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Abstract

Unsupervised meta-learning approaches rely on synthetic meta-tasks that are cre-
ated using techniques such as random selection, clustering and/or augmentation.
Unfortunately, clustering and augmentation are domain-dependent, and thus they
require either manual tweaking or expensive learning. In this work, we describe
an approach that generates meta-tasks using generative models. A critical compo-
nent is a novel approach of sampling from the latent space that generates objects
grouped into synthetic classes forming the training and validation data of a meta-
task. We find that the proposed approach, LAtent Space Interpolation Unsupervised
Meta-learning (LASIUM), outperforms or is competitive with current unsupervised
learning baselines on few-shot classification tasks on the most widely used bench-
mark datasets. In addition, the approach promises to be applicable without manual
tweaking over a wider range of domains than previous approaches.

1 Introduction

Meta-learning algorithms for neural networks (1; 2; 3) prepare networks to quickly adapt to unseen
tasks. This is done in a meta-training phase that typically involves a large number of supervised
learning tasks. Very recently, several approaches had been proposed that perform the meta-training
by generating synthetic training tasks from an unsupervised dataset. This requires us to generate
samples with specific pairwise information: in-class pairs of samples that are with high likelihood in
the same class, and out-of-class pairs that are with high likelihood not in the same class. For instance,
UMTRA (4) and AAL (5) achieve this through random selection from a domain with many classes
for out-of-class pairs and by augmentation for in-class pairs. CACTUs (6) creates synthetic labels
through unsupervised clustering of the domain. Unfortunately, these algorithms depend on domain
specific expertise for the appropriate clustering and augmentation techniques.

In this paper, we rely on recent advances in the field of generative models, such as the variants of
generative adversarial networks (GANS) and variational autoencoders (VAEs), to generate the in-class
and out-of-class pairs of meta-training data. The fundamental idea of our approach is that in-class
pairs are close while out-of-class pairs are far away in the latent space representation of the generative
model. Thus, we can generate in-class pairs by interpolating between two out-of-class samples
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in the latent space and choosing interpolation ratios that put the new sample close to one of the
objects. From this latent sample, the generative model creates the new in-class object. Our approach
requires minimal domain-specific tweaking, and the necessary tweaks are human-comprehensible.
For instance, we need to choose thresholds for latent space distance that ensure that classes are
in different domains, as well as interpolation ratio thresholds that ensure that the sample is in the
same class as the nearest edge. Another advantage of the approach is that we can take advantage of
off-the-shelf, pre-trained generative models.

The main contributions of this paper can be summarized as follows:

e We describe an algorithm, LAtent Space Interpolation Unsupervised Meta-learning (LA-
SIUM), that creates training data for a downstream meta-learning algorithm starting from an
unlabeled dataset by taking advantage of interpolation in the latent space of a generative
model.

o We show that on the most widely used few-shot learning datasets, LASIUM outperforms or
performs competitively with other unsupervised meta-learning algorithms, significantly out-
performs transfer learning in all cases, and in a number of cases approaches the performance
of supervised meta-learning algorithms.

2 Related Work

Meta-learning or “learning to learn” in the field of neural networks is an umbrella term that covers a
variety of techniques that involve training a neural network over the course of a meta-training phase,
such that when presented with the target task, the network is able to learn it much more efficiently than
an unprepared network would. Such techniques had been proposed since the 1980s (7; 8; 9; 10). In
recent years, meta-learning has gained a resurgence, through approaches that either “learn to optimize”
(2; 115 12; 13; 14; 15) or learn embedding functions in a non-parametric setting (3; 16; 17; 18).
Hybrids between these two approaches had also been proposed (19; 20).

Most approaches use labeled data during the meta-learning phase. While in some domains there is an
abundance of labeled datasets, in many domains such labeled data is difficult to acquire. Unsupervised
meta-learning approaches aim to learn from an unsupervised dataset from a domain similar from
that of the target task. Typically these approaches generate synthetic few-shot learning tasks for
the meta-learning phase through a variety of techniques. CACTUs (6) uses a progressive clustering
method. UMTRA (4) utilizes the statistical diversity properties and domain-specific augmentations
to generate synthetic training and validation data. AAL (5) uses augmentation of the unlabeled
training set to generate the validation data. The accuracy of these approaches was shown to be
comparable with but lower than supervised meta-learning approaches, but with the advantage of
requiring orders of magnitude less labeled training data. A common weakness of these approaches is
that the techniques used to generate the synthetic tasks (clustering, augmentation, random sampling)
are highly domain dependent.

Our proposed approach, LASIUM, takes advantage of generative models trained on the specific
domain to create the in-class and out-of-class pairs of meta-training data. The most successful
neural-network based generative models in recent years are variational autoencoders (VAE) (21)
and generative adversarial networks (GANs) (22). The implementation variants of the LASIUM
algorithm described in this paper rely on the original VAE model and on two specific variations of
the GAN concept, respectively. MSGAN (aka Miss-GAN) (23) aims to solve the missing mode
problem of conditional GANSs through a regularization term that maximizes the distance between
the generated images with respect to the distance between their corresponding input latent codes.
Progressive GANs (24) are growing both the generator and discriminator progressively, and approach
resembling the layer-wise training of autoencoders.

3 Method

3.1 Preliminaries

We define an N-way, K (tr)_shot supervised classification task, 7, as a set D%fr) composed of
i€ {l,...,N x Kt} data points (z;,y;) such that there are exactly K (") samples for each



categorical label y; € {1,..., N}. During meta-learning, an additional set ,Dgﬁml), is attached to
each task that contains another N x K (V) data points separate from the ones in D%fr). We have
exactly K (“@) samples for each class in D(TU 0 a5 well.

It is straightforward to package N-way, K (*")-shot tasks with Dgfr) and Dgg D from a labeled dataset.
However, in unsupervised meta-learning setting, a key challenge is how to automatically construct
tasks from the unlabeled dataset &/ = {...xz;...}.

3.2 Generating meta-tasks using generative models

We have seen that in order to generate the training data for the meta-learning phase, we need
to generate N-way training tasks with K ") training and K(*®") validation samples. The label
associated with the classes in these tasks is not relevant, as it will be discarded after the meta-
learning phase. Our objective is simply to generate samples of the type z; ; withi € {1... N} and

je{1... Kt 4 g@ah} with the following properties: (a) all the samples z; ; are different (b) any
two samples with the same 7 index are in-class samples and (c) any two samples with different 7 index
are out-of-class samples. In the absence of human provided labels, the class structure of the domain
is defined only implicitly by the sample selection procedure. Previous approaches to unsupervised
meta-learning chose samples directly from the training data x; ; € U, or created new samples through
augmentation. For instance, we can define the class structure of the domain by assuming that certain
types of augmentations keep the samples in-class with the original sample. One challenge of such
approaches is that the choice of the augmentation is domain dependent, and the augmentation itself
can be a complex mathematical operation.

In this paper we approach the sample selection problem differently. Instead of sampling x; ; from U,
we use the unsupervised dataset to train a generative model p(x). Generative models represent the
full probability distribution of a model, and allow us to sample new instances from the distribution.
For many models, this sampling process can be computationally expensive iterative process. Many
successful neural network based generative models use the reparametrization trick for the training
and sampling which concentrate the random component of the model in a latent representation z.
By choosing the latent representation z from a simple (uniform or normal) distribution, we can
obtain a sample from the complex distribution p(z) by passing z through a deterministic generator
G(z) — x. Two of the most popular generative models, variational autoencoders (VAEs) and
generative adversarial networks (GANs) follow this model.

The idea of the LASIUM algorithm is that given a generator component G(.), nearby latent space
values z1 and zo map to in-class samples x1 and xo. Conversely, z; and zo values that are far away
from each other, map to out of class samples. Naturally, we still need to define what we mean by
“near” and “far” in the latent space and how to choose the corresponding z values. However, this is a
significantly simpler task than, for instance, defining the set of complex augmentations that might
retain class membership.

[ht]

Training a generative model Our method for generating meta-tasks is agnostic to the choice of
training algorithm for the generative model and can use either a VAE or a GAN with minimal
adjustments. In our VAE experiments, we used a network trained with the standard VAE training
algorithm (21). For the experiments with GANs we used two different methods mode seeking GANs
(MSGAN) (23) and progressive growing of GANs (proGAN) (24).

Algorithm 1 describes the steps of our method. We will delve into each step in the following parts of
this section.

Sampling out of class instances from the latent space representation: Our sampling techniques
differ slightly whether we are using a GAN or VAE. For GAN, we use rejection sampling to find
N latent space vectors that are at a pairwise distance of at least threshold ¢ - see Figure 1(a). When
using a VAE, we also have an encoder network that allows us to map from the domain to the latent
space. Taking advantage of this, we can additionally sample data points from our unlabeled dataset
U and embed them into a latent space. If the latent space representation of these N images are too
close to each other, we re-sample, otherwise we can use the /NV images and their representations and
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Figure 1: 3-way, K (*")-shot task generation with K (*®") images for validation by a pre-trained GAN
generator G. a) Sample 3 random vectors. b) Generate new vectors by one of the proposed in-class
sampling strategies. ¢) Generate images from all of the latent vectors and put them into train and
validation set to construct a task. The images in this figure have been generated by our algorithm.
The colored edge of each image indicates that it was generated from its corresponding latent vector.
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Figure 2: 3-way, K (!")-shot task generation by VAE on Omniglot dataset with K (%) images for
validation set of each task. a) Sample 3 images from dataset. b) Encode the images into latent space
and check if they are distanced. ¢) Use proposed in-class sampling techniques to generate new latent
vectors. d) Generate images from the latent vectors and put them alongside with sampled images
from step a into train and validation set to construct a task.

continue the following steps exactly the same as GANs - see Figure 2(a) and (b). We will refer to the
vectors selected here as anchor vectors.

Generating in-class latent space vectors Next, having N sampled anchor vectors {z1,..., 2y}

from the latent space representation, we aim to generate N new vectors {21, ..., 2 } from the latent
space representation such that the generated image G(z;) belongs to the same class as the one of
G(2}) fori € 1,..., N. This process needs to be repeated P for K (") + K(val) — 1 times.

The sampling strategy takes as input the sampled vectors and a number w € {1... K(") 4 g (vl 1}
and returns N new vectors such that z; and z; are an in-class pair for i € {1... N}. This ensures that
no two z; belong to the same class and creates N groups of (K tr) 4 K (”‘”)) vectors in our latent
space. We feed these vectors to our generator to get N groups of (K (") 4+ K (v))) images. From

each group we pick the first K (") for DS,ET) and the last K (Vo)) for Dg’f ),

What remains is to define the strategy to sample the individual in-class vectors. We propose three
different sampling strategies, all of which can be seen as variations of the idea of latent space
interpolation sampling. This motivates the name of the algorithm LAtent Space Interpolation
Unsupervised Meta-learning (LASIUM).

LASIUM-N (adding Noise): This technique generates in-class samples by adding Gaussian noise to
the anchor vector 2/ = z; + ¢ where € ~ N (0, 02) (see Figure 3-Left). In the context of LASTUM, we



Algorithm 1: LASIUM for unsupervised meta-learning task generation

require : Unlabeled dataset/{ = {...z; ...}, Pre-trained generator G, Policy P
require : K (") K(v2D): number of samples for train and validation during meta-learning
require : N: class-count, Ny, p: meta-batch size
B =1{};// meta-batch of tasks
for i in 17---7N]V[B do
Sample IV class-vectors in latent space of G and add them to task-vectors
forwinl,..., K1) 4 K@al) _ 1 do
\ generate new-vectors = P(class-vectors, w) and add them to task-vectors
end
Generate N x (K" 4+ K (e images by feeding task-vectors to generator G

Construct task 7; by putting the first N x K (") images in task train set and the last N' x K (val)
images in task validation set

9 B« BUT;

10 end

11 return B
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Figure 3: Latent space representation visualization of proposed strategies for generating in-class
candidates. Left: LASIUM-N, adding random noise to the sample vector. Middle: LASTUM-RO,
interpolate with random out-of-class samples. Right: LASIUM-OC, interpolate with other classes’
samples.

can see this as an interpolation between the anchor vector and a noise vector, with the interpolation
factor determined by o. For the impact of different choices of o see the ablation study in section 4.6.

LASIUM-RO (with Random Out-of-class samples) To generate a new in-class sample to anchor
vector z; we first find a random out-of-class sample v;, and choose an interpolated version closer
to the anchor: 2] = z; + a x (v; — z;) (see Figure 3-Middle). Here, « is a hyperparameter, which
can be tuned to define the size of the class. As we are in a comparatively high-dimensional latent
space (in our case, 512 dimensions), we need relatively large values of «, such as o = 0.4 to define
classes of reasonable size. This model effectively allows us to define complex augmentations (such
as a person seen without glasses, or in a changed lighting) with only one scalar hyperparameter to
tune. By interpolating towards another sample we ensure that we are staying on the manifold that
defines the dataset (in the case of Figure 3, this being human faces).

LASIUM-OC (with Other Classes’ samples) This technique is similar to LASTUM-RO, but instead
of using a randomly generated out-of-class vector, we are interpolating towards vectors already chosen



from the other classes in the same task (see Figure 3-Right). This limits the selection of the samples to
be confined to the convex hull defined by the initial anchor points. The intuition behind this approach
is that choosing the samples this way focuses the attention of the meta-learner towards the hard to
distinguish samples that are between the classes in the few shot learning class (eg. they share certain
attributes).

4 Experiments

We tested the proposed algorithms on three few-shot learning benchmarks: (a) the 5-way Om-
niglot (25), a benchmark for few-shot handwritten character recognition, (b) the 5-way CelebA
few-shot identity recognition, and (c) the CelebA attributes dataset (26) proposed as a few-shot
learning benchmark by (2) that comprises binary classification (2-way) tasks in which each task is
defined by selecting 3 different attributes and 3 boolean values corresponding to each attribute. Every
image in a certain task-specific class has the same attributes with each other while does not share any
of these attributes with images in the other class. Last but not least we evaluate our results on (d) the
mini-ImageNet (27) few-shot learning benchmark.

We partition each dataset into meta-training, meta-validation, and meta-testing splits between classes.
To evaluate our method, we use the classes in the test set to generate 1000 tasks as described
in section 3.2. We set K(¥®) to be 15. We average the accuracy on all tasks and report a 95%
confidence interval. To ensure that comparisons are fair, we use the same random seed in the whole
task generation process. For the Omniglot dataset, we report the results for K (") ¢ {1,5}, and
K(al) — 15 For CelebA identity recognition, we report our results for K*") € {1,5,15} and
K(al) = 15 For CelebA attributes, we follow the K (/") = 5 and K(v%) = 5 tasks as proposed
by (6).

4.1 Baselines

As baseline algorithms for our approach we follow the practice of recent papers in the unsupervised
meta-learning literature. The simplest baseline is to train the same network architecture from scratch
with N x K(*") images. More advanced baselines can be obtained by learning an unsupervised
embedding on U/ and use it for downstream task training. We used the ACAI (28), BiGAN (29; 30),
and DeepCluster (31) as representative of the unsupervised learning literature. On top of these
embeddings, we report accuracy for K ,,,,-nearest neighbors, linear classifier, multi layer perceptron
(MLP) with dropout, and cluster matching.

The direct competition for our approach are the current state-of-the-art algorithms in unsupervised
meta-learning. We compare our results with CACTUs-MAML (6), CACTUs-ProtoNets (6) and
UMTRA (4). Finally, it is useful to compare our approach with algorithms that require supervised
data. We include results for supervised standard transfer learning from VGG19 pre-trained on
ImageNet (32) and two supervised meta-learning algorithms, MAML (6), and ProtoNets (6).

4.2 Neural network architectures

Since excessive tuning of hyperparameters can lead to the overestimation of the performance of a
model (33), we keep the hyperparameters of the unsupervised meta-learning as constant as possible
(including the MAML, and ProtoNets model architectures) in all experiments. Our model architecture
consists of four stacked convolutional blocks. Each block comprises 64 filters that carry out 3 x 3
convolutions, followed by batch normalization, a ReLU non-linearity, and 2 x 2 max-pooling. For the
MAML experiments, classification is performed by a fully connected layer, whereas for the ProtoNets
model we compute distances based on the feature vectors produced by the last convolution module
without any dense layers. The input size to our model is 84 x 84 x 3 for CelebA and 28 x 28 x 1 for
Omniglot.

For Omniglot, our VAE model is constructed symmetrically. The encoder is composed of four
convolutional blocks, with batch normalization and ReL.U activation following each of them. A
dense layer is connected to the end such that given an input image of shape 28 x 28, the encoder
produces a latent vector of length 20. On the other side, the decoder starts from a dense layer whose
output has length 7 x 7 x 64 = 3136. It is then fed into four modules each of which consists of



a transposed convolutional layer, batch normalization and the ReLLU non-linearity. We use 3 x 3
kernels, 64 channels and a stride of 2 for all the convolutional and transposed convolutional layers.
Hence, the generated image has the size of 28 x 28 that is identical to the input images. This VAE
model is trained for 1000 epochs with a learning rate of 0.001.

Our GAN generator gets an input of size [ which is the dimensionality of the latent space and feeds it
into a dense layer of size 7 x 7 x 128. After applying a Leaky ReLU with a = 0.2, we reshape the
output of dense layer to 128 channels of shape 7 x 7. Then we feed it into two upsampling blocks,
where each block has a transposed convolution with 128 channels, 4 x 4 kernels and 2 x 2 strides.
Finally, we feed the outcome of the upsampling blocks into a convolution layer with 1 channel and a
7 x 7 kernel with sigmoid activaiton. The discriminator takes a 28 x 28 x 1 input and feeds it into
three 3 x 3 convolution layers with 64, 128 and 128 channels and 2 x 2 strides. We apply leaky ReLU
activation after each convolution layer with o = 0.2. Finally we apply a global 2D max pooling layer
and feed it into a dense layer with 1 neuron to classify the output as real or fake. We use the same
loss function for training as described in (23).

For the CelebA GAN experiments, we use the pre-trained network architecture described in (24). For
VAE, we use the same architecture as we described for Omniglot VAE with one more convolution
block and more channels to handle the larger input size of 84 x 84 x 3. The exact architecture is
described in section 4.6.

4.3 Results on Omniglot

Table 1 shows the results on the Omniglot dataset. We find that the LASTUM-RO-GAN-MAML
configuration outperforms all the unsupervised approaches, including the meta-learning based ones
like CACTUs (6) and UMTRA (4). Beyond the increase in performance, we must note that the
competing approaches use more domain specific knowledge (in case of UMTRA augmentations, in
case of CACTUs, learned clustering). We also find that on this benchmark, LASTUM outperforms
transfer learning using the much larger VGG-19 network.

As expected even the best LASIUM result is worse than the supervised meta-learning models.
However, we need to consider that the unsupervised meta-learning approaches use several orders
of magnitude less labels. For instance, the 95.29% accuracy of LASIUM-RO-GAN-MAML was
obtained with only 25 labels, while the supervised approaches used 25,000.

4.4 Results on CelebA

Table 2 shows our results on the CelebA identity recognition tasks where the objective is to recognize
N different people given K (") images for each. We find that on this benchmark as well, the LASTUM-
RO-GAN-MAML configuration performs better than other unsupervised meta-learning models as
well as transfer learning with VGG-19 - it only falls slightly behind LASTUM-RO-GAN-ProtoNets
on the one-shot case. As we have discussed in the case of Omniglot results, the performance remains
lower then the supervised meta-learning approaches which use several orders of magnitude more
labeled data.

Finally, Table 3 shows our results for CelebA attributes benchmark introduced in (6). A peculiarity
of this dataset is that the way in which classes are defined based on the attributes, the classes are
unbalanced in the dataset, making the job of synthetic task selection more difficult. We find that
LASIUM-N-GAN-MAML obtains the second best on this test with a performance of 74.79 + 1.01,
within the confidence interval of the winner, CACTUs MAML with BiGAN 74.98 +1.02. In
this benchmark, transfer learning with the VGG-19 network performed better than all unsupervised
meta-learning approaches, possibly due to existing representations of the discriminating attributes in
that much more complex network.

4.5 Results on mini-ImageNet

In this section, we evaluate our algorithm on mini-ImageNet benchmark. Its complexity is high due
to the use of ImageNet images. In total, there are 100 classes with 600 samples of 84 x 84 color
images per class. These 100 classes are divided into 64, 16, and 20 classes respectively for sampling
tasks for meta-training, meta-validation, and meta-test. A big difference between mini-ImageNet and
CelebA is that we have to classify a group of concepts instead of just the identity of a subject. This



Table 1: Accuracy results on the Omniglot dataset averaged over 1000, 5-way, K (*")-shot downstream
tasks with K = 15 for each task. =+ indicates the 95% confidence interval. The top three

unsupervised results are reported in bold.

Algorithm Feature Extractor K ") =1 Kt =5
Training from scratch N/A 51.64 £ 0.65 71.44 £0.53
K-nearest neighbors ACAI 57.46 £1.35 81.16 £0.57
Linear Classifier ACAI 61.08 £1.32 81.82 £ 0.58
MLP with dropout ACAI 51.95 £+ 0.82 77.20 £ 0.65
Cluster matching ACAI 54.94 £+ 0.85 71.09 £0.77
K-nearest neighbors BiGAN 49.55 £ 1.27 68.06 £0.71
Linear Classifier BiGAN 48.28 £1.25 68.72 £+ 0.66
MLP with dropout BiGAN 40.54 +£0.79 62.56 +0.79
Cluster matching BiGAN 43.96 £ 0.80 58.62 £ 0.78
CACTUs-MAML BiGAN 58.18 £ 0.81 78.66 £ 0.65
CACTUs-MAML ACAI 68.84 £ 0.80 87.78 £ 0.50
UMTRA-MAML N/A 81.91+0.58 94.58+0.25
LASIUM-RO-GAN-MAML N/A 83.26 £ 0.55 95.29 +0.22
LASIUM-N-VAE-MAML N/A 76.11 £ 0.64 94.42 +0.26
CACTUs-ProtoNets BiGAN 54.74 £ 0.82 71.69 £0.73
CACTUs-ProtoNets ACAI 68.12 £ 0.84 83.58 £ 0.61
LASIUM-RO-GAN-ProtoNets  N/A 80.15+0.64 91.10£0.35
LASIUM-OC-VAE-ProtoNets ~ N/A 73.22£0.73 85.05 + 0.46
Transfer Learning (VGG-19) N/A 54.49 + 0.90 89.57 £0.44
Supervised MAML N/A 9446 £0.35  98.83+0.12
Supervised ProtoNets N/A 98.35 £ 0.22 99.58 £+ 0.09

Table 2: Accuracy results of unsupervised learning on CelebA for different unsupervised methods.
The results are averaged over 1000, 5-way, K (!")-shot downstream tasks with K (@) = 15 for each
task. & indicates the 95% confidence interval. The top three unsupervised results are reported in

bold.

Algorithm KW =1 Kt =5 Kt =15
Training from scratch 34.69 £ 0.50 56.50 £ 0.55 70.56 £ 0.49
CACTUs 41.424+0.64 62.71+0.57 74.18+£0.68
UMTRA 39.30 +£0.59 60.44 £+ 0.56 72.41 £0.48
LASIUM-RO-GAN-MAML 43.88+0.57 66.98+0.53 78.13+0.44
LASIUM-RO-VAE-MAML 41.25 +0.57 58.22 +0.54 71.05 4+ 0.49
LASIUM-RO-GAN-ProtoNets  44.39 +0.61  60.83 + 0.58 66.66 £+ 0.53
LASIUM-RO-VAE-ProtoNets ~ 43.22 +0.58 61.12+0.54 68.51 £0.51
Transfer Learning (VGG-19) 33.28 £ 0.57 58.74 + 0.62 74.04 + 0.49
Supervised MAML 85.46 £+ 0.55 94.98 £ 0.25 96.18 £0.19
Supervised ProtoNets 84.17 £ 0.61 90.84 £ 0.38 90.85 £ 0.36




Table 3: Results on CelebA attributes benchmark 2-way, 5-shot tasks with K(**)) = 5. The results
are averaged over 1000 downstream tasks and + indicates 95% confidence interval. The top three
unsupervised results are reported in bold.

Algorithm Feature Extractor ~ Accuracy
Training from scratch N/A 63.19 £ 1.06
K-nearest neighbors BiGAN 56.15 £ 0.89
Linear Classifier BiGAN 58.44 £+ 0.90
MLP with dropout BiGAN 56.26 £ 0.94
Cluster matching BiGAN 56.20 £ 1.00
K-nearest neighbors DeepCluster 61.47 +£0.99
Linear Classifier DeepCluster 59.57 £ 0.98
MLP with dropout DeepCluster 60.65 £0.9
Cluster matching DeepCluster 51.51 £0.89
CACTUs MAML BiGAN 74.98 £1.02
CACTUs MAML DeepCluster 73.79 £1.01
LASIUM-N-GAN-MAML N/A 74.79 £1.01
CACTUs ProtoNets BiGAN 65.58 £ 1.04
CACTUs ProtoNets DeepCluster 74.15+£1.02
LASIUM-N-GAN-ProtoNets ~ N/A 73.41£1.10
Transfer Learning (VGG-19) N/A 79.76 &+ 1.03
Supervised MAML N/A 87.10 £0.85
Supervised ProtoNets N/A 85.13 £0.92

makes interpreting the latent space a bit trickier. For example, it is not rational to interpolate between
a bird and a piano. However, the assumption that nearby latent vectors belong to nearby instances is
still valid. Thereby, we could be confident by not getting too far from the current latent vector, we
generate something which belongs to the same class (identity).

For mini-ImageNet we use a pre-trained network BigBiGAN?Z. Our experiments show that our method
is very effective and can outperform state-of-the-art algorithms. See Table 4 for the results on mini-
ImageNet benchmark. Figure 4 demonstrates tasks constructed for mini-ImageNet by LASTUM-N
with 02 = 1.0.

Train Validation

Figure 4: Train and validation tasks for mini-ImageNet constructed by LASIUM-N with o2 = 1.0

4.6 Hyperparameters and ablation studies

In this section, we report the hyperparameters of LASTUM-MAML in Table 5 and LASIUM-ProtoNets
in Table 6 for Omniglot, CelebA, CelebA attributes and mini-ImageNet datasets.

*https://tfhub.dev/deepmind/bigbigan-resnet50/1



Table 4: Results on mini-ImageNet benchmark for 5-way, K (")-shot tasks with K (*) = 15. The
results are averaged over 1000 downstream tasks and =+ indicates 95% confidence interval. The top
three unsupervised results are reported in bold.

Algorithm Embedding KU =1 K =5 K =20 K =50
Training from scratch ~ N/A 27.59£0.59 3848 +£0.66 51.53+0.72  59.63 £0.74
K-nearest neighbors ~ BiGAN 25,56 £1.08 31.10£0.63 37.314+0.40 43.60 £0.37
Linear Classifier BiGAN 27.08£1.24 33.91+0.64 44.00+0.45 50.41+0.37
MLP with dropout BiGAN 22914054 29.06£0.63 40.06+0.72 48.36£0.71
Cluster matching BiGAN 24.63£0.56 29.494+0.58 33.89+0.63 36.13+0.64
K-nearest neighbors ~ DeepCluster 28.90 £1.25  42.25+0.67 56.44£0.43  63.90 £0.38
Linear Classifier DeepCluster 29.44 £1.22  39.79+£0.64 56.19+0.43 65.28+0.34
MLP with dropout DeepCluster  29.03 +0.61  39.67£0.69 52.71+£0.62 60.95+0.63
Cluster matching DeepCluster 22.20 £0.50  23.50 £0.52 24.97+0.54 26.87 +£0.55
CACTUs MAML BiGAN 36.24 £0.74 51.28£0.68 61.33+0.67 66.91 £0.68
CACTUs MAML DeepCluster  39.90+0.74 53.97+0.70 63.84 +£0.70 69.64 +0.63
UMTRA MAML N/A 39.93 50.73 61.11 67.15
LASIUM-N-GAN- N/A 40.19 +£0.58 54.56 £0.55 65.17+0.49 69.13+0.49
MAML

CACTUs ProtoNets BiGAN 36.62£0.70 50.16 £0.73  59.56 £0.68  63.27 £ 0.67
CACTUs ProtoNets DeepCluster 39.18£0.71 53.36+£0.70 61.54+0.68 63.55+0.64
LASIUM-N-GAN- N/A 40.05+0.60 52.53+0.51 59.45+£0.48 61.43£0.45
ProtoNets

Supervised MAML N/A 46.81+0.77 62.13£0.72 71.03+£0.69 75.54 +0.62
Supervised ProtoNets ~ N/A 46.56 £0.76  62.29£0.71  70.05£0.65  72.04 £0.60

We also report the ablation studies on different strategies for task construction in Table 7. We run all
the algorithm for just 1000 iterations and compared between them. We also apply a small shift to
Omniglot images.

Table 5: LASIUM-MAML hyperparameters summary

Hyperparameter Omniglot CelebA CelebA attributes  mini-ImageNet
Number of classes 5 5 2 5

Input size 28 x28x1 84x84x3 84x84x3 84 x 84 x 3
Inner learning rate 0.4 0.05 0.05 0.05

Meta learning rate 0.001 0.001 0.001 0.001
Meta-batch size 4 4 4 4

K" meta-learning 1 1 5 1

K meta-learning 5 5 5 5

K (1) evaluation 15 15 5 15
Meta-adaptation steps 5 5 5 5

Evaluation adaptation steps 50 50 50 50

Table 6: LASIUM-ProtoNets hyperparameters summary

Hyperparameter Omniglot CelebA CelebA attributes ~ mini-ImageNet
Number of classes 5 5 2 5

Input size 28 x 28 x1 84 x84 x3 84x84x3 84 x 84 x 3
Meta learning rate 0.001 0.001 0.001 0.001
Meta-batch size 4 4 4 4

K meta-learning 1 1 5 1

K@) meta-learning 5 5 5 5

K evaluation 15 15 5 15
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Table 7: Accuracy of different proposed strategies on Omniglot. For the sake of comparison, we

stop meta-learning after 1000 iterations. Results are reported on 1000 tasks with a 95% confidence

interval.

Sampling Strategy ~ Hyperparameters GAN-MAML  VAE-MAML  GAN-Proto VAE-Proto

LASTUM-N 0%=0.5 77.16+0.65 70.41£0.71 62.16+0.79 61.57£0.80
LASIUM-N o%=1.0 71.10+£0.70 68.26£0.71 60.95+£0.78 62.17 £ 0.80
LASIUM-N %=2.0 63.18+0.71 65.18£0.71 59.81 £0.78 64.88+0.78
LASIUM-RO a=0.2 77.62+0.64 75.02+0.66 62.24+0.79 62.17+0.80
LASIUM-RO a=0.4 75.79+0.65 71.31+0.70 64.19+0.76 62.20+0.80
LASIUM-OC a=0.2 74.70 £0.68 74.984+0.67 61.79+£0.79 62.16 +0.78
LASIUM-0OC a=0.4 73.40+0.68 68.79£0.73 64.59+£0.76 63.08+£0.79

5 Conclusion

We described LASIUM, an unsupervised meta-learning algorithm for few-shot classification. The
algorithm is based on interpolation in the latent space of a generative model to create synthetic
meta-tasks. In contrast to other approaches, LASTUM requires minimal domain specific knowledge.
We found that LASIUM outperforms state-of-the-art unsupervised algorithms on the Omniglot and
CelebA identity recognition benchmarks and competes very closely with CACTUs on the CelebA
attributes learning benchmark.
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