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Abstract. Recent progress on few-shot learning largely relies on annotated data
for meta-learning: base classes sampled from the same domain as the novel classes.
However, in many applications, collecting data for meta-learning is infeasible
or impossible. This leads to the cross-domain few-shot learning problem, where
there is a large shift between base and novel class domains. While investiga-
tions of the cross-domain few-shot scenario exist, these works are limited to nat-
ural images that still contain a high degree of visual similarity. No work yet
exists that examines few-shot learning across different imaging methods seen
in real world scenarios, such as aerial and medical imaging. In this paper, we
propose the Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL)
benchmark, consisting of image data from a diverse assortment of image ac-
quisition methods. This includes natural images, such as crop disease images,

but additionally those that present with an increasing dissimilarity to natural im-
ages, such as satellite images, dermatology images, and radiology images. Ex-
tensive experiments on the proposed benchmark are performed to evaluate state-
of-art meta-learning approaches, transfer learning approaches, and newer meth-
ods for cross-domain few-shot learning. The results demonstrate that state-of-art
meta-learning methods are surprisingly outperformed by earlier meta-learning
approaches, and all meta-learning methods underperform in relation to simple
fine-tuning by 12.8% average accuracy. In some cases, meta-learning even un-
derperforms networks with random weights. Performance gains previously ob-
served with methods specialized for cross-domain few-shot learning vanish in
this more challenging benchmark. Finally, accuracy of all methods tend to cor-
relate with dataset similarity to natural images, verifying the value of the bench-
mark to better represent the diversity of data seen in practice and guiding fu-
ture research. Code for the experiments in this work can be found at https:

//github.com/IBM/cdfsl-benchmark.
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1 Introduction

Training deep neural networks for visual recognition typically requires a large amount
of labelled examples [28]. The generalization ability of deep neural networks relies
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Fig. 1: The Broader Study of Cross-Domain Few-Shot Learning (BSCD-FSL) benchmark. Ima-
geNet is used for source training, and domains of varying dissimilarity from natural images are
used for target evaluation. Similarity is measured by 3 orthogonal criteria: 1) existence of perspec-
tive distortion, 2) the semantic content, and 3) color depth. No data is provided for meta-learning,
and target classes are disjoint from the source classes.

heavily on the size and variations of the dataset used for training. However, collecting
sufficient amounts of data for certain classes may be impossible in practice: for exam-
ple, in dermatology, there are a multitude of instances of rare diseases, or diseases that
become rare for particular types of skin [48,1,25]. Or in other domains such as satel-
lite imagery, there are instances of rare categories such as airplane wreckage. Although
individually each situation may not carry heavy cost, as a group across many such
conditions and modalities, correct identification is critically important, and remains a
significant challenge where access to expertise may be impeded.

Although humans generalize to recognize new categories from few examples in cer-
tain circumstances, such as when categories exhibit predictable variations across exam-
ples and have reasonable contrast from background [32,31], even humans have trouble
recognizing new categories that vary too greatly between examples or differ from prior
experience, such as for diagnosis in dermatology, radiology, or other fields [48]. Be-
cause there are many applications where learning must work from few examples, and
both machines and humans have difficulty learning in these circumstances, finding new
methods to tackle the problem remains a challenging but desirable goal.

The problem of learning how to categorize classes with very few training examples
has been the topic of the “few-shot learning” field, and has been the subject of a large
body of recent work [34,43,60,13,53,5,55]. Few-shot learning is typically composed of
the following two stages: meta-learning and meta-testing. In the meta-learning stage,
there exists an abundance of base category classes on which a system can be trained
to learn well under conditions of few-examples within that particular domain. In the
meta-testing stage, a set of novel classes consisting of very few examples per class is
used to adapt and evaluate the trained model. However, recent work [5] points out that
meta-learning based few-shot learning algorithms underperform compared to traditional
pre-training and fine-tuning when there exists a large shift between base and novel class
domains. This is a major issue that occurs commonly in practice: by the nature of the
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problem, collecting data from the same domain for many few-shot classification tasks is
difficult. This scenario is referred to as cross-domain few-shot learning, to distinguish it
from the conventional few-shot learning setting. Although benchmarks for conventional
few-shot learning are well established, the cross-domain few-shot learning evaluation
benchmarks are still in early stages. All established works in this space have built cross-
domain evaluation benchmarks that are limited to natural images [58,5,56]. Under these
circumstances, useful knowledge may still be effectively transferring across different
domains of natural images, implying that methods designed in this setting may not
continue to perform well when applied to domains of other types of images, such as
industrial natural images, satellite images, or medical images. Currently, no works study
this scenario.

To fill this gap, we propose the Broader Study of Cross-Domain Few-Shot Learning
(BSCD-FSL) benchmark (Fig. 1), which covers a spectrum of image types with varying
levels of similarity to natural images. Similarity is defined by 3 orthogonal criteria: 1)
whether images contain perspective distortion, 2) the semantic content of images, and
3) color depth. The datasets include agriculture images (natural images, but specific
to agriculture industry), satellite (loses perspective distortion), dermatology (loses per-
spective distortion, and contains different semantic content), and radiological images
(different according to all 3 criteria). The performance of existing state-of-art meta-
learning methods, transfer learning methods, and methods tailored for cross-domain
few-shot learning is then rigorously tested on the proposed benchmark.

In summary, the contributions of this paper are itemized as follows:

We establish a new Broader Study of Cross-Domain Few-Shot Learning (BSCD-
FSL) benchmark, consisting of images from a diversity of image types with varying
dissimilarity to natural images, according to 1) perspective distortion, 2) the seman-
tic content, and 3) color depth.

— Under these conditions, we extensively evaluate the performance of current meta-
learning methods, including methods specifically tailored for cross-domain few-
shot learning, as well as variants of fine-tuning.

— The results demonstrate that state-of-art meta-learning methods are outperformed
by older meta-learning approaches, and all meta-learning methods underperform
in relation to simple fine-tuning by 12.8% average accuracy. In some cases, meta-
learning underperforms even networks with random weights.

— Results also show that accuracy gains for cross-domain few-shot learning methods
are lost in this new challenging benchmark.

— Finally, we find that accuracy of all methods correlate with the proposed measure

of data similarity to natural images, verifying the diversity of the problem repre-

sentation, and the value of the benchmark towards future research.

We believe this work will help the community understand what methods are most
effective in practice, and help drive further advances that can more quickly yield benefit
for real-world applications.

2 Related Work

Few-shot learning Few-shot learning [32,60,31] is an increasingly important topic
in machine learning. Many few-shot methods have been proposed, including meta-
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learning, generative and augmentation approaches, semi-supervised methods, and trans-
fer learning.

Meta-learning methods aim to learn models that can be quickly adapted using a
few examples [60,13,53,55,33]. MatchingNet [60] learns an embedding that can map
an unlabelled example to its label using a small number of labelled examples, while
MAML [13] aims at learning good initialization parameters that can be quickly adapted
to a new task. In ProtoNet [53], the goal is to learn a metric space in which classification
can be conducted by calculating distances to prototype representations of each class.
RelationNet [55] targets learning a deep distance metric to compare a small number
of images. More recently, MetaOpt [33] learns feature embeddings that can generalize
well under a linear classification rule for novel categories.

The generative and augmentation based family of approaches learn to generate more
samples from few examples available for training in a given few-shot learning task.
These methods include applying augmentation strategies learned from data [36], syn-
thesizing new data from few examples using a generative model, or using external data
for obtaining additional examples that facilitate learning on a given few shot task. In
[19,52] the intra-class relations between pairs of instances of reference categories are
modeled in feature space, and then this information is transferred to the novel category
instances to generate additional examples in that same feature space. In [63], a gener-
ator sub-net is added to a classifier network and is trained to synthesize new examples
on the fly in order to improve the classifier performance when being fine-tuned on a
novel (few-shot) task. In [44], a few-shot class density estimation is performed with
an auto-regressive model, combined with an attention mechanism, where examples are
synthesized by a sequential process. In [6,51,67] label and attribute semantics are used
as additional information for training an example synthesis network.

In some situations there exists additional unlabeled data accompanying the few-
shot task. In the semi-supervised few-shot learning [35,45,2,37,49] the unlabeled data
comes in addition to the support set and is assumed to have a similar distribution to the
target classes (although some unrelated samples noise is also allowed). In LST [35],
self-labeling and soft attention are used on the unlabeled samples intermittently with
fine-tuning on the labeled and self-labeled data. Similarly to LST, [45] updates the
class prototypes using k-means like iterations initialized from the PN prototypes. In [2],
unlabeled examples are used through soft-label propagation. In [15,37,24], graph neural
networks are used for sharing information between labeled and unlabeled examples in
semi-supervised [15,37] and transductive [24] FSL setting. Notably, in [37] a Graph
Construction network is used to predict the task specific graph for propagating labels
between samples of semi-supervised FSL task.

Transfer learning [42] is based on the idea of reusing features learned from the base
classes for the novel classes, and is conducted mainly by fine-tuning, which adjusts a
pre-trained model from a source task to a target task. Yosinski et al. [66] conducted
extensive experiments to investigate the transfer utility of pre-trained deep neural net-
works. In [27], the authors investigated whether higher performing ImageNet models
transfer better to new tasks. Ge et al. [16] proposed a selective joint fine-tuning method
for improving the performance of models with a limited amount training data. In [18],
the authors proposed an adaptive fine-tuning scheme to decide which layers of the pre-
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trained network should be fine-tuned. Finally, in [10], the authors found that simple
transductive fine-tuning beats all prior state-of-art meta-learning approaches.

Common to all few-shot learning methods is the assumption that base classes and
novel classes are from the same domain. The current benchmarks for evaluation are
minilmageNet [60], CUB [61], Omniglot [31], CIFAR-FS [3] and tieredImageNet [46].
In [56], the authors proposed Meta-Dataset, which is a newer benchmark for training
and evaluating few-shot learning algorithms that includes a greater diversity of image
content. Although this benchmark is more broad than prior works, the included datasets
are still limited to natural images, and both the base classes and novel classes are from
the same domain. Recently, [47] proposes a successful meta-learning approach based
on conditional neural process on the MetaDataset benchmark.

Domain Adaptation There is a long history of research in domain adaptation tech-
niques, which aim at transferring knowledge from one or multiple source domains to
a target domain with a different data distribution. Early methods have generally relied
on the adaptation of shallow classification models, using techniques such as instance
re-weighting [12] and model parameter adaptation [65]. More recently, many meth-
ods have been proposed to address the problem of domain adaptation using deep neu-
ral networks, including discrepancy-based methods, designed to align marginal distri-
butions between the domains [38,54,23,30], adversarial-based approaches, which rely
on a domain discriminator to encourage domain-independent feature learning [59,14],
and reconstruction-based techniques, which generally use encoder-decoder models or
GANS to reconstruct data in the new domain [4,69,22]. All these approaches, however,
consider the case that the training and test sets have the same classes. One work consid-
ers the scenario where some classes may be disjoint, but still requires class overlap for
successful alignment [50]. In contrast, we study the problem of cross-domain few-shot
learning, where the source and target domains have completely disjoint label sets.

Cross-domain Few-shot Learning In cross-domain few-shot learning, base and novel
classes are both drawn from different domains, and the class label sets are disjoint.
Recent works on cross-domain few-shot learning include analysis of existing meta-
learning approaches in the cross-domain setting [5], specialized methods using feature-
wise transform to encourage learning representations with improved ability to general-
ize [58], and works studying cross-domain few-shot learning constrained to the setting
of images of items in museum galleries [26]. Common to all these prior works is that
they limit the cross-domain setting to the realm of natural images, which still retain
a high degree of visual similarity, and do not capture the broader spectrum of image
types encountered in practice, such as industrial, aerial, and medical images, where
cross-domain few-shot learning techniques are in high demand.

3 Proposed Benchmark

In this section, we introduce the Broader Study of Cross-Domain Few-Shot Learning
(BSCD-FSL) benchmark, which includes data from CropDiseases [40], EuroSAT [21],
ISIC2018 [57,8], and ChestX [62] datasets. These datasets cover plant disease images,
satellite images, dermoscopic images of skin lesions, and X-ray images, respectively.
The selected datasets reflect well-curated real-world use cases for few-shot learning. In
addition, collecting enough examples from above domains is often difficult, expensive,
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or in some cases not possible. Image similarity to natural images is measured by 3 or-
thogonal criteria: 1) existeence of perspective distortion, 2) the semantic data content,
and 3) color depth. According to this criteria, the datasets demonstrate the following
spectrum of image types: 1) CropDiseases images are natural images, but are very spe-
cialized (similar to existing cross-domain few-shot setting, but specific to agriculture
industry), 2) EuroSAT images are less similar as they have lost perspective distortion,
but are still color images of natural scenes, 3) ISIC2018 images are even less similar
as they have lost perspective distortion and no longer represent natural scenes, and 4)
ChestX images are the most dissimilar as they have lost perspective distortion, do not
represent natural scenes, and have lost 2 color channels. Example images from Ima-
geNet and the proposed benchmark datasets are shown in Figure 1.

Having a few-shot learning model trained on a source domain such as ImageNet [9]
that can generalize to domains such as these, is highly desirable, as it enables effective
learning for rare categories in new types of images, which has previously not been
studied in detail.

4 Cross-Domain Few-Shot Learning Formulation

The cross domain few-shot learning problem can be formalized as follows. We define
a domain as a joint distribution P over input space X and label space ). The marginal
distribution of X is denoted as Pxy. We use the pair (z,y) to denote a sample x and
the corresponding label y from the joint distribution P. For a model fy : X — ) with
parameter 6 and a loss function ¢, the expected error is defined as,

€<f0) = E(m,y)NP[E(fG(x)vy)] (D

In cross-domain few-shot learning, we have a source domain (X5, Ys) and a tar-
get domain (X;, ):) with joint distribution P, and P; respectively, Py, # Px,, and
Y5 is disjoint from ). The base classes data are sampled from the source domain
and the novel classes data are sampled from the target domain. During the training
or meta-training stage, the model fy is trained (or meta-trained) on the base classes
data. During testing (or meta-testing) stage, the model is presented with a support set
S = {ay, yl}fi ﬁN consisting of IV examples from K novel classes. This configuration
is referred to as “K-way N-shot” few-shot learning, as the support set has K novel
classes and each novel class has NV training examples. After the model is adapted to the
support set, a query set from novel classes is used to evaluate the model performance.

5 Evaluated Methods for Cross-Domain Few-Shot Learning

In this section, we describe the few-shot learning algorithms that will be evaluated on
our proposed benchmark.

5.1 Meta-learning based methods

Single Domain Methods Meta-learning [13,43], or learning to learn, aims at learn-
ing task-agnostic knowledge in order to efficiently learn on new tasks. Each task 7;
is assumed to be drawn from a fixed distribution, 7; ~ P(T). Specially, in few-shot
learning, each task 7; is a small dataset D; = {x;,vy; }f{: *N_P,(T) and P,(T) are
used to denote the task distribution of the source (base) classes data and target (novel)
classes data respectively. During the meta-training stage, the model is trained on 7" tasks
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{T;}L_, which are sampled independently from P, (7). During the meta-testing stage,
the model is expected to be quickly adapted to a new task T; ~ P,(T).

Meta-learning methods differ in their way of learning the parameter of the initial
model fp on the base classes data. In MatchingNet [60], the goal is to learn a model
fo that can map an unlabelled example Z to its label § using a small labelled set
D; ={z;,y, }f:XlN as g = E;ixlN ap(Z, x;)y;, where ag is an attention kernel which
leverages fy to compute the distance between the unlabelled example 2 and the labelled
example x;, and y; is the one-hot representation of the label. In contrast, MAML [13]
aims at learning an initial parameter 6 that can be quickly adapted to a new task. This
is achieved by updating the model parameter via a two-stage optimization process. Pro-
toNet [53] represents each class k with the mean vector of embedded support examples
ascp = + Zf;l fo(z;). Classification is then conducted by calculating distance of the
example to the prototype representations of each class. In RelationNet [55] the metric
of the nearest neighbor classifier is meta-learned using a Siamese Networks trained for
optimal comparison between query and support samples. More recently, MetaOpt [33]
employs convex base learners and aims at learning feature embeddings that generalize
well under a linear classification rule for novel categories. All the existing meta-learning
methods implicitly assume that P (7") = P,(7T) so the task-agnostic knowledge learned
in the meta-training stage can be leveraged for fast learning on novel classes. However,
in cross-domain few-shot learning P,(7) # P,(7 ) which poses severe challenges for
current meta-learning methods.

Cross-Domain Methods Only few methods specifically tailored to learning in the
condition of cross-domain few-shot learning have been previously explored, includ-
ing feaure-wise transform (FWT) [58], and Adversarial Domain Adaptation with Re-
inforced Sample (ADA-RSS) Selection [11]. Since the problem setting of ADA-RSS
requires the existence of unlabelled data in the target domain, we study FWT alone.

FWT is a model agnostic approach that adds a feature-wise transform layer to pre-
trained models to learn scale and shift parameters from a collection of several dataset
domains, or use parameters empirically determined from a single dataset domain. Both
approaches have been previously found to improve performance. Since our benchmark
is focused on ImageNet as the single source domain, we focus on the single data do-
main approach. The method is studied in combination with all meta-learning algorithms
described in the prior section.

5.2 Transfer learning based methods

An alternative way to tackle the problem of few-shot learning is based on transfer learn-
ing, where an initial model fy is trained on the base classes data in a standard supervised
learning way and reused on the novel classes. There are several options to realize the
idea of transfer learning for few-shot learning:

Single Model Methods In this paper, we extensively evaluate the following commonly
variants of single model fine-tuning:

— Fixed feature extractor (Fixed): simply leverage the pre-trained model as a fixed
feature extractor.

— Fine-tuning all layers (Ft All): adjusts all the pre-trained parameters on the new
task with standard supervised learning.
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— Fine-tuning last-k (Ft Last-k): only the last k layers of the pre-trained model are op-
timized for the new task. In the paper, we consider Fine-tuning last-1, Fine-tuning
last-2, Fine-tuning last-3.

— Transductive fine-tuning (Transductive Ft): in transductive fine-tuning, the statistics
of the query images are used via batch normalization [10]. [41].

In addition, we compare these single model transfer learning techniques against a
baseline of an embedding formed by a randomly initialized network (termed Random)
to contrast against a fixed feature vector that has no pre-training. All the variants of
single model fine-tuning are based on linear classifier but differ in their approach to
fine-tune the single model feature extractor.

Another line of work for few-shot learning uses a broader variety of classifiers for
transfer learning. For example, recent works show that mean-centroid classifier and
cosine-similarity based classifier are more effective than linear classifier for few-shot
learning [39,5]. Therefore we study these two variations as well.

Mean-centroid classifier. The mean-centroid classifier is inspired from ProtoNet [53].
Given the pre-trained model fp and a support set S = {z;, yl}lKZ XlN , where K is the
number of novel classes and NV is the number of images per class. The class prototypes
are computed in the same way as in ProtoNet. Then the likelihood of an unlabelled
example 2 belongs to class k is computed as,

_ exp(_d(f97ck))
T K

21— exp(=d(fo, c1))
where d() is a distance function. In the experiments, we use negative cosine similarity.

Different from ProtoNet, fy is pretrained on the base classes data in a standard super-
vised learning way.

ply = k|©) 2)

Cosine-similarity based classifier. In cosine-similarity based classifier, instead of di-
rectly computing the class prototypes using the pre-trained model, each class k is
represented as a d-dimension weight vector wj which is initialized randomly. For

each unlabeled example z;, the cosine similarity to each weight vector is computed

as ¢, = Wm The predictive probability of the example z; belongs to class k
is computed by normalizing the cosine similarity with a softmax function. Intuitively,

the weight vector w, can be thought as the prototype of class k.

Transfer from Multiple Pre-trained Models In this section, we describe a straightfor-
ward method that utilizes multiple models pre-trained on source domains of natural im-
ages similar to ImageNet. Note that all domains are still disjoint from the target datasets
for the cross-domain few-shot learning setting. The purpose is to measure how much
performance may improve by utilizing an ensemble of models trained from data that is
different from the target domain. The described method requires no change to how mod-
els are trained and is an off-the-shelf solution to leverage existing pre-trained models
for cross-domain few-shot learning, without requiring access to the source datasets.
Assume we have a library of C pre-trained models {M.}<_; which are trained on
various datasets in a standard way. We denote the layers of all pre-trained models as a

set . Given a support set S = {2, y; } /=" where (2;,1;) ~ P;, our goal is to find a
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Methods ChestX ISIC
5-way 5-shot 5-way 20-shot 5-way 50-shot S-way 5-shot 5-way 20-shot 5-way 50-shot

MatchingNet 22.40% £0.7% 23.61% + 0.86% 22.12% =+ 0.88% | 36.74% + 0.53% 45.72% + 0.53% 54.58% =+ 0.65%
MatchingNet+FWT 21.26% + 0.31% 23.23% + 0.37% 23.01% =+ 0.34% | 30.40% + 0.48% 32.01% + 0.48% 33.17% =+ 0.43%

MAML 23.48% + 0.96% 27.53% + 0.43% - 40.13% + 0.58% 52.36% =+ 0.57% -
ProtoNet 24.05% + 1.01% 28.21% + 1.15% 29.32% + 1.12% | 39.57% + 0.57% 49.50% + 0.55% 51.99% + 0.52%
ProtoNet+FWT  23.77% + 0.42% 26.87% + 0.43% 30.12% =+ 0.46% | 38.87% + 0.52% 43.78% + 0.47% 49.84% + 0.51%
RelationNet 22.96% =+ 0.88% 26.63% 4 0.92% 28.45% + 1.20% | 39.41% + 0.58% 41.77% + 0.49% 49.32% + 0.51%
RelationNet+FWT 22.74% + 0.40% 26.75% + 0.41% 27.56% + 0.40% |35.54% + 0.55% 43.31% + 0.51% 46.38% + 0.53%
MetaOpt 22.53% £+ 0.91% 25.53% 4+ 1.02% 29.35% + 0.99% | 36.28% + 0.50% 49.42% + 0.60% 54.80% + 0.54%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot
MatchingNet ~ 64.45% 4 0.63% 77.10% £ 0.57% 54.44% + 0.67% | 66.39% + 0.78% 76.38% + 0.67% 58.53% =+ 0.73%
MatchingNet+FWT 56.04% 4 0.65% 63.38% + 0.69% 62.75% 4 0.76% | 62.74% 4 0.90% 74.90% + 0.71% 75.68% =+ 0.78%
MAML 71.70% £ 0.72% 81.95% + 0.55% - 78.05% 4 0.68% 89.75% + 0.42% -

ProtoNet 73.29% + 0.71% 82.27% 4 0.57% 80.48% + 0.57% |79.72% + 0.67% 88.15% 4 0.51% 90.81% + 0.43%
ProtoNet+FWT  67.34% £ 0.76% 75.74% £ 0.70% 78.64% + 0.57% |72.72% + 0.70% 85.82% =+ 0.51% 87.17% + 0.50%
RelationNet 61.31% £ 0.72% 74.43% % 0.66% 74.91% =+ 0.58% | 68.99% =+ 0.75% 80.45% 4 0.64% 85.08% + 0.53%
RelationNet+FWT 61.16% + 0.70% 69.40% =+ 0.64% 73.84% + 0.60% |64.91% + 0.79% 78.43% =+ 0.59% 81.14% + 0.56%
MetaOpt 64.44% £ 0.73% 79.19% + 0.62% 83.62% + 0.58% | 68.41% + 0.73% 82.89% =+ 0.54% 91.76% + 0.38%

Table 1: The results of meta-learning methods on the proposed benchmark.

subset I of the layers to generate a feature vector for each example in order to achieve
the lowest test error. Mathematically,

arg min (z,y)~ Pté(fé(T({l(x) le I})ay) (3)
ICF

where { is a loss function, 7°() is a function which concatenates a set of feature vectors,
[ is one particular layer in the set I, and f; is a linear classifier. Practically, for feature
vectors [ coming from inner layers which are three-dimensional, we convert them to
one-dimensional vectors by using Global Average Pooling. Since Eq. 3 is intractable
generally, we instead adopt a two-stage greedy selection method, called Incremental
Multi-model Selection, to iteratively find the best subset of layers for a given support .S.

In the first stage, for each pre-trained model, we a train linear classifier on the feature
vector generated by each layer individually and select the corresponding layer which
achieves the lowest average error using five-fold cross-validation on the support set .S.
Essentially, the goal of the first stage is to find the most effective layer of each pre-
trained model given the task in order to reduce the search space and mitigate risk of
overfitting. For convenience, we denote the layers selected in the first selection stage as
set I;. In the second stage, we greedily add the layers in [; into the set I following a
similar cross-validation procedure. First, we add the layer in I; into I which achieves
the lowest cross-validation error. Then we iterate over I, and add each remaining layer
into [ if the cross-validation error is reduced when the new layer is added. Finally, we
concatenate the feature vector generated by each layer in set I and train the final linear
classifier. Please see Algorithm 1 in Appendix for further details.

6 Evaluation Setup

For meta-learning methods, we meta-train all meta-learning methods on the base classes
of minilmageNet [60] and meta-test the trained models on each dataset of the pro-
posed benchmark. For transfer learning methods, we train the pre-trained model on
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base classes of minilmageNet. For transferring from multiple pre-trained models, we
use a maximum of five pre-trained models, trained on minilmagenet, CIFAR100 [29],
DTD [7], CUB [64], Caltech256 [17], respectively. On all experiments we consider 5-
way 5-shot, 5-way 20-shot, 5-way 50-shot. For all cases, the test (query) set has 15
images per class. All experiments are performed with ResNet-10 [20] for fair compar-
ison. For each evaluation, we use the same 600 randomly sampled few-shot episodes
(for consistency), and report the average accuracy and 95% confidence interval.

During the training (meta-training) stage, models used for transfer learning and
meta-learning models are both trained for 400 epochs with Adam optimizer. The learn-
ing rate is set to 0.001. During testing (meta-testing), both transfer learning methods
and those meta-learning methods that require adaptation on the support set of the test
episodes (MAML, RelationNet, etc.) use SGD with momentum. The learning rate is
0.01 and the momentum rate is 0.9. All variants of fine-tuning methods are trained
for 100 epochs. For feature-wise transformation [58], we adopt the recommended hy-
perparameters in the original paper for meta-training from one source domain . In the
training or meta-training stage, we apply standard data augmentation including random
crop, random flip, and color jitter.

In the cross-domain few-shot learning setting, since the source domain and target
domain are drastically different, it may not be appropriate to use the source domain
data for hyperparameter tuning or validation. Therefore, we leave the question of how
to determine the best hyperparameters in the cross-domain few-shot learning as future
work. One simple strategy is to use the test set or validation set of the source domain
data for hyperparameter tuning. More sophisticated methods may use datasets that are
similar to the target domain data.

7 Experimental Results

7.1 Meta-learning based results

Table 1 show the results on the proposed benchmark of meta-learning, for each dataset,
method, and shot level in the benchmark. Across all datasets and shot levels, the average
accuracies (and 95% confidence internals) are 50.21% (0.70) for MatchingNet, 46.55%
(0.58) for MatchingNet+FWT, 38.75% (0.41) for MAML, 59.78% (0.70) for ProtoNet,
56.72% (0.55) for ProtoNet+FWT, 54.48% (0.71) for RelationNet, 52.6% (0.56) for
RelationNet+FWT, and 57.35% (0.68) for MetaOpt. The performance of MAML was
impacted by its inability to scale to larger shot levels due to memory overflow. Methods
paired with Feature-Wise Transform are marked with “+FWT”.

What is immediately apparent from Table 1, is that the prior state-of-art MetaOpt-
Net is no longer state-of-art, as it is outperformed by ProtoNet. In addition, meth-
ods designed specifically for cross-domain few-shot learning lead to consistent perfor-
mance degradation in this new challenging benchmark. Finally, performance in general
strongly positively correlates to the dataset’s similarity to ImageNet, confirming that the
benchmark’s intentional design allows us to investigate few-shot learning in a spectrum
of cross-domain difficulties.

7.2 Transfer learning based results
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Methods ChestX ISIC
S-way 5-shot 5-way 20-shot 5-way 50-shot S-way 5-shot S-way 20-shot S-way 50-shot

Random 21.80% £ 1.03% 25.69% + 0.95% 26.19% + 0.94% | 37.91% + 1.39% 47.24% + 1.50% 50.85% + 1.37%
Fixed 25.35% £ 0.96% 30.83% + 1.05% 36.04% + 0.46% | 43.56% =+ 0.60% 52.78% + 0.58% 57.34% + 0.56%
FrAll 2597% + 0.41% 31.32% + 0.45% 35.49% + 0.45% | 48.11% + 0.64% 59.31% + 0.48% 66.48% + 0.56%
Ft Last-1 25.96% + 0.46% 31.63% =+ 0.49% 37.03% + 0.50% | 47.20% + 0.45% 59.95% + 0.45% 65.04% + 0.47%
FtLast-2  26.79% + 0.59% 30.95% =+ 0.61% 36.24% =+ 0.62% | 47.64% + 0.44% 59.87% + 0.35% 66.07% + 0.45%
FtLast-3  25.17% + 0.56% 30.92% =+ 0.89% 37.27% =+ 0.64% | 48.05% + 0.55% 60.20% =+ 0.33% 66.21% =+ 0.52%
Transductive Ft 26.09% 4 0.96% 31.01% + 0.59% 36.79% + 0.53% |49.68% + 0.36% 61.09% + 0.44% 67.20% + 0.59%

Methods EuroSAT CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot S-way 5-shot 5-way 20-shot 5-way 50-shot

Random 58.00% +2.01% 68.93% + 1.47% 71.65% + 1.47% | 69.68% + 1.72% 83.41% + 1.25% 86.56% =+ 1.42%
Fixed 75.69% + 0.66% 84.13% + 0.52% 86.62% + 0.47% | 87.48% + 0.58% 94.45% + 0.36% 96.62% =+ 0.25%
FtAll 79.08% 4 0.61% 87.64% + 0.47% 90.89% + 0.36% | 89.25% + 0.51% 95.51% + 0.31% 97.68% =+ 0.21%
FtLast-1 ~ 80.45% + 0.54% 87.92% + 0.44% 91.41% =+ 0.46% | 88.72% + 0.53% 95.76% =+ 0.65% 97.87% =+ 0.48%
FtLast-2  79.57% + 0.51% 87.67% =+ 0.46% 90.93% =+ 0.45% | 88.07% + 0.56% 95.68% =+ 0.76% 97.64% + 0.59%
FtLast-3  78.04% + 0.77% 87.52% =+ 0.53% 90.83% =4 0.42% | 89.11% + 0.47% 95.31% + 0.7% 97.45% + 0.46%
Transductive Ft 81.76% + 0.48% 87.97% + 0.42% 92.00% + 0.56% |90.64% + 0.54% 95.91% + 0.72% 97.48% =+ 0.56%

Table 2: The results of different variants of single model fine-tuning on the proposed benchmark.

Single model results Table 2 show the results on the proposed benchmark of var-
ious single model transfer learning methods. Across all datasets and shot levels, the
average accuracies (and 95% confidence internals) are 53.99% (1.38) for random em-
bedding, 64.24 (0.59) for fixed feature embedding, 67.23% (0.46) for fine-tuning all
layers, 67.41% (0.49) for fine-tuning the last 1 layer, 67.26% (0.53) for fine-tuning
the last 2 layers, 67.17% (0.58) for fine-tuning the last 3 layers, and 68.14% (0.56)
for transductive fine-tuning. From these results, several observations can be made. The
first observation is that, although meta-learning methods have been previously shown
to achieve higher performance than transfer learning in the standard few-shot learning
setting [60,5], in the cross-domain few-shot learning setting this situation is reversed:
meta-learning methods significantly underperform simple fine-tuning methods. In fact,
MatchingNet performs worse than a randomly generated fixed embedding. A possible
explanation is that meta-learning methods are fitting the task distribution on the base
class data, improving performance in that circumstance, but hindering ability to general-
ize to another task distribution. The second observation is that, by leveraging the statis-
tics of the test data, transductive fine-tuning continues to achieve higher results than the
standard fine-tuning and meta-learning, as previously reported [10]. While transduc-
tive fine-tuning, however, assumes that all the queries are available as unlabeled data.
The third observation is that the accuracy of most methods on the benchmark continues
to be dependent on how similar the dataset is to ImageNet: CropDiseases commands
the highest performance on average, while EuroSAT follows in 2"¢ place, ISIC in 3",
and ChestX in 4'". This further supports the motivation behind benchmark design in
targeting applications with increasing visual domain dissimilarity to natural images.
Table 3 shows results from varying the classifier. While mean-centriod classifier and
cosine-similarity classifier are shown to be more efficient than simple linear classifier
in the conventional few-shot learning setting, our results show that mean-centroid and
cosine-similarity classifier only have a marginal advantage on ChestX and EuroSAT
over linear classifier in the 5-shot case (Table 3). As the shot increases, linear classifier
begins to dominate mean-centroid and cosine-similarity classifier. One plausible reason
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Methods ChestX ISIC
S-way 5-shot 5-way 20-shot 5-way 50-shot S5-way 5-shot 5-way 20-shot 5-way 50-shot
Linear 25.97% + 0.41% 31.32% + 0.45% 35.49% + 0.45% |48.11% =+ 0.64% 59.31% + 0.48% 66.48% + 0.56%
Mean-centroid  26.31% + 0.42% 30.41% + 0.46% 34.68% + 0.46% |47.16% + 0.54% 56.40% + 0.53% 61.57% + 0.66%
Cosine-similarity 26.95% + 0.44% 32.07% + 0.55% 34.76% =+ 0.55% | 48.01% + 0.49% 58.13% + 0.48% 62.03% =+ 0.52%

Methods EuroSAT CropDiseases
S-way 5-shot 5-way 20-shot 5-way 50-shot 5-way 5-shot 5-way 20-shot 5-way 50-shot
Linear 79.08% + 0.61% 87.64% =+ 0.47% 91.34% + 0.37% |89.25% =+ 0.51% 95.51% + 0.31% 97.68% + 0.21%
Mean-centroid 82.21% =+ 0.49% 87.62% + 0.34% 88.24% + 0.29% |87.61% + 0.47% 93.87% + 0.68% 94.77% + 0.34%
Cosine-similarity 81.37% + 1.54% 86.83% + 0.43% 88.83% =+ 0.38% | 89.15% + 0.51% 93.96% + 0.46% 94.27% + 0.41%

Table 3: The results of varying the classifier for fine-tuning on the proposed benchmark.

is that since both mean-centroid and cosine-similarity classifier conduct classification
based on unimodal class prototypes, when the number of examples increases, unimodal
distribution becomes less suitable, and multi-modal distribution is required.

We further analyze how layers are changed during transfer. We use 6 to denote the
original pre-trained parameters and 6 to denote the parameters after fine-tuning. Fig-
ure 2 shows the relative parameter change of the ResNet10 minilmageNet pre-trained
model as %, averaged over all parameters per layer, and 100 runs. Several interest-
ing observations can be made from these results. First, across all the datasets and all the
shots, the first layer of the pre-trained model changes most. This indicates that if the
target domain is different from the source domain, the lower layers of the pre-trained
models still need to be adjusted. Second, while the datasets are drastically different,
we observe that some layers are consistently more transferable than other layers. One
plausible explanation for this phenomenon is the heterogeneous characteristic of layers
in overparameterized deep neural networks [68].

Transfer from Multiple Pre-trained Models The results of the described Incremental
Muiti-model Selection are shown in Table 4. IMS-f fine-tunes each pre-trained model
before applying the model selection. We include a baseline called all embeddings which
concatenates the feature vectors generated by all the layers from the fine-tuned models.
Across all datasets and shot levels, the average accuracies (and 95% confidence inter-
nals) are 68.22% (0.45) for all embeddings, and 68.69% (0.44) for IMS-f. The results
show that IMS-f generally improves upon all embeddings which indicates the impor-
tance of selecting relevant pre-trained models to the target dataset. Model complexity
also tends to decrease by over 20% compared to all embeddings on average. We can
also observe that it is beneficial to use multiple pre-trained models than using just one
model, even though these models are trained from data in different domains and differ-
ent image types. Compared with standard finetuning with a linear classifier, the average
improvement of IMS-f across all the shots on ChestX is 0.20%, on ISIC is 0.69%, on
EuroSAT is 3.52% and on CropDiseases is 1.27%.

In further analysis, we study the effect of the number of pre-trained models for the
studied multi-model selection method. We consider libraries consisting of two, three,
four, and all five pre-trained models. The pre-trained models are added into the library
in the order of ImageNet, CIFARI00, DTD, CUB, Caltech256. For each dataset, the
experiment is conducted on 5-way 50-shot with 600 episodes. The results are shown
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ISIC
S-way 5-shot 5-way 20-shot 5-way 50-shot
46.86% £ 0.60% 58.57% + 0.59% 66.04% + 0.56%
45.84% + 0.62% 61.50% + 0.58% 68.64% + 0.53%

ChestX
5-way 5-shot 5-way 20-shot S-way 50-shot
All embeddings 26.74% + 0.42% 32.77% + 0.47% 38.07% + 0.50%
IMS-f 25.50% + 0.45% 31.49% + 0.47% 36.40% + 0.50%

Methods

CropDiseases
5-way 5-shot 5-way 20-shot 5-way 50-shot
All embeddings 81.29% + 0.62% 89.90% =+ 0.41% 92.76% + 0.34% [90.82% =+ 0.48% 96.64% + 0.25% 98.14% =+ 0.18%
IMS-f 83.56% =+ 0.59% 91.22% + 0.38% 93.85% =+ 0.30% | 90.66% + 0.48% 97.18% =+ 0.24% 98.43% =+ 0.16%
Table 4: The results of using all embeddings, and the Incremental Multi-model Selection (IMS-f)

based on fine-tuned pre-trained models on the proposed benchmark.

EuroSAT
5-way 5-shot 5-way 20-shot 5-way 50-shot

Methods

in Table 5. As more pre-trained models are added into the library, we can observe that
the test accuracy on ChestX and ISIC gradually improves which can be attributed to the
diverse features provided by different pre-trained models. However, on EuroSAT and
CropDiseases, only a marginal improvement can be observed. One possible reason is
that the features from ImageNet already captures the characteristics of the datasets and
more pre-trained models does not provide additional information.

Finally, we visualize for each dataset which pre-trained models are selected in the
studied incremental multi-model selection. The experiments are conducted on 5-way
50-shot with all five pre-trained models. For each dataset, we repeat the experiments
for 600 episodes and calculate the frequency of each model being selected. The results
are shown in Figure 3. We observe the distribution of the frequency differs significantly
across datasets, as target datasets can benefit from different pre-trained models.

5-way 50-shot
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Fig. 2: Relative change of pre-trained network layers for single model transfer.

On ChestX

Frequency
o o © o
S &8 8 &

°

o
°

ImageNe(Caltech256 DTD  Cfarf00  CUB

OnlsiC

ImageNetCaltech256 DTD  Citari00  CUB

On EuroSAT

°
®

Frequency
o

°

00 el
ImageNetCaltoch256  DTD

Cifarto0  CUB

On CropDiseases

ImageNetCaltech256  DTD  Cifarf00  CUB

Fig. 3: Frequency of source model selection for each dataset in the benchmark.
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7.3 Benchmark Summary

Figure 4 summarizes the comparison across algorithms, according to the average ac-
curacy across all datasets and shot levels in the benchmark. The degradation in perfor-
mance suffered by meta-learning approaches is significant. In some cases, a network
with random weights outperforms meta-learning approaches. FWT methods, which
yielded no performance improvements, are omitted for brevity. MAML, which failed
to operate on the entire benchmark, is also omitted.

8 Conclusion

In this paper, we formally introduce the Broader Study of Cross-Domain Few-Shot
Learning (BSCD-FSL) benchmark, which covers several target domains with varying
similarity to natural images. We extensively analyze and evaluate existing meta-learning
methods, including approaches specifically designed for cross-domain few-shot learn-
ing, and variants of transfer learning. The results show that, surprisingly, state-of-art
meta-learning approaches are outperformed by earlier approaches, and recent meth-
ods for cross-domain few-shot learning actually degrade performance. In addition, all
meta-learning methods significantly underperform in comparison to fine-tuning meth-
ods. In fact, some meta-learning approaches are outperformed by networks with random
weights. In addition, accuracy of all methods correlate with proposed measure of data
similarity to natural images, verifying the diversity of the proposed benchmark in terms
of its problem representation, and its value towards guiding future research. In conclu-
sion, we believe this work will help the community understand what methods are most
effective in practice, and help drive further advances that can more quickly yield benefit
for real-world applications.
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10 Appendix

10.1 Incremental Multi-model Selection

Algorithm 1: Incremental Multi-model Selection. S = {x;,y; }7 %" is a support

set consisting of NV examples from K novel classes. Assume there is a library of
C pre-trained models {M,}$ ;. Each model has L layers and [ is used to denote
one particular layer. Let CW (.S, I') be a function which returns the average cross-
validation error given a dataset S and a set of layers / which are used to generate
feature vector.

/* First stage %/
1 Il={}
/+ Iterate over each pre-trained model */
2 forc=1—Cdo
3 min_loss =-1
4 best_l= None
/+ Iterate over each layer of the pre-trained model */

for! =1— Ldo
it CW (S, {l}) < min_loss then

® 9 & W

best l=1
min_loss = CW (S, {l})

9 | Li=LJbestl
/* Second stage x/

0 I={}

11 min_oss =-1

12 foreach ! in I; do

13 it CW(S,1J!l) < min_loss then
14 min_loss=CW (S, IJl)

L I=1J!1

16 Concatenate the feature vectors generated by the layers in I and train a linear classifier.




