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Figure 1: Several deep learning applications of our proposed data selection algorithms discussed in this paper.

Abstract

Finding a small subset of data whose linear combination
spans other data points, also called column subset selection
problem (CSSP), is an important open problem in computer
science with many applications in computer vision and deep
learning such as the ones shown in Fig. 1. There are some
studies that solve CSSP in a polynomial time complexity
w.rt. the size of the original dataset. A simple and effi-
cient selection algorithm with a linear complexity order, re-
ferred to as spectrum pursuit (SP), is proposed that pursuits
spectral components of the dataset using available sample
points. The proposed non-greedy algorithm aims to itera-
tively find K data samples whose span is close to that of the
first K spectral components of entire data. SP has no pa-
rameter to be fine tuned and this desirable property makes
it problem-independent. The simplicity of SP enables us to
extend the underlying linear model to more complex models
such as nonlinear manifolds and graph-based models. The
nonlinear extension of SP is introduced as kernel-SP (KSP).
The superiority of the proposed algorithms is demonstrated
in a wide range of applications.

1. Introduction

Processing M data samples, each including IV features,
is not feasible for of most the systems, when M is a very
large number. Therefore, it is crucial to select a small sub-
set of K << M data from the entire set such that the se-
lected data can capture the underlying properties or struc-
ture of the entire data. This way, complex systems such as
deep learning (DL) networks can operate on the informative
selected data rather than the redundant entire data. Ran-
domly selecting K out of M data, while computationally
simple, is inefficient in many cases, since non-informative
or redundant instances may be among the selected ones. On
the other hand, the optimal selection of data for a specific
task involves solving an NP-hard problem [2]. For exam-
ple, finding an optimal subset of data to be employed in
training a DL network, with the best performance, requires
(A}? ) number of trial and errors, which is not tractable. It is
essential to define a versatile objective function and to de-
velop a method that efficiently selects the K samples that
optimize the function. Let us assume the M data samples
are organized as the columns of a matrix A € RV*M  The
following is a general purpose cost function for subset se-
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Figure 2: Intuitive illustration of our main contributions in this paper. (a) A dataset including 20 real images from AT&T face database
[1] is considered. (b) the images in (a) are represented as blue dots. Three most significant eigenfaces are shown by green dots. However,
these eigenfaces are not among data samples. Here, we are interested in selecting the best 3 out 20 real images, whose span is the closest to
the span of the 3 eigenfaces. There are (230) possible combinations from which the best subset must be selected. In this paper, we propose
the SP algorithm to select K samples such that their span pursuits the span of the first K singular vectors. (c) Utilizing the proposed linear
selection algorithm (SP), a tractable algorithm is developed for selecting from low-dimensional manifolds. First, a kernel which is defined
by neighborhood transforms the given data on a manifold to a latent space. Next, the linear selection is performed.

lection, known as column subset selection problem (CSSP)

[3]:

§* = argmin || A — 75(A)]|F, (1)
IS|I<K

where g is the linear projection operator on the span of K
columns of A indicated by set S. This is an open problem
which has been shown to be NP hard [4, 2]. Moreover, the
cost function is not sub-modular [5], and greedy algorithms
are not efficient to tackle Problem (1). Computer scientists
and mathematicians during the last 30 years have proposed
many tractable selection algorithms that guarantee an upper
bound for the projection error || A —ms(A)||%. These works
include algorithms based on QR decomposition of matrix A
with column pivoting (QRCP) [6, 7, 8], methods based on
volume sampling (VS) [9, 10, 11] and matrix subset selec-
tion algorithms [3, 12, 13]. However, the guaranteed up-
per bounds are very loose and the corresponding selection
results are far from the actual minimizer of CSSP in prac-
tice. Interested readers are referred to [14, 12] and Sec. 2.1
in [15] for detailed discussions. For example, in VS it is
shown that the projection error on the span of K selected
samples is guaranteed to be less than K + 1 times of the
projection error on the span of the K first left singular vec-
tors (which is too loose for a large K). Recently, it was
shown that VS performs even worse than random selection
in some scenarios [16]. Moreover, some efforts have been
made using convex relaxation and regularization. Fine tun-
ing of these methods is not straightforward. Moreover their
cubical complexity is an obstacle to employ these methods
for diverse applications.

Recently, a low-complexity approach was proposed to
solve CSSP, referred to as iterative projection and match-
ing (IPM) [17]. IPM is a greedy algorithm that selects K
consecutive and locally optimum samples, without the op-

tion of revisiting the previous selections and escaping local
optima. Moreover, IPM samples the data from linear sub-
spaces, while in general data points reside in the union of
nonlinear manifolds.

In this paper, an efficient non-greedy algorithm is pro-
posed to solve Problem (1) with a linear order of com-
plexity. The proposed subspace-based algorithm outper-
forms the state-of-the-art algorithms in terms of accuracy
for CSSP. In addition, the simplicity and accuracy of the
proposed algorithm enable us to extend it for efficient sam-
pling from nonlinear manifolds. The intuition behind our
work is depicted in Fig. 2. Assume for solving CSSP, we are
not restricted to selecting representatives from data samples,
and we are allowed to generate pseudo-data and select them
as representatives. In this scenario, the best K representa-
tives are the first K spectral components of data according
to definition of singular value decomposition (SVD) [18].
However, the spectral components are not among the data
samples. Our proposed algorithm aims to find K data sam-
ples such that their span is close to that of the first K spec-
trum of data. We refer to our proposed algorithm as spec-
trum pursuit (SP). Fig. 2 (b) shows the intuition behind SP
and Fig. 2 (c) shows a straightforward extension of SP for
sampling from nonlinear manifolds. We refer to this algo-
rithm as Kernel Spectrum Pursuit (KSP).

Our main contributions can be summarized as:

e We introduce SP, a non-greedy selection algorithm
with linear order complexity w.r.t. the number of orig-
inal data points. SP captures spectral characteristics of
dataset using only a small number of samples. To the
best of our knowledge, SP is the most accurate solver
for CSSP.

e Further, we extend SP to Kernel-SP for manifold-
based data selection.
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e We provide extensive evaluations to validate our pro-
posed selection schemes. In particular, we evaluate the
proposed algorithms on training generative adversar-
ial networks, graph-based label propagation, few shot
classification, and open-set identification, as shown in
Fig. 1. We demonstrate that our proposed algorithms
outperform the state-of-the-art algorithms.

2. Data Selection from Linear Subspaces

In this section, we first introduce the related work on ma-
trix subset selection and then we propose our algorithm for
CSSP.

2.1. Related Work

A simple approach to selection is to reduce the entire
data and evaluate a criterion only for the reduced set, As.
Mathematically speaking, we need to solve the following
problem [19, 10]:

S* = argmin ¢ ((AgAg)_l). )
[SI<K

Here, ¢(.) is a function of matrix eigenvalues, such as the
determinant or trace function. This is an NP hard and non-
convex problem that can be solved via convex relaxation of
£l norm with time complexity of O(M?) [20, 19]. There
are several other efforts in this area for designing function
¢ [10, 21, 22, 23]. Inspired by D-optimal design, VS [11]
considers a selection probability for each subset of data,
which is proportional to the determinant (volume) of the
reduced matrix [10, 24, 25]. To the best of our knowledge
the tightest bound for selecting K columns [26] for CSSP,
introduced in a paper published in NIPS 2019,is as follows:

|A =75 (A)|F < VK +1 A~ Akll,

where A is the best rank-K approximation of A. More-
over, VS guarantees a projection error up to K + 1 times
worse than the first K singular vectors [11]. A set of diverse
samples optimizes cost function (2) and algorithms such as
VS assign a higher probability for them to be chosen. How-
ever, selecting some diverse samples that are solely different
from each other probably does not provide good represen-
tative for all (un-selected) data.

Ensuring that selected samples are able to reconstruct
un-selected samples is a more robust approach than select-
ing a diverse subset. The exact solution of Problem (1) aims
to find such a subset. An equivalent problem to the original
problem (1) is proposed in [27]. Their suggested equiva-
lent problem exploits the mixed norm, ||.||2,0, which is not
a convex function and they propose to employ ¢; regular-
ization to relax it [27]. There is no guarantee that convex
relaxation provides the best approximation for an NP-hard
problem. Furthermore, such methods which approach the
problem using convex programming are usually computa-
tionally intensive for large datasets [27, 28, 29, 30]. In this

paper, we present another reformulation of Problem (1) and
propose a fast and accurate algorithm for addressing CSSP.

2.2. Spectrum Pursuit (SP)

Projection of all data onto the subspace spanned by K
columns of A, indexed by S, i.e., ms(A), can be expressed
by arank-K factorization, U V7T In this factorization, U &
RV*K VvV ¢ RMXK and U includes a set of K normalized
columns of A, indexed by S. Therefore, the optimization
problem (1) can be restated as [17]:

argmin |[A — UV ||%; st uy € A, 3)
UV

where A = {dl, dg, ey (NIM}, &m = am/||am||2, and U
is the k™ column of U. It should be noted that U is re-
stricted to be a collection of K normalized columns of A,
while there is no constraint on V. As mentioned before,
this is an NP hard problem. Recently, IPM [17], a fast sub-
optimal and greedy approach to tackle (3), was proposed. In
IPM, samples are iteratively selected in a greedy manner un-
til K samples are collected. In this paper, we propose a new
selection algorithm, referred to as Spectrum Pursuit (SP),
which can select a more accurate solution for Problem (3)
than that of IPM. The time complexity of both IPM and SP
are linear with respect to the number of samples and the di-
mension of samples, which is desirable for selection from
very large datasets. Our proposed SP algorithm facilitates
revising our selection in each iteration and escaping from
local optima. In SP, we modify (3) into two sub-problems.
The first one is built upon the assumption that we have al-
ready selected K — 1 data points and the goal is to select the
next best data. However, it relaxes the constraint u; € A
in (3) to a moderate constraint ||ug|| = 1. This relaxation
makes finding the solution tractable at the expense of result-
ing in a solution that may not belong to our data points. To
fix this, we introduce a second sub-problem that reimposes
the underlying constraint and selects the datapoint that has
the highest correlation with the point selected in the first
sub-problem. These sub-problems are formulated as

(ug,vy) =argmin |A —UVE —uv”||7; st |lul2 =1,
(4a)
Sk =argmax |uf &,,|. (4b)

Here Sy, is a singleton that contains the index of the se-
lected data point. Matrices Uz and V1 are obtained by
removing the k™ column of U and V, respectively. Sub-
problem (4a) is equivalent to finding the first left singular
vector (LSV) of E- £ A — UgV% and é,,, is the normal-
ized replica of the m™ column of the residual matrix, Er.
The set of normalized residuals is indicated by K. The con-
straint ||u|| = 1 keeps w on the unit sphere to remove scale
ambiguity between u and v. Moreover, the unit sphere is
a superset for A and keeps the modified problem close to
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Figure 3: Two consecutive iterations of the SP algorithm. In each iter-
ation the residual matrix, EE’ is computed. The first LSV of the residual
matrix, u, is a vector on SV 1. The most aligned column of EE with w
is selected at each iteration and it is replaced for the next iteration. Please
note that Bz~ C SN=1 c RN in the Venn diagrams.

the recast problem (3). After solving for wy, we find the
data point that matches it the most in (4b). The steps of
the SP algorithm are elaborated in Algorithm 1. Fig. 3 il-
lustrates Problem (4) pictorially. SP is a low-complexity
algorithm with no parameters to be tuned. The complex-
ity order of computing the first singular component of an
M x N matrix is O(M N) [31]. As the proposed algorithm
only needs the first singular component for each selection,
the computational complexity of SP is O(N M) per itera-
tion which is much faster than convex relaxation-based al-
gorithms with complexity O(M?) [19]. Moreover, SP per-
forms faster than K-medoids algorithm and volume sam-
pling, whose complexity is of order O(K N (M — K)?) and
O(M K NlogN), respectively [32, 33]. The stopping crite-
rion can be convergence of set S or reaching a pre-defined
maximum number of iterations. The convergence behavior
of SP is studied in the supplementary document.

Simplicity and accuracy of SP facilitate its extension to
nonlinear manifold sampling with a wide range of applica-
tions. We will refer to this extended version as kernel-SP
(KSP) which is discussed next in Section 3.

3. Kernel SP: Selection based on a Locally Lin-
ear Model

The goal of CSSP introduced in (1) is to select a subset
of data whose linear subspace spans all data. Obviously,
this model is not proper for general data types that mostly
lie on nonlinear manifolds. Accordingly, we generalize (1)
and propose the following selection problem in order to ef-
ficiently sample from a union of manifolds

M

argmin Z llam — 7s,, (@am)||7 st.Sm CSNQm, (5)

SISK 2

where €2, represent the indices of local neighbors of a,,
based on an assumed distance metric. This problem is sim-
plified to CSSP in Problem (1) if §2,,, is assumed to be equal

Algorithm 1 Spectrum Pursuit Algorithm

Require: A and K
Output: Ag
1: Initialization:
S <A random subset of {1,..., M} with |[S| = K
{Sk}fzﬁ—l:’artition S into K subsets, each containing one element.
iter= 0
while a stopping criterion is not met

2: k =mod(iter,K)+1
3: Uy = normalize column(Ag\g, )
4. VE: ATUE(U%UE)_I
5: E=A- UEVET (null-space projection)
6: wy, = find the first left singular vector of E7- by solving (4a)
7: Sk, « index of the most correlated column of E7- with ug(4b)
8: S+ Ui{’:l Sk’
9:  iter=iter+1
end while
to {1,---, M}. Problem (5) is written for each column of

A separately in order to engage neighborhood for each data.
This problem facilitates fitting a locally linear subspace for
each data sample in terms of its neighbors. Nonlinear tech-
niques demonstrates significant improvement upon linear
methods for many scenarios [34, 35, 36].

Similar to Section 2, where we introduced SP as a low-
complexity algorithm to tackle the NP-hard Problem (1),
here we propose an extention of SP, referred to as kernel
SP (KSP), to tackle the combinatorial search Problem (5).
Manifold-based dimension reduction techniques and clus-
tering algorithms do not provide prototypes suitable for data
selection. However, inspired by spectral clustering of man-
ifolds [37], main tool for nonlinear data analysis that par-
titions data into nonlinear clusters based on spectral com-
ponents of the corresponding normalized similarity matrix,
we formulate KSP as

S = argmin || L — 7s(L)||%, (6)
IS|<K

where L = D_%SD_%, is the normalized similarity ma-
trix of the data. Matrix S = [s;;] € RM*M js defined as
the similarity matrix of data and D is a diagonal matrix and
dis = i Sig- The similarity matrix can be defined based
on any similarity measure. A typical choice is a Guassian
kernel with parameter a. Note that problem (6) is the same
as problem (1), where A is replaced by L. The steps of the
KSP algorithm are summarized in Algorithm 2.

Algorithm 2 Kernel Spectrum Pursuit

Require: A, o, and K

Output: S

: S« Similarity Matrix: s;; =e
: Form diagonal matrix D where d;; = Zi# Sij
. L=D"Y?8D"1/2,

: S < Apply SPon L with K (Alg. 1)

2
—alla;—ajl3

AW =
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4. Empirical Results and Some Applications of
SP/KSP

To evaluate the performance of our proposed selection
algorithms we consider several applications and conduct ex-
tensive experiments. The selected applications in this paper
are (i) fast GAN training using reduced dataset; (ii) semi-
supervised learning on graph-based datasets; (iii) large
graph summarization; (iv) few-shot learning; and (v) open-
set identification.

4.1. Training GAN

There have been many efforts [38, 39] to employ man-
ifold properties to stabilize GAN training process and im-
prove the quality of generated samples but none of them
benefit from smart samples selection to expedite the training
as suggested in the first column of Fig. 1. Here, we present
our experimental results on CMU Multi-PIE Face Database
[40] for representative selection. We use 249 subjects with
various poses, illuminations, and expressions. There are
520 images per subject. Fig. 4 (top) depicts 10 selected im-
ages of a subject based on different selection methods: SP
(our proposed) is compared with three well-known selec-
tion algorithms, DS3 [41], VS [33], and K-medoids [42].
As it can be seen, SP selects from more diverse angles. Fig.
4 (bottom) compares the performance of different state-of-
the-art selection algorithms in terms of normalized projec-
tion error of CSSP, which is defined as the cost function in
(1). As shown, SP outperforms all other methods. There is
also a considerable performance gap between SP and IPM
[17], the second best algorithm.

Next, to investigate the impact of selection in a real ap-
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Figure 4: Representative selectioKn from face images of CMU
Multi-pie dataset. (Top) 10 images selected from 520 images of a
subject. (Bottom) Averaged projection error for different number
of representatives from 249 subjects. The projection error is nor-
malized by projection error of random selection. The proposed SP
algorithm is compared with IPM [17], DS3 [41], FFS [43], SMRS
[27], S5C [44], K-medoids [42] and VS [33].

plication, we use the selected samples to train a generative
adversarial network (GAN) to generate multi-view images
from a single-view input. For that, the GAN architecture
in [45] is employed. The experimental setup and the im-
plementation details from [45] are used, where the first 200
subjects are used for training and the rest for testing.

We select only 9 images from each subject and train the
network with the selected images for 300 epochs using the
batch size of 36. Table 1 shows the normalized /5 distances
between features of the real and generated images, indicated
as identity dissimilarities, averaged over all the images in
the testing set. Features are extracted using a ResNetl8
trained on MS-Celeb-1M dataset [46, 47]. As can be seen,
SP and KSP outperform other selection methods. More-
over, KSP performs better than SP due to the selection from
a nonlinear manifold.

The test set contains multi-view images from 50 sub-
jects not seen in training. In the test phase, a single view
from each of these 50 people is given and we are to gener-
ate other views. Please note that in this application, we do
have ground truth images for all views. Hence, any simi-
larity measure can be applied. The evaluation is performed
identical to that of [45].

Table 1: Identity dissimilarities between real and GAN-generated

images for different selection methods. For each method, GAN is

trained based on the selected data points.

SMRS | S5C | FFS | DS3 |K-Med | VS | IPM | SP | KSP

0.631 | 0.617 | 0.608 | 0.602 | 0.599 |0.583 | 0.553 | 0.550 |0.546
Trained GAN using All Data  0.5364

4.2. Graph-based Semi-supervised Learning

To evaluate the performance of our proposed selection
algorithm on more complicated scenarios, we consider the
graph convolutional neural network (GCN) proposed in
[48], that serves as a semi-supervised classifier on graph-
based datasets. Indeed, a GCN takes a feature matrix and
an adjacency matrix as inputs, and for every vertex of the
graph produces a vector, whose elements correspond to the
score of belonging to different classes. The semi-supervised
task here considers the case where only a selected subset of
nodes are labeled in the training set and the loss is com-
puted based on the output vectors of these labeled nodes to
perform back-propagation. Moreover, we inherit the same
two-layer network architecture from [48]. To be more spe-
cific, an identity matrix is added to the original adjacency
matrix so that every node is assigned with a self-connection.
Further, we normalize the summation of two matrices using
the kernel discussed in lines 2 and 3 of Algorithm 2 while
the adjacency matrix serves as the similarity matrix S.

Our proposed KSP algorithm, together with other base-
lines, is tested on Cora dataset which is a real citation net-
work dataset with 2, 708 nodes and 5, 429 number of edges
as well as a random cluster-based graph datasets with 200
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Figure 5: Semi-supervised classification accuracy of GCN on (Left) the
Cora dataset [50]; and (Right) a random cluster-based graph dataset. Only
the selected nodes are labeled and the subset selection is performed us-
ing the proposed KSP algorithm, and GIGA [51], FW [51], and random
selection (RND).

nodes from 10 clusters, where every node independently be-
longs to one of the 10 clusters with equal probabilities and
the cluster of a node serves as its label during the classifica-
tion. Instead of constructing a completely connected graph,
the existence of edges between node pairs is determined ac-
cording to a density matrix, in which the density of edges
connecting nodes in the same cluster is uniformly gener-
ated from the interval [0.2, 0.6], whereas the inter-cluster
densities are randomly sampled according to a uniform dis-
tribution on the interval [0, 0.2]. The neural network is
trained based on semi-supervised learning, i.e., the network
is fed with the feature and adjacency matrices of the entire
graph while the loss is only computed on the labeled ver-
tices. Here the labeled vertices correspond to the subset of
vertices that is selected by applying our proposed algorithm
(KSP) on the normalized adjacency matrix. We train both
datasets for a maximum of 100 epochs using Adam [49]
with a learning rate of 0.01 and early stopping with a win-
dow size of 10, i.e. we stop training if the validation loss
does not decrease for 10 consecutive epochs. The results are
summarized in Figure 5. Due to the inherent randomness
of training neural networks using gradient descent based
optimizers, some ripples appear in the curves. However,
it is clear hat, as expected, the test accuracy tends to in-
crease as more labeled points are utilized for training. Fur-
ther, as can be seen from the figure our proposed KSP algo-
rithm significantly outperforms other algorithms for almost
the whole range of selected points. This implies the supe-
rior performance of KSP in selecting the subset of data that
comprises the most representative points of clusters. Lastly,
because of the existence of outliers in a random graph, the
accuracy of the proposed algorithm starts to improve slowly
at about 70%, whereas other competitors saturate at about
60%. However, we note that the model is trained with only
10% of data, so this also implicitly suggests that our algo-
rithm successfully picks out the most informative nodes.

4.3. Graph Summarization

Clusters (also known as communities) in a graph are
those groups of vertices that share common properties.
Identification of communities is a crucial task in graph-

Figure 6: Zachary’s Karate Club is a small social network where a con-
flict arises between the admin and the instructor in the club [60]. Each
node of the club network represents a member of the karate club and a link
between members indicate that they interact outside the club. The admin
and the instructor which are the two nodes of this graph are {0, 33}, re-
spectively. We apply KSP and two other algorithms to choose two of the

main vertices. GIGA, MP and FW select IS selects ., VS selects

and KSP, FFS and DS3 select ®.

based systems. Instances include protein-protein interaction
networks in biology [61], recommendation systems [62] in
computer science, social media networks, etc. In the fol-
lowing, we design an experiment to find the vertices with a
central position on several types of graphs, produced both
by real datasets such as [55] and also synthetic graph which
contains the aggregated network of some users’ Facebook
friends. In the later dataset, vertices represent individuals
on Facebook, and edges between two users mean they are
Facebook friends.

Various community detection based algorithms such as
betweenness centrality (BC) has been proposed to measure
the importance of a user in the network [54], by consider-
ing how many shortest paths pass through that user (vertex)
for connecting each pair of other users (vertices). The more
shortest paths that pass through the user, the more central
the user is in the Facebook social network. Now assuming
that a graph G or a similarity matrix is given, the aim is
to first implement our method on the graph to approximate
it with a subset of the vertices, and then exploit the mea-
sure of shortest path to evaluate the accuracy. We report
the following performance measures: instead of computing
the average shortest path between each vertex of the graph
and all the other vertices which is really expensive (use of
Dijkstra’s algorithm n? times where n is the number of ver-
tices), we compute the average shortest path between all
the vertices and the selected vertices by KSP. The latter can
be computed by using Dijkstra’s algorithm only kn times,
where k is the number of selected vertices.

Further, in this experiment we evaluate the performance
of KSP compared to several state-of-the-art algorithms for
data selection and coreset construction which is a small
(weighted) subset of the data that approximates the full
dataset. The results of these experiments are shown in Ta-
ble 2 where 10 vertices from each graph are selected (except
for Karate Club sketched in Fig. 6 from which we select
2 vertices) by different data selection algorithms. As can
be seen our proposed method provides significant improve-
ments in shortest path error over the state-of-the-art.
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Table 2: Error performance of different state-of-the-art coreset construction algorithms for Graph summarization (central vertex selection)
on various types of graphs. Practically all major social networks provide social clusters for instance, 'circles’ on Google+, and ’lists’ on
Facebook and Twitter. For example, concerning Facebook ego graph, with KSP algorithm we define the task of identifying users’ social
clusters on a user’s ego-network by exploiting the network structure.

Graph/Algorithm | RND | IS [52] | VS [33] | FFS [43] [ MP [53] |DS3 [28] [IPM [17][FW [51] | BC [54] | GIGA [51]] KSP
Facebook Ego [55] |0.2960 | 0.1250 | 0.2210 | 0.0142 | 0.0250 | 0.0147 | 0.0140 | 0.0190 | 0.0149 | 0.0145 | 0.0130
Powerlaw Cluster [56]] 0.2739 | 0.2735 | 0.2732 | 0.0167 | 0.2701 | 0.0275 | 0.0167 | 0.2730 |0.0358 | 0.0296 | 0.0167
Barabasi [57] 0.1630] 0.1625 | 0.0142 | 0.0184 | 0.1625 | 0.0154 | 0.0156 | 0.1628 | 0.0378 | 0.0169 | 0.0122
Geo [58] 0.0685 | 0.0674 | 0.0683 | 0.0424 | 0.0493 | 0.0411 | 0.0299 | 0.0673 | 0.0014 | 0.0017 | 0.0012
Florentine [59] | 0.0026 | 0.0006 | 0.0007 | 0.0003 | 0.001 | 0.0019 | 0.0003 | 0.0009 | 0.0003 | 0.0003 | 0.0004
Karate Club [60] | 0.1388 | 0.0158 | 0.0326 | 0.0117 | 0.0146 | 0.0117 | 0.0117 | 0.0146 | 0.0117 | 0.0146 | 0.0117
Synthesized Graph | 0.1421 | 0.1430 | 0.0115 | 0.0120 | 0.0143 | 0.0127 | 0.0122 | 0.0143 | 0.0143 | 0.0124 | 0.0106

4.4. Few Shot Learning

Training on Sampled Pairs: Next, we further evaluate
the performance of SP on a more common data such as im-
ages and features. This analysis is motivated by the work in
[63], as we employ their proposed neural network architec-
ture named Siamese neural network. Moreover, we adopt
the Omniglot dataset and split it into three subsets for train-
ing, validation, and test, each of which consists of totally
different classes. For training and validation process two
images are randomly sampled from their own correspond-
ing data and are fed as the input to the Siamese neural net-
work and a binary label is assigned to each pair according to
the classes that they are sampled from. The network trained
on these pairs achieves 90%+ accuracy in distinguishing
inter-class and intra-class pairs.

Classification with Few-Shot Learning: After being
fully trained on the sampled pairs, the model is developed
for few-shot classification. In other words, if the model
is accurate enough to distinguish the identity of classes to
which the pairs belong to, given few representatives of a
specific class, a trained Siamese network could serve as a
binary classifier that verifies if the test instance belongs to
this class. Therefore, the problem reduces to selecting the
best representatives of every class to be paired with any test
image. The class that produces the pairings with the highest
average score is then identified as the classification result.
The test set of Omniglot, after the partitioning discussed
above, comprises 352 different classes, each of which is
composed of 20 images. We sequentially evaluate every one
of the 352 classes to choose the most informative subset of
the 20 images by deploying our selection algorithm on the
flattened features extracted from the last convolutional layer
of the network that is fed with the 20 images. The classifier
made from the Siamese network and the selected 352 repre-
sentative groups are then evaluated on all the 7,000+ images
in the test set. We show in Figure 7 the few-shot learning
results when 2, 3, 4 and 5 images are selected out of the
20 images together with an example of selected groups in
2-shot learning.

It can be observed in Figure 7 that images selected by the
evaluated algorithms are generally more standard and more
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Figure 7: Learning of Omniglot’s dataset on Siamese Neural Network
using few shots. (Left) Visualization of selected images from the first class
of Omniglot’s test set in 2-shot learning. Images selected by an algorithm
are marked in corners with the same color used in the right plot. (Right)
Classification accuracy with few-shot learning.

2 5

3 4
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identifiable than the others. Among all these competing al-
gorithms, KSP makes the best selection for this character.
Due to the fact that the classification accuracy is evaluated
based on the 352 test classes, which do not appear in the
training set, around 60% of correct classification is consid-
erably acceptable. In particular, SP achieves accuracies of
59.84%, 62.70%, 63.55%, and 64.89% for 2-shot, 3-shot, 4-
shot, and 5-shot classifications, respectively, which is com-
parable to the GIGA results of 60.21%, 62.36%, 63.42%,
and 65.21% while outperforming other baseline algorithms.
Note that SP needs less memory requirement and its com-
putational complexity is less than its peers.

4.5. Open-Set Identification

In this experiment, the open-set identification problem
is addressed employing propose selection method, which
results in significant accuracy improvement compared to
the state-of-the-art. In open-set identification, test data of
a classification problem may come from unknown classes
other than the classes employed during training, and the
goal is to identify such samples belong to open-set and
not the known labeled classes [64]. Interested readers are
referred to [65, 66, 67, 68, 69] to the state-of-the-art ap-
proaches for solving open-set problem.

Employing the entire closed-set data during the training
procedure leads to inclusion of untrustworthy samples of
the closed-set. Regularized or underfitting models (such
as low-rank representations [70, 71, 72]) still suffer from
memorizing effect of such samples, which exacerbate the
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separation between open and closed-set by adding ambigu-
ity to the decision boundary between the closed and open-
set classes. To resolve this issue, we utilize our proposed
selection method, KSP, which selects the core representa-
tives. Therefore, selected representatives for open-set iden-
tification are more robust in rejecting open-set test samples
which do not fit well to the core representatives. We pic-
torially illustrate the proposed scheme for open-set identi-
fication in Fig. 1 on the rightmost panel and the proposed
algorithm which is referred to as selection-based open-set
identification scheme (SOSIS) hereunder (Algorithm 3).

Experiment Set-up: We use MNIST dataset as the
closed-set with samples from Omniglot as the open-set. The
ratio of Omniglot to MNIST test dataset is set to 1 : 1
(10,000 from each), same as the simulation scenario in [67].
A classifier with ResNet-164 architecture [73] is trained on
MNIST as for step 1 in Alg. 3. Results of macro-averaged
Fl-score [74] for SOSIS method with different selection
methods and different number of samples are listed in Table
3 as well as the sate-of-the-art in [67]. The best achieved
Fl-score is 0.964 belonging to SOSIS with KSP selection
using 50 representatives. The second best performance is
by SOSIS with SP selection again using 50 representatives.
Performance downgrade is observed for both scenarios of
choosing too few representatives such as 5 or fewer and ob-
sessively choosing all data.

The gap between the error values resulting from projec-
tion of open and closed-set onto selected samples computed
in step 4 of Alg. 3 differs significantly compared to that
of the projection onto the entire dataset (due to overfitting
and memorization effect). We call this splitting property
as reflected in Fig. 8 (a) (entire dataset) vs. 8 (b) (selected
samples) at the testing phase. For a better visualization, pro-
jection errors are sorted separately for closed-set and open-
set data at the testing phase. As observed, fewer number of
representatives results in higher projection error. However,
at the same time closed-set and open-set test data are better
split as also observed in Fig. 8.

5. Conclusion

A novel approach to data selection from linear subspaces
is proposed and its extension for selection from nonlin-
ear manifolds is presented. The proposed SP algorithm
demonstrates an accurate solution for CSSP. Moreover, SP

Algorithm 3 Selection-based open-set identification (SOSIS)

Require: A~ (closed-set training data), and AY:{a;/ 5:1 (test set)
1: Train a classifier on AX on H classes
2: S, + set of K selected samples for class #h in AX
3: £(p) <+ label az}; using trained classifier in Step 1 (Vp)
4: err(p) = |la) — TSy () (a})ll2 (vp)
5: partition err to 2 sets using kmeans to set the threshold value thr
Output: open-set<— {az | err(p) > thr}

5642 samples are misclassified 984 samples are misclassified

1 1

8
= 0.8 0.8
43}
5 06 06 Threshold = 0.673
Boa; 04
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R 0
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Figure 8: Sorted values of err in Step 4 of Alg. 3 for 20,000 test
samples (10,000 per each closed/open set). (a) all data are selected as rep-
resentatives. (b) only 20 representatives are selected. For both (a) and (b),
a projection error above/below the threshold leads to classifying a sample
as open-set/closed-set. Blue and red points correspond to the correctly-
classified and missclassified samples, respectively. As shown, implement-
ing SOSIS enabled by KSP has significantly reduced the number of mis-
classified samples, from 5642 to 984.

Table 3: Comparing Fl-score of the proposed SOSIS algorithm with
state-of-the-art methods for open-set identification. SP, KSP and FFS [43]
are employed as the core of SOSIS.

method/K 5 20 50 100 | 500 |All Data
SOSIS (based on FES) [0.876 {0.913 | 0.944 [0.952 [0.841
SOSIS (based on SP)  [0.904 {0.945 | 0.958 [0.952 [0.824 | 0.792
SOSIS (based on KSP) [0.928 [0.959 | 0.964 | 0.959 |0.827

Supervised only [67] 0.680
LadderNet [67] 0.764
DHRNet [67] 0.793

and KSP have shown superior performance in many appli-
cations. The investigated fast and efficient deep learning
frameworks, empowered by our selection methods, have
shown that dealing with selected representatives is not only
fast but can also be more effective. This manuscript is allo-
cated mostly for algorithm designs and applications of data
selection. Theoretical results and more buttressing experi-
ments can be found in the supplementary document. '
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