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Abstract—3D point cloud completion has been a long-standing
challenge at scale, and corresponding per-point supervised train-
ing strategies suffered from cumbersome annotations. 2D super-
vision has recently emerged as a promising alternative for 3D
tasks, but specific approaches for 3D point cloud completion still
remain to be explored. To overcome these limitations, we propose
an end-to-end method that directly lifts a single depth map to a
completed point cloud. With one depth map as input, a multi-
way novel depth view synthesis network (NDVNet) is designed to
infer coarsely completed depth maps under various viewpoints.
Meanwhile, a geometric depth perspective rendering module is
introduced to utilize the raw input depth map to generate a re-
projected depth map for each view. Therefore, the two parallelly
generated depth maps for each view are further concatenated
and refined by a depth completion network (DCNet). The
final completed point cloud is fused from all refined depth
views. Experimental results demonstrate the effectiveness of our
proposed approach composed of aforementioned components,
to produce high-quality, state-of-the-art results on the popular
SUNCG benchmark.

I. INTRODUCTION

We live in a three-dimensional world, and a proper cognitive
understanding of the 3D structures is crucial for acting and
planning. The ability to anticipate under uncertainty is nec-
essary for autonomous agents to perform various downstream
tasks such as exploration, active grasping, and target naviga-
tion. Many recent deep learning methods have demonstrated
effectiveness in solving these tasks, such as scene predic-
tion [4], [6], [9], [15], [27], [32], [40] and 3D completion (on
representations such as voxel and point cloud) [5], [8], [14],
[16], [19], [34], [38]. Since grid-based data representations
such as voxel or mesh need to divide the whole 3D space,
it always leads to computational redundancy and inefficiency.
However, compared to grid-based methods, point cloud is a
better data representation and closer to the three-dimension
world. While pioneered by PointNet [26], the point cloud di-
rect processing methods have become more and more popular.
These methods have been explored to apply on 3D completion
and reconstruction tasks as well.

Most existing depth-based, 3D point cloud completion
methods focus solely on single objects and surrounding view-
points, which are not trivial to set up for natural scenes.
Although scene point cloud completion can benefit various
related applications, it is significantly more challenging than
single object point cloud completion. The single objects can be
easily reconstructed based on their inner geometric structure

Fig. 1: Illustration of our scene completion via novel depth
views: (a) RGB image (for visualization only, and not used
in our framework); (b) input depth map; (c) back-projected
point cloud visualized from another viewpoint, which shows
holes under completion; (d) the incomplete depth map; (e) and
the completed depth map with our proposed network. Other
views are similar to this view whose holes are filled and thus
the scene is completed.

constraints. However, for scene point cloud, the learning
process is limited by the large scale of points which are hard
to annotate. The number of points can easily reach in to the
millions for a 3D scene, leading to a heavy computation burden
for deep convolution networks. On the other hand, complicated



spatial relationships between various 3D objects often lead to
the challenge of directly inferring the complete 3D scene from
a single depth view. There are many occluded situations across
multiple objects from a single view. For instance, a desk might
be occluded by chairs around it, or a computer on the desk.

In this paper, as shown in Figure 1, we efficiently and
effectively infer and complete a natural scene point cloud from
a single incomplete depth map. All the supervision signals of
our method come from various 2D view depth maps, which
can reduce the effort to annotate 3D fully supervised labels.
Taking a partial observation depth map as input, our model
generates multi-way plausible depth views with different view-
points through the proposed NDVNet (Novel Depth View
Network). These predictions are then concatenated with the
geometrically rendered depth views in the same viewpoint,
which are generated by the proposed perspective rendering
strategy. The purpose of utilizing the re-projected depth maps
is to solve the occluded problem to some extent and further
help refine the coarse-completed depth map. The concatenation
is further jointly refined by a coarse-to-fine depth refinement
module DCNet (Depth Completion Network) to obtain the
completed depth map. All the refined outputs are fused to
generate the final completed scene point cloud. Our key
contributions are summarized below:
• We propose an end-to-end trainable network which is able

to generate dense and complete 3D surface scene point
clouds from a single shot depth map input.

• We introduce a coarse-to-fine point cloud completion
schema. In conjunction with predicting novel view depth
maps for completion, depth inpainting network is added
to further complete the whole point cloud.

• To the best of our knowledge, this is the first work to use
an end-to-end method to conduct the 3D indoor scene
point cloud completion task. The experiments demon-
strate the effectiveness of our proposed method which
achieves comparable performance with state-of-the-arts
on the SUNCG dataset.

II. RELATED WORK

Various methods have been developed for 3D completion
tasks. Beyond the conventional methods based on the geometry
prior or template [13], [17], [18], [20], [23], [28], [30], [31],
[33], [35], [36], [37], [44], recent deep learning-based methods
show advantages. These methods can be divided into two
categories: 1) direct prediction of 3D structures, or 2) 2D
supervision, i.e., predicting 2D depth maps as a proxy and
then obtaining the complete 3D objects and scenes with depth
fusion.

A. 3D Completion by Direct Prediction

To recover incomplete single objects or scenes, one of the
most intuitive methods for completion is to directly process
3D data (e.g. voxel or point cloud), and inpaint occluded or
missing parts/regions in objects/scenes.

Volume-based Methods Essentially, 3D data can be repre-
sented as volumes/voxels in 3D space. Starting from SSCnet

[34], the authors first performed the scene completion task by
proposing a SSCnet that takes a single depth as input, then
represented the depth as 3D volume and conducted 3D-CNN
convolution on the volume. By predicting the occupancy and
class label of each volume in the space, 3D semantic scene was
completed. Following the work of SSCnet [34], other methods
were proposed by taking advantages of volume representation.
Schnabel et al. [30] introduced a fully convolutional network
structure to handle large-scale volume data. Wang et al. [39]
completed 3D scene using two encoders and one decoder from
the adversarial perspective. Garbade et al. [11] voxelized a
scene and predicted depth and semantic information from the
input RGB images. Guo et al. [12] encoded the geometry
information through a 2D CNN and then fed it to a 3D CNN to
compute volumetric occupancy and semantic labels. However,
volume-based 3D methods have to sacrifice representation
accuracy and lead to huge redundancies.

Point Cloud-based Methods Recently, point cloud-based
methods became more popular. Taking partial point cloud as
input, networks directly predict the complete point cloud as
output. Normally these networks are all made up of encoder
and decoder networks. The encoder network is quite similar
in different methods. Achlioptas et al. [1] just simply took
the fully-connected layers as their decoder. Fan et al. [10]
combined the fully-connected layers with deconvolution layers
to obtain better point cloud prediction. Yang et al. [42] inno-
vatively proposed the FoldingNet, which is an auto-encoder
structure deforming a 2D canonical grid to 3D surface of
objects through folding operations. In the PCN [43] paper,
the authors proposed a coarse-to-fine completion idea. By
combining the local and global features and taking advan-
tage of FoldingNet’s [42] decoder network, the network can
output a dense completion point cloud for objects. However,
these existing point cloud-based methods can only handle the
completion task of single objects and cannot directly, end-to-
end, accomplish the completion task for the 3D scene point
cloud due to the complexity of 3D nature scene and large-scale
number of points.

B. 3D Completion by 2D Supervision
Besides directly processing 3D data, there is also a branch

of methods that complete 3D objects or scenes using 2D
supervision signal such as 2D depth maps, binary masks,
segmentation maps, etc.

For 3D object and scene completion, studies attempted to
predict 2D depth maps of various viewpoints around the center
and then fuse them to obtain complete point clouds. Lin et al.
[21] proposed an efficient end-to-end network to generate a
dense point cloud. They first took a single RGB image as input
and then predicted the depth maps of sampled viewpoints. The
loss is calculated with ground truth depth maps and optimized
the whole reconstruction pipeline. In [24], the authors pro-
posed a novel projection method named Capnet, which was
used to predict the foreground masks and then supervise the
whole reconstruction process. Chen et al. [3] introduced Point-
MVSNet, which utilized coarse-to-fine reconstruction idea.
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Fig. 2: Architecture of our proposed end-to-end scene point cloud completion network which takes a single depth map with
original size as input. The whole structure has two subnetworks: NDVNet (Novel Depth View Network) and DCNet (Depth
Completion Network). The NDVNet consists of skip-connected encoder and decoder networks. The pyramid fused feature map
outputs are further utilized to predict novel depth maps from various viewpoints ((R1, t1), (R1, t1) ... (RN , tN )). Meanwhile, we
re-project the point cloud (from input view) to N viewpoints to obtain the coarse depth maps, which can provide more detailed
textures. A coarse-to-fine DCNet is then introduced to optimize each viewpoint depth prediction given a novel predicted depth
map and a related re-projected coarse depth map. Finally all of the refined depth maps are fused together to form the final
completed scene output.

They first predicted the coarse depth map from an RGB image
and then refined the depth map by predicting the point flow
from multiple view images. Combined with the depth residual
and 3D geometry priors, the depth map is refined and output
dense point cloud reconstructed. Han et al. [14] considered
scene point cloud completion from a depth map inpainting
perspective. They proposed DQN network to find the next best
view to project a depth map and then complete the projected
depth maps under the guidance of SSCNet [34]. However,
this network depends on volume completion as guidance for
inpainting by handling the occluded areas with off-the-shelf
work (e.g. SSCNet). In addition, the network is composed of
multiple sub-networks, which are too complicated and time-
consuming.

III. METHODOLOGY

A. Architecture Overview

Given a depth map, the point cloud can be gen-
erated by back-projection following the rule: P raw =
[R, t]−1K−1[u, v, 1]T · D(u, v), where D(u, v) denotes the
depth measurement of pixel (u, v). However, due to occlu-
sions of each single view, P raw may miss occluded structure
information. In this paper, we propose to complete scene point
cloud from a single view depth map, taking a raw depth
map as input and generating the complete point cloud as
output. As shown in Fig. 2, our model comprises three main
components: 1) a multi-way depth synthesis module, NDVNet
(Novel Depth View Network), which aims to preliminarily lift
a single depth input to multiple hallucinated novel depth views;
2) a geometric coarse depth rendering module which aims to

render faithful coarse depth maps; and 3) a depth completion
refinement module DCNet (Depth Completion Network) to
jointly generate a high-quality, inpainted depth output. The
proposed network takes a single depth map with original
size (VGA) as input. To tackle the occlusion challenge, the
NDVNet is designed to predict N novel viewpoint depth maps
from well-selected N views, (Ri, ti), i = {1, 2, ..., N}, and we
further resize the output depth maps into 160× 120. For each
novel viewpoint vi, a coarse depth map is re-projected from
the input P raw via perspective projection. Through DCNet,
each predicted depth map and re-projected coarse depth map
are paired to generate a complete depth map under vi. Finally,
the complete 3D scene point cloud can be obtained via fusing
the complete depth map from all of the N viewpoints.

B. Novel Depth View Network and Perspective Rendering

The features of a single view depth map are extracted
by the NDVNet as the coarse depth information from other
novel views. Based on the latent representation, we propose
to generate the coarse-completed depth pD from selected N
views. Meanwhile, we take advantage of the input single view
point-cloud Praw and project it into each view to obtain the
coarse depth maps cD without completion.

1) Novel Depth View Network: Our model predicts a depth
map from each novel view, aiming to complete scene structure
from the current view by providing more detailed information
compared to coarse voxel completion [34]. Inspired by UPer-
Net [41], we employ the Feature Pyramid Network (FPN) to
predict novel view depth and perform depth completion in
an end-to-end manner. As shown in Fig. 2, NDVNet takes as



Fig. 3: Coarse depth rendering is performed through a ray-
tracing and casting approach, Where the point collision is
considered as a fusion to obtain the depth map. Since we use a
cube to represent a point in 3D space, there may exist several
cubes cast into one pixel or one cube cast into multi-pixels.

input, a single depth map with the spatial size of 640× 480.
Through the pyramid feature extraction layers, the feature
spatial size has been downgraded to 1/4, 1/8, 1/16, and 1/32
layer by layer, and then upsampled back to the original
size. The skip connection links the low level and high level
features together to ensure both local and global information
are involved in the prediction. All decoder layers are fused
together, followed by one convolution layer to generate novel
depth maps with N viewpoints. The output size of each view
is 160× 120.

2) Coarse Depth Perspective Rendering: In our scene com-
pletion model, the input, single view point cloud, P raw =
[R, t]−1K−1[u, v, 1]T , is able to provide guiding information
by projecting to each novel view. It is denser compared to
depth prediction by the NDVNet. A joint learning by combing
the predicted depth and the projected depth would allow a
highly accurate completion of the target scene. As shown in
Fig. 3, with the proposed perspective rendering approach, we
re-project P raw to each view (Ri, ti), i = {1, 2, ..., N}, to
obtain its depth map, called coarse depth map cD. For the
rendering process, several points may cast to the same pixel
of the view leading to a collision problem. Thus, we propose
the perspective rendering to solve this problem by fusing all
the collided points’ depth to obtain the depth value of a pixel.

To fuse the depth projected from multiple 3D points -
inspired by [25] - we introduce a view angle-based weighted
average method. For all collided points, pi = (X,Y, Z), i =
0, 1, ...,m, depth is represented as D(pi). Then, we have the
following fusion representation:

Fig. 4: Illustration of the novel views which are designed in
a circular pattern to provide full-coverage of a target scene.
The circle is formed by the camera center and the scene center
with a fixed height Z.

(u, v) =
w0D(p0) + w1D(p1) + ...+ wmD(pm)

w0 + w1 + ...+ wm
, (1)

where wi ∝ cos(θ) denotes the weight of each point, θ is the
angle between the associated pixel ray direction and the ray
direction from the camera center Oc to each point pi. (u, v) is
the coordinate location of the pixel on the re-projected depth
map. We use such ray casting and depth fusion to obtain the
projected coarse depth map from each view (Ri, ti).

C. Depth Completion Network

To reconstruct completed 3D structure, we fuse 3D point
cloud from each selected novel view in an iterative manner.
Based on Section III-B1, we know the predicted depth map
only has a resolution of 160×120, which is not able to provide
high-quality dense reconstruction. To address this challenge,
we further propose a depth refinement model which takes the
predicted novel depth and coarse depth as input, and outputs
a 640× 480 refined depth map.

1) Novel View Generation: As illustrated in Fig. 4, we
consider a circular view approach to enforce the coverage
completeness to reconstruct the occluded scene. For each novel
view, it starts from the input view (Rraw, traw) toward two
sides. The moving trajectory is parallel to the circle formed
by the initial view and the center of the scene. The circular
trajectory shares the same height as the input view due to the
purpose of keeping that view’s similarity.

2) Coarse to Fine Depth Completion Network: The DCNet
refines the low-resolution prediction and generates a 640×480
output. The input is a concatenation of re-projected depth map
cD and the coarse-completed low resolution depth map pD
which results in a 2 channel image. It is worth noting that pD
is up-sampled to 640 × 480 by using a bilateral filter before



Fig. 5: Demonstration of the effectiveness for the proposed NDVNet using error maps which are obtained by computing the
pixel-level difference of prediction over the ground truth. Here we compare the error maps of the re-projected depth map (2nd
column) and coarse-completed depth maps (3rd column) against the ground truth (1st column). They are generated by the
perspective rendering and the NDVNet, respectively. The last two columns show the error maps for the 2nd and 3rd columns

.

concatenation. The overall framework of the DCNet is just
a simple encoder-decoder network which is very similar to
UNet [29]. We just remove the skip connections, and the gated
convolution [22] is added to the DCNet.

Gy,x =
∑∑

Wg · I,

Fy,x =
∑∑

Wf · I,
Oy,x = φ(Fy,x)� σ(Gy,x),

(2)

where I and Fy,x represent the input and output of the the
gated convolution layer, respectively. The Gy,x learns the soft
mask from the coarse completed depth map and provides
the guidance for further completion refinement. Here σ and
φ are the non-linear function. Wg and Wf are different
convolution kernels. We refer the readers to [22] for details
of the architecture settings.

NDVNet and DCNet are trained independently first, and
then we further jointly train the whole 3D scene point cloud
completion model.

3) Multi-view Dense Fusion Approach: Our final goal is to
reconstruct the 3D structure of the target view, and recover
the occluded areas. Given N views - i.e. (Ri, ti), i = 1, .., N
- and the corresponding completed depth map, we concatenate
the partial point cloud obtained from each novel view into a
global model following the pin-hole model back-projection,

P r =

N∑
i=1

(Ri, ti)
−1K−1

 u
v
1

 ·D(u, v), (3)

where P r denotes the reconstructed global point cloud, which
is obtained by concatenation,

∑N
i=1, of points from each

frame. The performance of the reconstruction is evaluated
using Chamfer-Distance (CD) [2].

D. Loss Design and Learning

We adopt the L1 loss for the novel view depth map
prediction during the first stage training process:

(4)Lnovel =

N∑
i=1

|Dgt −Dpredicted|,

where Dgt is the ground truth depth map at view vi, which is
obtained by projecting the complete ground truth point cloud
to the specific viewpoint, vi. Dpredicted is the depth map
generated by NDVNet at view vi

And for the second stage, the loss is designed as follows:

(5)Lcompletion =

N∑
i=1

|ζ(cD||pD)−Dgt|,

(6)L = λLnovel + Lcompletion,

where pD and cD are the aforementioned coarse-completed
depth map and the re-projected depth map. ζ is the convolution
function of DCNet. L is the total loss function which is
combined with Lnovel and Lcompletion. λ is the weighted
parameter.

IV. EXPERIMENTS

A. Dataset

SUNCG [34] is a large-scale synthetic scene dataset of an
indoor scene, which contains 45,622 scenes with realistic room
and furniture layouts. The 2D data, such as depth maps, RGB
images, and segmentation maps, is rendered for each room.
The rooms with less than 10 views are eliminated. We choose
around 1,000 rooms for our experiments. For each rendered
depth map in the room, we obtain the truncated complete point
cloud through casting rays from the depth maps. Then we
render the truncated complete point cloud to n fixed views



Input View1 View2 View3 View4

Fig. 6: Qualitative Results of 2 different indoor scenes (divided by the dashed line bounding boxes). For each scene, the first
column is the RGB image and input depth map (RGB image is just for visualization and not used in our framework). The
other columns are the depth maps of the experiment results under 4 novel views. The first row is the re-projected depth maps
under the vi, which have holes such as desks and floor. The second row is the coarse-completed depth maps generated by
NDVNet. And the third row is the final completed depth maps generated by DCNet. Note that the holes are filled and the
scenes are well completed through our proposed whole completion model and coarse-to-fine strategy.

TABLE I: Results comparison with other methods in CD distance and completeness.

SSCNet [34] ScanComplete [7] DQNw/o−hole [14] DQN [14] Ours

CD 0.5162 0.2193 0.1495 0.1148 0.1221
Cr=0.002(%) 14.61 34.46 79.22 79.26 80.01

around its center. In the experiment, we choose n = 8. In
total, we have 20,000 depth maps, and choose 2,000 of them
as a testing set, and the rest for training.

B. Implementation Details

The experiments are conducted with fixed viewpoints, which
are selected by calculating the distance between depth map
views and the center of the truncated complete point cloud as



radius. Then we evenly sample fixed angles around the circle.
The training process has 3 stages: 1) the depth completion
model NDVNet is trained from scratch with 200 epochs,
adopting Adam optimizer, and a learning rate of 0.005. 2) The
depth completion model, DCNet, is trained with the output of
the completion model and the re-projected partial depth maps
for another 100 epochs. 3) The end-to-end network is again
fine-tuned with 100 epochs, learning rate at 0.0001, and Adam
optimizer for training process optimization.

C. Evaluation Metrics

Chamfer Distance [43] is adopted as the evaluation metric
to calculate the average closest point distance between the
generated point cloud and the ground truth complete point
cloud:

(7)

CD(S1, S2) =
1

|S1|
∑
x∈S1

min
y∈S2

||x− y||2

+
1

|S2|
∑
y∈S2

min
x∈S1

||y − x||2.

In order to compare the results with other papers [10], [14],
we introduce the completeness as another evaluation metric:

Cr(S1, S2) =
|{d(x, S1) < r|x ∈ S2}|

|{y|y ∈ S2}|
, (8)

where S1 is the output completed point cloud, S2 is the ground
truth point cloud, d(x, S1) represents the distance between a
point to a point set P , and r is the distance threshold set as
0.02 in our experiments.

D. Effectiveness of NDVNet

The middle stage results are explored to show the effective-
ness of the proposed NDVNet. We use error maps to make a
clear comparison for the completeness. As shown in Fig. 5, the
second column shows the depth maps from another novel view,
which has clear incomplete holes due to the occlusion, while
the third column shows the coarse-completed depth maps,
which are generated by the proposed NDVNet. It is worth
noting that those holes of the novel view are completed by
NDVNet. For example, the scene in the first, raw part of the
desk is occluded by the computer. However, with NDVNet,
the scene is roughly completed and most of the holes are
coarsely filled. In addition, the error maps with the pixel-level
difference are computed for further comparison. We subtract
the prediction with the ground truth depth map. From the
error maps in the fourth column, there exist many error areas
compared to the ground truth maps. However, after NDVNet,
the errors are significantly reduced and the error maps in the
fifth column are pretty smooth.

E. Ablation Study of Various Novel View Numbers

We conduct experiments on the different choices of novel
view numbers. The numbers 3, 5, 8, and10 are tested for com-
parison. As shown in Table II, overall for the CD and Cr=0.02

evaluation metric, the performance will be boosted with the

TABLE II: Results comparison with different numbers of
viewpoints of 3, 5, 8, and 10.

N3 N5 N8 N10

CD 0.2138 0.1628 0.1221 0.1220
Cr=0.002(%) 31.35 68.20 80.01 80.00

increase in number of viewpoints. The best performance is
achieved at the number of 8, with the CD at 0.1221, and
a Cr=0.02 of 80.01%. However, when the number goes to
10, the performance is becoming stable. Considering both the
efficiency and effectiveness, we choose to adopt number of 8
here for the following experiments.

F. Experiment Results

Quantitative Results As shown in Table I, quantitative
results compared with other state-of-the-art methods show the
effectiveness of our method. Our completed scene reduces
the value of CD to 0.1221. It already outperforms most of
the existing methods including 3D supervised methods or
volume-based methods such as SSCNet [34], [7]. Although
our performance is still a little lower than DQN [14], we did
not apply the reinforcement learning strategy which is adopted
in [14] to select the next best views. For the completeness
metric Cr=0.02, the performance is even better than [14],
which highlights the improved completeness results of our
model.

Qualitative Results The qualitative experimental results of
two scenes are demonstrated in Fig. 6. For each scene, we
select several views (v1 ... v4) to show the final coarse-to-
fine completion results. For each view of the scene, there is
a set of 3 depth maps. The top one is the depth map directly
re-projected for the novel view, vi. The middle one is the
coarse-completed depth map predicted by NDVNet, and the
bottom one is the depth map refined by DCNet. For the output
of NDVNet, which is the coarse completed depth map, even
though the image is still sort of blurry and smooth, the scene
is already completed to some extent. Followed by the output
of DCNet, the scene is further refined based on the coarse-
completed depth map, adopting the coarse-to-fine strategy,
resulting in a depth map that is clearer and sharper. Most of
the occluded areas are successfully completed. For example,
part of the chair and the table in the first scene are all missed
due to the novel view, whereas after the completion, most of
them are recovered.

V. CONCLUSIONS

We have presented a versatile model for 3D scene point
cloud completion, achieving state-of-the-art completion perfor-
mance. We have demonstrated that novel depth view synthesis
is capable of working as a proxy task for providing adequate
2D supervision signals to the 3D scene completion task. Our
proposed model can generate high-quality plausible novel
depth views for supervising various potential related tasks.
One promising future research direction is to complete a
semantic scene point cloud in a per-class fashion.
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