practice: by the nature of the
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problem, collecting data from the same domain for many few-shot classification tasks is

difficult. This scenario is referred to as cross-domain few-shot learning, to distinguish it

from the conventional few-shot learning setting. Although benchmarks for conventional

few-shot learning are well established, the cross-domain few-shot learning evaluation

benchmarks are still in early stages. All established works in this space have built cross-

domain evaluation benchmarks that are limited to natural images [58,5,56]. Under these

circumstances, useful knowledge may still be effectively transferring across different

domains of natural images, implying that methods designed in this setting may not

continue to perform well when applied to domains of other types of images, such as

industrial natural images, satellite images, or medical images. Currently, no works study

this scenario.

To fill this gap, we propose the Broader Study of Cross-Domain Few-Shot Learning

(BSCD-FSL) benchmark (Fig. 1), which covers a spectrum of image types with varying

levels of similarity to natural images. Similarity is defined by 3 orthogonal criteria: 1)

whether images contain perspective distortion, 2) the semantic content of images, and

3) color depth. The datasets include agriculture images (natural images, but specific

to agriculture industry), satellite (loses perspective distortion), dermatology (loses per-

spective distortion, and contains different semantic content), and radiological images

(different according to all 3 criteria). The performance of existing state-of-art meta-

learning methods, transfer learning methods, and methods tailored for cross-domain

few-shot learning is then rigorously tested on the proposed benchmark.

In summary, the contributions of this paper are itemized as follows:

– We establish a new Broader Study of Cross-Domain Few-Shot Learning (BSCD-

FSL) benchmark, consisting of images from a diversity of image types with varying

dissimilarity to natural images, according to 1) perspective distortion, 2) the seman-

tic content, and 3) color depth.
– Under these conditions, we extensively evaluate the performance of current meta-

learning methods, including methods specifically tailored for cross-domain few-

shot learning, as well as variants of fine-tuning.
– The results demonstrate that state-of-art meta-learning methods are outperformed

by older meta-learning approaches, and all meta-learning methods underperform

in relation to simple fine-tuning by 12.8% average accuracy. In some cases, meta-

learning underperforms even networks with random weights.
– Results also show that accuracy gains for cross-domain few-shot learning methods

are lost in this new challenging benchmark.
– Finally, we find that accuracy of all methods correlate with the proposed measure

of data similarity to natural images, verifying the diversity of the problem repre-

sentation, and the value of the benchmark towards future research.

We believe this work will help the community understand what methods are most

effective in practice, and help drive further advances that can more quickly yield benefit

for real-world applications.

2 Related Work
Few-shot learning Few-shot learning [32,60,31] is an increasingly important topic

in machine learning. Many few-shot methods have been proposed, including meta-
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learning, generative and augmentation approaches, semi-supervised methods, and trans-

fer learning.

Meta-learning methods aim to learn models that can be quickly adapted using a

few examples [60,13,53,55,33]. MatchingNet [60] learns an embedding that can map

an unlabelled example to its label using a small number of labelled examples, while

MAML [13] aims at learning good initialization parameters that can be quickly adapted

to a new task. In ProtoNet [53], the goal is to learn a metric space in which classification

can be conducted by calculating distances to prototype representations of each class.

RelationNet [55] targets learning a deep distance metric to compare a small number

of images. More recently, MetaOpt [33] learns feature embeddings that can generalize

well under a linear classification rule for novel categories.

The generative and augmentation based family of approaches learn to generate more

samples from few examples available for training in a given few-shot learning task.

These methods include applying augmentation strategies learned from data [36], syn-

thesizing new data from few examples using a generative model, or using external data

for obtaining additional examples that facilitate learning on a given few shot task. In

[19,52] the intra-class relations between pairs of instances of reference categories are

modeled in feature space, and then this information is transferred to the novel category

instances to generate additional examples in that same feature space. In [63], a gener-

ator sub-net is added to a classifier network and is trained to synthesize new examples

on the fly in order to improve the classifier performance when being fine-tuned on a

novel (few-shot) task. In [44], a few-shot class density estimation is performed with

an auto-regressive model, combined with an attention mechanism, where examples are

synthesized by a sequential process. In [6,51,67] label and attribute semantics are used

as additional information for training an example synthesis network.

In some situations there exists additional unlabeled data accompanying the few-

shot task. In the semi-supervised few-shot learning [35,45,2,37,49] the unlabeled data

comes in addition to the support set and is assumed to have a similar distribution to the

target classes (although some unrelated samples noise is also allowed). In LST [35],

self-labeling and soft attention are used on the unlabeled samples intermittently with

fine-tuning on the labeled and self-labeled data. Similarly to LST, [45] updates the

class prototypes using k-means like iterations initialized from the PN prototypes. In [2],

unlabeled examples are used through soft-label propagation. In [15,37,24], graph neural

networks are used for sharing information between labeled and unlabeled examples in

semi-supervised [15,37] and transductive [24] FSL setting. Notably, in [37] a Graph

Construction network is used to predict the task specific graph for propagating labels

between samples of semi-supervised FSL task.

Transfer learning [42] is based on the idea of reusing features learned from the base

classes for the novel classes, and is conducted mainly by fine-tuning, which adjusts a

pre-trained model from a source task to a target task. Yosinski et al. [66] conducted

extensive experiments to investigate the transfer utility of pre-trained deep neural net-

works. In [27], the authors investigated whether higher performing ImageNet models

transfer better to new tasks. Ge et al. [16] proposed a selective joint fine-tuning method

for improving the performance of models with a limited amount training data. In [18],

the authors proposed an adaptive fine-tuning scheme to decide which layers of the pre-
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trained network should be fine-tuned. Finally, in [10], the authors found that simple

transductive fine-tuning beats all prior state-of-art meta-learning approaches.

Common to all few-shot learning methods is the assumption that base classes and
novel classes are from the same domain. The current benchmarks for evaluation are

miniImageNet [60], CUB [61], Omniglot [31], CIFAR-FS [3] and tieredImageNet [46].

In [56], the authors proposed Meta-Dataset, which is a newer benchmark for training

and evaluating few-shot learning algorithms that includes a greater diversity of image

content. Although this benchmark is more broad than prior works, the included datasets

are still limited to natural images, and both the base classes and novel classes are from

the same domain. Recently, [47] proposes a successful meta-learning approach based

on conditional neural process on the MetaDataset benchmark.

Domain Adaptation There is a long history of research in domain adaptation tech-

niques, which aim at transferring knowledge from one or multiple source domains to

a target domain with a different data distribution. Early methods have generally relied

on the adaptation of shallow classification models, using techniques such as instance

re-weighting [12] and model parameter adaptation [65]. More recently, many meth-

ods have been proposed to address the problem of domain adaptation using deep neu-

ral networks, including discrepancy-based methods, designed to align marginal distri-

butions between the domains [38,54,23,30], adversarial-based approaches, which rely

on a domain discriminator to encourage domain-independent feature learning [59,14],

and reconstruction-based techniques, which generally use encoder-decoder models or

GANs to reconstruct data in the new domain [4,69,22]. All these approaches, however,

consider the case that the training and test sets have the same classes. One work consid-

ers the scenario where some classes may be disjoint, but still requires class overlap for

successful alignment [50]. In contrast, we study the problem of cross-domain few-shot

learning, where the source and target domains have completely disjoint label sets.

Cross-domain Few-shot Learning In cross-domain few-shot learning, base and novel

classes are both drawn from different domains, and the class label sets are disjoint.

Recent works on cross-domain few-shot learning include analysis of existing meta-

learning approaches in the cross-domain setting [5], specialized methods using feature-

wise transform to encourage learning representations with improved ability to general-

ize [58], and works studying cross-domain few-shot learning constrained to the setting

of images of items in museum galleries [26]. Common to all these prior works is that

they limit the cross-domain setting to the realm of natural images, which still retain

a high degree of visual similarity, and do not capture the broader spectrum of image

types encountered in practice, such as industrial, aerial, and medical images, where

cross-domain few-shot learning techniques are in high demand.

3 Proposed Benchmark
In this section, we introduce the Broader Study of Cross-Domain Few-Shot Learning

(BSCD-FSL) benchmark, which includes data from CropDiseases [40], EuroSAT [21],

ISIC2018 [57,8], and ChestX [62] datasets. These datasets cover plant disease images,

satellite images, dermoscopic images of skin lesions, and X-ray images, respectively.

The selected datasets reflect well-curated real-world use cases for few-shot learning. In

addition, collecting enough examples from above domains is often difficult, expensive,
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or in some cases not possible. Image similarity to natural images is measured by 3 or-

thogonal criteria: 1) existeence of perspective distortion, 2) the semantic data content,

and 3) color depth. According to this criteria, the datasets demonstrate the following

spectrum of image types: 1) CropDiseases images are natural images, but are very spe-

cialized (similar to existing cross-domain few-shot setting, but specific to agriculture

industry), 2) EuroSAT images are less similar as they have lost perspective distortion,

but are still color images of natural scenes, 3) ISIC2018 images are even less similar

as they have lost perspective distortion and no longer represent natural scenes, and 4)

ChestX images are the most dissimilar as they have lost perspective distortion, do not

represent natural scenes, and have lost 2 color channels. Example images from Ima-

geNet and the proposed benchmark datasets are shown in Figure 1.

Having a few-shot learning model trained on a source domain such as ImageNet [9]

that can generalize to domains such as these, is highly desirable, as it enables effective

learning for rare categories in new types of images, which has previously not been

studied in detail.

4 Cross-Domain Few-Shot Learning Formulation
The cross domain few-shot learning problem can be formalized as follows. We define

a domain as a joint distribution P over input space X and label space Y . The marginal

distribution of X is denoted as PX . We use the pair (x, y) to denote a sample x and

the corresponding label y from the joint distribution P . For a model fθ : X → Y with

parameter θ and a loss function �, the expected error is defined as,

ε(fθ) = E(x,y)∼P [�(fθ(x), y)] (1)

In cross-domain few-shot learning, we have a source domain (Xs,Ys) and a tar-

get domain (Xt,Yt) with joint distribution Ps and Pt respectively, PXs �= PXt , and

Ys is disjoint from Yt. The base classes data are sampled from the source domain

and the novel classes data are sampled from the target domain. During the training

or meta-training stage, the model fθ is trained (or meta-trained) on the base classes

data. During testing (or meta-testing) stage, the model is presented with a support set
S = {xi, yi}K×N

i=1 consisting of N examples from K novel classes. This configuration

is referred to as “K-way N -shot” few-shot learning, as the support set has K novel

classes and each novel class has N training examples. After the model is adapted to the

support set, a query set from novel classes is used to evaluate the model performance.

5 Evaluated Methods for Cross-Domain Few-Shot Learning
In this section, we describe the few-shot learning algorithms that will be evaluated on

our proposed benchmark.

5.1 Meta-learning based methods

Single Domain Methods Meta-learning [13,43], or learning to learn, aims at learn-

ing task-agnostic knowledge in order to efficiently learn on new tasks. Each task Ti
is assumed to be drawn from a fixed distribution, Ti ∼ P (T ). Specially, in few-shot

learning, each task Ti is a small dataset Di := {xj , yj}K×N
j=1 . Ps(T ) and Pt(T ) are

used to denote the task distribution of the source (base) classes data and target (novel)

classes data respectively. During the meta-training stage, the model is trained on T tasks
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{Ti}Ti=1 which are sampled independently from Ps(T ). During the meta-testing stage,

the model is expected to be quickly adapted to a new task Tj ∼ Pt(T ).
Meta-learning methods differ in their way of learning the parameter of the initial

model fθ on the base classes data. In MatchingNet [60], the goal is to learn a model

fθ that can map an unlabelled example x̂ to its label ŷ using a small labelled set

Di := {xj , yj}K×N
j=1 as ŷ =

∑K×N
j=1 aθ(x̂, xj)yj , where aθ is an attention kernel which

leverages fθ to compute the distance between the unlabelled example x̂ and the labelled

example xj , and yj is the one-hot representation of the label. In contrast, MAML [13]

aims at learning an initial parameter θ that can be quickly adapted to a new task. This

is achieved by updating the model parameter via a two-stage optimization process. Pro-

toNet [53] represents each class k with the mean vector of embedded support examples

as ck = 1
N

∑N
j=1 fθ(xj). Classification is then conducted by calculating distance of the

example to the prototype representations of each class. In RelationNet [55] the metric

of the nearest neighbor classifier is meta-learned using a Siamese Networks trained for

optimal comparison between query and support samples. More recently, MetaOpt [33]

employs convex base learners and aims at learning feature embeddings that generalize

well under a linear classification rule for novel categories. All the existing meta-learning

methods implicitly assume that Ps(T ) = Pt(T ) so the task-agnostic knowledge learned

in the meta-training stage can be leveraged for fast learning on novel classes. However,

in cross-domain few-shot learning Ps(T ) �= Pt(T ) which poses severe challenges for

current meta-learning methods.

Cross-Domain Methods Only few methods specifically tailored to learning in the

condition of cross-domain few-shot learning have been previously explored, includ-

ing feaure-wise transform (FWT) [58], and Adversarial Domain Adaptation with Re-

inforced Sample (ADA-RSS) Selection [11]. Since the problem setting of ADA-RSS

requires the existence of unlabelled data in the target domain, we study FWT alone.

FWT is a model agnostic approach that adds a feature-wise transform layer to pre-

trained models to learn scale and shift parameters from a collection of several dataset

domains, or use parameters empirically determined from a single dataset domain. Both

approaches have been previously found to improve performance. Since our benchmark

is focused on ImageNet as the single source domain, we focus on the single data do-

main approach. The method is studied in combination with all meta-learning algorithms

described in the prior section.

5.2 Transfer learning based methods

An alternative way to tackle the problem of few-shot learning is based on transfer learn-

ing, where an initial model fθ is trained on the base classes data in a standard supervised

learning way and reused on the novel classes. There are several options to realize the

idea of transfer learning for few-shot learning:

Single Model Methods In this paper, we extensively evaluate the following commonly

variants of single model fine-tuning:

– Fixed feature extractor (Fixed): simply leverage the pre-trained model as a fixed

feature extractor.
– Fine-tuning all layers (Ft All): adjusts all the pre-trained parameters on the new

task with standard supervised learning.
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– Fine-tuning last-k (Ft Last-k): only the last k layers of the pre-trained model are op-

timized for the new task. In the paper, we consider Fine-tuning last-1, Fine-tuning

last-2, Fine-tuning last-3.

– Transductive fine-tuning (Transductive Ft): in transductive fine-tuning, the statistics

of the query images are used via batch normalization [10]. [41].

In addition, we compare these single model transfer learning techniques against a

baseline of an embedding formed by a randomly initialized network (termed Random)

to contrast against a fixed feature vector that has no pre-training. All the variants of

single model fine-tuning are based on linear classifier but differ in their approach to

fine-tune the single model feature extractor.

Another line of work for few-shot learning uses a broader variety of classifiers for

transfer learning. For example, recent works show that mean-centroid classifier and

cosine-similarity based classifier are more effective than linear classifier for few-shot

learning [39,5]. Therefore we study these two variations as well.

Mean-centroid classifier. The mean-centroid classifier is inspired from ProtoNet [53].

Given the pre-trained model fθ and a support set S = {xi, yi}K×N
i=1 , where K is the

number of novel classes and N is the number of images per class. The class prototypes

are computed in the same way as in ProtoNet. Then the likelihood of an unlabelled

example x̂ belongs to class k is computed as,

p(y = k|x̂) = exp(−d(fθ, ck))
∑K

l=1 exp(−d(fθ, cl))
(2)

where d() is a distance function. In the experiments, we use negative cosine similarity.

Different from ProtoNet, fθ is pretrained on the base classes data in a standard super-

vised learning way.

Cosine-similarity based classifier. In cosine-similarity based classifier, instead of di-

rectly computing the class prototypes using the pre-trained model, each class k is

represented as a d-dimension weight vector wk which is initialized randomly. For

each unlabeled example x̂i, the cosine similarity to each weight vector is computed

as ci,k = fθ(x̂i)
Twk

‖fθ(x̂i)‖‖wk‖ . The predictive probability of the example x̂i belongs to class k

is computed by normalizing the cosine similarity with a softmax function. Intuitively,

the weight vector wk can be thought as the prototype of class k.

Transfer from Multiple Pre-trained Models In this section, we describe a straightfor-

ward method that utilizes multiple models pre-trained on source domains of natural im-

ages similar to ImageNet. Note that all domains are still disjoint from the target datasets

for the cross-domain few-shot learning setting. The purpose is to measure how much

performance may improve by utilizing an ensemble of models trained from data that is

different from the target domain. The described method requires no change to how mod-

els are trained and is an off-the-shelf solution to leverage existing pre-trained models

for cross-domain few-shot learning, without requiring access to the source datasets.

Assume we have a library of C pre-trained models {Mc}Cc=1 which are trained on

various datasets in a standard way. We denote the layers of all pre-trained models as a

set F . Given a support set S = {xi, yi}K×N
i=1 where (xi, yi) ∼ Pt, our goal is to find a
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Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet 22.40% ± 0.7% 23.61% ± 0.86% 22.12% ± 0.88% 36.74% ± 0.53% 45.72% ± 0.53% 54.58% ± 0.65%

MatchingNet+FWT 21.26% ± 0.31% 23.23% ± 0.37% 23.01% ± 0.34% 30.40% ± 0.48% 32.01% ± 0.48% 33.17% ± 0.43%

MAML 23.48% ± 0.96% 27.53% ± 0.43% - 40.13% ± 0.58% 52.36% ± 0.57% -

ProtoNet 24.05% ± 1.01% 28.21% ± 1.15% 29.32% ± 1.12% 39.57% ± 0.57% 49.50% ± 0.55% 51.99% ± 0.52%

ProtoNet+FWT 23.77% ± 0.42% 26.87% ± 0.43% 30.12% ± 0.46% 38.87% ± 0.52% 43.78% ± 0.47% 49.84% ± 0.51%

RelationNet 22.96% ± 0.88% 26.63% ± 0.92% 28.45% ± 1.20% 39.41% ± 0.58% 41.77% ± 0.49% 49.32% ± 0.51%

RelationNet+FWT 22.74% ± 0.40% 26.75% ± 0.41% 27.56% ± 0.40% 35.54% ± 0.55% 43.31% ± 0.51% 46.38% ± 0.53%

MetaOpt 22.53% ± 0.91% 25.53% ± 1.02% 29.35% ± 0.99% 36.28% ± 0.50% 49.42% ± 0.60% 54.80% ± 0.54%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet 64.45% ± 0.63% 77.10% ± 0.57% 54.44% ± 0.67% 66.39% ± 0.78% 76.38% ± 0.67% 58.53% ± 0.73%

MatchingNet+FWT 56.04% ± 0.65% 63.38% ± 0.69% 62.75% ± 0.76% 62.74% ± 0.90% 74.90% ± 0.71% 75.68% ± 0.78%

MAML 71.70% ± 0.72% 81.95% ± 0.55% - 78.05% ± 0.68% 89.75% ± 0.42% -

ProtoNet 73.29% ± 0.71% 82.27% ± 0.57% 80.48% ± 0.57% 79.72% ± 0.67% 88.15% ± 0.51% 90.81% ± 0.43%

ProtoNet+FWT 67.34% ± 0.76% 75.74% ± 0.70% 78.64% ± 0.57% 72.72% ± 0.70% 85.82% ± 0.51% 87.17% ± 0.50%

RelationNet 61.31% ± 0.72% 74.43% ± 0.66% 74.91% ± 0.58% 68.99% ± 0.75% 80.45% ± 0.64% 85.08% ± 0.53%

RelationNet+FWT 61.16% ± 0.70% 69.40% ± 0.64% 73.84% ± 0.60% 64.91% ± 0.79% 78.43% ± 0.59% 81.14% ± 0.56%

MetaOpt 64.44% ± 0.73% 79.19% ± 0.62% 83.62% ± 0.58% 68.41% ± 0.73% 82.89% ± 0.54% 91.76% ± 0.38%

Table 1: The results of meta-learning methods on the proposed benchmark.

subset I of the layers to generate a feature vector for each example in order to achieve

the lowest test error. Mathematically,

argmin
I⊆F

(x,y)∼ Pt
�(fs(T ({l(x) : l ∈ I}), y) (3)

where � is a loss function, T () is a function which concatenates a set of feature vectors,

l is one particular layer in the set I , and fs is a linear classifier. Practically, for feature

vectors l coming from inner layers which are three-dimensional, we convert them to

one-dimensional vectors by using Global Average Pooling. Since Eq. 3 is intractable

generally, we instead adopt a two-stage greedy selection method, called Incremental
Multi-model Selection, to iteratively find the best subset of layers for a given support S.

In the first stage, for each pre-trained model, we a train linear classifier on the feature

vector generated by each layer individually and select the corresponding layer which

achieves the lowest average error using five-fold cross-validation on the support set S.

Essentially, the goal of the first stage is to find the most effective layer of each pre-

trained model given the task in order to reduce the search space and mitigate risk of

overfitting. For convenience, we denote the layers selected in the first selection stage as

set I1. In the second stage, we greedily add the layers in I1 into the set I following a

similar cross-validation procedure. First, we add the layer in I1 into I which achieves

the lowest cross-validation error. Then we iterate over I1, and add each remaining layer

into I if the cross-validation error is reduced when the new layer is added. Finally, we

concatenate the feature vector generated by each layer in set I and train the final linear

classifier. Please see Algorithm 1 in Appendix for further details.

6 Evaluation Setup
For meta-learning methods, we meta-train all meta-learning methods on the base classes

of miniImageNet [60] and meta-test the trained models on each dataset of the pro-

posed benchmark. For transfer learning methods, we train the pre-trained model on
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base classes of miniImageNet. For transferring from multiple pre-trained models, we

use a maximum of five pre-trained models, trained on miniImagenet, CIFAR100 [29],

DTD [7], CUB [64], Caltech256 [17], respectively. On all experiments we consider 5-

way 5-shot, 5-way 20-shot, 5-way 50-shot. For all cases, the test (query) set has 15

images per class. All experiments are performed with ResNet-10 [20] for fair compar-

ison. For each evaluation, we use the same 600 randomly sampled few-shot episodes

(for consistency), and report the average accuracy and 95% confidence interval.

During the training (meta-training) stage, models used for transfer learning and

meta-learning models are both trained for 400 epochs with Adam optimizer. The learn-

ing rate is set to 0.001. During testing (meta-testing), both transfer learning methods

and those meta-learning methods that require adaptation on the support set of the test

episodes (MAML, RelationNet, etc.) use SGD with momentum. The learning rate is

0.01 and the momentum rate is 0.9. All variants of fine-tuning methods are trained

for 100 epochs. For feature-wise transformation [58], we adopt the recommended hy-

perparameters in the original paper for meta-training from one source domain . In the

training or meta-training stage, we apply standard data augmentation including random

crop, random flip, and color jitter.

In the cross-domain few-shot learning setting, since the source domain and target

domain are drastically different, it may not be appropriate to use the source domain

data for hyperparameter tuning or validation. Therefore, we leave the question of how

to determine the best hyperparameters in the cross-domain few-shot learning as future

work. One simple strategy is to use the test set or validation set of the source domain

data for hyperparameter tuning. More sophisticated methods may use datasets that are

similar to the target domain data.

7 Experimental Results

7.1 Meta-learning based results

Table 1 show the results on the proposed benchmark of meta-learning, for each dataset,

method, and shot level in the benchmark. Across all datasets and shot levels, the average

accuracies (and 95% confidence internals) are 50.21% (0.70) for MatchingNet, 46.55%

(0.58) for MatchingNet+FWT, 38.75% (0.41) for MAML, 59.78% (0.70) for ProtoNet,

56.72% (0.55) for ProtoNet+FWT, 54.48% (0.71) for RelationNet, 52.6% (0.56) for

RelationNet+FWT, and 57.35% (0.68) for MetaOpt. The performance of MAML was

impacted by its inability to scale to larger shot levels due to memory overflow. Methods

paired with Feature-Wise Transform are marked with “+FWT”.

What is immediately apparent from Table 1, is that the prior state-of-art MetaOpt-

Net is no longer state-of-art, as it is outperformed by ProtoNet. In addition, meth-

ods designed specifically for cross-domain few-shot learning lead to consistent perfor-

mance degradation in this new challenging benchmark. Finally, performance in general

strongly positively correlates to the dataset’s similarity to ImageNet, confirming that the

benchmark’s intentional design allows us to investigate few-shot learning in a spectrum

of cross-domain difficulties.

7.2 Transfer learning based results
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Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Random 21.80% ± 1.03% 25.69% ± 0.95% 26.19% ± 0.94% 37.91% ± 1.39% 47.24% ± 1.50% 50.85% ± 1.37%

Fixed 25.35% ± 0.96% 30.83% ± 1.05% 36.04% ± 0.46% 43.56% ± 0.60% 52.78% ± 0.58% 57.34% ± 0.56%

Ft All 25.97% ± 0.41% 31.32% ± 0.45% 35.49% ± 0.45% 48.11% ± 0.64% 59.31% ± 0.48% 66.48% ± 0.56%

Ft Last-1 25.96% ± 0.46% 31.63% ± 0.49% 37.03% ± 0.50% 47.20% ± 0.45% 59.95% ± 0.45% 65.04% ± 0.47%

Ft Last-2 26.79% ± 0.59% 30.95% ± 0.61% 36.24% ± 0.62% 47.64% ± 0.44% 59.87% ± 0.35% 66.07% ± 0.45%

Ft Last-3 25.17% ± 0.56% 30.92% ± 0.89% 37.27% ± 0.64% 48.05% ± 0.55% 60.20% ± 0.33% 66.21% ± 0.52%

Transductive Ft 26.09% ± 0.96% 31.01% ± 0.59% 36.79% ± 0.53% 49.68% ± 0.36% 61.09% ± 0.44% 67.20% ± 0.59%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Random 58.00% ± 2.01% 68.93% ± 1.47% 71.65% ± 1.47% 69.68% ± 1.72% 83.41% ± 1.25% 86.56% ± 1.42%

Fixed 75.69% ± 0.66% 84.13% ± 0.52% 86.62% ± 0.47% 87.48% ± 0.58% 94.45% ± 0.36% 96.62% ± 0.25%

Ft All 79.08% ± 0.61% 87.64% ± 0.47% 90.89% ± 0.36% 89.25% ± 0.51% 95.51% ± 0.31% 97.68% ± 0.21%

Ft Last-1 80.45% ± 0.54% 87.92% ± 0.44% 91.41% ± 0.46% 88.72% ± 0.53% 95.76% ± 0.65% 97.87% ± 0.48%
Ft Last-2 79.57% ± 0.51% 87.67% ± 0.46% 90.93% ± 0.45% 88.07% ± 0.56% 95.68% ± 0.76% 97.64% ± 0.59%

Ft Last-3 78.04% ± 0.77% 87.52% ± 0.53% 90.83% ± 0.42% 89.11% ± 0.47% 95.31% ± 0.7% 97.45% ± 0.46%

Transductive Ft 81.76% ± 0.48% 87.97% ± 0.42% 92.00% ± 0.56% 90.64% ± 0.54% 95.91% ± 0.72% 97.48% ± 0.56%

Table 2: The results of different variants of single model fine-tuning on the proposed benchmark.

Single model results Table 2 show the results on the proposed benchmark of var-

ious single model transfer learning methods. Across all datasets and shot levels, the

average accuracies (and 95% confidence internals) are 53.99% (1.38) for random em-

bedding, 64.24 (0.59) for fixed feature embedding, 67.23% (0.46) for fine-tuning all

layers, 67.41% (0.49) for fine-tuning the last 1 layer, 67.26% (0.53) for fine-tuning

the last 2 layers, 67.17% (0.58) for fine-tuning the last 3 layers, and 68.14% (0.56)

for transductive fine-tuning. From these results, several observations can be made. The

first observation is that, although meta-learning methods have been previously shown

to achieve higher performance than transfer learning in the standard few-shot learning

setting [60,5], in the cross-domain few-shot learning setting this situation is reversed:

meta-learning methods significantly underperform simple fine-tuning methods. In fact,

MatchingNet performs worse than a randomly generated fixed embedding. A possible

explanation is that meta-learning methods are fitting the task distribution on the base

class data, improving performance in that circumstance, but hindering ability to general-

ize to another task distribution. The second observation is that, by leveraging the statis-

tics of the test data, transductive fine-tuning continues to achieve higher results than the

standard fine-tuning and meta-learning, as previously reported [10]. While transduc-

tive fine-tuning, however, assumes that all the queries are available as unlabeled data.

The third observation is that the accuracy of most methods on the benchmark continues

to be dependent on how similar the dataset is to ImageNet: CropDiseases commands

the highest performance on average, while EuroSAT follows in 2nd place, ISIC in 3rd,

and ChestX in 4th. This further supports the motivation behind benchmark design in

targeting applications with increasing visual domain dissimilarity to natural images.

Table 3 shows results from varying the classifier. While mean-centriod classifier and

cosine-similarity classifier are shown to be more efficient than simple linear classifier

in the conventional few-shot learning setting, our results show that mean-centroid and

cosine-similarity classifier only have a marginal advantage on ChestX and EuroSAT
over linear classifier in the 5-shot case (Table 3). As the shot increases, linear classifier

begins to dominate mean-centroid and cosine-similarity classifier. One plausible reason
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Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Linear 25.97% ± 0.41% 31.32% ± 0.45% 35.49% ± 0.45% 48.11% ± 0.64% 59.31% ± 0.48% 66.48% ± 0.56%
Mean-centroid 26.31% ± 0.42% 30.41% ± 0.46% 34.68% ± 0.46% 47.16% ± 0.54% 56.40% ± 0.53% 61.57% ± 0.66%

Cosine-similarity 26.95% ± 0.44% 32.07% ± 0.55% 34.76% ± 0.55% 48.01% ± 0.49% 58.13% ± 0.48% 62.03% ± 0.52%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

Linear 79.08% ± 0.61% 87.64% ± 0.47% 91.34% ± 0.37% 89.25% ± 0.51% 95.51% ± 0.31% 97.68% ± 0.21%
Mean-centroid 82.21% ± 0.49% 87.62% ± 0.34% 88.24% ± 0.29% 87.61% ± 0.47% 93.87% ± 0.68% 94.77% ± 0.34%

Cosine-similarity 81.37% ± 1.54% 86.83% ± 0.43% 88.83% ± 0.38% 89.15% ± 0.51% 93.96% ± 0.46% 94.27% ± 0.41%

Table 3: The results of varying the classifier for fine-tuning on the proposed benchmark.

is that since both mean-centroid and cosine-similarity classifier conduct classification

based on unimodal class prototypes, when the number of examples increases, unimodal

distribution becomes less suitable, and multi-modal distribution is required.

We further analyze how layers are changed during transfer. We use θ to denote the

original pre-trained parameters and θ̂ to denote the parameters after fine-tuning. Fig-

ure 2 shows the relative parameter change of the ResNet10 miniImageNet pre-trained

model as
|θ−θ̂|
|θ| , averaged over all parameters per layer, and 100 runs. Several interest-

ing observations can be made from these results. First, across all the datasets and all the

shots, the first layer of the pre-trained model changes most. This indicates that if the

target domain is different from the source domain, the lower layers of the pre-trained

models still need to be adjusted. Second, while the datasets are drastically different,

we observe that some layers are consistently more transferable than other layers. One

plausible explanation for this phenomenon is the heterogeneous characteristic of layers

in overparameterized deep neural networks [68].

Transfer from Multiple Pre-trained Models The results of the described Incremental
Muiti-model Selection are shown in Table 4. IMS-f fine-tunes each pre-trained model

before applying the model selection. We include a baseline called all embeddings which

concatenates the feature vectors generated by all the layers from the fine-tuned models.

Across all datasets and shot levels, the average accuracies (and 95% confidence inter-

nals) are 68.22% (0.45) for all embeddings, and 68.69% (0.44) for IMS-f. The results

show that IMS-f generally improves upon all embeddings which indicates the impor-

tance of selecting relevant pre-trained models to the target dataset. Model complexity

also tends to decrease by over 20% compared to all embeddings on average. We can

also observe that it is beneficial to use multiple pre-trained models than using just one

model, even though these models are trained from data in different domains and differ-

ent image types. Compared with standard finetuning with a linear classifier, the average

improvement of IMS-f across all the shots on ChestX is 0.20%, on ISIC is 0.69%, on

EuroSAT is 3.52% and on CropDiseases is 1.27%.

In further analysis, we study the effect of the number of pre-trained models for the

studied multi-model selection method. We consider libraries consisting of two, three,

four, and all five pre-trained models. The pre-trained models are added into the library

in the order of ImageNet, CIFAR100, DTD, CUB, Caltech256. For each dataset, the

experiment is conducted on 5-way 50-shot with 600 episodes. The results are shown
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Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

All embeddings 26.74% ± 0.42% 32.77% ± 0.47% 38.07% ± 0.50% 46.86% ± 0.60% 58.57% ± 0.59% 66.04% ± 0.56%

IMS-f 25.50% ± 0.45% 31.49% ± 0.47% 36.40% ± 0.50% 45.84% ± 0.62% 61.50% ± 0.58% 68.64% ± 0.53%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot

All embeddings 81.29% ± 0.62% 89.90% ± 0.41% 92.76% ± 0.34% 90.82% ± 0.48% 96.64% ± 0.25% 98.14% ± 0.18%

IMS-f 83.56% ± 0.59% 91.22% ± 0.38% 93.85% ± 0.30% 90.66% ± 0.48% 97.18% ± 0.24% 98.43% ± 0.16%

Table 4: The results of using all embeddings, and the Incremental Multi-model Selection (IMS-f)

based on fine-tuned pre-trained models on the proposed benchmark.

in Table 5. As more pre-trained models are added into the library, we can observe that

the test accuracy on ChestX and ISIC gradually improves which can be attributed to the

diverse features provided by different pre-trained models. However, on EuroSAT and

CropDiseases, only a marginal improvement can be observed. One possible reason is

that the features from ImageNet already captures the characteristics of the datasets and

more pre-trained models does not provide additional information.

Finally, we visualize for each dataset which pre-trained models are selected in the

studied incremental multi-model selection. The experiments are conducted on 5-way

50-shot with all five pre-trained models. For each dataset, we repeat the experiments

for 600 episodes and calculate the frequency of each model being selected. The results

are shown in Figure 3. We observe the distribution of the frequency differs significantly

across datasets, as target datasets can benefit from different pre-trained models.

Fig. 2: Relative change of pre-trained network layers for single model transfer.

Fig. 3: Frequency of source model selection for each dataset in the benchmark.
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Dataset

# of models
2 3 4 5

ChestX 34.35% 36.29% 37.64% 37.89%

ISIC 59.4% 62.49% 65.07% 64.77%

EuroSAT 91.71% 93.49% 92.67% 93.00%

CropDiseases 98.43% 98.09% 98.05% 98.60%

Table 5: Number of models’ effect on test

accuracy. Fig. 4: Comparisons of methods across the

entire benchmark.

7.3 Benchmark Summary

Figure 4 summarizes the comparison across algorithms, according to the average ac-

curacy across all datasets and shot levels in the benchmark. The degradation in perfor-

mance suffered by meta-learning approaches is significant. In some cases, a network

with random weights outperforms meta-learning approaches. FWT methods, which

yielded no performance improvements, are omitted for brevity. MAML, which failed

to operate on the entire benchmark, is also omitted.

8 Conclusion
In this paper, we formally introduce the Broader Study of Cross-Domain Few-Shot

Learning (BSCD-FSL) benchmark, which covers several target domains with varying

similarity to natural images. We extensively analyze and evaluate existing meta-learning

methods, including approaches specifically designed for cross-domain few-shot learn-

ing, and variants of transfer learning. The results show that, surprisingly, state-of-art

meta-learning approaches are outperformed by earlier approaches, and recent meth-

ods for cross-domain few-shot learning actually degrade performance. In addition, all

meta-learning methods significantly underperform in comparison to fine-tuning meth-

ods. In fact, some meta-learning approaches are outperformed by networks with random

weights. In addition, accuracy of all methods correlate with proposed measure of data

similarity to natural images, verifying the diversity of the proposed benchmark in terms

of its problem representation, and its value towards guiding future research. In conclu-

sion, we believe this work will help the community understand what methods are most

effective in practice, and help drive further advances that can more quickly yield benefit

for real-world applications.
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10 Appendix
10.1 Incremental Multi-model Selection

Algorithm 1: Incremental Multi-model Selection. S = {xi, yi}K×N
i=1 is a support

set consisting of N examples from K novel classes. Assume there is a library of

C pre-trained models {Mc}Cc=1. Each model has L layers and l is used to denote

one particular layer. Let CW (S, I) be a function which returns the average cross-

validation error given a dataset S and a set of layers I which are used to generate

feature vector.

/* First stage */
1 I1 = {}
/* Iterate over each pre-trained model */

2 for c = 1 → C do
3 min loss = -1

4 best l = None
/* Iterate over each layer of the pre-trained model */

5 for l = 1 → L do
6 if CW (S, {l}) < min loss then
7 best l = l
8 min loss = CW (S, {l})
9 Il = Il

⋃
best l

/* Second stage */
10 I = {}
11 min loss = -1

12 for each l in I1 do
13 if CW (S, I

⋃
l) < min loss then

14 min loss = CW (S, I
⋃

l)
15 I = I

⋃
l

16 Concatenate the feature vectors generated by the layers in I and train a linear classifier.


