
Self-supervised Regularization for Text Classification

Meng Zhou∗

Shanghai Jiao Tong University
zhoumeng9904@sjtu.edu.cn

Zechen Li ∗

Northeastern University
li.zec@northeastern.edu

Pengtao Xie†
UC San Diego

p1xie@eng.ucsd.edu

Abstract

Text classification is a widely studied prob-

lem and has broad applications. In many

real-world problems, the number of texts

for training classification models is limited,

which renders these models prone to over-

fitting. To address this problem, we propose

SSL-Reg, a data-dependent regularization

approach based on self-supervised learning

(SSL). SSL (Devlin et al., 2019a) is an un-

supervised learning approach which defines

auxiliary tasks on input data without using

any human-provided labels and learns data

representations by solving these auxiliary

tasks. In SSL-Reg, a supervised classifica-

tion task and an unsupervised SSL task are

performed simultaneously. The SSL task is

unsupervised, which is defined purely on in-

put texts without using any human-provided

labels. Training a model using an SSL task

can prevent the model from being overfit-

ted to a limited number of class labels in

the classification task. Experiments on 17

text classification datasets demonstrate the

effectiveness of our proposed method. Code

is available at https://github.com/
UCSD-AI4H/SSReg

1 Introduction

Text classification (Korde and Mahender, 2012;

Lai et al., 2015; Wang et al., 2017; Howard and

Ruder, 2018) is a widely studied problem in nat-

ural language processing and finds broad applica-

tions. For example, give clinical notes of a pa-

tient, judge whether this patient has heart diseases.

Given a scientific paper, judge whether it is about

NLP. In many real-world text classification prob-

lems, texts available for training are oftentimes

limited. For instance, it is difficult to obtain a lot of

clinical notes from hospitals due to concern of pa-

tient privacy. It is well known that when training

∗ Equal Contribution
† Corresponding Author

data is limited, models tend to overfit to training

data and perform less well on test data.

To address overfitting problems in text classi-

fication, we propose a data-dependent regularizer

called SSL-Reg based on self-supervised learning

(SSL) (Devlin et al., 2019a; He et al., 2019; Chen

et al., 2020) and use it to regularize the training

of text classification models, where a supervised

classification task and an unsupervised SSL task

are performed simultaneously. Self-supervised

learning (SSL) (Devlin et al., 2019a; He et al.,

2019; Chen et al., 2020) is an unsupervised learn-

ing approach which defines auxiliary tasks on in-

put data without using any human-provided labels

and learns data representations by solving these

auxiliary tasks. For example, BERT (Devlin et al.,

2019a) is a typical SSL approach where an auxil-

iary task is defined to predict masked tokens and a

text encoder is learned by solving this task. In ex-

isting SSL approaches for NLP, an SSL task and

a target task are performed sequentially. A text

encoder is first trained by solving an SSL task de-

fined on a large collection of unlabeled texts. Then

this encoder is used to initialize an encoder in a

target task. The encoder is finetuned by solving

the target task. A potential drawback of perform-

ing SSL task and target task sequentially is that

text encoder learned in SSL task may be overrid-

den after being finetuned in target task. If training

data in the target task is small, the finetuned en-

coder has a high risk of being overfitted to training

data.

To address this problem, in SSL-Reg we per-

form SSL task and target task (which is classifi-

cation) simultaneously. In SSL-Reg, an SSL loss

serves as a regularization term and is optimized

jointly with a classification loss. SSL-Reg en-

forces a text encoder to jointly solve two tasks: an

unsupervised SSL task and a supervised text clas-

sification task. Due to the presence of the SSL

task, models are less likely to be biased to the clas-

ar
X

iv
:2

10
3.

05
23

1v
2

 [c
s.C

L]
 2

4
M

ar
 2

02
1

sification task defined on small-sized training data.

We perform experiments on 17 datasets, where ex-

perimental results demonstrate the effectiveness of

SSL-Reg in alleviating overfitting and improving

generalization performance.

The major contributions of this paper are:

• We propose SSL-Reg, which is a data-dependent

regularizer based on SSL, to reduce the risk that

a text encoder is biased to a data-deficient clas-

sification task on small-sized training data.

• Experiments on 17 datasets demonstrate the ef-

fectiveness of our approaches.

The rest of this paper is organized as follows.

Section 2 reviews related works. Section 3 and 4

present methods and experiments. Section 5 con-

cludes the paper and discusses future work.

2 Related Works

2.1 Self-supervised Learning for NLP

Self-supervised learning (SSL) aims to learn

meaningful representations of input data without

using human annotations. It creates auxiliary tasks

solely using input data and forces deep networks

to learn highly-effective latent features by solv-

ing these auxiliary tasks. In NLP, various auxil-

iary tasks have been proposed for SSL, such as

next token prediction in GPT (Radford et al.),

masked token prediction in BERT (Devlin et al.,

2019a), text denoising in BART (Lewis et al.,

2019), contrastive learning (Fang et al., 2020),

and so on. These models have achieved substan-

tial success in learning language representations.

The GPT model (Radford et al.) is a language

model (LM) based on Transformer (Vaswani et al.,

2017). Different from Transformer which defines

a conditional probability on an output sequence

given an input sequence, GPT defines a marginal

probability on a single sequence. In GPT, condi-

tional probability of the next token given a histor-

ical sequence is defined using a Transformer de-

coder. Weight parameters are learned by maxi-

mizing likelihood on token sequences. BERT (De-

vlin et al., 2019a) aims to learn a Transformer en-

coder for representing texts. BERT’s model archi-

tecture is a multi-layer bidirectional Transformer

encoder. In BERT, Transformer uses bidirectional

self-attention. To train the encoder, BERT masks

some percentage of input tokens at random, and

then predicts those masked tokens by feeding hid-

den vectors (produced by the encoder) correspond-

ing to masked tokens into an output softmax over

word vocabulary. BERT-GPT (Wu et al., 2019)

is a model used for sequence-to-sequence model-

ing where a pretrained BERT is used to encode

input text and GPT is used to generate output

texts. In BERT-GPT, pretraining of BERT en-

coder and GPT decoder is conducted separately,

which may lead to inferior performance. Auto-

Regressive Transformers (BART) (Lewis et al.,

2019) has a similar architecture as BERT-GPT, but

trains BERT encoder and GPT decoder jointly. To

pretrain BART weights, input texts are corrupted

randomly, such as token masking, token deletion,

text infilling, etc., then a network is learned to

reconstruct original texts. ALBERT (Lan et al.,

2019) uses parameter-reduction methods to re-

duce memory consumption and increase train-

ing speed of BERT. It also introduces a self-

supervised loss which models inter-sentence co-

herence. RoBERTa (Liu et al., 2019a) is a repli-

cation study of BERT pretraining. It shows that

BERT’s performance can be greatly improved by

carefully tuning training processes, such as (1)

training models longer, with larger batches, over

more data; (2) removing the next sentence predic-

tion objective; (3) training on longer sequences,

etc. XLNet (Yang et al., 2019) learns bidirectional

contexts by maximizing expected likelihood over

all permutations of factorization order and uses a

generalized autoregressive pretraining mechanism

to overcome the pretrain-finetune discrepancy of

BERT. T5 (Raffel et al., 2019) compared pretrain-

ing objectives, architectures, unlabeled datasets,

transfer approaches on a wide range of language

understanding tasks and proposed a unified frame-

work that casts these tasks as a text-to-text task.

ERNIE 2.0 (Sun et al., 2019) proposed a contin-

ual pretraining framework which builds and learns

incrementally pretraining tasks through constant

multi-task learning, to capture lexical, syntactic

and semantic information from training corpora.

Gururangan et al. (2020) proposed task adaptive

pretraining (TAPT) and domain adaptive pretrain-

ing (DAPT). Given a RoBERTa model pretrained

on large-scale corpora, TAPT continues to pretrain

RoBERTa on training dataset of target task. DAPT

continues to pretrain RoBERTa on datasets that

have small domain differences with data in tar-

get tasks. The difference between our proposed

SSL-Reg method with TAPT and DAPT is that

SSL-Reg uses a self-supervised task (e.g., mask

token prediction) to regularize the finetuning of

RoBERTa where text classification task and self-

supervised task are performed jointly. In contrast,

TAPT and DAPT use self-supervised task for pre-

training, where text classification task and self-

supervised task are performed sequentially. The

connection between our method and TAPT is that

they both leverage texts in target tasks to perform

self-supervised learning, in addition to SSL on

large-scale external corpora. Different from SSL-

Reg and TAPT, DAPT uses domain-similar texts

rather than target texts for additional SSL.

2.2 Self-supervised Learning in General

Self-supervised learning has been widely applied

to other application domains, such as image clas-

sification (He et al., 2019; Chen et al., 2020),

graph classification (Zeng and Xie, 2021), vi-

sual question answering (He et al., 2020a), etc,

where various strategies have been proposed to

construct auxiliary tasks, based on temporal cor-

respondence (Li et al., 2019; Wang et al., 2019a),

cross-modal consistency (Wang et al., 2019b), ro-

tation prediction (Gidaris et al., 2018; Sun et al.,

2020), image inpainting (Pathak et al., 2016), au-

tomatic colorization (Zhang et al., 2016), context

prediction (Nathan Mundhenk et al., 2018), etc.

Some recent works studied self-supervised repre-

sentation learning based on instance discrimina-

tion (Wu et al., 2018) with contrastive learning.

Oord et al. (2018) proposed contrastive predic-

tive coding (CPC), which predicts the future in la-

tent space by using powerful autoregressive mod-

els, to extract useful representations from high-

dimensional data. Bachman et al. (2019) pro-

posed a self-supervised representation learning ap-

proach based on maximizing mutual information

between features extracted from multiple views

of a shared context. MoCo (He et al., 2019)

and SimCLR (Chen et al., 2020) learned image

encoders by predicting whether two augmented

images were created from the same original im-

age. Srinivas et al. (2020) proposed to learn

contrastive unsupervised representations for re-

inforcement learning. Khosla et al. (2020) in-

vestigated supervised contrastive learning, where

clusters of points belonging to the same class

were pulled together in embedding space, while

clusters of samples from different classes were

pushed apart. Klein and Nabi (2020) proposed a

contrastive self-supervised learning approach for

commonsense reasoning. He et al. (2020b); Yang

et al. (2020) proposed an Self-Trans approach

which applied contrastive self-supervised learning

on top of networks pretrained by transfer learning.

Compared with supervised learning which re-

quires each data example to be labeled by humans

or semi-supervised learning which requires part

of data examples to be labeled, self-supervised

learning is similar to unsupervised learning be-

cause it does not need human-provided labels. The

key difference between self-supervised learning

(SSL) and unsupervised learning is that SSL fo-

cuses on learning data representations by solving

auxiliary tasks defined on un-labeled data while

unsupervised learning is more general and aims

to discover latent structures from data, such as

clustering, dimension reduction, manifold embed-

ding (Roweis and Saul, 2000), etc.

2.3 Text Classification

Text classification (Minaee et al., 2020) is one of

the key tasks in natural language processing and

has a wide range of applications, such as senti-

ment analysis, spam detection, tag suggestion, etc.

A number of approaches have been proposed for

text classification. Many of them are based on

RNNs. Liu et al. (2016) use multi-task learn-

ing to train RNNs, utilizing the correlation be-

tween tasks to improve text classification perfor-

mance. Tai et al. (2015) generalize sequential

LSTM to tree-structured LSTM to capture the syn-

tax of sentences for achieving better classification

performance. Compared with RNN-based mod-

els, CNN-based models are good at capturing lo-

cal and position-invariant patterns. Kalchbrenner

et al. (2014) proposed dynamic CNN (DCNN),

which uses dynamic k-max-pooling to explic-

itly capture short-term and long-range relations

of words and phrases. Zhang et al. (2015) pro-

posed a character-level CNN model for text clas-

sification, which can deal with out-of-vocabulary

words. Hybrid methods combine RNN and CNN

to explore the advantages of both. Zhou et al.

(2015) proposed a convolutional LSTM network,

which uses a CNN to extract phrase-level repre-

sentations, then feeds them to an LSTM network

to represent the whole sentence.

Figure 1: Illustration of SSL-Reg. Input texts are fed

into a text encoder. Encodings of these texts and their

corresponding labels are fed into the head of a target

task (e.g., classification) which yields a classification

loss. In a self-supervised task, inputs are encodings

of texts and outputs are constructed on original texts

(e.g., masked tokens). The classification task and SSL

task share the same text encoder and losses of these two

tasks are optimized jointly to learn the text encoder.

3 Methods

To alleviate overfitting in text classification, we

propose SSL-Reg, which is a regularization ap-

proach based on self-supervised learning (SSL),

where an unsupervised SSL task and a supervised

text classification task are performed jointly.

3.1 SSL-based Regularization
SSL-Reg uses a self-supervised learning task to

regularize a text classification model. Figure 1

presents an illustration of SSL-Reg. Given train-

ing texts, we encode them using a text encoder.

Then on top of text encodings, two tasks are de-

fined. One is a classification task, which takes the

encoding of a text as input and predicts the class

label of this text. Prediction is conducted using

a classification head. The other task is SSL. The

loss of the SSL task serves as a data-dependent

regularizer to alleviate overfitting. The SSL task

has a predictive head. These two tasks share the

same text encoder. Formally, SSL-Reg solves the

following optimization problem:

L(c)(D,L;W(e),W(c)) + λL(p)(D,W(e),W(p))
(1)

where D represents training texts and L represents

their labels. W(e), W(c), and W(p) denote text

encoder, classification head in classification task,

and prediction head in SSL task respectively. L(c)

denotes classification loss and L(p) denotes SSL

loss. λ is a tradeoff parameter.

At the core of SSL-Reg is using SSL to learn a

text encoder that is robust to overfitting. Our meth-

ods can be used to learn any text encoder. In this

work, we perform the study using a Transformer

encoder, while noting that other text encoders are

also applicable.

3.2 Self-supervised Learning Tasks

In this work, we use two self-supervised learning

tasks – masked token prediction (MTP) and sen-

tence augmentation type prediction (SATP) – to

perform our studies while noting that other SSL

tasks are also applicable.

• Masked Token Prediction (MTP) This task is

used in BERT. Some percentage of input tokens

are masked at random. Texts with masked to-

kens are fed into a text encoder which learns

a latent representation for each token including

the masked ones. The task is to predict these

masked tokens by feeding hidden vectors (pro-

duced by the encoder) corresponding to masked

tokens into an output softmax over word vocab-

ulary.

• Sentence Augmentation Type Prediction
(SATP) Given an original text o, we apply

different types of augmentation methods to

create augmented texts from o. We train a

model to predict which type of augmentation

was applied to an augmented text. We consider

four types of augmentation operations used

in (Wei and Zou, 2019), including synonym

replacement, random insertion, random swap,

and random deletion. Synonym replacement

randomly chooses 10% of non-stop tokens

from original texts and replaces each of them

with a randomly selected synonym. In random

insertion, for a randomly chosen non-stop token

in a text, among the synonyms of this token,

one randomly selected synonym is inserted into

a random position in the text. This operation

is performed for 10% of tokens. Synonyms

for synonym replacement and random insertion

are obtained from Synsets in NLTK (Bird and

Loper, 2004) which are constructed based on

WordNet (Miller, 1995). Synsets serve as a

synonym dictionary containing groupings of

synonymous words. Some words have only

one Synset and some have several. In synonym

replacement, if a selected word in a sentence

has multiple synonyms, we randomly choose

one of them, and replace all occurrences of

this word in the sentence with this synonym.

Random swap randomly chooses two tokens in

a text and swaps their positions. This operation

Domain Dataset Label Type Train Dev Test Classes

BIOMED
CHEMPROT relation classification 4169 2427 3469 13

RCT abstract sent. roles 180040 30212 30135 5

CS
ACL-ARC citation intent 1688 114 139 6

SCIERC relation classification 3219 455 974 7

NEWS
HYPERPARTISAN partisanship 515 65 65 2

AGNEWS topic 115000 5000 7600 4

REVIEWS
HELPFULNESS review helpfulness 115251 5000 25000 2

IMDB review sentiment 20000 5000 25000 2

Table 1: Statistics of datasets used in (Gururangan et al., 2020). Sources: CHEMPROT (Kringelum et al., 2016),

RCT (Dernoncourt and Lee, 2017), ACL-ARC (Jurgens et al., 2018), SCIERC (Luan et al., 2018), HYPERPAR-

TISAN (Kiesel et al., 2019), AGNEWS (Zhang et al., 2015), HELPFULNESS (McAuley et al., 2015), IMDB (Maas

et al., 2011). This table is taken from (Gururangan et al., 2020).

CoLA RTE QNLI STS-B MRPC WNLI SST-2
MNLI

(m/mm)
QQP AX

Train 8551 2490 104743 5749 3668 635 67349 392702 363871 -

Dev 1043 277 5463 1500 408 71 872 9815/9832 40432 -

Test 1063 3000 5463 1379 1725 146 1821 9796/9847 390965 1104

Table 2: GLUE dataset statistics.

is performed for 10% of token pairs. Random

deletion randomly removes a token with a

probability of 0.1. In this SSL task, an aug-

mented sentence is fed into a text encoder and

the encoding is fed into a 4-way classification

head to predict which operation was applied to

generate this augmented sentence.

3.3 Text Encoder

We use a Transformer encoder to perform the

study while noting that other text encoders are also

applicable. Different from sequence-to-sequence

models (Sutskever et al., 2014) that are based on

recurrent neural networks (e.g., LSTM (Hochre-

iter and Schmidhuber, 1997), GRU (Chung et al.,

2014)) which model a sequence of tokens via a

recurrent manner and hence is computationally in-

efficient, Transformer eschews recurrent computa-

tion and instead uses self-attention which not only

can capture dependency between tokens but also

is amenable for parallel computation with high

efficiency. Self-attention calculates the correla-

tion among every pair of tokens and uses these

correlation scores to create “attentive" represen-

tations by taking weighted summation of tokens’

embeddings. Transformer is composed of build-

ing blocks, each consisting of a self-attention layer

and a position-wise feed-forward layer. Residual

connection (He et al., 2016) is applied around each

of these two sub-layers, followed by layer normal-

ization (Ba et al., 2016). Given an input sequence,

an encoder – which is a stack of such building

blocks – is applied to obtain a representation for

each token.

4 Experiments

4.1 Datasets

We evaluated our method on the datasets used in

(Gururangan et al., 2020), which are from var-

ious domains. For each dataset, we follow the

train/development/test split specified in (Gururan-

gan et al., 2020). Dataset statistics are summarized

in Table 1.

In addition, we performed experiments on the

datasets in the GLUE benchmark (Wang et al.,

2018). The General Language Understanding

Evaluation (GLUE) benchmark has 10 tasks, in-

cluding 2 single-sentence tasks, 3 similarity and

paraphrase tasks, and 5 inference tasks. For each

GLUE task, labels in development sets are pub-

licly available while those in test sets are not re-

leased. We obtain performance on test sets by

submitting inference results to GLUE evaluation

server1. Table 2 shows the statistics of data split in

each task.

4.2 Experimental Setup

4.2.1 Baselines
For experiments on datasets used in (Gururan-

gan et al., 2020), text encoders in all methods

are initialized using pretrained RoBERTa (Liu

et al., 2019a). For experiments on GLUE

datasets, text encoders are initialized using pre-

trained BERT (Liu et al., 2019a) or pretrained

RoBERTa. We compare our proposed SSL-Reg

with the following baselines.

• Unregularized RoBERTa (Liu et al., 2019b).

In this approach, the Transformer encoder is ini-

tialized with pretrained RoBERTa. Then the pre-

trained encoder and a classification head form a

text classification model, which is then finetuned

on a target classification task. Architecture of

the classification model is the same as that in

(Liu et al., 2019b). Specifically, representation

of the [CLS] special token is passed to a feed-

forward layer for class prediction. Nonlinear

activation function in the feedforward layer is

tanh. During finetuning, no SSL-based regular-

ization is used. This approach is evaluated on all

datasets used in (Gururangan et al., 2020) and all

datasets in GLUE.

• Unregularized BERT. This approach is the

same as unregularized RoBERTa, except that

the Transformer encoder is initialized by pre-

trained BERT (Devlin et al., 2019a) instead of

RoBERTa. This approach is evaluated on all

GLUE datasets.

• Task adaptive pretraining (TAPT) (Gururan-

gan et al., 2020). In this approach, given the

Transformer encoder pretrained using RoBERTa

or BERT on large-scale external corpora, it is

further pretrained by RoBERTa or BERT on in-

put texts in a target classification dataset (with-

out using class labels). Then this further pre-

trained encoder is used to initialize the encoder

in the text classification model and is finetuned

to perform classification tasks which use both

input texts and their class labels. Similar to

SSL-Reg, TAPT also performs SSL on texts in

target classification dataset. The difference is:

TAPT performs SSL task and classification task

1https://gluebenchmark.com/leaderboard

Task
Epoch

Learning

Rate

Regularization

Parameter

CoLA 10 3e-5 0.2

SST-2 3 3e-5 0.05

MRPC 5 4e-5 0.05

STS-B 10 4e-5 0.1

QQP 5 3e-5 0.2

MNLI 3 3e-5 0.1

QNLI 4 4e-5 0.5

RTE 10 3e-5 0.1

WNLI 5 5e-5 2

Table 3: Hyperparameter settings for BERT on GLUE

datasets, where the SSL task is MTP.

sequentially while SSL-Reg performs these two

tasks jointly. TAPT is studied for all datasets in

this paper.

• Domain adaptive pretraining (DAPT) (Guru-

rangan et al., 2020). In this approach, given a

pretrained encoder on large-scale external cor-

pora, the encoder is further pretrained on a

small-scale corpora whose domain is similar to

that of texts in a target classification dataset.

Then this further pretrained encoder is finetuned

in a classification task. DAPT is similar to

TAPT, except that TAPT performs the second

stage pretraining on texts T in the classification

dataset while DAPT performs the second stage

pretraining on external texts whose domain is

similar to that of T rather than directly on T .

The external dataset is usually much larger than

T .

• TAPT+SSL-Reg. When finetuning the classifi-

cation model, SSL-Reg is applied. The rest is

the same as TAPT.

• DAPT+SSL-Reg. When finetuning the classi-

fication model, SSL-Reg is applied. The rest is

the same as DAPT.

4.2.2 Hyperparameter Settings
Hyperparameters were tuned on development

datasets.
Hyperparameter settings for RoBERTa on
datasets used in (Gururangan et al., 2020). For

a fair comparison, most of our hyperparame-

ters are the same as those in (Gururangan et al.,

2020). The maximum text length was set to

512. Text encoders in all methods are initial-

ized using pretrained RoBERTa (Liu et al., 2019a)

Task
Epoch

Learning

Rate

Regularization

Parameter

CoLA 6 3e-5 0.4

SST-2 3 3e-5 0.8

MRPC 5 4e-5 0.05

STS-B 10 4e-5 0.05

QQP 5 3e-5 0.4

MNLI 4 3e-5 0.5

QNLI 4 4e-5 0.05

RTE 8 3e-5 0.6

WNLI 5 5e-5 0.1

Table 4: Hyperparameter settings for BERT on GLUE

datasets, where the SSL task is SATP.

Task
Epoch

Learning

Rate

Regularization

Parameter

CoLA 10 1e-5 0.8

SST-2 3 1e-5 1.0

MRPC 10 1e-5 0.01

STS-B 10 2e-5 0.01

QQP 10 1e-5 0.1

MNLI 3 1e-5 0.1

QNLI 3 1e-5 0.1

RTE 10 2e-5 0.1

WNLI 10 2e-5 0.02

Table 5: Hyperparameter settings for RoBERTa on

GLUE datasets, where the SSL task is MTP.

on a large-scale external dataset. For TAPT,

DAPT, TAPT+SSL-Reg, and DAPT+SSL-Reg,

the second-stage pretraining on texts T in a target

classification dataset or on external texts whose

domain is similar to that of T is based on the pre-

training approach in RoBERTa. In SSL-Reg, the

SSL task is masked token prediction. SSL loss

function only considers the prediction of masked

tokens and ignores the prediction of non-masked

tokens. Probability for masking tokens is 0.15.

If a token t is chosen to be masked, 80% of the

time, we replace t with a special token [MASK];

10% of the time, we replace t with a random

word; and for the rest 10% of the time, we keep

t unchanged. For the regularization parameter in

SSL-Reg, we set it to 0.2 for ACL-ARC, 0.1 for

SCIERC, CHEMPROT, AGNEWS, RCT, HELP-

FULNESS, IMDB, and 0.01 for HYPERPARTI-

SAN. For ACL-ARC, CHEMPROT, RCT, SCI-

ERC and HYPERPARTISAN, we trained SSL-Reg

for 10 epochs; for HELPFULNESS, 5 epochs; for

AGNEWS, RCT and IMDB, 3 epochs. For all

datasets, we used a batch size of 16 with gradi-

ent accumulation. We used the AdamW optimizer

(Loshchilov and Hutter, 2017) with a warm-up

proportion of 0.06, a weight decay of 0.1, and an

epsilon of 1e-6. In AdamW, β1 and β2 are set to

0.9 and 0.98, respectively. The maximum learning

rate was 2e-5.

Hyperparameter settings for BERT on GLUE
datasets. The maximum text length was set to

128. Since external texts whose domains are sim-

ilar to those of the GLUE texts are not available,

we did not compare with DAPT and DAPT+SSL-

Reg. For each method applied, text encoder is

initialized using pretrained BERT (Devlin et al.,

2019a) (with 24 layers) on a large-scale exter-

nal dataset. In TAPT, the second-stage pretrain-

ing is performed using BERT. As we will show

later on, TAPT does not perform well on GLUE

datasets; therefore, we did not apply TAPT+SSL-

Reg on these datasets further. In SSL-Reg, we

studied two SSL tasks: masked token prediction

(MTP) and sentence augmentation type prediction

(SATP). In MTP, we randomly mask 15% of to-

kens in each text. Batch size was set to 32 with

gradient accumulation. We use the AdamW opti-

mizer (Loshchilov and Hutter, 2017) with a warm-

up proportion of 0.1, a weight decay of 0.01, and

an epsilon of 1e-8. In AdamW, β1 and β2 are set to

0.9 and 0.999, respectively. Other hyperparameter

settings are presented in Table 3 and Table 4.

Hyperparameter settings for RoBERTa on
GLUE datasets. Most hyperparameter settings

follow those in RoBERTa experiments performed

on datasets used in (Gururangan et al., 2020).

We set different learning rates and different

epoch numbers for different datasets as guided by

(Liu et al., 2019b). In addition, we set different

regularization parameters for different datasets.

These hyperparameters are listed in Table 5.

4.3 Results

4.3.1 Results on the datasets used
in (Gururangan et al., 2020).

Performance of text classification on datasets used

in (Gururangan et al., 2020) is reported in Ta-

ble 6. Following (Gururangan et al., 2020), for

CHEMPROT and RCT, we report micro-F1; for

other datasets, we report macro-F1. From this ta-

ble, we make the following observations. First,
SSL-Reg outperforms unregularized RoBERTa

significantly on all datasets. We used a double-

sided t-test to perform significance tests. The p-

Dataset RoBERTa DAPT TAPT SSL-Reg TAPT+SSL-Reg DAPT+SSL-Reg

CHEMPROT 81.91.0 84.20.2 82.60.4 83.10.5 83.50.1 84.40.3

RCT 87.20.1 87.60.1 87.70.1 87.40.1 87.70.1 87.70.1

ACL-ARC 63.05.8 75.42.5 67.41.8 69.34.9 68.12.0 75.71.4

SCIERC 77.31.9 80.81.5 79.31.5 81.40.8 80.40.6 82.30.8

HYPERPARTISAN 86.60.9 88.25.9 90.45.2 92.31.4 93.21.8 90.73.2

AGNEWS 93.90.2 93.90.2 94.50.1 94.20.1 94.40.1 94.00.1

HELPFULNESS 65.13.4 66.51.4 68.51.9 69.40.2 71.01.0 68.31.4

IMDB 95.00.2 95.40.1 95.50.1 95.70.1 96.10.1 95.40.1

Table 6: Results on datasets used in (Gururangan et al., 2020). For vanilla (unregularized) RoBERTa, DAPT, and

TAPT, results are taken from (Gururangan et al., 2020). For each method on each dataset, we run it for four times

with different random seeds. Results are in ms format, where m denotes mean and s denotes standard derivation.

Following (Gururangan et al., 2020), for CHEMPROT and RCT, we report micro-F1; for other datasets, we report

macro-F1.

Figure 2: Training dynamics of unregularized RoBERTa and SSL-Reg (denoted by “Regularized”) on HYPER-

PARTISAN and ACL-ARC. In SSL-Reg, we experimented with two values of the regularization parameter λ: 0.1

and 1.

Dataset RoBERTa SSL-Reg

CHEMPROT 13.05 13.57

ACL-ARC 28.67 25.24
SCIERC 19.51 18.23
HYPERPARTISAN 7.44 5.64

Table 7: Difference between F1 score on training

set and F1 score on test set with or without SSL-

Reg (MTP). Bold denotes a smaller difference, which

means overfitting is less severe.

values are less than 0.01, which indicate strong

statistical significance. This demonstrates the ef-

fectiveness of our proposed SSL-Reg approach in

alleviating overfitting and improving generaliza-

tion performance. To further confirm this, we

measure the difference between F1 scores on the

training set and test set in Table 7. A larger differ-

ence implies more overfitting: performing well on

the training set and less well on the test set. As can

be seen, the train-test difference under SSL-Reg is

smaller than that under RoBERTa. SSL-Reg en-

courages text encoders to solve an additional task

based on SSL, which reduces the risk of over-

fitting to the data-deficient classification task on

small-sized training data. In Figure 2, we compare

the training dynamics of unregularized RoBERTa

and SSL-Reg (denoted by “Regularized"). As

can be seen, under a large regularization param-

eter λ = 1, our method achieves smaller differ-

ences between training accuracy and validation ac-

curacy than unregularized RoBERTa; our method

also achieves smaller differences between train-

ing accuracy and test accuracy than unregularized

RoBERTa. These results show that our proposed

SSL-Reg indeed acts as a regularizer which re-

duces the gap between performances on training

set and validation/test set. Besides, when increas-

ing λ from 0.1 to 1, the training accuracy of SSL-

Reg decreases considerably. This also indicates

that SSL-Reg acts as a regularizer which penal-

izes training performance. Second, on 6 out of the

8 datasets, SSL-Reg performs better than TAPT.

On the other two datasets, SSL-Reg is on par with

TAPT. This shows that SSL-Reg is more effec-

tive than TAPT. SSL-Reg and TAPT both lever-

age input texts in classification datasets for self-

supervised learning. The difference is: TAPT uses

these texts to pretrain the encoder while SSL-Reg

uses these texts to regularize the encoder during

finetuning. In SSL-Reg, the encoder is learned to

perform classification tasks and SSL tasks simul-

taneously. Thus the encoder is not completely bi-

ased to classification tasks. In TAPT, the encoder

is first learned by performing SSL tasks, then fine-

tuned by performing classification tasks. There is

a risk that after finetuning, the encoder is largely

biased to classification tasks on small-sized train-

ing data, which leads to overfitting. Third, on

5 out of the 8 datasets, SSL-Reg performs better

than DAPT, although DAPT leverages additional

external data. The reasons are two-fold: 1) sim-

ilar to TAPT, DAPT performs SSL task first and

then classification task separately; as a result, the

encoder may be eventually biased to classification

task on small-sized training data; 2) external data

used in DAPT still has a domain shift with target

dataset; this domain shift may render the text en-

coder pretrained on external data not suitable for

target task. To verify this, we measure the domain

similarity between external texts and target texts

by calculating cosine similarity between the BERT

embeddings of these texts. The similarity score is

0.14. As a reference, the similarity score between

texts in the target dataset is 0.27. This shows that

there is indeed a domain difference between ex-

ternal texts and target texts. Fourth, on 6 out of

8 datasets, TAPT+SSL-Reg performs better than

TAPT. On the other two datasets, TAPT+SSL-

Reg is on par with TAPT. This further demon-

strates the effectiveness of SSL-Reg. Fifth, on all

eight datasets, DAPT+SSL-Reg performs better

than DAPT. This again shows that SSL-Reg is ef-

fective. Sixth, on 6 out of 8 datasets, TAPT+SSL-

Reg performs better than SSL-Reg, indicating that

it is beneficial to use both TAPT and SSL-Reg:

first use the target texts to pretrain the encoder

based on SSL, then apply SSL-based regularizer

Figure 3: How regularization parameter in SSL-Reg af-

fects text classification F1 score.

on these target texts during finetuning. Seventh,

DAPT+SSL-Reg performs better than SSL-Reg on

4 datasets, but worse on the other 4 datasets, indi-

cating that with SSL-Reg used, DAPT is not nec-

essarily useful. Eighth, on smaller datasets, im-

provement achieved by SSL-Reg over baselines is

larger. For example, on HYPERPARTISAN which

has only about 500 training examples, improve-

ment of SSL-Reg over RoBERTa is 5.7% (abso-

lute percentage). Relative improvement is 6.6%.

As another example, on ACL-ARC which has

about 1700 training examples, improvement of

SSL-Reg over RoBERTa is 6.3% (absolute per-

centage). Relative improvement is 10%. In con-

trast, on large datasets such as RCT which con-

tains about 180000 training examples, improve-

ment of SSL-Reg over RoBERTa is 0.2% (abso-

lute percentage). Relative improvement is 0.2%.

On another large dataset AGNEWS which con-

tains 115000 training examples, improvement of

SSL-Reg over RoBERTa is 0.3% (absolute per-

centage). Relative improvement is 0.3%. The rea-

son that SSL-Reg achieves better improvement on

smaller datasets is that smaller datasets are more

likely to lead to overfitting and SSL-Reg is more

needed to alleviate this overfitting.

Figure 3 shows how classification F1 score

varies as we increase regularization parameter λ
from 0.01 to 1.0 in SSL-Reg. As can be seen,

starting from 0.01, when the regularizer parame-

ter is increasing, F1 score increases. This is be-

cause a larger λ imposes a stronger regularization

effect, which helps to reduce overfitting. How-

ever, if λ becomes too large, F1 score drops. This

is because the regularization effect is too strong,

which dominates classification loss. Among these

CoLA
(Matthew Corr.)

SST-2
(Accuracy)

RTE
(Accuracy)

QNLI
(Accuracy)

MRPC
(Accuracy/F1)

The median result
BERT, Lan et al. 2019 60.6 93.2 70.4 92.3 88.0/-
BERT, our run 62.1 93.1 74.0 92.1 86.8/90.8

TAPT 61.2 93.1 74.0 92.0 85.3/89.8

SSL-Reg (SATP) 63.7 93.9 74.7 92.3 86.5/90.3

SSL-Reg (MTP) 63.8 93.8 74.7 92.6 87.3/90.9

The best result
BERT, our run 63.9 93.3 75.8 92.5 89.5/92.6
TAPT 62.0 93.9 76.2 92.4 86.5/90.7

SSL-Reg (SATP) 65.3 94.6 78.0 92.8 88.5/91.9

SSL-Reg (MTP) 66.3 94.7 78.0 93.1 89.5/92.4

Table 8: Results of BERT-based experiments on GLUE development sets, where results on MNLI and QQP are

the median of five runs and results on other datasets are the median of nine runs. The size of MNLI and QQP is

very large, taking a long time to train on. Therefore, we reduced the number of runs. Because we used a different

optimization method to re-implement BERT, our median performance is not the same as that reported in (Lan et al.,

2019).

MNLI-m/mm
(Accuracy)

QQP
(Accuracy/F1)

STS-B
(Pearson Corr./Spearman Corr.)

WNLI
(Accuracy)

The median result
BERT, Lan et al. 2019 86.6/- 91.3/- 90.0/- -

BERT, our run 86.2/86.0 91.3/88.3 90.4/90.0 56.3

TAPT 85.6/85.5 91.5/88.7 90.6/90.2 53.5

SSL-Reg (SATP) 86.2/86.2 91.6/88.8 90.7/90.4 56.3

SSL-Reg (MTP) 86.6/86.6 91.8/89.0 90.7/90.3 56.3

The best result
BERT, our run 86.4/86.3 91.4/88.4 90.9/90.5 56.3

TAPT 85.7/85.7 91.7/89.0 90.8/90.4 56.3

SSL-Reg (SATP) 86.4/86.5 91.8/88.9 91.1/90.8 59.2
SSL-Reg (MTP) 86.9/86.9 91.9/89.1 91.1/90.8 57.7

Table 9: Continuation of Table 8.

4 datasets, F1 score drops dramatically on HY-

PERPARTISAN as λ increases. This is probably

because this dataset contains very long sequences.

This makes MTP on this dataset more difficult and

therefore yields an excessively strong regulariza-

tion outcome that hurts classification performance.

Compared with HYPERPARTISAN, F1 score is less

sensitive on other datasets because their sequence

lengths are relatively smaller.

4.3.2 Results on the GLUE benchmark

Table 8 and Table 9 show results of BERT-based

experiments on development sets of GLUE. As

mentioned in (Devlin et al., 2019b), for the 24-

layer version of BERT, finetuning is sometimes

unstable on small datasets, so we run each method

several times and report the median and best per-

formance. Table 10 shows the best performance

on test sets. Following (Wang et al., 2018), we re-

port Matthew correlation on CoLA, Pearson cor-

relation and Spearman correlation on STS-B, ac-

curacy and F1 on MRPC and QQP. For the rest

datasets, we report accuracy. From these tables,

we make the following observations. First, SSL-

Reg methods including SSL-Reg-SATP and SSL-

Reg-MTP outperform unregularized BERT (our

run) on most datasets: 1) on test sets, SSL-Reg-

SATP performs better than BERT on 7 out of 10

datasets and SSL-Reg-MTP performs better than

BERT on 9 out of 10 datasets; 2) in terms of me-

dian results on development sets, SSL-Reg-SATP

performs better than BERT (our run) on 7 out

of 9 datasets and SSL-Reg-MTP performs better

than BERT (our run) on 8 out of 9 datasets; 3) in

BERT TAPT SSL-Reg (SATP) SSL-Reg (MTP)

CoLA (Matthew Corr.) 60.5 61.3 63.0 61.2

SST-2 (Accuracy) 94.9 94.4 95.1 95.2
RTE (Accuracy) 70.1 70.3 71.2 72.7
QNLI (Accuracy) 92.7 92.4 92.5 93.2
MRPC (Accuracy/F1) 85.4/89.3 85.9/89.5 85.3/89.3 86.1/89.8
MNLI-m/mm (Accuracy) 86.7/85.9 85.7/84.4 86.2/85.4 86.6/86.1
QQP (Accuracy/F1) 89.3/72.1 89.3/71.6 89.6/72.2 89.7/72.5
STS-B (Pearson Corr./Spearman Corr.) 87.6/86.5 88.4/87.3 88.3/87.5 88.1/87.2

WNLI (Accuracy) 65.1 65.8 65.8 66.4
AX(Matthew Corr.) 39.6 39.3 40.2 40.3

Average 80.5 80.6 81.0 81.3

Table 10: Results of BERT-based experiments on GLUE test sets, which are scored by the GLUE evaluation server

(https://gluebenchmark.com/leaderboard). Models evaluated on AX are trained on the training

dataset of MNLI.

CoLA
(Matthew Corr.)

SST-2
(Accuracy)

RTE
(Accuracy)

QNLI
(Accuracy)

MRPC
(Accuracy/F1)

The median result
RoBERTa, Liu et al. 2019 68.0 96.4 86.6 94.7 90.9/-
RoBERTa, our run 68.7 96.1 84.8 94.6 89.5/92.3

SSL-Reg (MTP) 69.2 96.3 85.2 94.9 90.0/92.7

The best result
RoBERTa, our run 69.2 96.7 86.6 94.7 90.4/93.1

SSL-Reg (MTP) 70.2 96.7 86.6 95.2 91.4/93.8

Table 11: Results of RoBERTa-based experiments on GLUE development sets, where the median results are the

median of five runs. Because we used a different optimization method to re-implement RoBERTa, our median

performance is not the same as that reported in (Liu et al., 2019b).

terms of best results on development sets, SSL-

Reg-SATP performs better than BERT (our run)

on 8 out of 9 datasets and SSL-Reg-MTP per-

forms better than BERT (our run) on 8 out of 9

datasets. This further demonstrates the effective-

ness of SSL-Reg in improving generalization per-

formance. Second, on 7 out of 10 test sets, SSL-

Reg-SATP outperforms TAPT; on 8 out of 10 test

sets, SSL-Reg-MTP outperforms TAPT. On most

development datasets, SSL-Reg-SATP and SSL-

Reg-MTP outperform TAPT. The only exception

is: on QQP development set, the best F1 of TAPT

is slightly better than that of SSL-Reg-SATP. This

further demonstrates that performing SSL-based

regularization on target texts is more effective than

using them for pretraining. Third, overall, SSL-

Reg-MTP performs better than SSL-Reg-SATP.

For example, on 8 out of 10 test datasets, SSL-

Reg-MTP performs better than SSL-Reg-SATP.

MTP works better than SATP probably because it

is a more challenging self-supervised learning task

that encourages encoders to learn more powerful

representations. Fourth, improvement of SSL-

Reg methods over BERT is more prominent on

smaller training datasets, such as CoLA and RTE.

This may be because smaller training datasets are

more likely to lead to overfitting where the advan-

tage of SSL-Reg in alleviating overfitting can be

better played.

Table 11 and 12 show results of RoBERTa-

based experiments on development sets of GLUE.

From these two tables, we make observations that

are similar to those in Table 8 and Table 9. In

terms of median results, SSL-Reg (MTP) performs

better than unregularized RoBERTa (our run) on

7 out of 9 datasets and achieves the same per-

formance as RoBERTa (our run) on the rest 2

datasets. In terms of best results, SSL-Reg (MTP)

performs better than RoBERTa (our run) on 5 out

of 9 datasets and achieves the same performance

MNLI-m/mm
(Accuracy)

QQP
(Accuracy)

STS-B
(Pearson Corr./Spearman Corr.)

WNLI
(Accuracy)

The median result
RoBERTa, Liu et al. 2019 90.2/90.2 92.2 92.4/- -

RoBERTa, our run 90.5/90.5 91.6 92.0/92.0 56.3

SSL-Reg (MTP) 90.7/90.7 91.6 92.0/92.0 62.0

The best result
RoBERTa, our run 90.7/90.5 91.7 92.3/92.2 60.6

SSL-Reg (MTP) 90.7/90.5 91.8 92.3/92.2 66.2

Table 12: Continuation of Table 11.

CoLA SST-2 RTE QNLI MRPC STS-B

SR+RD+RI+RS 63.6 94.0 74.8 92.2 86.8/90.6 90.6/90.3
SR+RD+RI 63.4 93.8 72.8 92.1 86.9/90.8 90.6/90.2

SR+RD 61.6 93.6 72.5 92.2 87.2/91.0 90.6/90.3

Table 13: Ablation study on sentence augmentation types in SSL-Reg (SATP), where SR, RD, RI and RS denotes

synonym replacement, random deletion, random insertion, and random swap respectively. Results are averaged

over 5 runs with different random initialization.

as RoBERTa (our run) on the rest 4 datasets. This

further demonstrates the effectiveness of our pro-

posed SSL-Reg approach which uses an MTP-

based self-supervised task to regularize the fine-

tuning of RoBERTa.

In SSL-Reg (SATP), we perform an ablation

study on different types of sentence augmenta-

tion. Results are shown in Table 13, where SR,

RD, RI and RS denote synonym replacement,

random deletion, random insertion, and random

swap, respectively. SR+RD+RI+RS means that

we apply these four types of operations to aug-

ment sentences; given an augmented sentence a,

we predict which of the four types of opera-

tions was applied to an original sentence to cre-

ate a. SR+RD+RI+RS and SR+RD hold similar

meanings. From this table, we make the follow-

ing observations. First, as the number of aug-

mentation types increases from 2 (SR+RD) to 3

(SR+RD+RI) then to 4 (SR+RD+RI+RS), the per-

formance increases in general. This shows that

it is beneficial to have more augmentation types

in SATP. The reason is that more types make the

SATP task more challenging and solving a more

challenging self-supervised learning task can en-

force sentence encoders to learn more powerful

representations. Second, SR+RD+RI+RS outper-

forms SR+RD+RI on 5 out of 6 datasets. This

demonstrates that leveraging random swap (RS)

for SATP can learn more effective representations

of sentences. The reason is: SR, RD, and RI

change the collection of tokens in a sentence via

synonym replacement, random deletion, and ran-

dom insertion; RS does not change the collection

of tokens, but changes the order of tokens; there-

fore, RS is complementary to the other three oper-

ations; adding RS can bring in additional benefits

that are complementary to those of SR, RD, and

RI. Third, SR+RD+RI performs much better than

SR+RD on CoLA and is on par with SR+RD on

the rest five datasets. This shows that adding RI

to SR+RD is beneficial. Unlike synonym replace-

ment (SR) and random deletion (RD) which do not

increase the number of tokens in a sentence, RI in-

creases token number. Therefore, RI is comple-

mentary to SR and RD and can bring in additional

benefits.

5 Conclusions and Future Work

In this paper, we propose to use self-supervised

learning to alleviate overfitting in text classifica-

tion problems. We propose SSL-Reg, which is

a regularizer based on SSL and a text encoder is

trained to simultaneously minimize classification

loss and regularization loss. We demonstrate the

effectiveness of our methods on 17 text classifica-

tion datasets.

For future works, we will use other self-

supervised learning tasks to perform regulariza-

tion, such as contrastive learning, which predicts

whether two augmented sentences stem from the

same original sentence.

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E

Hinton. 2016. Layer normalization. arXiv
preprint arXiv:1607.06450.

Philip Bachman, R Devon Hjelm, and William

Buchwalter. 2019. Learning representations by

maximizing mutual information across views.

In Advances in Neural Information Processing
Systems, pages 15509–15519.

Steven Bird and Edward Loper. 2004. NLTK: The

natural language toolkit. In Proceedings of the
ACL Interactive Poster and Demonstration Ses-
sions, pages 214–217, Barcelona, Spain. Asso-

ciation for Computational Linguistics.

Ting Chen, Simon Kornblith, Mohammad

Norouzi, and Geoffrey Hinton. 2020. A

simple framework for contrastive learning

of visual representations. arXiv preprint
arXiv:2002.05709.

Junyoung Chung, Caglar Gulcehre, KyungHyun

Cho, and Yoshua Bengio. 2014. Empiri-

cal evaluation of gated recurrent neural net-

works on sequence modeling. arXiv preprint
arXiv:1412.3555.

Franck Dernoncourt and Ji Young Lee. 2017.

Pubmed 200k RCT: a dataset for sequential sen-

tence classification in medical abstracts. In IJC-
NLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019a. Bert: Pre-training

of deep bidirectional transformers for language

understanding. NAACL-HLT.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019b. BERT: Pre-training

of deep bidirectional transformers for language

understanding. In NAACL.

Hongchao Fang, Sicheng Wang, Meng Zhou, Ji-

ayuan Ding, and Pengtao Xie. 2020. Cert: Con-

trastive self-supervised learning for language

understanding. arXiv e-prints, pages arXiv–

2005.

Spyros Gidaris, Praveer Singh, and Nikos Ko-

modakis. 2018. Unsupervised representation

learning by predicting image rotations. arXiv
preprint arXiv:1803.07728.

Suchin Gururangan, Ana Marasović, Swabha

Swayamdipta, Kyle Lo, Iz Beltagy, Doug

Downey, and Noah A. Smith. 2020. Don’t stop

pretraining: Adapt language models to domains

and tasks. In Proceedings of ACL.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie,

and Ross Girshick. 2019. Momentum contrast

for unsupervised visual representation learning.

arXiv preprint arXiv:1911.05722.

Kaiming He, Xiangyu Zhang, Shaoqing Ren,

and Jian Sun. 2016. Deep residual learning

for image recognition. In Proceedings of the
IEEE conference on computer vision and pat-
tern recognition, pages 770–778.

Xuehai He, Zhuo Cai, Wenlan Wei, Yichen Zhang,

Luntian Mou, Eric Xing, and Pengtao Xie.

2020a. Pathological visual question answering.

arXiv preprint arXiv:2010.12435.

Xuehai He, Xingyi Yang, Shanghang Zhang, Jinyu

Zhao, Yichen Zhang, Eric Xing, and Pengtao

Xie. 2020b. Sample-efficient deep learning for

covid-19 diagnosis based on ct scans. medRxiv.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.

Long short-term memory. Neural computation,

9(8):1735–1780.

J. Howard and Sebastian Ruder. 2018. Universal

language model fine-tuning for text classifica-

tion. In ACL.

David Jurgens, Srijan Kumar, Raine Hoover,

Daniel A. McFarland, and Dan Jurafsky. 2018.

Measuring the evolution of a scientific field

through citation frames. TACL.

Nal Kalchbrenner, Edward Grefenstette, and Phil

Blunsom. 2014. A convolutional neural net-

work for modelling sentences. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers), pages 655–665, Baltimore, Maryland.

Association for Computational Linguistics.

Prannay Khosla, Piotr Teterwak, Chen Wang,

Aaron Sarna, Yonglong Tian, Phillip Isola,

Aaron Maschinot, Ce Liu, and Dilip Krishnan.

2020. Supervised contrastive learning. arXiv
preprint arXiv:2004.11362.

Johannes Kiesel, Maria Mestre, Rishabh Shukla,

Emmanuel Vincent, Payam Adineh, David Cor-

ney, Benno Stein, and Martin Potthast. 2019.

SemEval-2019 Task 4: Hyperpartisan news de-

tection. In SemEval.

Tassilo Klein and Moin Nabi. 2020. Contrastive

self-supervised learning for commonsense rea-

soning. arXiv preprint arXiv:2005.00669.

V. Korde and C. Mahender. 2012. Text clas-

sification and classifiers: A survey. Interna-
tional Journal of Artificial Intelligence & Ap-
plications, 3:85–99.

Jens Kringelum, Sonny Kim Kjærulff, Søren

Brunak, Ole Lund, Tudor I. Oprea, and

Olivier Taboureau. 2016. ChemProt-3.0: a

global chemical biology diseases mapping. In

Database.

Siwei Lai, L. Xu, Kang Liu, and Jun Zhao. 2015.

Recurrent convolutional neural networks for

text classification. In AAAI.

Zhenzhong Lan, Mingda Chen, Sebastian Good-

man, Kevin Gimpel, Piyush Sharma, and Radu

Soricut. 2019. Albert: A lite bert for self-

supervised learning of language representa-

tions. arXiv preprint arXiv:1909.11942.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan

Ghazvininejad, Abdelrahman Mohamed, Omer

Levy, Ves Stoyanov, and Luke Zettlemoyer.

2019. Bart: Denoising sequence-to-sequence

pre-training for natural language generation,

translation, and comprehension. arXiv preprint
arXiv:1910.13461.

Xueting Li, Sifei Liu, Shalini De Mello, Xiaolong

Wang, Jan Kautz, and Ming-Hsuan Yang. 2019.

Joint-task self-supervised learning for temporal

correspondence. In Advances in Neural Infor-
mation Processing Systems, pages 317–327.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.

2016. Recurrent neural network for text classi-

fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei

Du, Mandar Joshi, Danqi Chen, Omer Levy,

Mike Lewis, Luke Zettlemoyer, and Veselin

Stoyanov. 2019a. Roberta: A robustly opti-

mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei

Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and

Veselin Stoyanov. 2019b. RoBERTa: A ro-

bustly optimized BERT pretraining approach.

arXiv:1907.11692.

I. Loshchilov and F. Hutter. 2017. Fixing

weight decay regularization in adam. ArXiv,

abs/1711.05101.

Yi Luan, Luheng He, Mari Ostendorf, and Han-

naneh Hajishirzi. 2018. Multi-task identifica-

tion of entities, relations, and coreference for

scientific knowledge graph construction. In

EMNLP.

Andrew L. Maas, Raymond E. Daly, Peter T.

Pham, Dan Huang, Andrew Y. Ng, and Christo-

pher Potts. 2011. Learning word vectors for

sentiment analysis. In ACL.

Julian McAuley, Christopher Targett, Qinfeng Shi,

and Anton Van Den Hengel. 2015. Image-based

recommendations on styles and substitutes. In

ACM SIGIR.

G. Miller. 1995. Wordnet: a lexical database for

english. Commun. ACM, 38:39–41.

Shervin Minaee, Nal Kalchbrenner, Erik Cam-

bria, Narjes Nikzad, Meysam Chenaghlu, and

Jianfeng Gao. 2020. Deep learning based text

classification: A comprehensive review. arXiv
preprint arXiv:2004.03705.

T Nathan Mundhenk, Daniel Ho, and Barry Y

Chen. 2018. Improvements to context based

self-supervised learning. In Proceedings of the
IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 9339–9348.

Aaron van den Oord, Yazhe Li, and Oriol

Vinyals. 2018. Representation learning with

contrastive predictive coding. arXiv preprint
arXiv:1807.03748.

Deepak Pathak, Philipp Krahenbuhl, Jeff Don-

ahue, Trevor Darrell, and Alexei A Efros. 2016.

Context encoders: Feature learning by inpaint-

ing. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages

2536–2544.

Alec Radford, Karthik Narasimhan, Tim Sali-

mans, and Ilya Sutskever. Improving language

understanding by generative pre-training.

Colin Raffel, Noam Shazeer, Adam Roberts,

Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J Liu.

2019. Exploring the limits of transfer learning

with a unified text-to-text transformer. arXiv
preprint arXiv:1910.10683.

Sam T Roweis and Lawrence K Saul. 2000. Non-

linear dimensionality reduction by locally linear

embedding. science, 290(5500):2323–2326.

Aravind Srinivas, Michael Laskin, and Pieter

Abbeel. 2020. Curl: Contrastive unsuper-

vised representations for reinforcement learn-

ing. arXiv preprint arXiv:2004.04136.

Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng,

Hao Tian, Hua Wu, and Haifeng Wang. 2019.

Ernie 2.0: A continual pre-training framework

for language understanding. arXiv preprint
arXiv:1907.12412.

Yu Sun, Xiaolong Wang, Liu Zhuang, John Miller,

Moritz Hardt, and Alexei A. Efros. 2020. Test-

time training with self-supervision for general-

ization under distribution shifts. In ICML.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.

2014. Sequence to sequence learning with neu-

ral networks. In Advances in neural informa-
tion processing systems, pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christo-

pher D. Manning. 2015. Improved semantic

representations from tree-structured long short-

term memory networks. In Proceedings of
the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China. Association

for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar,

Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. 2017. At-

tention is all you need. In Advances in neural
information processing systems, pages 5998–

6008.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-

lix Hill, Omer Levy, and Samuel R Bowman.

2018. Glue: A multi-task benchmark and anal-

ysis platform for natural language understand-

ing. arXiv preprint arXiv:1804.07461.

Jin Wang, Zhongyuan Wang, D. Zhang, and Jun

Yan. 2017. Combining knowledge with deep

convolutional neural networks for short text

classification. In IJCAI.

Xiaolong Wang, Allan Jabri, and Alexei A Efros.

2019a. Learning correspondence from the

cycle-consistency of time. In Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2566–2576.

Xin Wang, Qiuyuan Huang, Asli Celikyil-

maz, Jianfeng Gao, Dinghan Shen, Yuan-Fang

Wang, William Yang Wang, and Lei Zhang.

2019b. Reinforced cross-modal matching and

self-supervised imitation learning for vision-

language navigation. In Proceedings of the
IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 6629–6638.

Jason Wei and Kai Zou. 2019. EDA: Easy data

augmentation techniques for boosting perfor-

mance on text classification tasks. In Pro-
ceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and
the 9th International Joint Conference on Nat-
ural Language Processing (EMNLP-IJCNLP),
pages 6383–6389, Hong Kong, China. Associa-

tion for Computational Linguistics.

Qingyang Wu, Lei Li, Hao Zhou, Ying Zeng,

and Zhou Yu. 2019. Importance-aware learn-

ing for neural headline editing. arXiv preprint
arXiv:1912.01114.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and

Dahua Lin. 2018. Unsupervised feature learn-

ing via non-parametric instance discrimina-

tion. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition,

pages 3733–3742.

Xingyi Yang, Xuehai He, Yuxiao Liang, Yue

Yang, Shanghang Zhang, and Pengtao Xie.

2020. Transfer learning or self-supervised

learning? a tale of two pretraining paradigms.

arXiv preprint arXiv:2007.04234.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime

Carbonell, Russ R Salakhutdinov, and Quoc V

Le. 2019. Xlnet: Generalized autoregressive

pretraining for language understanding. In Ad-
vances in neural information processing sys-
tems, pages 5754–5764.

Jiaqi Zeng and Pengtao Xie. 2021. Contrastive

self-supervised learning for graph classification.

AAAI.

Richard Zhang, Phillip Isola, and Alexei A Efros.

2016. Colorful image colorization. In Eu-
ropean conference on computer vision, pages

649–666. Springer.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.

2015. Character-level convolutional networks

for text classification. In NeurIPS.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and

F. C. M. Lau. 2015. A c-lstm neural network

for text classification. ArXiv, abs/1511.08630.

