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Figure 1: Several deep learning applications of our proposed data selection algorithms discussed in this paper.

Abstract

Finding a small subset of data whose linear combination

spans other data points, also called column subset selection

problem (CSSP), is an important open problem in computer

science with many applications in computer vision and deep

learning such as the ones shown in Fig. 1. There are some

studies that solve CSSP in a polynomial time complexity

w.r.t. the size of the original dataset. A simple and effi-

cient selection algorithm with a linear complexity order, re-

ferred to as spectrum pursuit (SP), is proposed that pursuits

spectral components of the dataset using available sample

points. The proposed non-greedy algorithm aims to itera-

tively find K data samples whose span is close to that of the

first K spectral components of entire data. SP has no pa-

rameter to be fine tuned and this desirable property makes

it problem-independent. The simplicity of SP enables us to

extend the underlying linear model to more complex models

such as nonlinear manifolds and graph-based models. The

nonlinear extension of SP is introduced as kernel-SP (KSP).

The superiority of the proposed algorithms is demonstrated

in a wide range of applications.

1. Introduction

Processing M data samples, each including N features,

is not feasible for of most the systems, when M is a very

large number. Therefore, it is crucial to select a small sub-

set of K << M data from the entire set such that the se-

lected data can capture the underlying properties or struc-

ture of the entire data. This way, complex systems such as

deep learning (DL) networks can operate on the informative

selected data rather than the redundant entire data. Ran-

domly selecting K out of M data, while computationally

simple, is inefficient in many cases, since non-informative

or redundant instances may be among the selected ones. On

the other hand, the optimal selection of data for a specific

task involves solving an NP-hard problem [2]. For exam-

ple, finding an optimal subset of data to be employed in

training a DL network, with the best performance, requires(
M

K

)
number of trial and errors, which is not tractable. It is

essential to define a versatile objective function and to de-

velop a method that efficiently selects the K samples that

optimize the function. Let us assume the M data samples

are organized as the columns of a matrix A ∈ R
N×M . The

following is a general purpose cost function for subset se-
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Figure 2: Intuitive illustration of our main contributions in this paper. (a) A dataset including 20 real images from AT&T face database

[1] is considered. (b) the images in (a) are represented as blue dots. Three most significant eigenfaces are shown by green dots. However,

these eigenfaces are not among data samples. Here, we are interested in selecting the best 3 out 20 real images, whose span is the closest to

the span of the 3 eigenfaces. There are
(
20

3

)
possible combinations from which the best subset must be selected. In this paper, we propose

the SP algorithm to select K samples such that their span pursuits the span of the first K singular vectors. (c) Utilizing the proposed linear

selection algorithm (SP), a tractable algorithm is developed for selecting from low-dimensional manifolds. First, a kernel which is defined

by neighborhood transforms the given data on a manifold to a latent space. Next, the linear selection is performed.

lection, known as column subset selection problem (CSSP)

[3]:

S
∗ = argmin

|S|≤K

‖A− πS(A)‖2F , (1)

where πS is the linear projection operator on the span of K
columns of A indicated by set S. This is an open problem

which has been shown to be NP hard [4, 2]. Moreover, the

cost function is not sub-modular [5], and greedy algorithms

are not efficient to tackle Problem (1). Computer scientists

and mathematicians during the last 30 years have proposed

many tractable selection algorithms that guarantee an upper

bound for the projection error ‖A−πS(A)‖2F . These works

include algorithms based on QR decomposition of matrix A

with column pivoting (QRCP) [6, 7, 8], methods based on

volume sampling (VS) [9, 10, 11] and matrix subset selec-

tion algorithms [3, 12, 13]. However, the guaranteed up-

per bounds are very loose and the corresponding selection

results are far from the actual minimizer of CSSP in prac-

tice. Interested readers are referred to [14, 12] and Sec. 2.1

in [15] for detailed discussions. For example, in VS it is

shown that the projection error on the span of K selected

samples is guaranteed to be less than K + 1 times of the

projection error on the span of the K first left singular vec-

tors (which is too loose for a large K). Recently, it was

shown that VS performs even worse than random selection

in some scenarios [16]. Moreover, some efforts have been

made using convex relaxation and regularization. Fine tun-

ing of these methods is not straightforward. Moreover their

cubical complexity is an obstacle to employ these methods

for diverse applications.

Recently, a low-complexity approach was proposed to

solve CSSP, referred to as iterative projection and match-

ing (IPM) [17]. IPM is a greedy algorithm that selects K
consecutive and locally optimum samples, without the op-

tion of revisiting the previous selections and escaping local

optima. Moreover, IPM samples the data from linear sub-

spaces, while in general data points reside in the union of

nonlinear manifolds.

In this paper, an efficient non-greedy algorithm is pro-

posed to solve Problem (1) with a linear order of com-

plexity. The proposed subspace-based algorithm outper-

forms the state-of-the-art algorithms in terms of accuracy

for CSSP. In addition, the simplicity and accuracy of the

proposed algorithm enable us to extend it for efficient sam-

pling from nonlinear manifolds. The intuition behind our

work is depicted in Fig. 2. Assume for solving CSSP, we are

not restricted to selecting representatives from data samples,

and we are allowed to generate pseudo-data and select them

as representatives. In this scenario, the best K representa-

tives are the first K spectral components of data according

to definition of singular value decomposition (SVD) [18].

However, the spectral components are not among the data

samples. Our proposed algorithm aims to find K data sam-

ples such that their span is close to that of the first K spec-

trum of data. We refer to our proposed algorithm as spec-

trum pursuit (SP). Fig. 2 (b) shows the intuition behind SP

and Fig. 2 (c) shows a straightforward extension of SP for

sampling from nonlinear manifolds. We refer to this algo-

rithm as Kernel Spectrum Pursuit (KSP).

Our main contributions can be summarized as:

• We introduce SP, a non-greedy selection algorithm

with linear order complexity w.r.t. the number of orig-

inal data points. SP captures spectral characteristics of

dataset using only a small number of samples. To the

best of our knowledge, SP is the most accurate solver

for CSSP.

• Further, we extend SP to Kernel-SP for manifold-

based data selection.
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• We provide extensive evaluations to validate our pro-

posed selection schemes. In particular, we evaluate the

proposed algorithms on training generative adversar-

ial networks, graph-based label propagation, few shot

classification, and open-set identification, as shown in

Fig. 1. We demonstrate that our proposed algorithms

outperform the state-of-the-art algorithms.

2. Data Selection from Linear Subspaces

In this section, we first introduce the related work on ma-

trix subset selection and then we propose our algorithm for

CSSP.

2.1. Related Work

A simple approach to selection is to reduce the entire

data and evaluate a criterion only for the reduced set, AS.

Mathematically speaking, we need to solve the following

problem [19, 10]:

S
∗ = argmin

|S|≤K

φ
(
(AT

S AS)
−1

)
. (2)

Here, φ(.) is a function of matrix eigenvalues, such as the

determinant or trace function. This is an NP hard and non-

convex problem that can be solved via convex relaxation of

�0 norm with time complexity of O(M3) [20, 19]. There

are several other efforts in this area for designing function

φ [10, 21, 22, 23]. Inspired by D-optimal design, VS [11]

considers a selection probability for each subset of data,

which is proportional to the determinant (volume) of the

reduced matrix [10, 24, 25]. To the best of our knowledge

the tightest bound for selecting K columns [26] for CSSP,

introduced in a paper published in NIPS 2019,is as follows:

‖A− πS∗(A)‖2F ≤ √
K + 1 ‖A−AK‖2F ,

where AK is the best rank-K approximation of A. More-

over, VS guarantees a projection error up to K + 1 times

worse than the first K singular vectors [11]. A set of diverse

samples optimizes cost function (2) and algorithms such as

VS assign a higher probability for them to be chosen. How-

ever, selecting some diverse samples that are solely different

from each other probably does not provide good represen-

tative for all (un-selected) data.

Ensuring that selected samples are able to reconstruct

un-selected samples is a more robust approach than select-

ing a diverse subset. The exact solution of Problem (1) aims

to find such a subset. An equivalent problem to the original

problem (1) is proposed in [27]. Their suggested equiva-

lent problem exploits the mixed norm, ‖.‖2,0, which is not

a convex function and they propose to employ �1 regular-

ization to relax it [27]. There is no guarantee that convex

relaxation provides the best approximation for an NP-hard

problem. Furthermore, such methods which approach the

problem using convex programming are usually computa-

tionally intensive for large datasets [27, 28, 29, 30]. In this

paper, we present another reformulation of Problem (1) and

propose a fast and accurate algorithm for addressing CSSP.

2.2. Spectrum Pursuit (SP)

Projection of all data onto the subspace spanned by K
columns of A, indexed by S, i.e., πS(A), can be expressed

by a rank-K factorization, UV
T . In this factorization, U ∈

R
N×K , V ∈ R

M×K , and U includes a set of K normalized

columns of A, indexed by S. Therefore, the optimization

problem (1) can be restated as [17]:

argmin
U ,V

‖A−UV
T ‖2F ; s.t. uk ∈ A, (3)

where A = {ã1, ã2, . . . , ãM}, ãm = am/‖am‖2, and uk

is the kth column of U . It should be noted that U is re-

stricted to be a collection of K normalized columns of A,

while there is no constraint on V . As mentioned before,

this is an NP hard problem. Recently, IPM [17], a fast sub-

optimal and greedy approach to tackle (3), was proposed. In

IPM, samples are iteratively selected in a greedy manner un-

til K samples are collected. In this paper, we propose a new

selection algorithm, referred to as Spectrum Pursuit (SP),

which can select a more accurate solution for Problem (3)

than that of IPM. The time complexity of both IPM and SP

are linear with respect to the number of samples and the di-

mension of samples, which is desirable for selection from

very large datasets. Our proposed SP algorithm facilitates

revising our selection in each iteration and escaping from

local optima. In SP, we modify (3) into two sub-problems.

The first one is built upon the assumption that we have al-

ready selected K−1 data points and the goal is to select the

next best data. However, it relaxes the constraint uk ∈ A

in (3) to a moderate constraint ‖uk‖ = 1. This relaxation

makes finding the solution tractable at the expense of result-

ing in a solution that may not belong to our data points. To

fix this, we introduce a second sub-problem that reimposes

the underlying constraint and selects the datapoint that has

the highest correlation with the point selected in the first

sub-problem. These sub-problems are formulated as

(uk,vk) =argmin
u,v

‖A−UkV
T
k − uv

T ‖2F ; s.t. ‖u‖2 = 1,

(4a)

Sk =argmax
m

|uT
k ẽm|. (4b)

Here Sk is a singleton that contains the index of the se-

lected data point. Matrices Uk and V k are obtained by

removing the kth column of U and V , respectively. Sub-

problem (4a) is equivalent to finding the first left singular

vector (LSV) of Ek � A −UkV
T

k
and ẽm is the normal-

ized replica of the mth column of the residual matrix, Ek.

The set of normalized residuals is indicated by Ek. The con-

straint ‖u‖ = 1 keeps u on the unit sphere to remove scale

ambiguity between u and v. Moreover, the unit sphere is

a superset for A and keeps the modified problem close to

7821



Matched 
Sample

N
or

m
al

iz
ed

 
R

es
id

ua
ls

U
ni

t 
Sp

he
re

Iteration 

First LSV   
of

Current Selected Samples Current Selected Samples

Project on null-space of 

selected samples (except 1st)

Iteration 

Project on null-space of 

selected samples (except 2nd)

Matched 
Sample

First LSV   
of 

Figure 3: Two consecutive iterations of the SP algorithm. In each iter-

ation the residual matrix, Ek , is computed. The first LSV of the residual

matrix, u, is a vector on SN−1. The most aligned column of Ek with u

is selected at each iteration and it is replaced for the next iteration. Please

note that Ek ⊂ SN−1 ⊂ RN in the Venn diagrams.

the recast problem (3). After solving for uk, we find the

data point that matches it the most in (4b). The steps of

the SP algorithm are elaborated in Algorithm 1. Fig. 3 il-

lustrates Problem (4) pictorially. SP is a low-complexity

algorithm with no parameters to be tuned. The complex-

ity order of computing the first singular component of an

M ×N matrix is O(MN) [31]. As the proposed algorithm

only needs the first singular component for each selection,

the computational complexity of SP is O(NM) per itera-

tion which is much faster than convex relaxation-based al-

gorithms with complexity O(M3) [19]. Moreover, SP per-

forms faster than K-medoids algorithm and volume sam-

pling, whose complexity is of order O(KN(M −K)2) and

O(MKN logN), respectively [32, 33]. The stopping crite-

rion can be convergence of set S or reaching a pre-defined

maximum number of iterations. The convergence behavior

of SP is studied in the supplementary document.

Simplicity and accuracy of SP facilitate its extension to

nonlinear manifold sampling with a wide range of applica-

tions. We will refer to this extended version as kernel-SP

(KSP) which is discussed next in Section 3.

3. Kernel SP: Selection based on a Locally Lin-

ear Model

The goal of CSSP introduced in (1) is to select a subset

of data whose linear subspace spans all data. Obviously,

this model is not proper for general data types that mostly

lie on nonlinear manifolds. Accordingly, we generalize (1)

and propose the following selection problem in order to ef-

ficiently sample from a union of manifolds

argmin
|S|≤K

M∑

m=1

‖am − πSm(am)‖2F s.t. Sm ⊆ S ∩ Ωm, (5)

where Ωm represent the indices of local neighbors of am

based on an assumed distance metric. This problem is sim-

plified to CSSP in Problem (1) if Ωm is assumed to be equal

Algorithm 1 Spectrum Pursuit Algorithm

Require: A and K

Output: AS

1: Initialization:

S ←A random subset of {1, . . . ,M} with |S| = K

{Sk}
K
k=1

←Partition S into K subsets, each containing one element.

iter= 0
while a stopping criterion is not met

2: k =mod(iter,K)+1

3: Uk = normalize column(AS\Sk
)

4: V k = A
T
Uk(U

T
k
Uk)

−1

5: Ek = A−UkV k
T (null-space projection)

6: uk = find the first left singular vector of Ek by solving (4a)

7: Sk ←− index of the most correlated column of Ek with uk(4b)

8: S ←−
⋃K

k′=1 Sk′

9: iter=iter+1

end while

to {1, · · · ,M}. Problem (5) is written for each column of

A separately in order to engage neighborhood for each data.

This problem facilitates fitting a locally linear subspace for

each data sample in terms of its neighbors. Nonlinear tech-

niques demonstrates significant improvement upon linear

methods for many scenarios [34, 35, 36].

Similar to Section 2, where we introduced SP as a low-

complexity algorithm to tackle the NP-hard Problem (1),

here we propose an extention of SP, referred to as kernel

SP (KSP), to tackle the combinatorial search Problem (5).

Manifold-based dimension reduction techniques and clus-

tering algorithms do not provide prototypes suitable for data

selection. However, inspired by spectral clustering of man-

ifolds [37], main tool for nonlinear data analysis that par-

titions data into nonlinear clusters based on spectral com-

ponents of the corresponding normalized similarity matrix,

we formulate KSP as

S = argmin
|S|≤K

‖L− πS(L)‖2F , (6)

where L = D
− 1

2SD
− 1

2 , is the normalized similarity ma-

trix of the data. Matrix S = [sij ] ∈ R
M×M is defined as

the similarity matrix of data and D is a diagonal matrix and

dii =
∑

j �=i sij . The similarity matrix can be defined based

on any similarity measure. A typical choice is a Guassian

kernel with parameter α. Note that problem (6) is the same

as problem (1), where A is replaced by L. The steps of the

KSP algorithm are summarized in Algorithm 2.

Algorithm 2 Kernel Spectrum Pursuit

Require: A, α, and K
Output: S

1: S←Similarity Matrix: sij =e−α‖ai−aj‖
2
2

2: Form diagonal matrix D where dii =
∑

i �=j sij

3: L = D
−1/2

SD
−1/2.

4: S ← Apply SP on L with K (Alg. 1)
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4. Empirical Results and Some Applications of

SP/KSP

To evaluate the performance of our proposed selection

algorithms we consider several applications and conduct ex-

tensive experiments. The selected applications in this paper

are (i) fast GAN training using reduced dataset; (ii) semi-

supervised learning on graph-based datasets; (iii) large

graph summarization; (iv) few-shot learning; and (v) open-

set identification.

4.1. Training GAN

There have been many efforts [38, 39] to employ man-

ifold properties to stabilize GAN training process and im-

prove the quality of generated samples but none of them

benefit from smart samples selection to expedite the training

as suggested in the first column of Fig. 1. Here, we present

our experimental results on CMU Multi-PIE Face Database

[40] for representative selection. We use 249 subjects with

various poses, illuminations, and expressions. There are

520 images per subject. Fig. 4 (top) depicts 10 selected im-

ages of a subject based on different selection methods: SP

(our proposed) is compared with three well-known selec-

tion algorithms, DS3 [41], VS [33], and K-medoids [42].

As it can be seen, SP selects from more diverse angles. Fig.

4 (bottom) compares the performance of different state-of-

the-art selection algorithms in terms of normalized projec-

tion error of CSSP, which is defined as the cost function in

(1). As shown, SP outperforms all other methods. There is

also a considerable performance gap between SP and IPM

[17], the second best algorithm.

Next, to investigate the impact of selection in a real ap-

Figure 4: Representative selection from face images of CMU

Multi-pie dataset. (Top) 10 images selected from 520 images of a

subject. (Bottom) Averaged projection error for different number

of representatives from 249 subjects. The projection error is nor-

malized by projection error of random selection. The proposed SP

algorithm is compared with IPM [17], DS3 [41], FFS [43], SMRS

[27], S5C [44], K-medoids [42] and VS [33].

plication, we use the selected samples to train a generative

adversarial network (GAN) to generate multi-view images

from a single-view input. For that, the GAN architecture

in [45] is employed. The experimental setup and the im-

plementation details from [45] are used, where the first 200
subjects are used for training and the rest for testing.

We select only 9 images from each subject and train the

network with the selected images for 300 epochs using the

batch size of 36. Table 1 shows the normalized �2 distances

between features of the real and generated images, indicated

as identity dissimilarities, averaged over all the images in

the testing set. Features are extracted using a ResNet18

trained on MS-Celeb-1M dataset [46, 47]. As can be seen,

SP and KSP outperform other selection methods. More-

over, KSP performs better than SP due to the selection from

a nonlinear manifold.

The test set contains multi-view images from 50 sub-

jects not seen in training. In the test phase, a single view

from each of these 50 people is given and we are to gener-

ate other views. Please note that in this application, we do

have ground truth images for all views. Hence, any simi-

larity measure can be applied. The evaluation is performed

identical to that of [45].

Table 1: Identity dissimilarities between real and GAN-generated

images for different selection methods. For each method, GAN is

trained based on the selected data points.

SMRS S5C FFS DS3 K-Med VS IPM SP KSP

0.631 0.617 0.608 0.602 0.599 0.583 0.553 0.550 0.546

Trained GAN using All Data 0.5364

4.2. Graph-based Semi-supervised Learning

To evaluate the performance of our proposed selection

algorithm on more complicated scenarios, we consider the

graph convolutional neural network (GCN) proposed in

[48], that serves as a semi-supervised classifier on graph-

based datasets. Indeed, a GCN takes a feature matrix and

an adjacency matrix as inputs, and for every vertex of the

graph produces a vector, whose elements correspond to the

score of belonging to different classes. The semi-supervised

task here considers the case where only a selected subset of

nodes are labeled in the training set and the loss is com-

puted based on the output vectors of these labeled nodes to

perform back-propagation. Moreover, we inherit the same

two-layer network architecture from [48]. To be more spe-

cific, an identity matrix is added to the original adjacency

matrix so that every node is assigned with a self-connection.

Further, we normalize the summation of two matrices using

the kernel discussed in lines 2 and 3 of Algorithm 2 while

the adjacency matrix serves as the similarity matrix S.

Our proposed KSP algorithm, together with other base-

lines, is tested on Cora dataset which is a real citation net-

work dataset with 2, 708 nodes and 5, 429 number of edges

as well as a random cluster-based graph datasets with 200
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Figure 5: Semi-supervised classification accuracy of GCN on (Left) the

Cora dataset [50]; and (Right) a random cluster-based graph dataset. Only

the selected nodes are labeled and the subset selection is performed us-

ing the proposed KSP algorithm, and GIGA [51], FW [51], and random

selection (RND).

nodes from 10 clusters, where every node independently be-

longs to one of the 10 clusters with equal probabilities and

the cluster of a node serves as its label during the classifica-

tion. Instead of constructing a completely connected graph,

the existence of edges between node pairs is determined ac-

cording to a density matrix, in which the density of edges

connecting nodes in the same cluster is uniformly gener-

ated from the interval [0.2, 0.6], whereas the inter-cluster

densities are randomly sampled according to a uniform dis-

tribution on the interval [0, 0.2]. The neural network is

trained based on semi-supervised learning, i.e., the network

is fed with the feature and adjacency matrices of the entire

graph while the loss is only computed on the labeled ver-

tices. Here the labeled vertices correspond to the subset of

vertices that is selected by applying our proposed algorithm

(KSP) on the normalized adjacency matrix. We train both

datasets for a maximum of 100 epochs using Adam [49]

with a learning rate of 0.01 and early stopping with a win-

dow size of 10, i.e. we stop training if the validation loss

does not decrease for 10 consecutive epochs. The results are

summarized in Figure 5. Due to the inherent randomness

of training neural networks using gradient descent based

optimizers, some ripples appear in the curves. However,

it is clear hat, as expected, the test accuracy tends to in-

crease as more labeled points are utilized for training. Fur-

ther, as can be seen from the figure our proposed KSP algo-

rithm significantly outperforms other algorithms for almost

the whole range of selected points. This implies the supe-

rior performance of KSP in selecting the subset of data that

comprises the most representative points of clusters. Lastly,

because of the existence of outliers in a random graph, the

accuracy of the proposed algorithm starts to improve slowly

at about 70%, whereas other competitors saturate at about

60%. However, we note that the model is trained with only

10% of data, so this also implicitly suggests that our algo-

rithm successfully picks out the most informative nodes.

4.3. Graph Summarization

Clusters (also known as communities) in a graph are

those groups of vertices that share common properties.

Identification of communities is a crucial task in graph-

Figure 6: Zachary’s Karate Club is a small social network where a con-

flict arises between the admin and the instructor in the club [60]. Each

node of the club network represents a member of the karate club and a link

between members indicate that they interact outside the club. The admin

and the instructor which are the two nodes of this graph are {0, 33}, re-

spectively. We apply KSP and two other algorithms to choose two of the

main vertices. GIGA, MP and FW select•, IS selects•, VS selects•,

and KSP, FFS and DS3 select•.

based systems. Instances include protein-protein interaction

networks in biology [61], recommendation systems [62] in

computer science, social media networks, etc. In the fol-

lowing, we design an experiment to find the vertices with a

central position on several types of graphs, produced both

by real datasets such as [55] and also synthetic graph which

contains the aggregated network of some users’ Facebook

friends. In the later dataset, vertices represent individuals

on Facebook, and edges between two users mean they are

Facebook friends.

Various community detection based algorithms such as

betweenness centrality (BC) has been proposed to measure

the importance of a user in the network [54], by consider-

ing how many shortest paths pass through that user (vertex)

for connecting each pair of other users (vertices). The more

shortest paths that pass through the user, the more central

the user is in the Facebook social network. Now assuming

that a graph G or a similarity matrix is given, the aim is

to first implement our method on the graph to approximate

it with a subset of the vertices, and then exploit the mea-

sure of shortest path to evaluate the accuracy. We report

the following performance measures: instead of computing

the average shortest path between each vertex of the graph

and all the other vertices which is really expensive (use of

Dijkstra’s algorithm n2 times where n is the number of ver-

tices), we compute the average shortest path between all

the vertices and the selected vertices by KSP. The latter can

be computed by using Dijkstra’s algorithm only kn times,

where k is the number of selected vertices.

Further, in this experiment we evaluate the performance

of KSP compared to several state-of-the-art algorithms for

data selection and coreset construction which is a small

(weighted) subset of the data that approximates the full

dataset. The results of these experiments are shown in Ta-

ble 2 where 10 vertices from each graph are selected (except

for Karate Club sketched in Fig. 6 from which we select

2 vertices) by different data selection algorithms. As can

be seen our proposed method provides significant improve-

ments in shortest path error over the state-of-the-art.
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Table 2: Error performance of different state-of-the-art coreset construction algorithms for Graph summarization (central vertex selection)

on various types of graphs. Practically all major social networks provide social clusters for instance, ’circles’ on Google+, and ’lists’ on

Facebook and Twitter. For example, concerning Facebook ego graph, with KSP algorithm we define the task of identifying users’ social

clusters on a user’s ego-network by exploiting the network structure.

Graph/Algorithm RND IS [52] VS [33] FFS [43] MP [53] DS3 [28] IPM [17] FW [51] BC [54] GIGA [51] KSP

Facebook Ego [55] 0.2960 0.1250 0.2210 0.0142 0.0250 0.0147 0.0140 0.0190 0.0149 0.0145 0.0130

Powerlaw Cluster [56] 0.2739 0.2735 0.2732 0.0167 0.2701 0.0275 0.0167 0.2730 0.0358 0.0296 0.0167

Barabasi [57] 0.1630 0.1625 0.0142 0.0184 0.1625 0.0154 0.0156 0.1628 0.0378 0.0169 0.0122

Geo [58] 0.0685 0.0674 0.0683 0.0424 0.0493 0.0411 0.0299 0.0673 0.0014 0.0017 0.0012

Florentine [59] 0.0026 0.0006 0.0007 0.0003 0.001 0.0019 0.0003 0.0009 0.0003 0.0003 0.0004

Karate Club [60] 0.1388 0.0158 0.0326 0.0117 0.0146 0.0117 0.0117 0.0146 0.0117 0.0146 0.0117

Synthesized Graph 0.1421 0.1430 0.0115 0.0120 0.0143 0.0127 0.0122 0.0143 0.0143 0.0124 0.0106

4.4. Few Shot Learning

Training on Sampled Pairs: Next, we further evaluate

the performance of SP on a more common data such as im-

ages and features. This analysis is motivated by the work in

[63], as we employ their proposed neural network architec-

ture named Siamese neural network. Moreover, we adopt

the Omniglot dataset and split it into three subsets for train-

ing, validation, and test, each of which consists of totally

different classes. For training and validation process two

images are randomly sampled from their own correspond-

ing data and are fed as the input to the Siamese neural net-

work and a binary label is assigned to each pair according to

the classes that they are sampled from. The network trained

on these pairs achieves 90%+ accuracy in distinguishing

inter-class and intra-class pairs.

Classification with Few-Shot Learning: After being

fully trained on the sampled pairs, the model is developed

for few-shot classification. In other words, if the model

is accurate enough to distinguish the identity of classes to

which the pairs belong to, given few representatives of a

specific class, a trained Siamese network could serve as a

binary classifier that verifies if the test instance belongs to

this class. Therefore, the problem reduces to selecting the

best representatives of every class to be paired with any test

image. The class that produces the pairings with the highest

average score is then identified as the classification result.

The test set of Omniglot, after the partitioning discussed

above, comprises 352 different classes, each of which is

composed of 20 images. We sequentially evaluate every one

of the 352 classes to choose the most informative subset of

the 20 images by deploying our selection algorithm on the

flattened features extracted from the last convolutional layer

of the network that is fed with the 20 images. The classifier

made from the Siamese network and the selected 352 repre-

sentative groups are then evaluated on all the 7,000+ images

in the test set. We show in Figure 7 the few-shot learning

results when 2, 3, 4 and 5 images are selected out of the

20 images together with an example of selected groups in

2-shot learning.

It can be observed in Figure 7 that images selected by the

evaluated algorithms are generally more standard and more

Figure 7: Learning of Omniglot’s dataset on Siamese Neural Network

using few shots. (Left) Visualization of selected images from the first class

of Omniglot’s test set in 2-shot learning. Images selected by an algorithm

are marked in corners with the same color used in the right plot. (Right)

Classification accuracy with few-shot learning.

identifiable than the others. Among all these competing al-

gorithms, KSP makes the best selection for this character.

Due to the fact that the classification accuracy is evaluated

based on the 352 test classes, which do not appear in the

training set, around 60% of correct classification is consid-

erably acceptable. In particular, SP achieves accuracies of

59.84%, 62.70%, 63.55%, and 64.89% for 2-shot, 3-shot, 4-

shot, and 5-shot classifications, respectively, which is com-

parable to the GIGA results of 60.21%, 62.36%, 63.42%,

and 65.21% while outperforming other baseline algorithms.

Note that SP needs less memory requirement and its com-

putational complexity is less than its peers.

4.5. Open-Set Identification

In this experiment, the open-set identification problem

is addressed employing propose selection method, which

results in significant accuracy improvement compared to

the state-of-the-art. In open-set identification, test data of

a classification problem may come from unknown classes

other than the classes employed during training, and the

goal is to identify such samples belong to open-set and

not the known labeled classes [64]. Interested readers are

referred to [65, 66, 67, 68, 69] to the state-of-the-art ap-

proaches for solving open-set problem.

Employing the entire closed-set data during the training

procedure leads to inclusion of untrustworthy samples of

the closed-set. Regularized or underfitting models (such

as low-rank representations [70, 71, 72]) still suffer from

memorizing effect of such samples, which exacerbate the
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separation between open and closed-set by adding ambigu-

ity to the decision boundary between the closed and open-

set classes. To resolve this issue, we utilize our proposed

selection method, KSP, which selects the core representa-

tives. Therefore, selected representatives for open-set iden-

tification are more robust in rejecting open-set test samples

which do not fit well to the core representatives. We pic-

torially illustrate the proposed scheme for open-set identi-

fication in Fig. 1 on the rightmost panel and the proposed

algorithm which is referred to as selection-based open-set

identification scheme (SOSIS) hereunder (Algorithm 3).

Experiment Set-up: We use MNIST dataset as the

closed-set with samples from Omniglot as the open-set. The

ratio of Omniglot to MNIST test dataset is set to 1 : 1
(10,000 from each), same as the simulation scenario in [67].

A classifier with ResNet-164 architecture [73] is trained on

MNIST as for step 1 in Alg. 3. Results of macro-averaged

F1-score [74] for SOSIS method with different selection

methods and different number of samples are listed in Table

3 as well as the sate-of-the-art in [67]. The best achieved

F1-score is 0.964 belonging to SOSIS with KSP selection

using 50 representatives. The second best performance is

by SOSIS with SP selection again using 50 representatives.

Performance downgrade is observed for both scenarios of

choosing too few representatives such as 5 or fewer and ob-

sessively choosing all data.

The gap between the error values resulting from projec-

tion of open and closed-set onto selected samples computed

in step 4 of Alg. 3 differs significantly compared to that

of the projection onto the entire dataset (due to overfitting

and memorization effect). We call this splitting property

as reflected in Fig. 8 (a) (entire dataset) vs. 8 (b) (selected

samples) at the testing phase. For a better visualization, pro-

jection errors are sorted separately for closed-set and open-

set data at the testing phase. As observed, fewer number of

representatives results in higher projection error. However,

at the same time closed-set and open-set test data are better

split as also observed in Fig. 8.

5. Conclusion

A novel approach to data selection from linear subspaces

is proposed and its extension for selection from nonlin-

ear manifolds is presented. The proposed SP algorithm

demonstrates an accurate solution for CSSP. Moreover, SP

Algorithm 3 Selection-based open-set identification (SOSIS)

Require: A
X (closed-set training data), and A

Y={aY
p }Pp=1 (test set)

1: Train a classifier on A
X on H classes

2: Sh ← set of K selected samples for class #h in A
X

3: �(p) ← label aY
p using trained classifier in Step 1 (∀p)

4: err(p) = ‖aY
p − πS�(p)

(aY
p )‖2 (∀p)

5: partition err to 2 sets using kmeans to set the threshold value thr

Output: open-set← {aY
p | err(p) ≥ thr}

20,000

Close-set Open-set

5642 samples are misclassified 984 samples are misclassified

(a)

Threshold = 0.012

Threshold = 0.673

10,000 20,000

Close-set Open-set
(b)

10,000

Pr
oj

ec
tio

n 
E

rr
or

Figure 8: Sorted values of err in Step 4 of Alg. 3 for 20,000 test

samples (10,000 per each closed/open set). (a) all data are selected as rep-

resentatives. (b) only 20 representatives are selected. For both (a) and (b),

a projection error above/below the threshold leads to classifying a sample

as open-set/closed-set. Blue and red points correspond to the correctly-

classified and missclassified samples, respectively. As shown, implement-

ing SOSIS enabled by KSP has significantly reduced the number of mis-

classified samples, from 5642 to 984.

Table 3: Comparing F1-score of the proposed SOSIS algorithm with

state-of-the-art methods for open-set identification. SP, KSP and FFS [43]

are employed as the core of SOSIS.

method/K 5 20 50 100 500 All Data

SOSIS (based on FFS) 0.876 0.913 0.944 0.952 0.841

SOSIS (based on SP) 0.904 0.945 0.958 0.952 0.824 0.792

SOSIS (based on KSP) 0.928 0.959 0.964 0.959 0.827

Supervised only [67] 0.680

LadderNet [67] 0.764

DHRNet [67] 0.793

and KSP have shown superior performance in many appli-

cations. The investigated fast and efficient deep learning

frameworks, empowered by our selection methods, have

shown that dealing with selected representatives is not only

fast but can also be more effective. This manuscript is allo-

cated mostly for algorithm designs and applications of data

selection. Theoretical results and more buttressing experi-

ments can be found in the supplementary document.1
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dal. Scalable exemplar-based subspace clustering on class-

imbalanced data. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 67–83, 2018.

[44] Shin Matsushima and Maria Brbic. Selective sampling-based

scalable sparse subspace clustering. In Advances in Neural

Information Processing Systems, 2019.

[45] Yu Tian, Xi Peng, Long Zhao, Shaoting Zhang, and Dim-

itris N. Metaxas. CR-GAN: Learning Complete Represen-

tations for Multi-view Generation. In Proceedings of the

Twenty-Seventh International Joint Conference on Artificial

Intelligence, pages 942–948, California, 7 2018. Interna-

tional Joint Conferences on Artificial Intelligence Organiza-

tion.

[46] Kaidi Cao, Yu Rong, Cheng Li, Xiaoou Tang, and Chen

Change Loy. Pose-Robust Face Recognition via Deep Resid-

ual Equivariant Mapping. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2018.

[47] Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and

Jianfeng Gao. MS-Celeb-1M: Challenge of Recognizing

One Million Celebrities in the Real World. Electronic Imag-

ing, 2016(11):1–6, 2 2016.

[48] Thomas N. Kipf and Max Welling. Semi-supervised

classification with graph convolutional networks. CoRR,

abs/1609.02907, 2016.

[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. In 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015.

[50] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,

Brian Gallagher, and Tina Eliassi-Rad. Collective classifica-

tion in network data. Technical report, 2008.

[51] Trevor Campbell and Tamara Broderick. Bayesian coreset

construction via greedy iterative geodesic ascent. In Interna-

tional Conference on Machine Learning, 2018.

[52] Andreas Krause Olivier Bachem, Mario Lucic. Practical

coreset constructions for machine learning. Thesis at De-

partment of Computer Science, ETH Zurich, 2017.

[53] Liefeng Bo, Xiaofeng Ren, and Dieter Fox. Hierarchical

matching pursuit for image classification: Architecture and

fast algorithms. In Advances in Neural Information Process-

ing Systems 24: 25th Annual Conference on Neural Informa-

tion Processing Systems 2011. Proceedings of a meeting held

12-14 December 2011, Granada, Spain., pages 2115–2123,

2011.

[54] Santo Fortunato. Community detection in graphs. CoRR,

abs/0906.0612, 2009.

[55] Jure Leskovec and Julian J. Mcauley. Learning to discover

social circles in ego networks. In Advances in Neural Infor-

mation Processing Systems 25, pages 539–547. 2012.

7828



[56] William Aiello, Fan Chung Graham, and Linyuan Lu. A

random graph model for power law graphs. Experimental

Mathematics, 10(1):53–66, 2001.
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