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ABSTRACT

In various settings, limitations of sensing technologies or other sam-
pling mechanisms result in missing labels, where the likelihood of
a missing label is an unknown function of the data. For example,
satellites used to detect forest fires cannot sense fires below a certain
size threshold. In such cases, training datasets consist of positive
and pseudo-negative observations (true negatives or undetected pos-
itives with small magnitudes). We develop a new methodology and
non-convex algorithm which jointly estimates the magnitude and oc-
currence of events, utilizing prior knowledge of the detection mech-
anism. We provide conditions under which our model is identifiable.
We prove that even though our approach leads to a non-convex ob-
jective, any local minimizer has an optimal statistical error (up to a
log term) and the projected gradient descent algorithm has geomet-
ric convergence rates. We demonstrate on both synthetic data and
a California wildfire dataset that our method outperforms existing
state-of-the-art approaches.

1. INTRODUCTION

A common challenge in many statistical machine learning problems
is noisy or missing labels. In such settings, it is often common to
assume the labels are missing at random and place a distribution on
the missing labels (see e.g. [10, 15]). However, in many applications,
labels are missing systematically due to aspects of the technology in
the data collection process. Consider, for example, a dataset con-
sisting of wildfire events in California where fire size is measured
using satellite imagery. Due to the limited resolution of the satellite
optics, fires smaller than a certain threshold will not be observed,
complicating the effort of building a predictor of fire size. Simi-
larly, consider forecasting the spread or impact of a virus, where
a person’s likelihood of being tested and included in a dataset de-
pends on the severity of their symptoms. These are both examples
of response-dependent missing labels where labels or measurements
are missing based on the magnitude or size of the measured event.
This response-dependent sampling bias poses a significant challenge
in terms of (i) predicting event (such as fire) occurrence, since small
magnitude events are not recorded and (ii) predicting the magnitude
of each event (due to positive bias of the measurements).

In this paper, we develop a statistical framework that addresses
response-dependent missing labels with a two-level model that (i)
models the true event magnitude Y as a mixture of 0, indicating no
event, and a positive distribution if the event occurs; and (ii) models
the observed event magnitude Z, which is either the same as Y or 0,
depending on the true response Y . More specifically,

P (Z = 0|Y = y > 0,X = x) = 1− Γ(y),

where X = x denotes the features or covariates and Γ(y) repre-
sents a probability depending on y which accounts for the outcome-
dependence. Hence Z = 0 could either denote a “true” negative
where Y = 0 or a “false negative” where Y > 0 but Z = 0.

This flexible framework allows us to model response-dependent
missing labels through an occurrence-magnitude mixture distribu-
tion for Y and the probability function Γ(y) for the observed re-
sponse Z. This model presents both identifiability and computa-
tional challenges that we address in this paper. SinceZ = 0 could ei-
ther denote a true 0 or a false 0, we first provide identifiablity condi-
tions on our mixed model. Secondly, two computational challenges
arise: (i) the likelihood of the observed data Z involves integration
over the function Γ(y) and (ii) even if this integration is possible,
the objective is non-convex. To address (i), we choose Γ(y) to be
the CDF of a Gamma distribution which allows a closed-form com-
putation of the integral; to address (ii), we demonstrate that even
though the objective is non-convex, using projected gradient descent
leads to a local minimizer with desirable statistical properties.

Related Work Our proposed model is in contrast with the Type I
Tobit model [21], where excess zeros arise due to the censoring of
an underlying continuous variable. Zeros are only proxies for values
below a certain threshold, and thus the goal of Tobit analysis is to
estimate magnitude only. On the contrary, our framework models
a two-part mixture that separately models the probability of event
occurrences and magnitude of the events [19, 16].

Our approach is also related to Positive-Unlabeled (PU) learning
[11, 6, 5] and non-ignorable missing data (see e.g. [18, 10]), as the
responses in our setting consist of positive and pseudo-negative ob-
servations, where pseudo-negative observations arise from response-
dependent missing labels. However, PU learning focuses exclusively
on the occurrence of events (labels), while our framework involves a
mixture distribution of Y that simultaneously estimates occurrence
and magnitude. Another related literature is missing not at random
(MNAR) mechanisms (see e.g. [22? , 8, 13]). In the MNAR setting,
which observations are missing is known a priori while in our setting
true and false negatives are unknown a priori.

Lastly, an active line of work exists in non-convex estimation
problems in which various statistical and algorithmic guarantees for
a non-convex M-estimator are studied [12? , 14, 7]. Our objective
turns out to be a non-convex function of parameters, and our work
utilizes a number of tools in the non-convex literature to obtain sta-
tistical and algorithmic guarantees of the proposed estimator which
is a stationary point of the non-convex objective function.

Contributions Our paper makes the following contributions: 1. a
general statistical framework for dealing with response-dependent
missing labels, leading to a closed-form log-likelihood; 2. identifi-
ability conditions (Theorem 1) for our model; 3. provably optimal
statistical error (up to a log term) and efficient algorithm (Theorem 2



and 3); and 4. illustration of the advantages of our approach using
simulated data and real data analysis of wildfire prediction in Cali-
fornia.

2. MODEL AND ALGORITHM

2.1. Problem Set-up

We consider the following problem set-up for estimation and pre-
diction using contaminated data. We assume that Y has a mixture
distribution of a point mass at 0 (denoting no event) and continu-
ous distribution over R+ (denoting the magnitude of the event), and
each component distribution depends on the value of a set of features
x ∈ Rp. In other words, the pdf of Y given X = x is as follows1:

pY (t|x;β, θ) = (1− p1(x))δ0(t) + p1(x)g(t|x) (1)

for some p1(x) and g(·|x) where p1 takes a value between 0 and 1
depending on x and g(t|x) is a pdf of the continuous distribution.
Here, each p1 and g is related to occurrence and magnitude of the
mixture distribution for Y .

First, we model P(Y > 0|x) = p1(x; θ) and P(Y =
0|x) = 1 − p1(x; θ), where we let p1(x; θ) := σ(x>θ) :=
(1 + exp(−x>θ))−1. When Y > 0, we use an exponential GLM;
specifically,

pY |Y >0,X(y|x) = g(t|x;β) := λX exp(−λXt)

where λX = exp(−x>β). Here, each exponentiated coefficient
represents the multiplicative effect of the corresponding feature. The
exponential GLM is chosen to reflect that a size of an event is always
non-negative. That is, given that an event has occurred, i.e. Y > 0,
the probability that Y is larger than t is P(Y > t|Y > 0,x) =∫∞
t
g(s|x;β)ds.
If an i.i.d sample of (xi, yi)

n
i=1 is available, the mixture model-

ing approach (e.g. [4, 17]) can be utilized to estimate the parameters
θ and β. However, in our setting, not all yi are observed since events
with small magnitude tend to have missing labels. We introduce a
random variable Z to denote the observed size of an event. If an
event has occurred but is unobserved, then yi > 0 but zi = 0. On
the other hand, if the event is observed, the recorded size is the same
as the true size, i.e. zi = yi. Since zi = 0 no longer implies that no
event has occurred, we cannot simply estimate the parameters using
the observed sizes (zis) instead of the true sizes (yis).

2.2. Likelihood model and identifiability

We model the likelihood of correctly observing events as

P(Z > 0|Y = y > 0,X = x) = Γ(y). (2)

In other words, the probability that the magnitude Y is observed
depends only on the value of Y itself. In many practical appli-
cations, this “self-masking phenomenon” occurs where true value
itself determines whether the observation would be hidden or re-
vealed. For example, if we consider fire prediction, the size of fire
affects whether the fire event would be detected or not; hence Γ(·)
is a monotonically increasing function. From here, we combine (1)
and (2) and integrate out the unobserved Y to derive pZ|X; the log

1By pdf, we mean a Radon-Nikodym derivative of PY |X with respect to
the Lebesgue measure plus a point mass at zero.

of this quantity forms our loss function for a collection of samples
(xi, zi) for i = 1, . . . , n:

Ln(θ, β) = − 1

n

∑
i;zi=0

log (1− φ(xi;β,Γ)p1(xi; θ))

− 1

n

∑
i;zi>0

log {g(zi|x;β)Γ(zi)p1(xi; θ)}
(3)

where

φ(x;β,Γ) =

∫ ∞
0

Γ(y)g(y|x;β)dy. (4)

Identifiability. The model is not identifiable if no assumptions about
the structure of g in (1) and Γ are made because the likelihood (3)
is defined via Γ(y)g(y|x). On the other hand, both parameters are
identifiable under parametric assumptions on p1 and g for any given
positive Γ, if two parameter vectors are distinct, i.e., β 6= cθ for any
c 6= 0, and the feature vector x spans all directions in Rp. More
concretely, We have the following result about the identifiability of
the model (3) under the following Assumption A1:

A1. Two parameter vectors β and θ in (1) are linearly independent.
The density of PX with respect to the Lebesgue measure is positive
everywhere.

Theorem 1. For any given positive Γ and under Assumption A1 ,
the parameters (β, θ) in the model (3) are identifiable.

The proof is based on constructing a set of observations (xi, zi)
that distinguish the likelihoods evaluated at different parameter val-
ues, and is deferred to the full version of this paper [20].
Choice of Γ(·). The next question is how to choose the label ob-
servation probability Γ(y). One of the determining factors is that
the integral in (4) needs to be computable and Γ(y) also needs to
be monotonically increasing. If φ does not have an analytical form,
approximation of the function via a numerical integration is needed,
which can be computationally challenging. Hence we choose Γ to
be the cumulative distribution function of an exponential function
with parameter λε. This choice of Γ has several advantages: first, by
choosing Γ as a cdf, Γ is a monotonically increasing function in y,
which is in accordance with our setting where events with small sizes
are more likely to be not included in the dataset. Also, this choice is
computationally attractive since φ in (4) can be analytically solved.

Our estimation method is defined as the maximizer of the log-
likelihood (3) with the choice of Γ(y) := 1 − exp(−λεy) and φ in
(4). We use the name PU-OMM to refer to our method, which stands
for Positive-Unlabeled Occurrence Magnitude Mixture.

2.3. Algorithm

Given data (xi, zi) for i = 1, . . . , n, the objective function is

ω̂ ∈ argmin
ω∈B2(r)

Ln(ω) := − 1

n

n∑
i=1

`(ω; (xi, zi)), (5)

where ω := (β, θ), and `(ω; (xi, zi)) is the ith component of
the likelihood in (3). We also define the population risk function
R(ω) := E[Ln(ω)] and define ω0 := (β0, θ0) as the minimizer of
R(ω). We let the search space B2(r) be an `2 ball with a radius r,
for a sufficiently large r > 0 so that ω0 is feasible.

To optimize (5), we propose to use the standard projected gradi-
ent descent (projected to B2(r)). We will show in Theorem 2 and 3
that it is feasible to obtain ω̂ in (5) despite Ln(ω) being non-convex,
and the convergence of iterates {ωt}t≥1 in Algorithm 1 is linear
given a sufficiently large sample size.



Algorithm 1: Projected Gradient Descent

Input: Data (xi, zi)
n
i=1, step size η, initial point ω0,

hyperparameter λε, search space radius r
for t = 1, 2, 3, . . . do

ωt+1 = PB2(r)(ω
t − ηOLn(ωt));

if converged then
STOP

end
end

3. THEORETICAL GUARANTEES

Throughout this section, we assume that Γ(t) = 1 − exp(−λεt) is
given. We first introduce a set of conditions for the response variable,
feature vector, and the degree of missingness, under which we prove
algorithmic and statistical convergence.

A2. (Random design) A random feature vector x ∈ Rp with dis-
tribution PX is mean-zero sub-Gaussian with parameter KX for a
positive constantKX <∞. In other words, for any fixed unit vector
v ∈ Rp, we have E[exp(x>v)2/K2

X ] ≤ 2. Moreover, there exists
Cλ > 0 such that λmin(E[xx>]) ≥ Cλ.

A3. (Boundedness) There exist constants CX , CY < ∞ such
that for the random feature x ∈ Rp and response variable y ∼
pY (·|x; (β0, ω0)), ‖x‖2 ≤ CX and |y/ex

>β0 | ≤ CY a.s.

Assumption 2 is a mild assumption on the feature vector x which
states that x has a light probability tail and the smallest eigenvalue
of the population covariance matrix is lower-bounded by a posi-
tive constant. The boundedness condition is assumed mainly for
the technical convenience and states that both x and the deviation
of y from its mean are absolutely bounded, where we recall that
E[Y |Y > 0,x] = ex

>β0 .

A4. We assume the following condition holds:

max
1≤i≤n

1− σ(x>i β + log λε)

1− σ(x>i θ)
≤ r0(ω0, CX , r) (6)

where r0 is a constant depending on model parameters ω0 =
(β0, θ0), CX , and r.

We give the full expression for r0(ω0, CX , r) in the proof of
Theorem 2 which can be found in the full version of this paper for
ease of exposition [20]. We recall that λε = ∞ corresponds to “no
missingness” where all yi are the same as zi since Γ(y) = 1, ∀y.
The equation (6) trivially holds in this case. Assumption A4 essen-
tially states that albeit λε < ∞, λε is sufficiently large so that (6)
holds. Assumption A4 ensures there exists sufficient signal in the
data to estimate both parameters β and θ.

The following two theorems provide algorithmic and statistical
error bounds.

Theorem 2. Under Assumptions A1,-A4, if n ≥ Cp log p, the em-
pirical risk functionLn(ω) admits a unique local minimizer in B2(r)
which coincides with the global optimizer ω̂. In addition, for any
δ > 0, the following inequality holds with probability 1− δ,

‖ω̂ − ω0‖2 ≤
C

α

√
C2
Y p log(n) log(CY /δ)

n
(7)

where α,C,CY > 0 are constants only depending on model param-
eters (but not on n, p).

Theorem 3. Assume A1-A4 hold. If n ≥ Cp log p, for any initial-
ization ω0 ∈ B2(r/2),

‖ωt − ω̂‖2 ≤ C1κ
t‖ω0 − ω̂‖2 (8)

for κ < 1, where C,C1 > 0 are constants depending on model
parameters (but not on n, p).

The convergence rate in (7) nearly matches the parametric rate
of

√
p/n. Also, running Algorithm 1 efficiently finds the optimum

of (5), in the sense that O(log(1/ε)) iterations are needed to find a
point within distance ε of the global optimum ω̂ of the objective (5).

Extension to the high-dimensional setting: It is worth noting that
the theory we develop here has a direct generalization to the high-
dimensional setting where p � n and we assume ω0 is s-sparse,
for s � p. In the proof of Theorem 2, we show that the population
risk function R(ω), despite of being non-convex, admits a unique
stationary point, and utilizing such result and uniform convergence
we derive the `2 error bound. A similar approach can be used to ob-
tain a statistical error bound of an `1-penalized M-estimator ω̂(λ),
defined as ω̂(λ) := argminLn(ω) + λ‖ω‖1, where we control the
difference between Ln(ω) and R(ω) over a restricted cone includ-
ing B2(r) (see, for instance, [14]).

4. SIMULATION STUDY

We now study the performance of the proposed method and com-
pare with other state-of-the-art approaches in terms of parameter
estimation accuracy and prediction using simulated datasets repre-
senting a number of scenarios. In particular, we consider the follow-
ing three settings for generating simulated datasets where in the first
setting our model is correctly specified and in the others, different
mis-specifications are introduced:

1. Correct specification: the size of an event Y |(Y > 0,x)
is generated from the exponential distribution with parameter
λX = exp(−x>β0). Missing in yis are probabilistic, whose
probabilities depend on yi via Γ(y) = 1 − exp(−λεy) for
λε = .24

2. Misspecification 1: g is log-Normal instead of exponential,
i.e. Y |(Y > 0,x) ∼ LogNormal(x>i β0, Ip).

3. Misspecification 2: missing in yi is deterministic and yi
below a certain threshold is recorded to be zero, i.e. zi =
1{yi ≥ τ} for a threshold τ = 3.

Data Generation. We generate a design matrix X by drawing
each row from a multivariate Gaussian distribution N (0,Σ) where
Σij = 0.2|i−j|. The true unobserved responses yi are sampled from
a mixture of zero and a continuous distribution, where zeros are sam-
pled from a Bernoulli distribution with probabilities σ(x>i θ0) and
continuous responses are sampled from g(·|xi;β0). Depending on
the setting, g is set to be Exponential (Settings 1 and 3) or Lognormal
(Setting 2). Additionally, a binary ri ∈ {0, 1} is sampled to deter-
mine whether each yi is missing or not. Depending on the setting,
we let P(ri = 1|y) = Γ(y) = 1 − e−λεy for λε = .24 (Settings 1
and 2) or Γ(y) = 1{yi ≥ τ} for τ = 3 (Setting 3).

Methods.
1. Oracle: two GLMs (Logistic, Exponential) using (xi, yi)

n
i=1

where yi with fully labelled responses.
2. Proposed method (PU-OMM): our proposed method.
3. Logistic-Gamma mixture model (Logistic-Gamma): we fit

two separate GLMs using (xi, zi)
n
i=1, one for the occurrence

and the other for the size of the event using logistic and
Gamma distributions



Fig. 1: Parametric estimation and prediction accuracy for each method under
Settings 1-3 (Correctly Specified, Misspecification 1, and Misspecification
2). Each row i corresponds to the Setting i, for i = 1, 2, 3. For each row, first
two panels (RMSE (beta), RMSE (theta)) show parameter estimation accu-
racy results, and the last two panels (SMAPE (size), BrierLoss (occurrence))
plot the accuracy of each method in predicting the true size and occurrence
of each observation in test datasets. Average values from B = 50 trials are
plotted, together with error bars corresponding to one standard error. Note
for the Logistic-Gamma and Logistic-LogNormal Mixture models, the logis-
tic model is used to predict the occurrence of events, and Gamma/LogNormal
model is used to predict the magnitudes of events. Therefore, our PU-OMM
model is compared with the Gamma/LogNormal models in RMSE (beta) and
SMAPE (size) panels, and PU-OMM is compared with the Logistic model in
RMSE (theta) and BrierLoss (occurrence) panels.

4. Logistic-LogNormal mixture model (Logistic-LogNormal):
Gamma distribution is replaced with log-normal distribution
in 3.

Evaluation Metrics. We compute Root Mean Squared Errors
(RMSE) for each estimated (β̂, θ̂) to evaluate parameter estimation
accuracy. For prediction accuracy, we evaluate the prediction accu-
racy of each model in terms of predicting both occurrence and size
of the true events. For predicting the occurrence of an event, we use
BrierLoss(u, p̂):= 1

ntest

∑ntest
i=1 (p̂i − ui)2 which is a normalized `2

loss as a metric. For predicting the magnitude of an event, we use
Symmetric Mean Absolute Percentage Error (SMAPE), Mean Ab-
solute Deviation (MAD), and root mean squared error (RMSE) for
evaluation metrics. SMAPE is considered to evaluate prediction per-
formance in a relative scale, as results of MAD and RMSE can be
affected by a few observations with large errors [2].

Results. Figure 1 presents estimation and prediction accuracy for
each method under Settings 1-3. We plot results using SMAPE and
BrierLoss in Figure 1 for prediction evaluation and defer the remain-
ing plots to the Supplementary Material in the full version of the
paper [20]. Unsurprisingly, the oracle estimator performs the best.
Among non-oracle methods, the proposed method appears to per-
form the best in both correctly specified and misspecified settings,
even when the hyperparameter λε is chosen based on the data. In
fact, the difference between the two PU-OMM models–one based
on the true λε value and the other based on the choice from data–
was quite small. We also include a comparison plot between the two
PU-OMM models in the full version of this paper [20].

Fig. 2: Prediction performance comparison for PU-OMM, Logistic-Gamma,
and Logistic-LogNormal models with the California Wildfire dataset. Aver-
age MAD, RMSE, and SMAPE values are plotted for each method. Error
bars represent 1 standard error.

5. CALIFORNIA WILDFIRE DATA

California Wildfire Dataset. We use a global wildfire dataset from
[1] to obtain observed fire events in California from 2001 to 2018.
The database [1] includes fire events–sets of burnt areas that are con-
nected by touching or intersecting–together with fire perimeters and
the final dates of the fire events. We obtain fire sizes by comput-
ing areas of fire events based on fire perimeters. In the obtained
dataset, most of the fires whose sizes are below 1km2 are not present.
Given the lack of small fires in the database, we additionally sam-
pled points from places with no observed fires. We augmented the
fire events dataset from [1] by adding these pseudo-negative points
where the fire sizes corresponding to these points are set to be zero.
We also incorporated information on meteorological, topographical,
geographical aspects of each sampled location as covariates[9, 3].
The final dataset has dimensions (n, p) = (15846, 43).

Results. All of the models are trained based on a training dataset and
tested on the remaining hold-out set. For each b = 1, . . . , B = 100,
we randomly split the dataset into 90/10 subsamples and assigned
90% of the subsamples to a training dataset and the remaining 10%
of the subsamples to a testing dataset. Unlike the simulated study,
true yi are unavailable, and thus validation needs to be based on the
observed zi. We compute predicted ẑi using fitted models. In par-
ticular, MAD(z, ẑ), RMSE(z, ẑ), and SMAPE(z, ẑ) are computed
based on the observed zi and predicted ẑi. Figure 2 plots com-
puted MAD, RMSE, and SMAPE from various models from B tri-
als. It appears that the proposed PU-OMM method performs the
best, followed by Logistic-Gamma, and then followed by Logistic-
LogNormal model.

6. DISCUSSION AND CONCLUSION

In this paper, we developed a statistical framework PU-OMM
which addresses occurrence and magnitude prediction when we have
response-dependent missing labels. We prove that our approach
achieves optimal statistical error up to a log factor, even though the
likelihood loss is non-convex. Moreover, we also showed that our
projected gradient descent algorithm achieves linear convergence to
a stationary point of the objective. Further, we demonstrate the ben-
efits of our method compared to existing methods on a California
wildfire dataset.

Our flexible framework can be generalized to other response-
dependent missing labels settings where the missing mechanism is a
stochastic function of the response values but with different models
of the occurrence-magnitude mixture response. This extra flexibility
comes with statistical and algorithmic challenges such as computing
the integral required for the log-likelihood and providing guaran-
tees for the non-convex objective. Adapting this framework to other
missing label settings remains an open challenge.
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