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Abstract

We present a deep imitation learning framework for robotic bimanual manipulation
in a continuous state-action space. A core challenge is to generalize the manip-
ulation skills to objects in different locations. We hypothesize that modeling the
relational information in the environment can significantly improve generaliza-
tion. To achieve this, we propose to (i) decompose the multi-modal dynamics into
elemental movement primitives, (ii) parameterize each primitive using a recur-
rent graph neural network to capture interactions, and (iii) integrate a high-level
planner that composes primitives sequentially and a low-level controller to com-
bine primitive dynamics and inverse kinematics control. Our model is a deep,
hierarchical, modular architecture. Compared to baselines, our model generalizes
better and achieves higher success rates on several simulated bimanual robotic
manipulation tasks. We open source the code for simulation, data, and models at:
https://github.com/Rose-STL-Lab/HDR-IL.

1 Introduction

Manipulation is a fundamental capability robots need for many real-world applications. Although
there has been significant progress in single-arm manipulation tasks such as grasping, pick-and-
place, and pushing [1, 2, 3, 4], bimanual manipulation has received less attention. Many tasks
however require using both arms/hands; consider opening a bottle, steadying a nail while hammering,
or moving a table. While having two arms to accomplish these tasks is clearly useful, bimanual
manipulation tasks are also significantly more challenging, due to higher-dimensional continuous
state-action spaces, more object interactions, and longer-horizon solutions.

Most existing work in bimanual manipulation addresses the problem in a classical control setting,
where the environment and its dynamics are known [5]. However, these models are difficult to
construct explicitly and are inaccurate, because of complicated interactions in the task including
friction, adhesion, and deformation between the two arms/hands and the object being manipulated. A
promising approach that avoids manually specifying models is imitation learning, where a teacher
provides demonstrations of desired behavior to the robot (sequences of sensed input states and
target control actions in those states), and the robot learns a policy to mimic the teacher [6, 7, 8].
In particular, recent deep imitation learning methods have been successful at learning single-arm
manipulation from demonstrations, even with only images as observations (e.g., [9, 10]).

In this work, we explore extending deep imitation learning methods to bimanual manipulation. In
light of the challenges identified above, our goal is to design an imitation learning model to capture
relational information (i.e., the trajectory involves relations to other objects in the environment) in
environments with complex dynamics (i.e., the task requires multiple object interactions to accomplish
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Figure 1: An example of the HDR-ILmodel performing a “peg-in-hole” construction of a table. The
trajectory of primitives to complete this task is shown in the top row. The sequence of high-level
primitives is learned from demonstrations. State trajectories are predicted based on the primitive
identified. The final predicted state for the primitive becomes the initial state for the next primitive.

a goal). The model needs to be general enough to complete tasks under different variations, such as
changes in the initial configuration of the robot and objects.

The insight of our paper is to accomplish this goal through a two-level framework, illustrated in
Figure 1 for a bimanual “peg-in-hole” table assembly and lifting task. The task involves grasping
two halves of a table, slotting one half into the other, and then lifting both parts together as whole.
Instead of trying to learn a policy for the entire trajectory, we split demonstrations into task primitives
(subsequences of states), as shown in the top row. We learn two models: a high-level planning model
that predicts a sequence of primitives, and a set of low-level primitive dynamics models that predict a
sequence of robot states to complete each identified task primitive. All models are parameterized by
recurrent graph neural networks that explicitly capture robot-robot and robot-object interactions. In
summary, our contributions include:

* We propose a deep imitation learning framework, Hierarchical Deep Relational Imitation Learning
(HDR-IL), for robotic bimanual manipulation. Our model explicitly captures the relational
information in the environment with multiple objects.

* We take a hierarchical approach by separately learning a high-level planning model and a set of
low-level primitive dynamics models. We incorporate relational features and use recurrent graph
neural networks to parameterize all models.

* We evaluate on two variations of a table-lifting task where bimanual manipulation is essential.
We show that both hierarchical and relational modeling provide significant improvement for task
completion on held-out instances. For the task shown in Figure 1, our model achieves 29% success
rate, whereas a baseline approach without these contributions only succeeds in 1% of the test cases.

2 Related Work

The idea of abstracting temporally extended actions has been studied in hierarchical reinforcement
learning (HRL) for decades, with the goal of reducing the action search space and sample complexity
[11, 12]. A special and useful case is the concept of parameterized skills, or primitives, where skills
are pre-defined and the sequence of skills are learned [13]. Such a hierarchical modeling approach
has been widely used in robotics and reinforcement learning [14, 15, 16, 17, 18]. This results in a
more structured discrete-continuous action space. The learning for this action space can be naturally
decomposed into multiple phases with different primitives applied [19].



Prior work on learning sequences of skills using demonstrations [20, 21, 19, 22, 23] either rely on
pre-defined primitive functions or statistical models such as hidden Markov models. Pre-defined
primitive functions can be restrictive in representing complex dynamics. Recently, [24, 25] applied
pretrained deep neural networks to identify primitives from input states. Hierarchical imitation
learning [26, 27, 28] learns the primitives from demonstrations, but does not use relational models.

Our main contribution is learning more accurate dynamics models to support imitation learning of
bimanual robotic manipulation tasks. [29] learns a latent representation space to decouple high-
level effects and low-level motions, which follows the idea of disentangling the learning into two
levels. Recently, graph neural networks (GNNs) [30] have been used to model complex physical
dynamics in several applications. Graph models have been used to model physical interaction between
objects such as particles [31], [32] and other rigid objects [33], [34]. In the robotics domain, one
common approach is to model robots as graphs comprised of nodes corresponding to joints and edges
corresponding to links on the robot body, e.g., [35].

3 Background

We describe imitation learning using the Markov Decision Process (MDP) framework. An MDP is
defined as a tuple (S, A, T, R,~), where S is the state space, A is the action space, T : S X A —
A(S) is the transition function, R : S x A — R is the reward function, and - is the discount factor.
In imitation learning, we are given a collection of demonstrations {7(*) = (s1,ay,---)}2, from
an expert policy 7z, and the objective is to learn a policy 7y from {7() }2 | that mimics the expert
policy. Imitation learning requires a larger number of demonstrations for long horizon problems,
which can be alleviated with hierarchical imitation learning [27].

In hierarchical imitation learning, there is typically a two-level hierarchy: a high-level planning policy
and a low-level control policy. The high-level planning policy 7, generates a primitive sequence
(p*,p?,---). In robotic manipulation, a primitive p* € P corresponds to a parameterized policy that

maps states to actions 7, : S — A, that are typically used to achieve subgoals such as grasping and

lifting. Each primitive p* results in a low-level state trajectory (s¥, s, - - - ). Given a primitive p* and

the initial state s; , we aim to learn a policy to produce a sequence of states which can be used by an
inverse kinematics (IK) solver to obtain the robot control actions (a¥,a%, ).

4 Methodology

We propose a hierarchical framework for planning and control in robotic bimanual manipulation,
outlined in Figure 2. Our framework combines a high-level planning model and a low-level primitive
dynamics model to forecast a sequence of IV states. We divide the sequence of IV states into
K primitives pq, - -- , pg, with each primitive consisting of a trajectory with a fixed number of
states M = N/K. A high-level planning model selects the primitive based on previous states
(s0,.--8t—1) > pt. A low-level primitive dynamics model uses the selected primitive p; = AR

and predicts the next M steps s;_1 +— (s§...s¥ '+ 7). An inverse kinematics solver then translates a

sequence of states into robot control actions (a¥, a%, - --). We first detail the low-level control model

and our contributions to this model. The high-level planning model shares many architectural features
with the low-level control model.

4.1 Low-level Control Model

Sequence to sequence models [36] with recurrent neural networks (RNN) have been used effectively
in prior deep imitation learning methods, e.g. [37]. In our model, we introduce a stochastic component
through a variational auto-encoder [38] to generate a latent state distribution Z; ~ N (u.,,0,). The
decoder samples a latent state z; from the distribution and generates a sequence of outputs. We build
on this design and innovate in several aspects to execute high-precision bimanual manipulation tasks.

Relational Features (Int) The vanilla RNN encoder-decoder model assumes different input fea-
tures are independent whereas robot arms and objects have strong dependency. To capture these
relational dependencies, we introduce a graph attention (GAT) layer [39] in the encoder, leading
to graph RNN. We construct a fully connected graph where each node corresponds to each feature
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Figure 2: HDR-IL Pipeline: The planning model learns sequences of primitives from demonstrations
of the task. The primitive dynamics model takes an initial state and the learned sequence of primitives
to predict future states (robot and object poses) for the task. Finally, we use inverse kinematics to
compute low-level robot controls needed to reach the predicted states and execute the commands
using the PyBullet physics simulator. The high-level planning allows the identification of primitives,
which are used to select the appropriate primitive dynamics model Multi. Within each primitive’s
dynamics model, the GNN layers Int capture interactions between objects. The residual connection
Res of the object state helps direct the projection towards the target. Additional implementation
details and hyperparameter settings are found in the supplementary material.

dimension in the state. The attention mechanism of the GAT model learns edge weights through train-
ing. Specifically, given two objects features h,, and h,,, we compute the edge attention coefficients
euy according to the GAT attention update e,,,, = a(Wh,, Wh,,). Here W are shared trainable
weights. These coefficients are used to obtain the attention: cv,,, = softmax(e,, ). The GAT feature
update is given by h, = o (Zve N, am,Whv) where N, is the neighbour nodes of . This model
allows us to learn parameters that capture the relational information between the objects. The GAT
layer that processes the relational features is shown with Int in Figure 2.

Residual Connection (Res) Another key component of our dynamics model is a residual skip
connection that connects features of the target object, such as the table to be moved, to the last
hidden layer of the encoder GRU [40]. This idea was inspired by previous robotics work where motor
primitives are defined by a dynamics function and a goal state [21]. Skip connections were also used
in [41] to help learn complex features in an encoder. The inclusion of the skip connection here helps
emphasize the goal, in this case the target object features. This is shown as Res in Figure 2.

Modular Movement Primitives (Multi) Primitives represent elementary movement patterns such
as grasping, lifting and turning. A shared model for all primitive dynamics is limited in its repre-
sentation power and generalization to more complex tasks. Instead, we take a modular approach
at modeling the primitive dynamics. In particular, we design a separate neural network module for
each primitive. Each neural network hence captures a particular type of primitive dynamics. We use
the same Graph RNN architecture with residual connections for each primitive module. For a task
comprised of K ordered primitives with M steps each, each module approximate the primitive policy
mpr, Which produces a state trajectory (s¥,s5 ---). The last state of each primitive is used as the
initial state for the next primitive, which is predicted by the high-level planning model.

Inverse Kinematics Controller In robotics, inverse kinematics (IK) calculates the variable joint
parameters needed to place the end of a robot manipulator in a given position and orientation relative
to the start. An IK function is used to translate the sequence of states to the control commands for
the robot. At each time step, the predicted state for the robot grippers is taken as the input to the IK
solver. IK is an iterative algorithm that calculates the robot joint angles needed to reach the desired
gripper position. These angles determine the commands on each joint to execute robot movement.



4.2 High-level Planning Model

The goal of the high-level planning model is to learn a policy 7, which maps a sequence of observed
states to a sequence of predefined primitives 77, : S — P. Each identified primitive p* selects the
corresponding primitive dynamics policy ,x, which is then used for low-level control. Our planning
model takes all previous states and infers the next primitive sg, s1,..S,—1 = Py.

Similar to the low-level control model, capturing object interaction in the environment is crucial to
accurate predictions of the primitive sequence. Hence, we use the same graph RNN model described
in Section 4.1 and introduce relational features Int in the input. We omit the residual connections
as we did not find them necessary for the primitive identification. An architecture visualization is
provided in the Appendix Section A.4.

4.3 Supervised Training

The planning model and the control model are trained separately in a supervised learning fashion.
We train the high-level planning model on manually labeled demonstrations, in order to map a
sequence of states sy, - -, s;—1 into a primitive label p; = k € [1,..., K]. The labels are learned
with supervision of the correct primitive for the task using the cross entropy loss. The primitive
dynamics model is trained end-to-end with mean-square error loss on each predicted state s; across
all time steps. In the multi-model framework, each primitive is trained with its own parameters for
the dynamics model.

5 Experiments

We evaluate our approach in simulation using two table lifting tasks which require high precision
bimanual manipulation to succeed. We demonstrate the generalization of our model by testing the
model with different table starting locations.

5.1 Experimental Setup

All simulations for this study were conducted using the PyBullet [42] physics simulator with a Baxter
robot. Baxter operates using two arms, each with 7 degrees of freedom. We designed our environment
using URDF objects with various weightless links to track location. Our data consists of the zyz
coordinates and 4 quaternions for the robot grippers and each object in the environment.

Demonstrations were manually labeled as separate primitives in the simulator and sequenced together
to generate the simulation data. Each primitive function was parameterized so they can adapt to
different starting and ending coordinates. The primitives were selected such that they each had a
distinct trajectory dynamic (ie. lifting upwards vs moving sideways). Each primitive generated
a sequence of between 10-12 states for the robot grippers. The number of states were selected
through experimentation with the simulation. A minimum number of states were needed for each
primitive to produce a smooth non-linear trajectory, while too many states increased the complexity
for predictions. We then used the inverse kinematics function to translate the states into command
actions for the robot simulator.

Models We compare and evaluate several model designs in our experiments. Details about the
design elements are in Section 4. The models we consider are:

* GRU Encoder-Decoder Model (GRU-GRU): Single model with an GRU encoder, GRU decoder.

¢ Interaction Network Model (Int): This is the GRU-GRU model with a fully connected graph network
and a graph attention layer, equivalent to feature Int in Figure 2.

* Residual Link Model (Res): The GRU-GRU model with skip connection for the table features,
equivalent to feature Res in Figure 2.

* Residual Interaction Model (ResInt): The GRU-GRU model with combined graph structure and
skip connection of table object features, equivalent to adding features Res and Int in Figure 2.

e HDR-IL Model: Our multi-model framework which uses multiple ResInt models, one model for
each primitive. The appropriate model is chosen by the Multimodule shown in Figure 2.
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Figure 3: Demonstrations for the table lift task. Figure (a) shows the training trajectories in (z, y, z) of
left and right grippers for 2500 demonstrations. One sample trajectory is shown in color to highlight
the trajectory for each primitive, while the rest are grey. The black dot is the starting location. Figure
(b) shows the task executed in our simulator. Each image represents the last step of each primitive.
Videos of the demonstrations are provided in the supplementary material.

Table 1: Comparison of model performance by test error and by percent success in 127 test simulations.
The Euclidean distance errors are the average of the left and right grippers, and the range represents
one standard deviation. Angular distance measures the mean and standard deviation of the geodesic
distance between the predicted and actual quaternions. The dynamic time warping distance (DTW)
measures similarities between two sequences with a lower value being more similar. The inclusion of
the graph and skip connection improves success rates for both the single and multi-model designs.

Model Graph ~ Skip Conn  Multi-Model | Euclidean Dist ~ Angular Dist ~ DTW Dist % Success
GRU-GRU 6.53 £ 7.05 0.139 £0.182 0.135 13%
Res v 7.74 £5.88 0.143 £ 0.194 0.124 13%
Int v 6.67 £ 5.80 0.145 £ 0.177 0.123 17%
ResInt v v 5.64+£5.17  0.121 +£0.205 0.128 72%
GRU-GRU Multi v 6.53 £ 7.05 0.139 £0.182 0.131 14%
Res Multi v v 4.97+5.83 0.123 £0.191 0.121 92%
Int Multi v v 11.69 +10.142  0.246 £+ 0.269 0.126 13%
HDR-IL v v v 5.01 £5.33 0.112 £ 0.208 0.119 100%

5.2 Table Lifting Task

Task Design In this task, our robot is tasked to lift a table, with dimensions 35cm by 85cm, onto a
platform. We measured success as the table landing upright on the platform. For each demonstration,
the table is randomly spawned with the center of the table within a rectangle of 20cm in the = direction
and 60cm in the y direction. The task and primitives are illustrated in Figure 3.

Model Training We generate a total of 2,500 training demonstration trajectories, each of length 70.
We tested on a random sample of 127 starting points within the range of our training demonstrations.
We tune the hyper-parameters using random grid search. All models were trained with the ADAM
optimizer with batch size 70 over 12,500 epochs.

Results Table 1 compares the performance of different models. The outputs of model predictions
were evaluated using simulation to determine whether predictions were successful in completing the
task, with the table ending upright on the platform. For the single-primitive models, we find including
both the graph and the skip connection together in the ResInt model improves the ability of the model
to generalize much more than either feature on its own, as shown in Table 1.

The average Euclidean distance does not necessarily reflect the task performance because percent
success largely depends on the model’s generalization in the grasp primitive at the beginning of the
simulation when the robot attempts to reach the table legs. Analyzing errors by primitive, the large
errors are driven by the Extend primitive, which is less crucial for the task. The Extend primitive has
the largest step sizes between datapoints, as illustrated in Figure 3. Refer to Table 5 in the Appendix
for the Euclidean distances by primitive.
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Figure 4: Sample y coordinate predictions for 3 sample demonstrations in the table lifting task. The
robot gripper reaches for the table leg, denoted by the "Target", whose location is randomized for
each demonstration. The ResInt model has improved ability to generalize, compared to the baseline
GRU-GRU model which tends to project an average trajectory over all training demos. The HDR-IL,
which uses multiple dynamics models instead of a single model, improves the precision even more.

Table 2: Comparison of model performance between relational data versus absolute data. Absolute
data with graphs to measure interactions performs significantly better than relational data when
combined with the skip connection.

Model Graph  Skip Conn  Relational | Euclidean Dist ~ Angular Dist  DTW Dist % Success
GRU-GRU 6.53+£7.05  0.139+0.182 0.135 13%
Res Relational v v 8.15+£4.71 0.171 £0.153 0.133 16%
ResInt v v 5.64+5.17  0.121 £ 0.205 0.128 72%

Figure 4 visualizes the predictions against the ground truth for the right gripper at the most critical
grasp and move primitives. The left gripper follows a similar pattern. We pick the y-coordinates
because they have the largest variability in the training demonstrations. The baseline models which
did not have a graph structure or skip connections did not generalize well to changes in the table
location and project roughly an average of the training trajectories. The ResInt model shows the
ability to reach the target, while using multiple models helps to improve upon the precision of the
generalizations further.

An alternative method to model object interactions is to use relational coordinates instead of absolute
coordinates in the simulation data. We found the use of absolute data and graph structures performs
better than using relational data. Combined with the skip connections, the absolute data and graphs
performed significantly better in all metrics as shown in Table 2.

We even found our prediction from the HDR-ILmodel can achieve success for table starting lo-
cations where the ground truth demonstration failed. There were some failures (< 0.7% of 2500
demonstrations) due to the approximations of the IK solver sometimes creating unusual movements
between arm states. This causes the table to be dropped, which alters the arm trajectories in these
demonstrations. Our model can account for these uncertainties in demonstration because of the
stochastic sampling design shown in Figure 2.

5.3 Peg-in-Hole Task

Task Design We evaluate the same models on a more difficult peg-in-hole task. The environment
uses two tables, each measuring 35cm by 42.5cm. One table has a peg that needs to fit into the hole
of the other table. To lift the tables off the ground, the robot first needs to precisely align and attach
the two tables together, as illustrated in Figure 5. The tables start in random locations within their
own 20cm by 20cm range. This task introduces three location generalizations, one for the location
of each table and one in the location when combining and lifting the joined tables. Videos of the
demonstrations are provided in the supplementary material.

Model Training The model training follows the same strategy as the table lift task, using a total of
4700 demonstrations, each of length 130, with 13 primitives each of length 10. We trained with a
batch size of 130 for 18,800 epochs and tested on a random sample of 281 starting points.

Results The results in Table 3 shows our ResInt and HDR-IL model improved success rates
compared to the GRU-GRU baseline model. Model success rates were lower across all of the models
compared to the table lifting task due to the difficulty of the task. Average Euclidean distance errors
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60 time steps into task sequence. HDR-IL shows better generalization compared to the other two
models, but it does not reach the target exactly. The decreased accuracy in the second and the third
generalizations led to lower success rates in our simulations for all models.

Table 3: Comparison of model performances in the peg-in-hole task. Euclidean distances errors are
averages of the two grippers, and the ranges are one standard deviation. Angular distance measures
the mean and standard deviation of the geodesic distance between the predicted and actual quaternions.
The success rates are lower across all models in the task due to the more difficult task, which is both
longer and requires more generalizations. Percent success was measured on 281 test simulations.

Model Eculidean Dist ~ Angular Dist DTW Dist % Success - Lift

GRU-GRU 211+£1.11 0.029 £+ 0.022 0.121 1%
ResInt 1.59+£0.83 0.024 £ 0.012 0.117 15%
HDR-IL 0.90 +£1.01 0.013£0.010 0.113 29%

are smaller because the range of table starting locations were smaller. The predictions usually fail in
phase 2 due to lower accuracy in later time steps.

Generalizations along the x-axis were more difficult for this task due to larger variances in the
demonstrations. Figure 6 compares the x-axis coordinate predictions at two different time windows
for a single demo. In the time window of the first generalization (a), the HDR-IL and ResInt models
are comparable in their generalization. They are both able to reach the target coordinate, shown as a
red circle. The second time window (b) corresponding to the generalization in Phase 2 which is the
around 60 time steps into task sequence. The HDR-IL model shows better generalization compared
to the other two models, but it does not reach the target exactly. The decreased accuracy in the second
and the third generalizations led to lower success rates in our simulations for all models.



6 Conclusion and Future Work

We present a novel deep imitation learning framework for learning complex control policies in
bimanual manipulation tasks. This framework introduces a two-level hierarchical model for primitive
selection and primitive dynamics modeling, utilizing graph structures and residual connections to
model object dynamics interactions. In simulation, our model shows promising results on two
complex bimanual manipulation tasks: table lifting and peg-in-hole. Future work include estimating
object pose directly from visual inputs. Another interesting direction is automatic primitive discovery,
which would greatly improve the label efficiency of training the model in new tasks.

Broader Impact

Robotics systems that utilize fully automated policies for different tasks have already been applied
to many manufacturing, assembly lines, and warehouses processes. Our work demonstrates the
potential to take this automation one step further. Our algorithm can automatically learn complex
control policies from expert demonstrations, which could potentially allow robots to augment their
existing control designs and further optimize their workflows. Implementing learned policies in
safety-critical environments such as large-scale assembly lines can be risky as these algorithms do not
have guaranteed precision. Improved theoretical understanding and interpretability of model policies
could potentially mitigate these risks.
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A Model Details

A.1 Model Parameters

The Hyper-parameters we tested and the best parameter we selected for each model.

Table 4: Summary of model hyperparameters tested in hyperparameter search and the value used in
the final model.

Table Lift Task
Model Parameters Searched  Planning Model ~ Dynamics Model - Single  Dynamics Model - Multi
Encoder LR 2x107%-1x 1075 5x 107 2x107% 1x107°
Decoder LR 2x107%-1x107° 5x107° 4x107° 4x107°
Hidden Dimensions 100 - 1024 512 512 512
Encoder FC Layers 3-18 3 18 3
Decoder FC Layers 3-19 4 19 5
GAT attention layers 1,2 1 1 1

Peg-In-Hole Task

Model Parameters Searched  Planning Model ~ Dynamic Model - Single ~ Dynamic Model - Multi
Encoder LR 2x1071-1x107° 1x107° 5x107° 5x 1077
Decoder LR 2x1074-8x 1077 8 x 1077 5x107° 5x107°

Hidden Dimensions 100 - 1024 512 1024 512
Encoder FC Layers 3-20 9 20 3
Decoder FC Layers 3-21 8 21 5
GAT attention layers 1,2 1 1 1
GAT attention heads 1,2 1 1 1

A.2 Data Pre-processing

For the table lift task, we used 2,500 training demonstrations, with starting locations distributed
uniformly over displacement range of 20cm by 60 cm. The testing was done on 127 random starting
locations with displacements within the range of the training dataset. For the peg-in-hole task we
used 4,700 randomly selected demonstrations for training and 281 random locations for testing. In
data pre-processing, we removed demonstrations that were not successful in completing the tasks.

A.3 Dynamic Model Details

A.3.1 Encoder

S(demo) (demo) (demo)
t t+1 t+M -
| | i T
GRU Hidden
State
' ‘ > Zy~ N(Uy,, 05,)
GAT GRU s(table)
Layer Layer t
Fully Mean
Concat Connected Variance
Layers Split
Encoder

Figure 7: Encoder training set-up details with graph structure and skip connection.

The baseline encoder consists of a GRU which takes the initial state as the input. The number of
layers in the GRU corresponds to the number of states being projected. The initial state is a vector
consisting of the z-, y-, and z-coordinates of each object concatenated with the quaternions for that
object. During training, we use teacher forcing so that the input in each layer of the GRU take the
states from the simulation. During testing, the inputs in layers besides the first come from the output
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of the previous layer. The hidden state of the GRU at the last time point is passed through the fully
connected layers. The number of fully connected layers vary based on whether the model is part of a
multi-model framework as outlined in the Model Parameters section. We modified the number of
linear layers such that our single and multi-model designs have comparable number of parameters.
The final layer doubles the dimensionality of the fully connected layers, splitting the hidden state into
mean and variances for the decoder.

Relational Model Int Models that use relational features use graph attention layers (GAT). We
use one attention head in the GAT layers.
A node corresponds to an object feature in the state, one node for each of the x, y, z coordinates and

for the four quaternions. We will index the layer with a superscript. The initial node feature h&o) is
the value of that feature. For each layer, the edge attention coefficient €/, between nodes u and v is
given by

D — g (W<l>h5}>, W(nhgjz)) (1)

uv

for learned layer weight matrix W), The attention mechanism a concatenates the inputs and
multiplies them by a learned weight vector al) and applies a nonlinearity, i.e.

) = LeakyReLU (aU)(W(”hS})||W<l>h,<j>)) 2)
Attention weights are computed by normalizing edge attention coefficients with the softmax function
Q= softmax(eyy,). (3)

Node features are aggregated by neighborhood. For node w and the set of its connected neighbors
N, node features are updated by the GAT update rule,

Rt = " aWOn{), (4)
veEN,

Figure 8: A graphical visualization of the attention weights learned in the 2nd layer of the GRU for
the table lifting task. Node colors represent different objects in the environment. In this graph, 'R’
and 'L stand for left and right grippers, and T’ for table. The visible edges are those with attention
weights greater than 8%. A graph convolution network (GCN) without learned weights would
assume uniform attention weights of 4.77% for all 21 nodes. This supported our decision to use GAT
over GCN for modeling the interactions. The two nodes receiving the largest weights are the right
gripper y coordinate and a quaternion on the left gripper.
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Residual Connection Res Models that have the residual connection concatenate the table features
to the final hidden state from the GRU, prior to the linear layers.

A.3.2 Decoder

Decoder
Output and
Hidden
State o
Z
GRU Layer
Fully
Connected
Layers

v v v
(pred) S (pred) & (pred)
t+1 t+2 t+M

Figure 9: Decoder training set-up details.

The decoder takes a sample latent space from the encoder. The sample is the initial hidden state
going into the GRU of the decoder. The initial input of the first layer is a tensor of zeros. In the
remaining layers, the input to the layer is the output from the previous layer. At each layer, the output
of the GRU goes through a series of fully connected layers to get the final output of the model which
represent the states at each time point.

ODE Model Inthe ODE model, the latent state is passed to the ODE Solver, which replaces the
GRU. The ODE solver solves for the time invariant gradient function, which used to generate the
output at each time step.

A.4 Planning Model Details

4

50581 - S¢ —

Final
Layer
Zt p(ztlst) U Output p — pk
o
GRU

Fully Softmax

GAT GRU Fully
Connected Coilnectecl
ayers

Layers
Encoder Decoder

Planning Model

Figure 10: Planning Models take a sequence of observed states and determines a primitive for the
next step. The encoder setup is the same as the dynamics model, with the graph structure but no skip
connection. The latent state in fixed rather than a distribution in the dynamic model. In the decoder,
the output of the GRU and fully connected layers are fed through an additional softmax layer to get
the primitive label.
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B Additional Results
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Figure 11: RNN vs ODE Model Introducing continuous time dynamics through the ODE model did

not improve upon the predictions. This is due to the transitions of different primitives in this task
being discrete.

Table 5: Breakdown of average Euclidean distance (cm) by primitives of table lift task. Errors are one
standard deviation. The errors are the largest in the lift primitive because this primitive has the largest
distances between time steps. The larger movements between time steps results in less precision in
the predictions

Model Grasp Move Lift Extend Place Retract
GRU-GRU 7.03+£545 9.344+6.59 2.67+£1.66 14204+9.94 4.65+291 1.394+0.39
Res 8.33£5.64 9.62x+6.69 444+1.35 1390x7.74 530+0.75 4.94x1.41
Int 7.73+£520 9.66 +6.37 3.44+1.19 1257+£6.91 4.23+2.40 2.61+0.71
ResInt 3.80+1.89 3.28+£1.36 3.87+£1.55 1346+8.09 572+234 3.45+0.69
GRU-GRU Multi  7.03 £5.45 9.35+6.59  2.68£1.65 14.20£9.94 4.65+2.92 1.40+0.38
Res Multi 3.76+1.63 3.59+£1.49 3.09+1.87 13.53+9.62 4.084+222 1.54+0.61
Int Multi 10.99+9.20 10.01 £8.05 3.35+2.34 18.04£10.42 6.94+4.24 20.68 £ 10.78
HDR-IL 286151 3294+1.34 298+£187 12.78+8.71 3.73£285 4.03+0.85

Table 6: Breakdown of average Euclidean distance (cm) by phase for the peg-in-hole task. Errors are
one standard deviation.

Model Phase 1 Phase 2 Phase 3
GRU-GRU 1.89+1.08 2.51+1.22 1.79+0.67
Reslnt 1.93+0.85 1.494+0.86 1.184+0.42

HDR-IL 145+1.24 1.79+1.30 1.29+0.66

C Simulations

All tasks used to train and test our framework were designed using the PyBullet physics simulator.
Our goal when designing tasks was two-fold:

* Design tasks that could be easily decomposed into a sequence of simpler, low-level primi-
tives.

* Design tasks that could not be performed using only one arm, and thus would fall under the
domain of bimanual manipulation.

Task Design Designing both tasks used for our experiments followed the same process. We first
decided which low-level primitives the task should be decomposed into. Then we manually coded the
primitives required and put them together sequentially. We made sure that if the robot used only one
arm for either of the tasks it would fail, to ensure that learning to do the task successfully required
true bimanual manipulation. We used the final position of the center of mass of the table or tables to
measure task success.
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Primitive Design The process of designing the primitives was iterative. We first built the primitive
movements and test them on the simulation of the task with the table at various starting locations
and observe the performance and success rates. We observe where the simulations failed and adjust
the primitives parameters as necessary. This including modifying the number of time steps and the
trajectory of the primitive to avoid accidental interactions. All code used for our simulations will be
made publicly available.

Datasets All data was collected using the two scripts designed for the place-and-lift and peg-in-hole
tasks. Both tasks had noise introduced to them in order to make the training data more robust. Our
code is included to run our simulations and generate datasets.
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