
Towards a Decomposition-Optimal Algorithm for1

Counting and Sampling Arbitrary Motifs in2

Sublinear Time3

Amartya Shankha Biswas !4

CSAIL, MIT, Cambridge MA, USA5

Talya Eden ! Ï �6

CSAIL at MIT, USA7

Ronitt Rubinfeld ! Ï8

CSAIL at MIT, USA9

Abstract10

Counting and uniformly sampling motifs in a graph are fundamental algorithmic tasks with numerous11

applications across multiple fields. Since these problems are computationally expensive, recent efforts12

have focused on devising sublinear-time algorithms for these problems. We consider the model where13

the algorithm gets a constant size motif H and query access to a graph G, where the allowed queries14

are degree, neighbor, and pair queries, as well as uniform edge sample queries. In the sampling task,15

the algorithm is required to output a uniformly distributed copy of H in G (if one exists), and in16

the counting task it is required to output a good estimate to the number of copies of H in G.17

Previous algorithms for the uniform sampling task were based on a decomposition of H into a18

collection of odd cycles and stars, denoted D∗(H) = {Ok1 , ..., Okq , Sp1 , ..., Spℓ }. These algorithms19

were shown to be optimal for the case where H is a clique or an odd-length cycle, but no other lower20

bounds were known.21

We present a new algorithm for sampling arbitrary motifs which, up to poly(log n) factors, for22

any motif H whose decomposition contains at least two components or at least one star, is always23

preferable. The main ingredient leading to this improvement is an improved uniform algorithm for24

sampling stars, which might be of independent interest, as it allows to sample vertices according to25

the p-th moment of the degree distribution. We further show how to use our sampling algorithm to26

get an approximate counting algorithm, with essentially the same complexity.27

Finally, we prove that this algorithm is decomposition-optimal for decompositions that contain28

at least one odd cycle. That is, we prove that for any decomposition D that contains at least one29

odd cycle, there exists a motif HD with decomposition D, and a family of graphs G, so that in30

order to output a uniform copy of H in a uniformly chosen graph in G, the number of required31

queries matches our upper bound. These are the first lower bounds for motifs H with a nontrivial32

decomposition, i.e., motifs that have more than a single component in their decomposition.33

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear34

time algorithms35

Keywords and phrases sublinear time algorithms, Graph algorithms, Sampling subgraphs, Approx-36

imate counting37

Digital Object Identifier 10.4230/LIPIcs...38

Funding Amartya Shankha Biswas: Big George Ventures Fund, MIT-IBM Watson AI Lab and39

Research Collaboration Agreement No. W1771646, NSF awards CCF-1733808 and IIS-174113740

Talya Eden: This work was supported by the National Science Foundation under Grant No. CCF-41

1740751, Eric and Wendy Schmidt Fund for Strategic Innovation, and Ben-Gurion University of the42

Negev.43

Ronitt Rubinfeld: This work was supported by the National Science Foundation under Grants No.44

CCF-2006664, CCF-1740751, IIS-1741137, and by the Fintech@CSAIL Initiative.45

© Amartya Shankha Biswas, Talya Eden, and Ronitt Rubinfeld;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:\protect \@normalcr \relax asbiswas@mit.edu
mailto:talyaa01@gmail.com
https://orcid.org/0000-0001-8470-9508
mailto:ronitt@csail.mit.edu
https://people.csail.mit.edu/ronitt/
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

1 Introduction46

The problems of counting and sampling small motifs in graphs are fundamental algorithmic47

problems with many applications. Small motifs statistics are used for the study and charac-48

terization of graphs in multiple fields, including biology, chemistry, social networks and many49

others (see e.g., [35, 29, 20, 32, 31, 42, 27, 34, 37, 40, 30]). From a theoretical perspective,50

the complexity of the best known classical algorithms for exactly enumerating small motifs51

such as cliques and paths of length k, grows exponentially with k [41, 8]. On the more applied52

side, there is an extensive study of practical algorithms for approximate motif counting53

(e.g., [38, 5, 33, 1, 26, 11, 7, 23]). We study the problems of approximate motif counting and54

uniform sampling in the sublinear-time setting, where sublinear is with respect to the size of55

the graph. We consider the augmented query model, introduced by [2], where the allowed56

queries are degree, neighbor and pair queries as well as uniform edge sample queries.1 We57

note that the model which only allows for the first three types of queries is referred to as the58

general graph query model, introduced by [28].59

The problems of approximate counting and uniformly sampling of arbitrary motifs of60

constant size in sublinear-time have seen much progress recently, through the results of Assadi,61

Kapralov and Khanna [3], and Fichtenberger, Gao and Peng [22]. The algorithms of [3, 22]62

both start by computing an optimal (in a sense that will be clear shortly) decomposition of63

the motif H into vertex-disjoint odd cycles and stars, defined next.64

A decomposition into odd cycles and stars. A decomposition D of a motif (graph)65

H into a collection of vertex disjoint small cycles and stars {Ok1 , ..., Okq , Sp1 , ..., Spℓ
} is66

valid if all vertices of H belong to either a star or an odd cycle in the collection. Each67

decomposition can be associated with a weight function fD : E → {0, 1
2 , 1} which assigns68

weight 1 to edges of its star components, weight 1/2 to edges of its odd cycle components and69

weight 0 to all other edges in H. See figure 1 for an illustration. Hence, each decomposition70

{Ok1 , ..., Okq , Sp1 , ..., Spℓ
} has value ρ(D) =

∑
e∈H fD(e) =

∑q
i=1 ki/2 +

∑ℓ
j=1 pj , where71

throughout the paper ki and pj denote the length and number of petals in the ith cycle72

and jth star, respectively, in D∗(H). For every H, its optimal decomposition value is73

ρ(H) = minD{ρ(D)}, and a decomposition D is said to be optimal for H if ρ(D) = ρ(H).74

We fix (one of) the optimal decomposition of H, and denote it by D∗(H). In [3], it is shown75

that an optimal decomposition of a motif H can be computed in polynomial time in |H|.276

The algorithm in [22] has expected running time 3 O
(

mρ(H)

h̄

)
for the task of uniformly77

sampling a copy of H, where h̄ is the number of copies of H in G, and m is the number of78

1 Degree queries return the degree of the queried vertex, neighbor queries with index i ≤ d(v) return the
ith neighbor of the queried vertex, pair queries return whether there is an edge between the queried
pair of vertices, and uniform edge queries return a uniformly distributed edge in the graph.

2 We note that ρ(H) is equal to the fractional edge cover value of H: the fractional edge cover value
of a motif (graph) H is the solution to the following minimization problem. Minimize

∑
e∈E

f(e)
under the constraint that for every v ∈ H,

∑
e∋v

f(e) ≥ 1. In [3], the decomposition is computed by
first computing an optimal fractional cover. However, as there exists a mapping between fractional
edge covers to decompositions which preservers their value, we choose to define ρ(H) according to the
minimal valid decomposition value.

3 Throughout the paper, unless stated otherwise, the query complexity of the mentioned sublinear-time
algorithms is the same as the minimum between their running time and min{n + m, m log n}. This is
true since any algorithm can simply query the entire graph and continue computation locally. Querying
the entire graph can either be performed by querying the neighbors of all vertices (which takes O(n + m)
queries), or by performing m log n uniform edge samples, which, with high probability, return all edges
in the graph (note that we do not care about isolated vertices, as we assume the motif H is connected).
Hence, we focus our attention on the running time complexity.

A. S. Biswas, T. Eden and R. Rubinfeld XX:3

Figure 1 An example of an optimal decomposition of a motif H into odd cycles and stars. The
orange edges have weight 1/2, the red edges have weight 1, and the dotted edges have zero weight.

oriented edges4 in G. The algorithm in [3] for the estimation task has the same complexity79

up to poly(ϵ, |H|, log n) factors.80

1.1 Our results81

We present improved upper and lower bounds for the tasks of estimating and sampling any82

arbitrary motif in a graph G in sublinear time (with respect to the size of G). First, we give a83

new, essentially optimal, star-sampler for graphs. We also show that with few modifications,84

the star-sampler can be adapted to an optimal ℓp sampler, which might be of independent85

interest. Based on this sampler, as well as an improved sampling approach, we present our86

main algorithm for sampling a uniformly distributed copy of any given motif H in a graph G.87

Our algorithm’s complexity is parameterized by what we refer to as the decomposition-cost88

of H in G, denoted decomp-cost(G, H, D∗(H)). We further show that our motif sampling89

algorithm can be used to obtain a (1 ± ϵ)-estimate of the motif at question (with an overhead90

of an O(1/ϵ2) factor). As we shall see, our result is always at least as good as previous91

algorithms for these problems (up to a log n log log n term), and greatly improves upon them92

for various interesting graph classes, such as random graphs and bounded arboricity graphs.93

We then continue to prove that for any motif whose optimal decomposition contains at least94

one odd cycle, this bound is decomposition-optimal : we show that for every decomposition95

D that contains at least one odd cycle, there exists a motif HD (with optimal decomposition96

D) and a family of graphs G so that in order to sample a uniformly distributed copy of H97

(or to approximate h̄) in a uniformly chosen graph in G, the number of required queries is98

Ω(min{decomp-cost(G, H, D∗(H)), m}) in expectation.99

We start by describing the upper bound.100

1.1.1 Optimal star/ℓp-sampler101

Our first contribution is an improved algorithm, Sample-a-Star, for sampling a (single) star102

uniformly at random, and its variant for sampling vertices according to the pth moment. For a103

vertex v, we let s̄p(v) =
(

d(v)
p

)
, if d(v) ≥ p, and otherwise, s̄p(v) = 0. We let s̄p =

∑
v∈V s̄p(v)104

denote the number of p-stars in the graph. We will also be interested in the closely related105

value of the pth moment of the degree distribution, µ̄p =
∑

v∈V d(v)p.106

4 Throughout the paper we think of every edge {u, v} as two oriented edges (u, v) and (v, u), and let m
denote the number of oriented edges.

XX:4 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

▶ Theorem 1. There exists a procedure, Sample-a-Star, that given query access to a graph107

G, and a constant factor estimates of s̄p, returns a uniformly distributed p-star in G. The108

expected query complexity and running time of the procedure are O

(
min

{
m·np−1

s̄p
, m

s̄1/p
p

})
109

where s̄p denotes the number of p-stars in G.110

We note that a constant factor estimate of s̄p can be obtained by invoking one of the111

algorithms in [16, 2], in expected query complexity Õ

(
min

{
m·np−1

s̄p
, m

s̄1/p
p

})
. Therefore, if112

such an estimate is not known in advance, then it could be computed, with probability at113

least 2/3, by only incurring a log n factor to the expected time complexity.114

We will also show a variant of Sample-a-Star, denoted Sublinear-ℓp-Sampler, that gives115

an optimal ℓp-sampler for any integer p ≥ 2 in sublinear time. That is, Sublinear-ℓp-Sampler116

allows to sample according to the pth moment of the degree distribution, so that every vertex117

v ∈ V is returned by it with probability d(v)p/µ̄p. The question of sampling according to118

the pth moment for various values of p has been studied extensively in the streaming model119

where ℓp samplers have found numerous applications, see, e.g., the recent survey by Cormode120

and Hossein [10] and the references therein. Therefore we hope it could find applications in121

the sublinear-time setting that go beyond subgraph sampling.122

▶ Theorem 2. There exists an algorithm, Sublinear-ℓp-Sampler, that returns a vertex v ∈ V ,123

so that each v ∈ V is returned with probability d(v)p/µ̄p. The expected running time of the124

algorithm is O

(
min

{
m·np−1

µ̄p
, m

µ̄
1/p
p

})
.125

Observe that for every value of p, s̄p < µ̄p. Furthermore, Since m and µ̄
1/p
p are simply126

the ℓ1 and ℓp norms of the degree distribution of G, it holds that µ̄
1/p
p is smaller than m, and127

could be as small as m/n1−1/p. Therefore, µ̄
1/p
p < m ⇔ µ

p−1/p
p < mp−1. and it follows that128

m · min
{

np−1, s̄(p−1)/p
}

≤ m · s̄(p−1)/p
p < m · µ̄(p−1)/p

p ≤ m · mp−1 = mp. (1)129
130

Hence, not accounting for the O(log n log log n) term, the expected complexity Õ(m ·131

min{np−1, s̄(p−1)/p
p }/s̄p) of Sample-a-Star strictly improves upon the O(mp/s̄p) expected132

complexity of the star-sampling algorithm by [22]. Accounting for that term, our algorithm133

is preferable when either davg = ω(log n log log n) or m/s̄1/p
p = ω(log n).134

Furthermore, the complexity of Sample-a-Star matches the complexities of the star135

approximation algorithms by [25, 2], thus proving that uniformly sampling and approximately136

counting stars in the augmented model have essentially the same complexity. Finally, the137

construction of the lower bound for the estimation variant by [25] proves that Sample-a-Star138

and Sublinear-ℓp-Sampler are essentially optimal.139

1.1.2 An algorithm for sampling and estimating arbitrary motifs140

Given the above star sampler, we continue to describe our main contribution: an algorithm,141

Sample-H, that for any graph G and given motif H, outputs a uniformly distributed copy of142

H in G.143

To sample a copy of H we first sample copies of all basic components in its decomposition144

D∗(H), and then check if they can be extended to a copy of H in G. Therefore, it will be145

useful to define the costs of these sampling operations.146

A. S. Biswas, T. Eden and R. Rubinfeld XX:5

▶ Notation 3 (Basic components, counts and costs). Let H be a motif, and let D∗(H) =147

{Ok1 , ..., Okq
, Sp1 , ..., Spℓ

} be an optimal decomposition of H. We refer to the odd cycles148

and stars in D∗(H) as the basic components of the decomposition (or sometimes, abusing149

notation, of H). We use the notation {Ci}i∈[r], to denote the set of all components in D∗(H),150

{Ci}i∈[r] = D∗(H), where r = q + ℓ.151

For every basic component Ci in D∗(H) = {Ci}i∈[r], we denote the number of copies of152

Ci in G as c̄i and refer to it as the count of Ci. Similarly, ōk and s̄p denote the number of153

copies of length k odd cycles and p-stars in G. respectively.154

We also define the sampling cost (or just cost in short) of Ci to be:155

cost(Ci) =

mk/2/ōk Ci = Ok

min
{

m·np−1

s̄p
, m

s̄1/p
p

}
Ci = Sp

.156

Observe that indeed, by Theorem 13, sampling a single p-star in G takes cost(Sp) =157

min
{

m·np−1

s̄p
, m

s̄1/p
p

}
queries in expectation, and by [22, Lemma 3.1], sampling a single Ok158

odd cycle takes cost(Ok) = mk/2/ōk queries in expectation.159

▶ Notation 4 (Decomposition-cost). For a motif H, an optimal decomposition D∗(H) of H,160

and a graph G, the decomposition cost of H in G, denoted decomp-cost(G, H, D∗(H)) is161

decomp-cost(G, H, D∗(H)) = max
i∈[r]

{cost(Ci)} ·
∏

c̄i

h̄
.162

Note that the motif H determines the counts of h̄ and its decomposition D∗(H) determines163

what are the basic component counts in G that are relevant to the sampling cost.164

▶ Theorem 5. Let G be a graph over n vertices and m edges, and let H be a motif such
that D∗(H) = {Ok1 , ..., Okq

, Sp1 , ..., Spℓ
} = {Ci}i∈[r]. There exists an algorithm, Sample-H,

that returns a copy of H in G. With probability at least 1 − 1/ poly(n), the returned copy is
uniformly distributed in G. The expected query complexity of the algorithm is

O (min {decomp-cost(G, H, D∗(H)), m}) · log n log log n.

In the full version we prove that with slight modifications to the sampling algorithm we165

can obtain a (1 ± ϵ)-approximation algorithm for h̄, with the same expected query complexity166

and running time up to a multiplicative factor of O(1/ϵ2).167

Comparison to previous bounds. We would like to compare our algorithm’s expected168

complexity stated in Theorem 5, to the expected complexity O
(

mρ(H)

h̄

)
of the counting169

and sampling algorithms by [3] and [22], respectively, where recall that for an optimal170

decomposition D∗(H) = {Ok1 , ..., Okq
, Sp1 , ..., Spℓ

} of H, ρ(H) =
∑

i∈[q[ki/2 +
∑

i∈[ℓ] pi.171

Recalling Equation 1, and plugging in the costs of the basic components and the decom-172

position cost, defined in Notations 3 and 4, respectively, we get that for any graph G and173

motif H,174

decomp-cost(G, H, D∗(H)) = max
i∈[r]

{cost(Ci)} ·
∏

c̄i

h̄
175

= max
i∈[r]

{cost(Ci)} ·
∏

i∈[q] ōki
·
∏

i∈[ℓ] s̄pi

h̄
176

XX:6 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

≤
∏

i∈[q] mki/2 ·
∏

i∈[ℓ] m · (min{npi−1, s̄(pi−1)/pi
pi })

h̄
177

<

∏
i∈[q] mki/2 ·

∏
i∈[ℓ] mp

h̄
= mρ(H)

h̄
,178

179

Therefore, as long as D∗(H) contains at least one star, and not accounting for the O(log n log log n)180

term, our algorithm is preferable to the previous one, as we save a factor of at least dp−1
avg for181

each p-star in D∗(H).182

Moreover, the complexity of our sampling algorithm is parameterized by the actual counts183

of the basic components Ok1 , ..., Okq
, Sp1 , ..., Spℓ

of the graph G at hand, rather than by the184

maximal possible counts of these components, respectively mk1/2, . . . mkq/2, mp1 , . . . mpℓ , as185

is in previous algorithms. For example, if the max component cost is due to the odd cycle of186

length k1, we get187

O∗

(
mk1/2 · ōk2 · ... · ōkq

· s̄p1 · ... · s̄pℓ

h̄

)
vs. O∗

(
mk1/2 · mk2/2... · mkq/2 · mp1 · ... · mpℓ

h̄

)
188

of the previous algorithms. Importantly, this parameterization arises only in the analysis,189

while the algorithm itself is very simple, and does not depend on prior knowledge of the190

actual values of these counts.191

Improved results for various graph classes. Our parameterization immediately192

implies improved results in various interesting graph classes. For example, for sparse Erdős-193

Rényi random graphs G(n, d/n), the expected count of k-odd cycles is Θ(dk), and of p-stars194

is Θ(n · dp). Hence, if we consider for example a motif H that is composed of a triangle195

connected to a 5-petals star, our algorithm has expected complexity O∗
(

m2.5·d4

h̄

)
, while the196

algorithms in [3, 22] have expected complexity O(m6.5

h̄). In another example, for graphs197

of bounded arboricity5 α, the number of k-odd cycles is upper bounded6 by α · m(k−1)/2.198

Therefore, in the case that G has, e.g., constant arboricity, we save a multiplicative factor of199 √
m

q or
√

m
q−1, depending on whether the max cost component is due to a star or an odd200

cycle, respectively (recall that q is the number of odd cycles in the decomposition).201

1.1.3 Lower bound for estimating and sampling general motifs202

In the full version, we prove the following lower bound, which states that for every decom-203

position D that contains at least one odd cycle component and every realizable value of204

decomp-cost, there exists a motif HD such that D is an optimal decomposition of HD,205

and for which our upper bound is optimal.206

▶ Theorem 6. For any decomposition D that contains at least one odd cycle, and for every207

n and m and realizable value dc of decomp-cost, there exists a motif HD, with optimal208

decomposition D, and a family of graphs G over n vertices and m edges, for which the209

following holds. For every G ∈ G, decomp-cost(G, HD, D) = dc, and the expected query210

complexity of sampling (whp) a uniformly distributed copy of HD in a uniformly chosen211

G ∈ G is Ω(dc).212

5 The arboricity of a graph G is the minimal number of forests required to cover the edge set of G.
6 In a graph G with arboricity α there exists an acyclic ordering of the graph’s vertices, such that each

vertex has O(α) vertices exceeding it in the order. We can attribute each k-cycles in the graph to its
first vertex in that ordering. It then holds that each vertex has at most (d+(v))2 · m(k−3)/2 attributed
cycles, and it follows that ōk ≤ α · m(k−1)/2, where d+(v) is the number of neighbors of v that exceed
it in the aforementioned ordering.

A. S. Biswas, T. Eden and R. Rubinfeld XX:7

Prior to this work, the only known lower bounds for the tasks of uniformly sampling or213

approximately counting motifs H that were either a clique [18], a single odd cycle [3], or a214

single star [25, 2, 18]. The above theorem provides the first lower bounds for motifs with215

non-trivial decompositions. Furthermore, even though our bounds are only decomposition-216

optimal (that is, they do not hold for any motif H), each decomposition D corresponds to at217

least one motif HD (generally, there are multiple valid ones), for which our bounds are tight.218

In order to prove Theorem 6, we actually prove a stronger theorem, which relies on a219

technical notion of good counts, formally stated in Definition 17 in the full version.220

▶ Theorem 7. For any decomposition D = {Ok1 , ..., Okq , Sp1 , ..., Spℓ
} = {Ci}i∈r that221

contains at least one odd cycle component, for every n, m, h̄ and a set of good counts,222

{c̄i}i∈[r] = {ōk1 , ..., ōkq , s̄p1 , ..., s̄pℓ
}, as defined in Definition 17 of the full version, the223

following holds. There exists a motif HD, with an optimal decomposition D, and a family of224

graphs G over n vertices and m edges, as follows. For every G ∈ G, the basic components225

counts are as specified by {c̄i}i∈[r], the number of copies of HD is h̄, and the expected query226

complexity of sampling (whp) a uniformly distributed copy of HD in a uniformly chosen227

G ∈ G is228

Ω
(

min
{

max
i∈[r]

{cost(Ci)} ·
∏

i c̄i

h̄
, m

})
.229

In the full version, we first prove that Theorem 6 follows from Theorem 7. Theorem 7 is230

essentially a substantial refinement of Theorem 6, in the following sense. Not only that for231

any decomposition cost we can match the lower bound (as stated in Theorem 6), but we can232

match it for a large variety of specific setting of the basic counts (as long as they are good, as233

stated in Theorem 7). While Theorem 7 does not state that the lower bound holds for any234

setting of the counts {c̄i}i∈[r], as we discuss in Section 5.1, some of the constraints on these235

counts (detailed in Definition 17) are unavoidable. It remains an open question whether this236

set of constraints can be weakened, or perhaps more interestingly, whether, given that a set237

of constraints that is not good, can a better upper bound be devised.238

1.2 Organization of the paper239

We give some preliminaries in Section 2. The discussion on additional related works on240

sublinear motif counting and sampling is deferred to Appendix A. In Section 3 we give a241

high level overview of our techniques. We present our algorithms for uniformly sampling242

stars and arbitrary motifs H in Section 4. Due to page limitation, the full details of the243

ℓp-sampler, approximation algorithm, as well as the decomposition-optimal lower bounds are244

deferred to the full version of this paper.245

2 Preliminaries and Notation246

Let G = (V, E) be a simple undirected graph. We let n denote the number of vertices in247

the graph. We think of every edge {u, v} in the graph as two oriented edges (u, v) and248

(v, u), and slightly abuse notation to let m denote the number of oriented edges, so that249

m =
∑

v∈V d(v) = 2|E|, and davg = m/n. Unless explicitly stated otherwise, when we say250

“edge” we mean an oriented edge. We let d(v) denote the degree of a given vertex. We let [r]251

denote the set of integers 1 through r.252

The augmented query model. We consider the augmented query model which allows253

for the following queries. (1) A degree query, deg(v), returns the degree of v, d(v); (2) An254

XX:8 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

ith neighbor query, Nbr(v, i) returns the ith neighbor of v if i ≤ d(v), and otherwise returns255

FAIL; (3) A pair query, pair(u, v), returns whether (u, v) ∈ E; and (4) Uniform edge query256

returns a uniformly distributed (oriented) edge in E.257

A decomposition into odd cycles and stars. Given a motif H, the result in [3] is258

parameterized by the fractional edge cover number ρ(H). The fractional edge cover number259

is the optimal solution to the linear programming relaxation of the integer linear program260

(ILP) for the minimum edge cover of H: The ILP allows each edge to take values in {0, 1},261

under the constraint that the sum of edge values incident to any vertex v is at least 1.262

The LP relaxation allows values in [0, 1] instead, and ρ(H) is the minimum possible sum263

of all the (fractional) values. In [3], the authors strengthen an existing result by Atserias,264

Grohe nd Marx [4], in order to prove that there always exists an optimal solution as follows.265

All of the weight (i.e., non zero edges) is supported on (the edges of) vertex-disjoint odd266

cycles and stars, where each odd cycle edge has weight 1/2, and each star edge has weight 1.267

Consequently, the corresponding optimal solution of the LP for a given graph H is equivalent268

to a decomposition of H into a collection of vertex-disjoint odd cycles and stars, denoted269

D∗(H) = {Ok1 , ..., Okq
, Sp1 , ..., Spℓ

}. See Figure 1 for an illustration.270

Generally, the motif we aim to sample (or approximate its counts) will be denoted by H,271

and the corresponding decomposition will be D(H) = {Ok1 , ..., Okq
, Sp1 , ..., Spℓ

} = {Ci}i∈r272

for r = q + ℓ. We use a convention of using Oki
to refer to the ith decomposition component273

which is an odd cycle of size ki, and Spi to refer to the ith star component, which is a star274

with pi petals. We use ōk and s̄p denote the number of k-cycles and p-stars in G respectively,275

and we use h̄ to denote the number of copies of H in G.276

Next, we formally define the fractional edge cover of a graph (or motif), and the resulting277

decomposition. We note that in this paper we will be interested in the decomposition of the278

motif H, and not the graph G.279

▶ Definition 8 (Fractional edge cover). A fractional edge cover of a graph is a function280

f : E → R≥0 such that for every v ∈ V ,
∑

e∋v f(e) ≥ 1. We say that the cost of a given281

edge cover f is
∑

e∈E f(e). For any graph (motif) H, its fractional edge cover value is the282

minimum cost over all of its fractional edge covers, and we denote this value by ρ(H). An283

optimal edge-cover of H is any edge cover of H with cost ρ(H).284

▶ Lemma 9 (Lemma 4 in [3]). Any graph (motif) H admits an optimal fractional edge cover285

x∗, whose support, denoted SUPP (x∗), is a collection of vertex-disjoint odd cycles and stars,286

such that:287

for every odd cycle C ∈ SUPP (x∗), for every e ∈ C, x∗(e) = 1/2.288

for every e ∈ SUPP (x∗) that does not belong to an odd cycle, x∗(e) = 1.289

▶ Definition 10 (Decomposition into odd-cycles and stars). Given an optimal fractional edge-290

cover x∗ as in Lemma 9, let {Ok1 , ..., Okq } be the odd-cycles in the support of x∗, and let291

{Sp1 , ..., Spℓ
} be the stars. We refer to D∗(H) := {Ok1 , ..., Okq

, Sp1 , ..., Spℓ
} as an (optimal)292

decomposition of H.293

Given a graph (motif) H, its fractional edge cover value and an optimal decomposition294

can be computed efficiently:295

▶ Theorem 11 (Lemma 4 and Section 3 in [3]). For any graph H, its fractional edge cover296

value ρ(H) and an optimal decomposition D∗(H) can be computed in polynomial time in |H|.297

3 Overview of Our Results and Techniques298

We start with describing the ideas behind our upper bound result.299

A. S. Biswas, T. Eden and R. Rubinfeld XX:9

3.1 An algorithm for sampling arbitrary motifs300

We take the same approach as that of [22], of sampling towards estimating, but improve on301

the query complexity of their bound using two ingredients. The first is an improved star302

sampler, and the second is an improved sampling approach.303

Improved star sampler. The algorithm of [22] tries to sample p-stars by sampling304

p edges uniformly at random, and checking if they form a star (by simply checking if all p305

edges agree on their first endpoint). Hence, each p-star is sampled with probability 1/mp.306

Our first observation is that it is more efficient to sample a single edge (u, v) and then sample307

p − 1 neighbors of v uniformly at random, by drawing (p − 1) indices i1, . . . , ip in [d(v)]308

uniformly at random, and performing neighbor queries (v, ij) for every j ∈ [p − 1]. However,309

this sampling procedure introduces biasing towards stars that are incident to lower degree310

endpoints. If we were also given an upper bound dub on the maximal degree in the graph, i.e.,311

a value dub such that dmax ≤ dub, where dmax is the maximum degree in G, then we could312

overcome the above biasing, by “unifying” all the degrees in the graph to dub. Specifically,313

this unification of degrees is achieved by querying the ith neighbor of a vertex, where i is314

chosen uniformly at random in [dub], rather than in [d(v)].7 By repeating this process p − 1315

times, we get that each specific copy of a p-star is sampled with equal probability 1
m·(dub)p−1 .316

Observe that this is always preferable to 1/mp, i.e. 1
m·(dub)p−1 > 1

mp
, since for every graph317

G, dub < m. While we are not given such a bound on the maximal degree, letting s̄p denote318

the number of p-stars in G, it always holds that dmax ≤ min{n, s̄1/p
p } (since every vertex319

with degree d > p contributes dp to s̄p). Hence, we can use the existing algorithms for star320

approximations by [25, 2, 16] in order to first get an estimate ŝp of s̄p, and then use this321

estimate to get an upper bound dub on dmax by setting dub = min{n, ŝ1/p
p }.322

An improved sampling approach. In order to describe the second ingredient for323

improving over the bounds of [22], we first recall their algorithm. In the first step, their324

algorithm simultaneously attempts to sample a copy of each odd cycle and star in the325

decomposition of H . Then if all individual sampling attempt succeed, the algorithm proceeds326

to check if the sampled copies are connected in G in a way that is consistent with the327

non-decomposition edges of H. However, it is easy to see that this approach is wasteful.328

Even if all but one of the simultaneous sampling attempts of the first step succeed, the329

algorithm starts over. For example, if D∗(H) consists of a star and a triangle, then in the330

first step their algorithm attempts to sample simultaneously a star and a triangle, and in the331

case that, say, a triangle is sampled but the star sampling attempt fails, then the sampled332

triangle is discarded, and the algorithm goes back to the beginning of the first step.333

To remedy this, in the first step our algorithm invokes the star- and odd-cycle samplers for334

every basic component in D∗(H), until all samplers return an actual copy of of the requested335

component. This ensures that we proceed to the next step of verifying H only once we have336

actual copies of all the basic components. We then continue to check if these copies can be337

extended to a copy of H in G, as before. While this is a subtle change, it is exactly what338

allows us to replace the dependency in the maximum number of potential copies of the basic339

components, to a dependency in the actual number of copies in G.340

We note that for motifs H whose decomposition has repeating smaller sub-motifs, our341

sampling approach can be used recursively, which can be more efficient. That is, instead342

of decomposing H to its most basic components, stars and odd-cycles, we can consider343

7 This is effectively equivalent to rejection sampling where first v is “kept” with probability d(v)/dub, and
then a neighbor of v is sampled uniformly at random.

XX:10 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

decomposing it to collections of more complex components. For example, if H has such a344

collection H1 ⊂ H that is repeated more than once, then it is more beneficial to first try345

and sample all of the copies of H1 (as well as the other components of H) and only then try346

to extend these copies to H. The sampling of the H1 copies can then be performed by a347

recursive call to the motif sampler. It can be shown that for any repeated motif H1 in the348

decomposition of H, applying the recursive sampling process results in an improved upper349

bound.350

3.1.0.1 From sampling to estimating351

In order to obtain a (1 ± ϵ)-estimate of h̄, we can use the sampling algorithm as follows.352

Consider a single sampling attempt in which we first sample all basic components of D∗(H)353

(at some cost Q), and then preform all pair queries between the components to check if the354

sampled components induce a copy of H (at cost O(|H|2)). By the above description such355

an attempt succeeds with probability that depends on the counts of the basic components of356

D∗(H) and on the count h̄. Hence we can think of the success probability of each attempt357

as a coin toss with bias p, where p depends only on the counts of the components and h̄.358

By standard concentration bounds, using Θ(1/(pϵ2)) sampling attempts, we can compute a359

(1 ± ϵ)-estimate p̂ of p. Since we can also get (1 ± ϵ)-multiplicative estimates of the counts of360

each basic component without asymptotically increasing the running time, we can deduce361

from p̂ a (1 ± Θ(ϵ))-estimate of h̄. See the full version for more details.362

3.2 Decomposition-optimal lower bounds363

Theorem 6 follows from Theorem 7. In order to prove Theorem 6, we first prove364

Theorem 7 (in Section 5), and then prove that Theorem 6 follows from Theorem 7 (in365

Section 5.4). We first explain the intuition as to why Theorem 6 follows from Theorem 7.366

At a high level, Theorem 7 states that given (1) a decomposition D and (2) a set of good367

counts {c̄i}i∈[r], we can construct (3) a motif HD (such that D is an optimal decomposition368

of HD) and (4) a family of graphs G such that expected number of queries required to369

sampling copies of HD in G is370

max
i∈[r]

{cost(Ci)} ·
∏

c̄i

h̄
.371

Theorem 6 states that given (a) a decomposition D and (b) a (realizable) decomposition cost372

dc, that there exists (c) a motif HD and (d) a family of graphs for which the decomposition-373

cost of G, D and HD is dc, and sampling copies of HD in graphs of G requires Ω(dc)374

queries.375

To prove that Theorem 6 follows from Theorem 7, we then prove that given (a) and (b),376

we can specify a set of counts which both satisfies dc = maxi∈[r] {cost(Ci)} ·
∏

c̄i

h̄ and which377

is good. Since the set of counts is good, we can invoke Theorem 7, and get that there exists378

a motif HD and a family of graphs in which it is hard to sample copies of HD. We formalize379

this argument in Lemma 24, and in the rest of the section we focus our attention on the380

proof of Theorem 7.381

Ideas behind the proof of Theorem 7. Given a graph decomposition D, values n,382

m, h̄ and a set of counts c̄1, ..., c̄r of its basic components, our lower bound proof starts by383

defining a motif HD, and a family of graphs G such that the following holds.384

The optimal decomposition of HD is D;385

A. S. Biswas, T. Eden and R. Rubinfeld XX:11

For every G ∈ G and Oki , Spj ∈ D, their number of copies in G is Θ(ōki) and Θ(s̄pj),386

respectively;387

The number of copies of H in G is Θ(h̄)388

Sampling a uniformly distributed copy of HD in a uniformly chosen G in G, requires389

Ω (min {m, dc}) queries in expectation.390

There are several challenges in proving our lower bound. First, as they are very general391

and work for any given decomposition D that contains at least one odd cycle, there are many392

sub cases that need to be dealt with separately, depending on the mixture of components in393

D. Second, the lower bound term does not only depend on the different counts, but also on394

the relations between them, which determines the component that maximizes cost(Ci). As395

mentioned previously, our lower bound only holds for the case that the max cost is due to396

an odd cycle component. It remains an open question whether a similar lower bound can397

be proven for the case that the max cost is due to a star, or whether in that case a better398

algorithm exists. The authors suspect the latter option. Third, as in most previous lower399

bounds for motif sampling and counting, we prove the hardness of the task by “hiding” a400

constant fraction of the copies of HD, so that the existence of these copies depends on a401

small set of crucial edges. That is, we prove that we can construct the family of graphs G,402

such that for every G ∈ G, a specific set of t crucial edges, for some small t that depends403

on the basic counts and h̄, contributes Θ(h̄) copies of HD . We then prove that detecting404

these edges requires many queries (this is formalized by a reduction from a variant of the405

Set-Disjointness communication complexity problem, based on the framework of [18]).406

This approach of constructing many copies of HD which all depend on small set of crucial407

edges, leads the construction of the graphs G to contain very dense components, which in turn408

causes correlations between the counts of the different components. A significant challenge is409

therefore to define the motif HD and the graphs of G in a way that satisfies all given counts410

simultaneously.411

In each graph G in the hard family G, we have a corresponding “gadget” to each of412

the components of D. Let k1 denote (one of) the maximum-cost odd-cycle components.413

For each odd-cycle component Oki for ki ̸= k1, we define either a few-cycles-gadget or414

a cycle-gadget that induce ōki
odd cycles of length ki according to the relation between415

ki and k1. For each star component Spj
we define a star-gadget that induces s̄pj

many416

pj-stars. The maximum-cost cycle component Ok1 has a different gadget, a CC-gadget. This417

gadget is used to hide the set of t crucial edges, and allows us to parameterize the complexity418

in terms of the cost cost{Ok1}.419

To formally prove the lower bound we make use the framework introduced in [18], which420

uses reductions from communication complexity problems to motif sampling and counting421

problems in order to prove hardness results of these latter tasks. This allows us to prove422

that one cannot, with high probability, witness an edge from the set of t hidden edges, unless423

Ω(m/t) queries are performed. This in turn implies that one cannot, with high probability,424

witness a copy of HD contributed by these edges. Hence, we obtain a lower of Ω(m/t) for the425

task of outputting a uniformly sampling. Setting t appropriately gives the desired bound.426

4 Upper Bounds for Sampling Arbitrary Motifs427

In this section we present our improved sampling algorithm. Recall that our upper bound428

improvement has two ingredients, an improved star sampler, and an improved sampling429

approach. We start with presenting the improved star sampling algorithm.430

XX:12 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

4.1 An optimal (ℓp) star-sampler431

Our star sampling procedure assumes that it gets as a parameter a value ŝp which is a432

constant-factor estimate of s̄p. This value can be obtained by invoking one of the star433

estimation algorithm of [2, 16].434

▶ Lemma 12 ([2], Theorem 1). Given query access to a graph G and an approximation435

parameter ϵ, there exists an algorithm, Moment-Estimator, that returns a value ŝp, such that436

with probability at least 2/3, ŝp ∈ [s̄p, 2s̄p]. The expected query complexity and running time437

O

(
min

{
m, min

{
m·np−1

s̄p
, m

s̄1/p
p

}
· log log n

})
.438

Given an estimate ŝp on s̄p, our algorithm sets an upper bound8 dub on the maximal439

degree, dub = min{n, ŝp}. It then tries to sample a copy of a p-star as follows. In each440

sampling attempt it samples a single edge (v0, v1), and then performs p − 1 neighbor queries441

nbr(v0, ij) for j = 2 . . . p, where each ij is chosen independently and uniformly at random from442

[dub]. In order to ensure that the sampled neighbors are distinct, and to avoid multiplicity443

issues, a p-star is returned only if its petals are sampled in ascending order of ids. In every444

such sampling attempt, each specific p-star is therefore sampled with equal probability 1
m·dp−1

ub

.445

Hence, invoking the above m·dp−1
ub

s̄p
times, in expectation, returns a uniformly distributed copy446

of a p-star.447

Sample-a-Star(p, n, ŝp)
1. Let dub = min{n, (cp · ŝp)1/p} for a value cp as specified in the proof of Theorem 13.
2. While TRUE:

a. Perform a uniform edge query, an denote the returned edge (v0, v1).
b. Choose p − 1 indices i2, . . . , ip uniformly at random in [dub] (with replacement).
c. For every j ∈ [2..p], query the ith

j neighbor of v0. Let v2, . . . , vp be the returned
vertices, if all queries returned a neighbor. Otherwise break.

d. If id(v2) < id(v2) < . . . < id(vp), then return (v0, v1, . . . , vp).

▶ Theorem 13. Assume that ŝp ∈ [s̄p, c·s̄p] for some small constants c. The procedure Sample-448

a-Star(p, ŝp) returns a uniformly distributed p-star in G. The expected query complexity of449

the procedure is O

(
min

{
m·np−1

s̄p
, m

s̄1/p
p

})
.450

Proof. Let cp denote the minimal value such that for every k ∈ [n], cp ·
(

k
p

)
≥ kp (note that451

cp = Θ(p!)). Then s̄p =
∑

v∈V

(
d(v)

p

)
>
(

dmax

p

)
≥ dp

max/cp, and by the assumption on ŝp,452

dmax < (cp · s̄p)1/p ≤ (cp · ŝp)1/p. It follows by the setting of dub = min{n, (cp · ŝp)1/p} in453

Step 1, that dub ≥ dmax.454

Consider a specific copy S̄p = (a0, a1, . . . , ap) of a p-star in G, where a0 is the star center455

and a1 through ap are its petals in ascending id order. In each iteration of the while loop,456

the probability that S̄p is returned is457

Pr[S̄p is returned] = Pr[(a0, a1) is sampled in Step 2a] · Pr[a2, ..., ap are sampled in Step 2b]458

= 1
m

· 1
dp−1

ub

. (2)459

8 Observe that dmax is dmax = maxv d(v), while dub is simply a bound on dmax, so that dmax ≤ dub.

A. S. Biswas, T. Eden and R. Rubinfeld XX:13

460

Note the the last equality crucially depends on d(v) ≤ dmax ≤ dub for all v ∈ V . (Indeed, if461

there exists a vertex v with degree d(v) > dub, then some of its incident stars will have zero462

probability of being sampled.) Hence, each copy is sampled with equal probability, implying463

that the procedure returns a uniformly distributed copy of a p-star.464

We now turn to bound the expected query complexity. It follows from Equation 2 and465

the setting of dub, that the success probability of a single invocation of the while loop is466

s̄p

m·dp−1
ub

. Hence, the expected number of invocations is m·dp−1
ub

s̄p
. It follows that, for a constant467

p, the expected number of invocations is468

O

(
m · min{n, (cp · s̄p)1/p}p−1

s̄p

)
= O

(
min

{
m · np−1

s̄p
,

m

s̄1/p
p

})
.469

Since the query complexity and running time of a single invocation of the while loop are470

constant, the above is also a bound on the expected query complexity and running time of471

the while loop. ◀472

In the full version of this paper, we explain how algorithm Sample-a-Star can be slightly473

modified to produce an ℓp-sampler, Sublinear-ℓp-Sampler as specified in Theorem 2.474

4.2 General motif sampler475

Our algorithm for sampling uniform copies of a motif H in a graph G relies on the above476

star sampler, and the odd cycle sampler of [22].477

▶ Lemma 14 (Lemma 3.3 in [22], restated). There exists a procedure that, given a parameter478

k and an estimate m̂ ∈ [m, 2m] , samples each specific copy of an odd cycle of length k with479

probability 1/mk/2.480

It follows that by repeatedly invoking the procedure above until an odd cycle is returned481

we can get an odd cycle sampling algorithm.482

▶ Corollary 15. There exists a procedure, Sample-Odd-Cycle, that, given an estimate m̂ ∈483

[m, 2m], returns a uniformly distributed copy of an odd cycle of length k. The expected query484

complexity is O
(

min
{

m log n, n + m, mk/2

ōk

})
, where ōk denotes the number of odd cycles485

of length k in G.486

We also use the following algorithm from [24] to obtain an estimate of m.487

▶ Theorem 16 ([24], Theorem 1, restated). There exists an algorithm that, given query488

access to a graph G, the number of vertices n, and a parameter ϵ, returns a value m̃, such489

that with probability at least 2/3, m̃ ∈ [m, (1 + ϵ)m]. The expected query complexity and490

running time of the algorithm is O(n/
√

m) · (log log n/ϵ2).491

Our motif sampling algorithm invokes the star-sampler and odd-cycles-sampler for each492

of the star and odd-cycles components in D∗(H), respectively. Once actual copies of all the493

components are sampled, it checks whether they form a copy of H in G, using O(|H|2) = O(1)494

additional pair queries.495

We are now ready to prove our main upper bound theorem, which we recall here.496

XX:14 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

Sample-H (H, n)
1. Compute a 2-factor estimate m̂ of m by invoking the algorithm of [24] with ϵ = 1/2

for 10 log n times, and letting m̂ be the median of the returned values.
2. Compute an optimal decomposition of H, D∗(H) = {Ok1 , ..., Okq

, Sp1 , ..., Spℓ
}.

3. For every Spi in D, invoke algorithm Moment-Estimator with ϵ = 1/2 and r = pi for
t = 10 log(n · ℓ) times to get t estimates of s̄pi

. Let ŝpi
be the median value among

the t received estimates of each Spi .
4. While True:

a. For every i ∈ [q] do:
i. Invoke Sample-Odd-Cycle(ki, m̂), and let Ōi be the returned odd cycle.

b. For every i ∈ [ℓ] do:
i. Invoke Sample-a-Star(pi, n, ŝpi), and let S̄j be the returned sj-star.

c. Perform O(|H|2) pair queries to verify whether the set of components
{Ō1, . . . , Ōq, S̄1, . . . , S̄ℓ} can be extended to a copy of H in G.

d. If a copy of H is discovered, then return it.
e. If the number of queries performed exceeds n + m̂, then query all edges of the

grapha and output a uniformly distributed copy of H.
a by either performing n degree queries and 2m neighbor queries, or 10m log n uniform edge queries

▶ Theorem 5. Let G be a graph over n vertices and m edges, and let H be a motif such
that D∗(H) = {Ok1 , ..., Okq

, Sp1 , ..., Spℓ
} = {Ci}i∈[r]. There exists an algorithm, Sample-H,

that returns a copy of H in G. With probability at least 1 − 1/ poly(n), the returned copy is
uniformly distributed in G. The expected query complexity of the algorithm is

O (min {decomp-cost(G, H, D∗(H)), m}) · log n log log n.

Proof. By Theorem 16, when invoked with a value ϵ = 1/2, the edge estimation algorithm497

of [24] returns a value m̃ such that, with probability at least 2/3, m̃ ∈ [m, 1.5m]. Hence,498

with probability at least 1 − 1/3n2, the median value m̂ of the 10 log n invocations is such499

that m̂ ∈ [m, 1.5m]. We henceforth condition on this event.500

We next prove that with probability at least 1 − 1/3n2, all the computed ŝpi
values are501

good estimates of s̄pi
. By Lemma 12, for a fixed pi, with probability at least 2/3, the value502

returned from Moment-Estimator is in [ŝpi , 1.5 · ŝpi]. Therefore, the probability that the503

median value of the t = 10 log(nℓ) invocations in Step 3 is outside this range is at most504

1/(3ℓn2). Hence, taking a union bound over all i ∈ [ℓ], with probability at least 1 − 1/3n2,505

for every i ∈ [ℓ], ŝpi
∈ [s̄p, 1.5 · s̄p]. We henceforth condition on this event as well.506

Fix a copy H ′ of H in G, and let O′
1, ..., O′

q, S′
1, ..., S′

ℓ be its cycles and stars, corresponding507

to those of D∗(H). By Corollary 15, for each O′
i, its probability of being returned in Step 4(a)i508

is 1/ōki
. Similarly, by Lemma 13, for each S′

i, its probability of being returned in Step 4(b)i is509

1/s̄pi
. Therefore, in the case that the number of queries does not exceed m̂, in every iteration510

of the loop, each specific copy of H is returned with equal probability 1
Πq

i=1ōki
·Πℓ

i=1s̄pi

. 9
511

Hence, once a copy of H is returned, it is uniformly distributed in G. In the case that the512

number of queries exceeds m̂, the algorithm either performs n + 2m queries to query all513

the neighbors of all vertices, or 10m log n queries, in order to discover all edges with high514

9 To avoid multiplicity issues, if some components are repeated in the decomposition more than once,
then we can assign ids to small components and verify they are sampled in ascending id order.

A. S. Biswas, T. Eden and R. Rubinfeld XX:15

probability. In the former case, the entire graph G is known. In the latter case, by the515

coupon collector analysis, the probability that all edges are known at the end of the process516

is at least 1 − 1/3n2. Hence, with probability at least 1 − 1/3n2, at the end of this process, a517

uniformly distributed copy of H is returned.518

It remains to bound the query complexity. By Lemma 12, Step 3 takes
∑

pi
t ·519

min
{

m·npi−1

s̄pi
, m

s̄1/pi
pi

}
· log n log log n queries in expectation. By the above discussion, it holds520

that the expected number of invocations of the while loop is Πq
i=1ōki

·Πℓ
i=1s̄pi

h̄ . Furthermore, by521

Lemma 13, the expected query complexity of sampling each Spi
is min

{
m·npi−1

s̄pi
, m

s̄1/pi
pi

}
. By522

Lemma 15, the expected running time of each invocation of the ki-cycle sampler is O
(

mki/2

ōki

)
.523

The complexity of Step 4c is O(|H|2) = O(1) queries, and is subsumed by the complexity of524

the other steps. Hence, the expected cost of each invocation of the while loop is525

max
i∈[q]

{
mki/2

ōki

}
+max

i∈[ℓ]

{
min

{
m

s̄1/pi
pi

,
m · npi−1

s̄pi

}}
= max

i∈[q]

{
mki/2

ōki

}
+min

{
m

s̄1/p
p

,
m · np−1

s̄p

}
,526

where the equality holds since the maximum of the second term is always achieved by the527

largest star in the decomposition, Sp. Also, due to Step 4e and the assumption on m̂, the528

query complexity of algorithm is always bounded by O(min{m log n, n + m}). Therefore, the529

overall expected query complexity is the minimum between O(min{m log n, n + m}) and530

O

((
max
i∈[q]

{
mki/2

ōki

}
+ min

{
m · np−1

s̄p
,

m

s̄1/p
p

}
· log n log log n

)
·
∏

i∈[r] c̄i

h̄

)
531

= O

(
min

{
max
i∈[r]

{cost(Ci)} ·
∏

c̄i

h̄
, m

}
· log n log log n

)
532

= O (min {decomp-cost(G, H, D∗(H)), m, n} · log n log log n) ,533
534

as claimed. ◀535

5 Lower Bounds536

In this section we prove our main lower bounds statements, Theorem 6 and Theorem 7. We537

defer the proof that the former follows from the latter to Section 5.4, and start with proving538

Theorem 7, stated here again for the sake of convenience.539

▶ Theorem 7. For any decomposition D = {Ok1 , ..., Okq
, Sp1 , ..., Spℓ

} = {Ci}i∈r that540

contains at least one odd cycle component, for every n, m, h̄ and a set of good counts,541

{c̄i}i∈[r] = {ōk1 , ..., ōkq
, s̄p1 , ..., s̄pℓ

}, as defined in Definition 17 of the full version, the542

following holds. There exists a motif HD, with an optimal decomposition D, and a family of543

graphs G over n vertices and m edges, as follows. For every G ∈ G, the basic components544

counts are as specified by {c̄i}i∈[r], the number of copies of HD is h̄, and the expected query545

complexity of sampling (whp) a uniformly distributed copy of HD in a uniformly chosen546

G ∈ G is547

Ω
(

min
{

max
i∈[r]

{cost(Ci)} ·
∏

i c̄i

h̄
, m

})
.548

We next formalize the definition of good counts.549

XX:16 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

5.1 Good counts550

▶ Definition 17 (Good counts). We say that a set of counts n, m and ōk1 , ..., ōkq
, s̄p1 , ..., s̄pℓ

, h̄551

is good if the following hold.552

1. The counts are realizable; that is, there exist a graph G and a motif HD with optimal553

decomposition D that realize these counts.554

2. The max component cost is due to an odd cycle component. That is,555

argmaxi∈[r]{cost(Ci)} = Oki
for some odd cycle component Oki

∈ D. Assume without556

loss of generality that Ok1 is the odd cycle that maximizes maxi∈[r]{cost(Ci)}.557

3. ∀kj > ki, if ōki ≤
√

m
ki−1, then ,

(
ōkj

)1/(kj−1) ≥ (ōki)
1/(ki−1).558

Otherwise, if ōki >
√

m
ki−1,

(
ōkj

)1/kj ≥ (ōki)
1/ki .559

4. For every j ∈ [ℓ], s̄pj
≥

√
m

pj+1.560

5. At least one of the followings hold.561

a. Let k∗ be the index of the Ok that maximizes ō1/k
k . There exists at least one star Sp562

in D with s̄p = ω
(
m · (ōk∗)(p+1)/k∗

)
. Observe that it always holds that ō1/k∗

k∗
≤

√
m,563

so if s̄p = ω(
√

m
p+3) then this constraint holds.564

b. For every ki ≤ k1, k̄i ≤
√

m
ki−1.565

6. At least one of the followings hold.566

a. For at least one of the cycles Ok, it holds that ōk ≤
√

m
k−1, and for every p, s̄p ≥ np.567

b. The s̄pi
counts are such there exists a set A of

√
m integers a1, . . . , a√

m so that568

∀i, ai ≤ n,
∑

i ai ≤ m, and
∑

i api

i = s̄pi
.569

As discussed in the introduction, some of the above constraints are unavoidable, and570

some arise due to the way we construct the graphs G in the hard family G. Details follow.571

1. Constraint 1 simply states that the given counts can be realized by some graph and is572

therefore unavoidable.573

2. Constraint 2 implies that our upper bound is tight only in the case that the max cost is574

due to an odd cycle and not due to a star component. We leave it as an open question575

whether for the case that the max component cost is due to a star, a new lower bound576

can be designed or an improved algorithm can be devised.577

The rest of the constraints arise from the way we construct the basic structure of the graphs578

in the “hard” family of graphs in the proof of the lower bound.579

3. Constraint 3: for each cycle Oki such that ōki≥
√

mki−1 , we “pack” the Θ(ōki) ki length odd580

cycles in a ki-partite subgraph. This inadvertently results in the creation of Θ((ōki)kj/ki)581

odd-cycles for any kj ≥ ki length odd cycle component.582

4. Constraint 4: Recall that in order to prove the lower bound we “hide” as set of t crucial583

edges which create Θ(h̄) of the copies of HD. To hide the edges, we use a subgraph with584

density Θ(
√

m), which again inadvertently induces Θ(
√

m
p+1) p-stars for every p ∈ [

√
m].585

5. Constraint 5: Let k′ denote the min length odd cycle component in D. If for example586

ōk′ =
√

m
k′

, then our gadget for creating ōk odd cycles also maximizes (up to constant587

factors) the counts of all odd cycles for every ki, and therefore might induce too many588

copies of HD. To avoid such a scenario, we require that either there exists at least one589

star in D with counts strictly greater than what could be created by a cycle gadget590

(in 5a); or that the number of short cycles, i.e., cycles of length ki ≤ k1, does not exceed591 √
m

ki−1 (in 5b). In the latter case the corresponding gadget can have a single vertex592

which is incident to all cycles, and therefore, no two vertex-disjoint odd cycles can be593

formed, so that no copies of HD are formed solely by this gadget.594

A. S. Biswas, T. Eden and R. Rubinfeld XX:17

6. Constraint 6 arises from the way we connect the odd cycles and stars in the graphs of595

G. The first item, 6a, simply states that the count of one of the cycles which is not the596

max cost cycle is not maximized. In such a case the corresponding cycle gadget will have597

one part with a single vertex, which will allow us to connect it to a set of n vertices that598

induce the s̄p counts in the corresponding star gadget. The second item, item 6b, states599

that there exists a set A of |A| ≤
√

m (rather than n) integers (that will later determine600

the degrees of |A| vertices), so that for every p,
∑

ai∈A ap
i = s̄p. 10

601

We note that while there are indeed many constraints required by our construction,602

these constraints are satisfiable by many sets of possible counts. Indeed in order prove that603

Theorem 6 follows from Theorem 7 (see proof of Lemma 24), we show that for every realizable604

value of decomp-cost(G, H, D∗(H)), there exists a set a set of good counts {c̄i}i∈[r], which605

satisfies all of the constraints of Definition 17.606

We continue to describe the different ingredients required for our proof. We make use of607

the framework for proving graph estimation lower bounds via communication complexity608

reductions given in [18]. The framework makes use of the following communication problem.609

▶ Theorem 18. In the t-Set-Disjointness variant of the Set-Disjointness problem,610

Alice and Bob are given {0, 1}-matrices x⃗, y⃗ ∈ {0, 1}N × {0, 1}N , respectively. Under the611

promise that either there exists t pairs of indices such that xi,j = yi,j = 1, or that there exists612

0 such indices. The goal of Alice and Bob is then to distinguish between these two cases. We613

will denote the set of intersections by z⃗, where z⃗i,j = x⃗i,j ∧ y⃗i,j.614

The idea is to construct an embedding of the t-Set-Disjointness communication problem615

to a graph Gz⃗, such that the following holds. First, every query performed on Gz⃗ can be616

answered by exchanging B bits of communication for a constant B. Second, one can solve617

the given t-Set-Disjointness instance by sampling uniformly distributed copies of HD in618

Gz⃗. The parameter t in the t-Set-Disjointness problem is set according to m, h̄ and the619

counts of the basic components of D, to ensure that the lower bound on the communication620

complexity problem implies the desired lower bound specified in Theorem 7.621

▶ Theorem 19 (Corollary 2.7 in [18]). The communication complexity of t-Set-Disjointness622

is Ω(N2/t).623

We shall prove that the problem of t-Set-Disjointness can be reduced to the problem of624

estimating the number of copies of H in a graph Gz⃗, such that each query in Gz⃗ can be625

answered in constant time. Namely, we prove that for a given h̄, the graph Gz⃗ consists of626

several gadgets, that are independent of the instance (x⃗, y⃗), and a CC-gadget gadget that627

embeds the instance (x⃗, y⃗) to the graph Gz⃗ as follows. If (x⃗, y⃗) intersect, then at least a628

constant factor of the copies of HD in Gz⃗ are contributed by this gadget, and otherwise this629

gadget contributes no copies. The family of graphs G is then defined to be the collection of630

graphs {Gz⃗} for all possible z⃗ that are the intersection of an t-Set-Disjointness instance.631

10 Note that indeed there exists many valid counts (ones which can be realized by some graph) that satisfy
this constraint. Consider first a bipartite graph G0 = A ∪ B with |A| =

√
m, |B| = n, where each vertex

in A has degree Θ(
√

m), and each vertex in B has degree O(
√

m). Then in this graph, all star counts
are exactly s̄p =

√
m

p+1 as required by the second constraint. To get higher values of the counts s̄p, we
can simply move edges around, one edge at a time, as to skew the set of degrees of the vertices of A.
Let Gt denote the graph resulting from the above process at time t. This process ends after r steps,
with a graph Gr = A′ ∪ B′ as follows. A′ has davg vertices with degree n, and

√
m − davg vertices of

degree 0, and B has n vertices with degree davg. This graph maximizes the s̄p counts, s̄p = davg · np for
any p. At each time step t, the set of counts s̄p1 , . . . , s̄pℓ of the pi-stars in Gt satisfies constraint 6b.

XX:18 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

Thus by uniformly sampling copies of HD, one can distinguish between the case that x⃗, y⃗632

are disjoint to the case where they intersect (by sampling a constant number of copies and633

checking if some are contributed by the CC-gadget). It follows that for every N and t,634

Ω(N2/t) queries are required in order to sample uniform copies of H.635

Our lower bound theorem is very generic as it works for any decomposition that contains636

at least one cycle, and for a variety of plausible basic component counts (those that meet the637

constraints specified in Definition 17). Hence, we shall start with a (sketched) proof for a638

specific easy basic case. The ideas in proving the general case will be the same, however due639

to the generality of the statement, many technical difficulties arise in satisfying all counts640

simultaneously. Hence, we defer that analysis of the general case to Subsection 5.3.641

5.2 Warm up: a lower bound for a decomposition D = {O3, Sp}642

In this section we prove the first term in our lower bound for a specific decomposition,643

D = {O3, Sp} and for the case that lower bound is sublinear in m, and the max cost in the644

bound is due to the O3 component.645

▶ Theorem 20. Let D = {O3, Sp} be a decomposition and assume that we are given the646

counts n, m, ō3, s̄p and h̄. Further assume that the counts are such that s̄p ≥
√

m
p+1,647

max{cost(O3), cost(Sp)} = cost(O3) and h̄ ≥
√

m · s̄p. Then there exist a motif HD with648

decomposition D, and a family of graphs G such that for every G ∈ G the counts are as above649

(up to constant factors), and such that sampling a uniformly distributed copy of HD in a650

uniformly chosen G ∈ G requires651

Ω
(

max
i

(cost(Ci)) · ō3 · s̄p

h̄

)
= Ω

(
m3/2 · s̄p

h̄

)
652

queries in expectation.653

Proof Sketch. By the above it holds that h̄ ≤
∏

i c̄i, we let α =
∏

i c̄i/h̄ so that α > 1. We654

shall rearrange the lower bound:655

m3/2 · s̄p

h̄
= m3/2

ō3
· ō3 · s̄p

h̄
= m3/2

ō3
· α = m3/2

ō3/α
.656

The family G is the set of graphs {Gz⃗} for all possible vectors z⃗ = x⃗ · y⃗ where (x⃗, y⃗)657

are instances of the t-Set-Disjointness problem, for a value t that will be set shortly.658

Fix an instance (x⃗, y⃗) of t-Set-Disjointness and let z⃗ = x⃗ · y⃗. We shall describe an659

embedding from z⃗ to Gz⃗ so that sampling a uniformly distributed copy of HD in Gz⃗ solves660

t-Set-Disjointness on (x⃗, y⃗). We set t = ⌊|T |/
√

m⌋ = ⌊ō3/(
√

m · α)⌋ so that m3/2

o3/α = m
t661

and we consider the case that N =
√

m, so that Ω(N2/t) = Ω(m/t) = Ω(m3/2/(o3/α)).662

Observe that this setting is valid since, by the assumption that the complexity is sublinear663

in m, it holds that m3/2·s̄p

h̄ ≤ m, implying that h ≥
√

m · s̄p. Therefore, ō3·s̄p

α ≥
√

m · s̄p, and664

it follows that o3/(
√

m · α) ≥ 1 so that t ≥ 1.665

We let HD be the motif of a triangle connected by a single edge to a star Sp. To describe666

the graph Gz⃗, we describe a corresponding gadget to each of the components O3 and Sp in667

D. The gadget corresponding to the star is a bipartite graph over two sets R1, R2 such that668

|R1| = 1 and |R2| = s̄1/p
p (if s̄p > np, then we can modify R1 to be of size ⌊s̄p/n⌋ and R2 to669

be of size n). There is a complete bipartite graph between R1 and R2.670

The gadget used to create the |T | odd cycles of length 3 has 3 + 2 = 5 sets671

R1, R2, R3, R′
1, R′

2, each of size
√

m. There is a complete bipartite graph between the672

A. S. Biswas, T. Eden and R. Rubinfeld XX:19

Figure 2 (a) The motif HD for D = {O3, Sp} (b) The graph G \ G′. Orange/red crossed lines
indicate a complete bipartite graph of intra-gadget edges, gray crossed lines indicate a complete
bipartite graph of inter-gadget edges, and pink dotted lines indicate “potential" edges – i.e., ones
whose existence depends on the t-Set-Disjointness instance x⃗, y⃗.

sets R1 and R3 and R2 and R3. The edges between the sets R1, R2, R′
1, R′

2 are determined673

according to the t-Set-Disjointness instance x⃗, y⃗ as follows. For every pair of indices674

i, j ∈
√

m, if x⃗ij = y⃗ij = 1 then we add the edge (ri
1, rj

2) and let as the (j − i)th edge of ri
1 and675

rj
2, and the edge (rj

1, ri
2) as the (j − i)th edge of rj

1 and ri
2. We also add the edges ((r′)i

1, (r′)j
2)676

and ((r′)j
1, (r′)i

2) and label them as the (j − i)th edge of their endpoints. Otherwise, we677

add the edges (ri
1, (r′

1)j), (rj
1, (r′

1)i), (ri
2, (r′

2)j) and (rj
2, (r′

2)i) to the gadget, and label them678

as the (j − i)th edge of their endpoints. Hence, if (x⃗, y⃗) is a YES instance we get that the679

CC-gadget has t ·
√

m
k−2 odd cycles, and if it is a NO instance then the gadget induces no680

cycles. See Figure 2(b) for an illustration. Furthermore, in both cases, the degrees of all681

vertices in the gadget are exactly 2 · ō1/k
k , and the “gadget edges” of the vertices in R1, R2682

are their first
√

m edges (in terms of edge labels). We furthermore add a complete bipartite683

graph between the two R1 sets of the two gadgets. Observe that at this point, the count684

ō3 is not satisfied as G only contains |T | < ō3 triangles. As the set of counts is valid, there685

exists a graph G′ for which they are all satisfied. To finalize the construction, we add the686

graph G′ to G as a subgraph as a disconnected component.687

By the construction of the gadgets, there are Θ(s̄p +
√

m
p+1) = Θ(s̄p) copies of Sp in688

the graph, as well as ō3 triangles, Θ(n) vertices and Θ(m) edges. Hence, the basic counts689

are satisfied (up to constant factors).690

By construction of the O3 gadget, we have that if x⃗ · y⃗ = 0, then the graph G \ G′
691

is bipartite, and otherwise it contains t
√

m · s̄p = (ō3/α) · s̄p = h̄ many copies of HD.692

Hence, given an algorithm A that samples uniformly distributed copies of HD, to solve the693

given t-Set-Disjointness instance Alice and Bob proceed as follows. First they implicitly694

construct the graph Gz⃗ as described. Then, Alice and Bob both invoke A using their shared695

randomness as the randomness of A (so that A is now deterministic and Alice and Bob see696

the same queries during A’s run). Whenever A queries Gz⃗, they either answer the query697

themselves (in case it does not depend on the input instance) or communicate O(B) bits698

to answer it. They repeat this process for 10 times. Once all invocations of A conclude,699

if all the returned copies of HD are from G′ then Alice and Bob respond that the input700

matrices are disjoint, and otherwise, they respond that the matrices intersect. In case the701

matrices intersect, 1/2 of the copies of HD are in G \ G′, and therefore, Alice and Bob702

respond incorrectly with probability 1/210. If however the sets do not intersect, Alice and703

Bob respond correctly with probability 1.704

Assume that each query can be answered by Alice and Bob exchanging O(B) bits of705

XX:20 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

communication. Then the number of expected number of queries Q performed by A is lower706

bounded by Q · B = Ω(m/t · B), and for B = O(1) we get Q = Ω
(

m3/2·s̄p

B·h̄

)
.707

It remains to bound B. Here we only sketch the proof, as the full proof is identical for this708

case and the general one, and it is given in Lemma 23. First observe that the degrees of all709

vertices are determined independently of the input instance to t-Set-Disjointness. Indeed710

all vertices in the cycle gadget have degrees 2
√

m and the structure of the star gadget does not711

depend on x⃗, y⃗. For a pair query (u, v), unless both vertices belong to R1 ∪ R2 ∪ R′
1 ∪ R′

2 the712

answer is independent to the input instance. Otherwise, assume for example that u = r1
i ∈ R1713

and v = r2
j ∈ R2. Then to answer the query, Alice and Bob send each other the bits xij , yij ,714

and if they intersect they answer that the pair is an edge, and otherwise it is not. Other715

pair queries within these sets can be answered similarly, and so does neighbor queries on716

vertices in these sets. Hence, each query can be answered by exchanging O(B) = O(1) bits717

of communication, and we get Q = Ω
(

m3/2·s̄p

h̄

)
, as required. ◀718

5.3 Proof of Theorem 7719

Let D = {Ok1 , ..., Okq , Sp1 , ..., Spℓ
}. To prove the lower bound of Theorem 7, we first720

construct a graph HD with optimal decomposition is D. We then construct a family of721

graphs G such that each G ∈ G satisfies all the counts and constraints of the theorem, and722

so that sampling a uniformly distributed copy of HD in a uniformly chosen G ∈ G requires723

Ω
(

min
{

cost(Ok) ·
∏

i
c̄i

h̄ , m

})
samples.724

Constructing the motif HD. Given a decomposition D we construct the graph HD as725

follows. Recall that Ok1 denotes the odd cycle with maximum cost, and denote its vertices by726

vk1
1 , . . . vk

k1
. If there exists a star Sp in D with count s̄p > |H| ·

√
m

p+1, then we connect its727

star center to one of the vertices of Ok1 . If for at least one of the cycles in D, ōk ≤
√

m
k−1,728

then we connect to it all the stars of D, except for the one that is connected to Ok1 . We729

connect the rest of the components of D with a single edge to Ok1 , where stars are connected730

through their star center, and odd cycles are connected through arbitrary vertices in each of731

the cycles.732

Constructing the graph family of graphs G. The basic structure of all graphs G733

in the family G will be the same, except for a small set of edges which will be determined734

according to the t-Set-Disjointness instance (x⃗, y⃗), or more specifically, according to735

z⃗ = x⃗ · y⃗. To construct the family of graphs {Gz⃗}, we first define gadgets that correspond to736

the stars and odd cycles of D.737

We differentiate between short odd cycles of length ki for ki ≤ k1 (if such exist in D), and738

those with higher lengths than k1. The reason is that we want the gadgets corresponding to739

short odd cycles to create ōk odd cycles, while not creating “too many” k1 odd cycles. (This740

is also the reason behind constraint 5b.)741

cycle-gadget: Given Ok and ōk such that ōk >
√

m
k−1, this gadget is a complete742

k-partite graph, comprising of sets of vertices R1, R2, · · · , Rk, each of size Θ(ō1/k
k). Each743

adjacent pair Ri, Ri+1(mod k) induces a complete bipartite graph. (Observe that for744

every graph ōk ≤ mk/2 and therefore for every i ∈ [k], |Ri| ≤
√

m.)745

few-cycles-gadget: Given Ok and ōk such that ōk ≤
√

m
k−1

, this gadget has a set R1746

consisting of a single vertex v1 and k1 − 1 sets Ri for i ∈ [2, k − 1], each of size ō1/(k1−1)
k1

.747

The sets form a k1-tripartite motif.748

star-gadget: Recall that we assume that the counts s̄pi are either such that there exists749

a cycle Ok with length ōk ≤
√

m
k−1, or that each count s̄p can be satisfied by a set A of750

A. S. Biswas, T. Eden and R. Rubinfeld XX:21

√
m numbers, a1, . . . , a√

m. That is, s̄p =
∑

i∈A(ai)p.751

In the former case, the star gadget is a bipartite motif R1 ∪ R2, where |R1| = |R2| = n752

and the degrees of the vertices in R1 are such that
∑

v∈R1
d(v)p = s̄p. Due to constraint 1,753

such a setting of degrees exists. The edges going from R1 to R2 are spread evenly among754

the vertices of R2, so that ∀r2
i ∈ R2, ; d(r2) ≤ davg.755

In the latter case, the star gadget is a bipartite motif R1 ∪ R2, where |R1| =
√

m and756

∀r1
i ∈ R1, d(r1

i) = ai. The set R2 is of size n, and the edges from R1 are distributed757

evenly among the vertices of R2.758

To embed the t-Set-Disjointness instance to Gz⃗, we use the following CC-gadget that759

corresponds to Ok1 which is (one of) the maximum cost odd cycle in D. Since this gadget is760

used to distinguish the two families of graphs, it appears in two forms, corresponding to the761

YES and NO instance of the problem.762

CC-gadget: This gadget will correspond to the odd cycle of length k1 in HD (a maximum763

cost odd cycle). The gadget contains k1 sets R1, ..., Rk1 and two additional sets R′
1, R′

2,764

all of size
√

m. Between every pair of sets Ri, Ri+1(mod
√

m), except between the pair765

R1, R2, there is a complete bipartite set. The edges between the sets R1, R2, R′1,R
′
2 are766

determined according to the instance (x⃗, y⃗) as follows.767

For every pair of indices i, j ∈
√

m, if x⃗ij = y⃗ij = 1 then we add the edge (ri
1, rj

2) as768

the (j − i)th edge of ri
1, and the edge (rj

1, ri
2) as the (j − i)th edge of rj

1 and ri
2. We769

also add the edges ((r′)i
1, (r′)j

2) and ((r′)j
1, (r′)i

2) and label them as the (j − i)th edge of770

their endpoints. Otherwise, x⃗ij = y⃗ij = 0, and we add the edges (ri
1, (r′

1)j), (rj
1, (r′

1)i),771

(ri
2, (r′

2)j) and (rj
2, (r′

2)i) to the gadget, and label them as the (j − i)th edge of their772

endpoints. Hence, if (x⃗, y⃗) is a YES instance we get that there are t edges between R1773

and R2, and so the CC-gadget has t ·
√

m
k−2 many k1 cliques. Otherwise, there are no774

edges between R1 and R2, and so the gadget is bipartite and induces no odd cycles.775

See Figure 3(b) for an illustration of the different gadgets corresponding to the basic776

components of HD.777

Fix an input instance x⃗, y⃗ and let z⃗ = x⃗ · y⃗. The graph Gz⃗ contains one CC-gadget that778

corresponds to the Ok1 component. For any other Ok, k ≤ k1, if k ≤ k1 or ōk ≤
√

m
k−1, the779

graph contains a corresponding few-cycles-gadget, and otherwise, the graph contains a780

cycle-gadget. For all stars Spj
we add a star-gadget. To connect the different gadgets,781

for each edge between two odd cycles, or between an odd cycle ant a star in HD, we add a782

complete bipartite graph between the two sets R1 of the corresponding gadgets. The way783

that the components of D are connected, and the construction of the gadgets of Gz⃗, ensure784

that this can be performed without exceeding Θ(m) edges between any two sets in Gz⃗. (Since785

all sets of odd cycle gadgets are of size
√

m, and since R1 sets of star gadgets with |R1| = n786

are only connected to sets R1 of odd cycles for which |R1| = 1.) Finally, we add to Gz⃗ a787

graph G′ for which all of the given counts are satisfied (recall there exists such a graph as we788

assume that the counts are valid). See Figure 3 for an illustration of a graph Gz⃗ for some789

|z⃗| = t and motif HD.790

Proving the lower bound. We first consider the case that the maxi∈[r] {cost(Ci)} ·791 ∏
c̄i

h̄ ≤ m. As in the warm up case, we shall prove the lower bound by “hiding” h̄ copies of792

HD using a hidden set T of |T | k1-odd cycles. That is, these |T | odd cycles will be added793

to the graph if and only if the matrices x⃗ and y⃗ intersect, and in turn they will create a794

constant number of copies of HD to Gz⃗.795

We start by rearranging the lower bound terms and determining the values of |T | and t.796

Let α =
∏

i ci/h̄ so that α ≥ 1. By the assumption that the lower bound is sublinear in m,797

XX:22 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

(a) motif HD for D = {O3, O5, Sp} (b) Complete lower bound construction of G \ G′ using all three types
of gadgets: clockwise from top, we have CC-gadget, star-gadget, and
few-cycles-gadget.

Figure 3 Orange/red crossed lines indicate a complete bipartite graph of intra-gadget edges, gray
crossed lines indicate a complete bipartite graph of inter-gadget edges, and pink dotted lines indicate
“potential" edges – i.e., ones whose existence depends on the t-Set-Disjointness instance x⃗, y⃗.

we have that cost(Ok1) · α ≤ m, implying mk1/2

ōk1
· α ≤ m ⇔ ōk1 ≥ αm(k1−2)/2. Let798

|T | = ōk1/α and t =
⌊
|T |/

√
m

(k1−2)/2
⌋

=
⌊
ōk1/(α

√
m

(k1−2)/2)
⌋

799

so that |T | ≥ m(k−2)/2 and t ≥ 1. The lower bound we aim for is then800

max
i∈[r]

{cost(Ci)} ·
∏

i c̄i

h̄
= cost(Ok1) · α = mk1/2

ōk1/α
= mk1/2

|T |
= m

t
.801

In order to prove the lower bound, we first prove that all the given motif counts of the802

basic components are indeed as specified. That is, we prove the following lemma.803

▶ Lemma 21. Let Gz⃗ be as above. Then for any z⃗, Gz⃗ contains Θ(n) vertices, Θ(m) edges,804

and Θ(c̄i) copies of each component Ci in D.805

Proof. The graph G′ ensure that all counts are at least as specified. It remains to prove that806

the counts are not exceeded.807

Fix an odd cycle Oki
. We shall verify that is count as is required.808

1. By construction, the gadget corresponding to Oki contributes Θ(ōki) copies of Oki .809

2. Now consider contributions from gadgets Okj
for j ̸= i.810

If kj > ki then such gadgets do not contribute to ōki
, as a kj-partite graph induces no811

ki odd cycles for ki < kj .812

If kj ≤ ki and ōkj
≤

√
m

kj−1, then by the construction of the few-cycles-gadget813

and by constraint 3, it contributes (ōkj
)(ki−1)/(kj−1) ≤ ōki

odd cycles of length ki.814

Finally, if kj ≤ ki and ōkj >
√

m
kj−1, then by the construction of the cycle-gadget815

and by constraint 3, it contributes (ōkj
)(ki)/(kj) ≤ ōki

odd cycles of length ki.816

3. If z = 0⃗, the CC-gadget does not contribute any odd cycles, as it is bipartite. Otherwise,817

when z ̸= 0⃗, and k1 > ki, the CC-gadget also contributes 0 odd cycles of length ki < k1.818

A. S. Biswas, T. Eden and R. Rubinfeld XX:23

If ki ≥ k1, then the gadget contributes Θ(t ·
√

m
kj−2) odd cycles of length ki. Since the819

Ok1 component is the odd cycle component with maximum cost, we have that820

mk1/2/ōk1 ≥ mki/2/ōki ⇔ ōki ≥ ōk1

mk1/2 · mki/2 ⇔ ōki ≥ t · mki/2+1
821

where the last inequality is by the setting of t = ōk1/
√

m
k1−2.822

Hence, summing over all contributions from all the components, we get that the number of823

copies of Oki is Θ(ōki).824

Now fix a star component Sp. The vertices of the odd cycle gadgets contributes at825

most
√

m
p+1 ≤ s̄p to the number of copies of Sp in Gz⃗. All star gadgets contribute Θ(s̄p)826

contribute Θ(s̄p) copies of Sp. Hence, the number of Sp stars in Gz⃗ is Θ(s̄p). ◀827

▶ Lemma 22. Let G be the family of all graphs Gz⃗ such that z⃗ = x⃗ · y⃗ for x⃗, y⃗ that are828

instances of t-Set-Disjointness. Let B be an upper bound on the number of bits it takes829

Alice and Bob to communicate in order to answer queries on any graph Gz⃗ ∈ G. Then for830

any h̄, and any algorithm that with high success probability samples a uniformly distributed831

copy of HD from a uniformly chosen Gz⃗ ∈ G, the number of required queries is832

Ω
(

mk1/2 ·
∏

i>1 c̄i

B · h̄
, m/B

)
833

in expectation, where h̄ denotes the number of copies of HD in Gz⃗.834

Proof. First assume that the first term achieves the minimum. In that case we have that h ≥835

mk1/2−1 ·
∏

i>2 c̄i and we aim to prove a lower bound of Ω
(

1
B · maxi∈[r] {cost(Ci)} ·

∏
c̄i

h̄

)
.836

We let t =
⌊(

m(k1−2)/2 ·
∏

i>1 c̄i

)
/h̄
⌋
. This t is the one which determines the t-Set-837

Disjointness communication problem we consider. Given a t-Set-Disjointness instance838

with inputs x⃗ and y⃗, we construct Gz⃗ as described above, where recall that z⃗ = x⃗·y⃗ determines839

the CC-gadget.840

We first consider the case that |z⃗| = t, and argue that the number of copies of HD in841

G \ G′ is Ω(h̄). Since |z⃗| = t, the CC-gadget corresponding to Ok1 contains t ·
√

m
(k1−2)/2

842

odd cycles of length k1 (since fixing an edge t, one can complete it to a k1 length cycle843

by choosing one vertex (out of the possible
√

m) in each of the sets Ri for i ∈ [3, k1]). By844

choosing one odd cycle or star from every odd cycle and star gadgets in G, it holds that845

the number of copies of HD in Gz⃗ \ G is at least t · m(k1−2)/2 ·
∏

i>1 c̄i =
⌊
|T | ·

∏
i>1 c̄i

⌋
.846

Observe that by the construction of G, the edges between the odd cycles and stars of different847

components agree with the non-decomposition edges of HD. Hence, the number of copies of848

HD in Gz⃗ \ G′ is at least Ω(h̄).849

We now turn to the case that z⃗ = 0⃗. and argue that the graph G \ G′ contains less o(h̄)850

copies HD. We deal separately the two potential cases due to constraint 5, that is, that either851

there is at least one star with s̄p > |H|
√

m
p+1, or that that for all odd cycle components852

Oki
for ki ≤ k1, there are a few of them (ōki

≤
√

m
k−1). (Recall that this constraint is to853

prevent short cycle gadgets from creating too many copies of HD within themselves.)854

Assume first that there exists at least one star Sp in D with s̄p = ω(m · (ōk∗)(p+1/k∗)),855

where recall that k∗ is the index of the Ok component that maximizes ō1/k
k . Recall that by856

the construction of the motif HD, Sp is connected to Ok1 . Also recall that in that case, the857

few-cycles-gadget is identical to the cycle-gadget, and it holds that a cycle-gadget858

can potentially create at most ki · (ōki
)1/ki · (ōki

)p/ki = ki · (ōki
)(p+1)/ki copies of Sp. Also,859

XX:24 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

for all other Spj
∈ D, at most

√
m

p+1 copies of Spj
are created Hence, each cycle-gadget860

creates at most861

(ōki
)(p+1)/ki ·

∏
j∈[q]

(ōki
)kj/ki ·

∏
j∈[ℓ],Spj

̸=Sp

√
m

pj+1 ≤ (ōki
)(p+1)/ki ·

∏
j∈[q]

ōkj
·

∏
j∈[ℓ],Spj

̸=Sp

s̄pj
,862

where the last equality is due to constraint 4. Also, since ōk1 ∈ [
√

m
k1−2

,
√

m
k1], and t ≥ 1,863

it holds that t ·
√

m
k−2 ≥ ōk1/m. Hence,864

h = t ·
√

m
k−2 ·

∏
i>1

ōki
·
∏

j∈[ℓ]

s̄pj
≥ 1

m

∏
i∈[q]

ōki
·
∏

j∈[ℓ]

s̄pj
= 1

m
· s̄p ·

∏
i∈[q]

ōki
·

∏
j∈[ℓ],Spj

̸=Sp

s̄pj
.865

Since s̄p = ω(m · (ōki
)(p+1)/ki), it holds that the number of copies created by the866

cycle-gadget of Oki
is o(h̄). Therefore, in that case the number of copies of HD in867

G \ G′ is o(h̄).868

In the case that there is no star Sp with sufficiently many copies as above, we have869

that constraint 5b holds. In that case, for every Oki , either (1) ki ≤ k1, and so Oki has a870

few-cycles-gadget with a part R1 consisting of a single vertex; or (2) ki > k1 and Oki
has871

an cycle-gadget. In case (1), since the part R1 of the few-cycles-gadget has a single872

vertex no copies of HD can be created. In case (2), since ki > k1, no copies of odd length cycles873

of length k1 are formed, and again no copies of HD can be created. Also, no copies of HD874

can be created by combining odd cycles of different gadgets, since each few-cycles-gadget875

can contribute at most one odd cycle, and cycle-gadget cannot contribute short cycles,876

and so at least one odd cycle of length ki < k1 will be missing.877

Therefore, in both cases of constraint 5, the number of copies of HD in G \ G′ is o(h̄), as878

claimed.879

Now let A be any algorithm that samples returns a uniformly distributed copy of HD.880

Then Alice and Bob can invoke A on the (implicit) graph Gz⃗ and whenever A performs a881

query, by the assumption of the lemma, Alice and Bob can communicate B bits to answer882

it. Alice and Bob repeat the above for 10 times. Let Q denote the number of queries each883

invocation of A performs. After A concludes all its runs, if A returns any copy of HD from884

Gz⃗ \ G′, then Alice declares that x and y intersect, and otherwise she declares they do not.885

Since the number of copies of HD from Gz⃗ \ G′ is at least 1/2 of the number of copies in Gz⃗,886

each invocation of A should return a copy of HD from Gz⃗ \ G′ with probability at least 2/3.887

Hence, the probability that z⃗ ̸= 0⃗ and no copy from Gz⃗ \ G′ is returned is at most (2/3)10.888

Therefore, Alice and Bob can with high probability solve the t-Set-Disjointness instance889

using O(Q · B) bits of communication. By the Ω(m/t) expected communication lower bound890

for t-Set-Disjointness, it follows that Q = Ω(m/(t·B)). Since t = Θ(h̄/(mk1/2−1·
∏

i>1 c̄i)),891

we get an892

Ω
(m

t · B

)
= Ω

(
mk1/2 ·

∏
i>1 c̄i

B · h̄

)
893

lower bound, as claimed.894

For the case that the minimum in the lower bound is due to the term m, we use the895

same proof, but with adjusted values of |T |, t and the sizes of the sets in the CC-gadget of896

Ok1 . All other arguments remain the same. Recall that h̄ =
∏

i c̄i/α, and so in this case we897

have that mk1/2

ōk
· α ≥ m ⇒ ōk ≤ α · m(k1−2)/2. Let β > 1 be β = αm(k1−2)/2/ōk1 ⇒ ōk =898

α · (m/β)(k1−2)/2. We change the CC-gadget that corresponds to Ok1 by changing the sizes899

A. S. Biswas, T. Eden and R. Rubinfeld XX:25

of its sets R3, ..., Rk1 to be of size
√

m/β instead of
√

m. We now let900

|T | = ōk1/α = (m/β)(k1−2)/2 and t =
⌊
|T |/

√
m

(k1−2)/2
⌋

= 1.901

By the same arguments as for the previous case, we have that if z⃗ = 0, then all copies of HD are902

in G′, and otherwise, Gz⃗ \ G′ has t · (
√

m/β)k1−2 ·
∏

i>1 c̄i = (ōk1/α) ·
∏

i>1 c̄i =
∏

i c̄i/α = h̄903

many copies of HD. Therefore, the proof continues as before and we get a lower bound of904

Ω(m/B · t) = Ω(m/B) on the expected query complexity of any algorithm that returns a905

uniformly distributed copy of HD. ◀906

It remains to prove that queries on Gz⃗ can be answered by Alice efficiently.907

▶ Lemma 23. Alice can answer any query to Gz⃗ using O(1) bits of communication between908

Alice and Bob. That is B = O(1).909

Proof. We consider each of the possible queries.910

Answering degree queries and uniform edge sample queries. Observe that all911

the vertices’ degrees in the graph are set regardless of the (x, y) instance. Therefore, Alice912

knows the degree sequence and can produce a uniform edge sample and answer a degree913

query with zero communication.914

Pair queries. Pair queries that include at most one vertex from the sets R1, R2, R′
1, R′

2,915

of the CC-gadget can be answered with zero communication. Pair queries (u, v) where say916

u = ri
1 and v = rj

2, are answered as follows. Bob sends to Alice the bit yi,j . If the two bits917

intersect then the answer to the pair query is positive and otherwise, it is negative. Queries918

on other pairs with both endpoints in R1, R2, R′
1, R′

2 are answered similarly.919

Answering ith neighbor queries. First, any neighbor queries for vertices outside920

CC-gadget can be answered with zero communication. Let (v, j) be an jth neighbor query for921

some v in the CC-gadget. If v /∈ R1 ∪ R2 or j >
√

m then again the query can be answered922

with no communication. Therefore, assume without loss of generality that v = ri
1 for some923

ri
1 ∈ R1 and that j ≤

√
m. In this case Bob will send the bit yj+i to Alice (recall that924

both Alice and Bob invoke the same algorithm using their shared randomness, so that the925

queries are known to both without communication). If xi,i+k · yi,i+k = 1, then Alice answers926

r
i+j mod

√
m

2 . Otherwise, Alice answers (r′)j
1. Neighbor queries on vertices in R2, R′

1 and R′
2927

are answered similarly. ◀928

Theorem 7 follow from Lemma 22 and Lemma 23.929

5.4 From Theorem 7 to Theorem 6930

▶ Lemma 24. Theorem 6 follows from Theorem 7.931

Proof. Assume that Theorem 7 holds. Fix D to be a decomposition that contains at least one932

odd cycle component and a unique minimum odd length cycle, and fix n, m and a realizable933

value of dc. We would like to argue that there exists a motif HD with optimal decomposition934

D, and a hard family of graphs G over n vertices, m edges and with decomposition cost dc,935

such that sampling a uniformly distributed copy of H in graphs uniformly chosen in G takes936

Ω(min{dc, m}). In order to do so we shall specify a set of good counts. We set the counts937

depending on the value of dc. If dc ≥ m, then we set the odd cycle counts as follows: for938

every Oki
∈ D,939 {

ōk = ⌈mk/2/dc⌉ if ki = koki
=

√
m

ki−1
, if ki < k

oki
=

√
m

ki , if ki > k .
940

XX:26 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

If dc < m, then we set the odd cycle counts as follows. Let Ok′ be the minimum length odd941

cycle in D. for every Oki
∈ D,942 {

ōki = ⌈mk′/2/dc⌉ if ki = k′

oki
=

√
m

ki−1 if ki > k′ .
943

Observe that by the assumption that there is only one odd cycle component of minimum944

length, indeed for every ki, either ki = k′ or ki > k′. In both cases we also set s̄p = davg · np
945

We also set h̄ =
∏

i∈[r] c̄i.946

In order to be able to invoke Theorem 7, we argue that these counts are good, as defined947

in Definition 17. First, to see that the counts are realizable, consider a graph G which has948

a few-cycles-gadget for every Oki
∈ D such that ki ≤ k, and a cycle-gadget for every949

Oki ∈ D such that ki > k. For every Sp ∈ D we have a star-gadget. We let HD be the950

components of D that are connected is some tree like manner, and we connect the gadgets of951

G by a complete bipartite graph between any two gadgets whose corresponding components952

in HD are connected. It holds that the number of copies of HD in G is h̄ = πc̄i. One can953

verify that in both cases of possible values of dc, the rest of the constraints of Definition 17954

also hold.955

Finally, in case that that dc > m, maxi∈[r] cost(Ci) = mk/2/ōk = Θ(dc), and otherwise956

maxi∈[r] cost(Ci) = mk′/2/ōk′ = Θ(dc). Hence, we get that in both cases,957

decomp-cost(G, HD, D) = max
i∈[r]

cost(Ci) ·
∏

i∈[r] c̄i

h̄
= Θ(dc).958

Therefore, we can invoke Theorem 6, and the theorem follows. ◀959

6 Acknowledgments960

Talya Eden is thankful to Dana Ron and Oded Goldreich for their valuable suggestions961

regarding the presentation of the lower bound results. The authors are thankful for the962

anonymous reviewers for their useful comments and observations.963

References964

1 Nesreen K Ahmed, Jennifer Neville, Ryan A Rossi, and Nick Duffield. Efficient graphlet965

counting for large networks. In 2015 IEEE International Conference on Data Mining, pages966

1–10. IEEE, 2015.967

2 Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt968

Rubinfeld, and Anak Yodpinyanee. Sublinear-time algorithms for counting star subgraphs via969

edge sampling. Algorithmica, 80(2):668–697, 2018.970

3 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A Simple Sublinear-Time Algorithm971

for Counting Arbitrary Subgraphs via Edge Sampling. In Avrim Blum, editor, 10th In-972

novations in Theoretical Computer Science Conference (ITCS 2019), volume 124 of Leibniz973

International Proceedings in Informatics (LIPIcs), pages 6:1–6:20, Dagstuhl, Germany, 2019.974

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/975

volltexte/2018/10099, doi:10.4230/LIPIcs.ITCS.2019.6.976

4 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational977

joins. In 2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages978

739–748. IEEE, 2008.979

5 Haim Avron. Counting triangles in large graphs using randomized matrix trace estimation. In980

Workshop on Large-scale Data Mining: Theory and Applications, volume 10, pages 10–9, 2010.981

http://drops.dagstuhl.de/opus/volltexte/2018/10099
http://drops.dagstuhl.de/opus/volltexte/2018/10099
http://drops.dagstuhl.de/opus/volltexte/2018/10099
https://doi.org/10.4230/LIPIcs.ITCS.2019.6

A. S. Biswas, T. Eden and R. Rubinfeld XX:27

6 Paul Beame, Sariel Har-Peled, Sivaramakrishnan Natarajan Ramamoorthy, Cyrus Rasht-982

chian, and Makrand Sinha. Edge estimation with independent set oracles. arXiv preprint983

arXiv:1711.07567, 2017.984

7 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Linear time subgraph counting,985

graph degeneracy, and the chasm at size six. In 11th Innovations in Theoretical Computer986

Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, pages987

38:1–38:20, 2020. doi:10.4230/LIPIcs.ITCS.2020.38.988

8 Andreas Bjöklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting paths and989

packings in halves. Algorithms - ESA 2009, page 578–586, 2009. URL: http://dx.doi.org/990

10.1007/978-3-642-04128-0_52, doi:10.1007/978-3-642-04128-0_52.991

9 Xi Chen, Amit Levi, and Erik Waingarten. Nearly optimal edge estimation with independent992

set queries. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,993

SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2916–2935, 2020. doi:994

10.1137/1.9781611975994.177.995

10 Graham Cormode and Hossein Jowhari. L p samplers and their applications: A survey. ACM996

Computing Surveys (CSUR), 52(1):1–31, 2019.997

11 Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse real-world998

graphs. In Proceedings of the 2018 World Wide Web Conference, pages 589–598. International999

World Wide Web Conferences Steering Committee, 2018.1000

12 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in1001

sublinear time. SIAM Journal on Computing, 46(5):1603–1646, 2017.1002

13 Talya Eden, Dana Ron, and Will Rosenbaum. The arboricity captures the complexity of1003

sampling edges. In 46th International Colloquium on Automata, Languages, and Programming,1004

ICALP 2019, July 9-12, 2019, Patras, Greece., pages 52:1–52:14, 2019. doi:10.4230/LIPIcs.1005

ICALP.2019.52.1006

14 Talya Eden, Dana Ron, and Will Rosenbaum. Almost optimal bounds for sublinear-1007

time sampling of k-cliques: Sampling cliques is harder than counting. arXiv preprint1008

arXiv:2012.04090, 2020.1009

15 Talya Eden, Dana Ron, and C. Seshadhri. On approximating the number of k-cliques in1010

sublinear time. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory1011

of Computing, 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 722–734, 2018. doi:1012

10.1145/3188745.3188810.1013

16 Talya Eden, Dana Ron, and C. Seshadhri. Sublinear time estimation of degree distribution1014

moments: The arboricity connection. SIAM J. Discrete Math., 33(4):2267–2285, 2019. doi:1015

10.1137/17M1159014.1016

17 Talya Eden, Dana Ron, and C. Seshadhri. Faster sublinear approximation of the number1017

of k-cliques in low-arboricity graphs. In Proceedings of the 2020 ACM-SIAM Symposium1018

on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages1019

1467–1478, 2020. doi:10.1137/1.9781611975994.89.1020

18 Talya Eden and Will Rosenbaum. Lower bounds for approximating graph parameters via1021

communication complexity. In Approximation, Randomization, and Combinatorial Optim-1022

ization. Algorithms and Techniques 2018, pages 11:1–11:18, 2018. doi:10.4230/LIPIcs.1023

APPROX-RANDOM.2018.11.1024

19 Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. In Raimund Seidel,1025

editor, 1st Symposium on Simplicity in Algorithms, SOSA 2018, January 7-10, 2018, New1026

Orleans, LA, USA, volume 61 of OASICS, pages 7:1–7:9. Schloss Dagstuhl - Leibniz-Zentrum1027

für Informatik, 2018. doi:10.4230/OASIcs.SOSA.2018.7.1028

20 Patrick Eichenberger, Masaya Fujita, Shane T Jensen, Erin M Conlon, David Z Rudner,1029

Stephanie T Wang, Caitlin Ferguson, Koki Haga, Tsutomu Sato, Jun S Liu, et al. The program1030

of gene transcription for a single differentiating cell type during sporulation in bacillus subtilis.1031

PLoS biology, 2(10):e328, 2004.1032

https://doi.org/10.4230/LIPIcs.ITCS.2020.38
http://dx.doi.org/10.1007/978-3-642-04128-0_52
http://dx.doi.org/10.1007/978-3-642-04128-0_52
http://dx.doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1137/1.9781611975994.177
https://doi.org/10.1137/1.9781611975994.177
https://doi.org/10.1137/1.9781611975994.177
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://doi.org/10.4230/LIPIcs.ICALP.2019.52
https://doi.org/10.1145/3188745.3188810
https://doi.org/10.1145/3188745.3188810
https://doi.org/10.1145/3188745.3188810
https://doi.org/10.1137/17M1159014
https://doi.org/10.1137/17M1159014
https://doi.org/10.1137/17M1159014
https://doi.org/10.1137/1.9781611975994.89
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.11
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.11
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.11
https://doi.org/10.4230/OASIcs.SOSA.2018.7

XX:28 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

21 Uriel Feige. On sums of independent random variables with unbounded variance and estimating1033

the average degree in a graph. SIAM Journal on Computing, 35(4):964–984, 2006.1034

22 Hendrik Fichtenberger, Mingze Gao, and Pan Peng. Sampling arbitrary subgraphs exactly1035

uniformly in sublinear time. In 47th International Colloquium on Automata, Languages, and1036

Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Conference),1037

pages 45:1–45:13, 2020. doi:10.4230/LIPIcs.ICALP.2020.45.1038

23 Jacob Fox, Tim Roughgarden, C. Seshadhri, Fan Wei, and Nicole Wein. Finding cliques1039

in social networks: A new distribution-free model. SIAM J. Comput., 49(2):448–464, 2020.1040

doi:10.1137/18M1210459.1041

24 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random1042

Structures & Algorithms, 32(4):473–493, 2008. doi:10.1002/rsa.20203.1043

25 Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other small subgraphs in1044

sublinear-time. SIAM Journal on Discrete Mathematics, 25(3):1365–1411, 2011.1045

26 Shweta Jain and C. Seshadhri. A fast and provable method for estimating clique counts using1046

turán’s theorem. In Conference on the World Wide Web, pages 441–449, 2017.1047

27 Krzysztof Juszczyszyn, Przemysław Kazienko, and Katarzyna Musiał. Local topology of1048

social network based on motif analysis. In International Conference on Knowledge-Based and1049

Intelligent Information and Engineering Systems, pages 97–105. Springer, 2008.1050

28 Tali Kaufman, Michael Krivelevich, and Dana Ron. Tight bounds for testing bipartiteness1051

in general graphs. SIAM Journal on Computing, 33(6):1441–1483, 2004. doi:10.1137/1052

S0097539703436424.1053

29 Tong Ihn Lee, Nicola J Rinaldi, François Robert, Duncan T Odom, Ziv Bar-Joseph, Georg K1054

Gerber, Nancy M Hannett, Christopher T Harbison, Craig M Thompson, Itamar Simon, et al.1055

Transcriptional regulatory networks in saccharomyces cerevisiae. science, 298(5594):799–804,1056

2002.1057

30 Wenzhe Ma, Ala Trusina, Hana El-Samad, Wendell A Lim, and Chao Tang. Defining network1058

topologies that can achieve biochemical adaptation. Cell, 138(4):760–773, 2009.1059

31 DE Nelson, AEC Ihekwaba, M Elliott, JR Johnson, CA Gibney, BE Foreman, G Nelson,1060

V See, CA Horton, DG Spiller, et al. Oscillations in nf-κb signaling control the dynamics of1061

gene expression. Science, 306(5696):704–708, 2004.1062

32 Duncan T Odom, Nora Zizlsperger, D Benjamin Gordon, George W Bell, Nicola J Rinaldi,1063

Heather L Murray, Tom L Volkert, Jörg Schreiber, P Alexander Rolfe, David K Gifford,1064

et al. Control of pancreas and liver gene expression by hnf transcription factors. Science,1065

303(5662):1378–1381, 2004.1066

33 Rasmus Pagh and Charalampos E Tsourakakis. Colorful triangle counting and a mapreduce1067

implementation. Information Processing Letters, 112:277–281, 2012.1068

34 Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In1069

Proceedings of the Tenth ACM International Conference on Web Search and Data Mining,1070

pages 601–610. ACM, 2017.1071

35 Shai S Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. Network motifs in the tran-1072

scriptional regulation network of escherichia coli. Nature genetics, 31(1):64, 2002.1073

36 Jakub Tětek and Mikkel Thorup. Sampling and counting edges via vertex accesses, 2021.1074

37 Alexandru Topirceanu, Alexandra Duma, and Mihai Udrescu. Uncovering the fingerprint of1075

online social networks using a network motif based approach. Computer Communications,1076

73:167–175, 2016.1077

38 Charalampos E Tsourakakis. Fast counting of triangles in large real networks without counting:1078

Algorithms and laws. In International Conference on Data Mining, pages 608–617, 2008.1079

39 Jakub Tětek. Approximate triangle counting via sampling and fast matrix multiplica-1080

tion. CoRR, abs/2104.08501, 2021. URL: https://arxiv.org/abs/2104.08501, arXiv:1081

2104.08501.1082

40 John J Tyson and Béla Novák. Functional motifs in biochemical reaction networks. Annual1083

review of physical chemistry, 61:219–240, 2010.1084

https://doi.org/10.4230/LIPIcs.ICALP.2020.45
https://doi.org/10.1137/18M1210459
https://doi.org/10.1002/rsa.20203
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1137/S0097539703436424
https://doi.org/10.1137/S0097539703436424
https://arxiv.org/abs/2104.08501
http://arxiv.org/abs/2104.08501
http://arxiv.org/abs/2104.08501
http://arxiv.org/abs/2104.08501

A. S. Biswas, T. Eden and R. Rubinfeld XX:29

41 Virginia Vassilevska. Efficient algorithms for clique problems. Information Processing Letters,1085

109(4):254–257, 2009.1086

42 Qiankun Zhao, Yuan Tian, Qi He, Nuria Oliver, Ruoming Jin, and Wang-Chien Lee. Commu-1087

nication motifs: a tool to characterize social communications. In Proceedings of the 19th ACM1088

international conference on Information and knowledge management, pages 1645–1648. ACM,1089

2010.1090

A Related Work1091

We note that some of the works were mentioned before, but we repeat them here for the sake1092

of completeness. Over the past decade, there has been a growing body of work investigating1093

the questions of approximately counting and sampling motifs in sublinear time. These1094

questions were considered for various motifs H, classes of G, and query models.1095

The study of sublinear time estimation of motif counts was initiated by the works of1096

Feige [21] and of Goldreich and Ron [24] on approximating the average degree in general1097

graphs. Feige [21] investigated the problem of estimating the average degree of a graph,1098

denoted davg, when given query access to the degrees of the vertices. By performing a careful1099

variance analysis, Feige proved that O
(√

n/davg/ϵ
)

queries are sufficient in order to obtain1100

a (1
2 − ϵ)-approximation of davg. He also proved that a better approximation ratio cannot be1101

achieved in sublinear time using only degree queries. The same problem was then considered1102

by Goldreich and Ron [24]. Goldreich and Ron proved that an (1 + ϵ)-approximation can be1103

achieved with O
(√

n/davg

)
· poly(1/ϵ, log n) queries, if neighbor queries are also allowed.1104

Building on these ideas, Gonen et al. [25] considered the problem of approximating the1105

number of s-stars in a graph. Their algorithm only assumed neighbor and degree queries. In1106

[2], Aliakbarpour, Biswas, Gouleakis, Peebles, and Rubinfeld and Yodpinyanee considered the1107

same problem of estimating the number of s-stars in the augmented edqu queries model, which1108

allowed them to circumvent the lower bounds of [25] for this problem. In [16], Eden, Ron and1109

Seshadhari again considered this problem, and presented improved bound for the case where1110

the graph G has bounded arboricity. In [12, 15, 17], Eden, Ron and Seshadhri considered the1111

problems of estimating the number of k-cliques in general and in bounded arboricity graphs,1112

in the general graph query model, and gave matching upper and lower bounds. In [39], Tětek1113

considers both the general and the augmented query models for approximately counting1114

triangles in the super-linear regime. In [18], Eden and Rosenbaum presented a framework1115

for proving motif counting lower bounds using reduction from communication complexity,1116

which allowed them to reprove the lower bounds for all of the variants listed above.1117

In [19, 13], Eden and Rosenbaum and Ron has initiated the study of sampling motifs1118

(almost) uniformly at random. They considered the general graph query model, and presented1119

upper and matching lower bounds up to poly(log n/1/ϵ) factors, for the task of sampling edges1120

almost uniformly at random, both for general graphs and bounded arboricity graphs. Recently,1121

Tětek and Thorup [36] presented an improved analysis which reduced the dependency in1122

ϵ to log(1/ϵ). This result implies that for all practical applications, the edge sampler is1123

essentially as good as a truly uniform sampler. They also proved that given access to what1124

they refer to as hash-based neighbor queries, there exists an algorithm that samples from the1125

exact uniform distribution. The authors of [13] also raised the question of approximating vs.1126

sampling complexity, and gave preliminary results that there exists motifs H (triangles) and1127

classes of graphs G (bounded arboricity graphs) in which approximating the number of H’s1128

is strictly easier than sampling an almost uniformly distributed copy of H . This question was1129

very recently resolved by them, proving a separation for the tasks of counting and uniformly1130

XX:30 Towards a Decomposition-Optimal Algorithm for Sampling Motifs

sampling cliques in bounded arboricity graphs [14].1131

A significant result was achieved recently, when Assadi, Kapralov and Khanna gave an1132

algorithm for approximately counting the number of copies of any given general H, in the1133

edge queries augmented query model. They also gave a matching lower bound for the case1134

that H is an odd cycle. Fichtenberger, Gao and Peng presented a cleaner algorithm with a1135

mich simplified analysis for the same problem, that also returns a uniformly distributed copy1136

of H.1137

Another query model was suggested recently by Beame et al. [6], which assumes access1138

to only independent set (IS) queries or bipartite independent set (BIS) queries . Inspired1139

by group testing, IS queries allow to ask whether a given set A is an independent set, and1140

BIS queries allow to ask whether two sets A and B have at least one edge between them.1141

In this model they considered the problem of estimating the average degree and gave an1142

O(n2/3) · poly(log n) algorithm using IS queries, and poly(log n) algorithm using BIS queries.1143

Chen, Levi and Waingarten [9] later improved the first bound to O(n/
√

m) · poly(log n) and1144

also proved it to be optimal.1145

	1 Introduction
	1.1 Our results
	1.1.1 Optimal star/p-sampler
	1.1.2 An algorithm for sampling and estimating arbitrary motifs
	1.1.3 Lower bound for estimating and sampling general motifs

	1.2 Organization of the paper

	2 Preliminaries and Notation
	3 Overview of Our Results and Techniques
	3.1 An algorithm for sampling arbitrary motifs
	3.2 Decomposition-optimal lower bounds

	4 Upper Bounds for Sampling Arbitrary Motifs
	4.1 An optimal (p) star-sampler
	4.2 General motif sampler

	5 Lower Bounds
	5.1 Good counts
	5.2 Warm up: a lower bound for a decomposition D={O3, Sp}
	5.3 Proof of Theorem 7
	5.4 From Theorem 7 to Theorem 6

	6 Acknowledgments
	A Related Work

