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Abstract

Recovering the 3D shape of transparent objects using a

small number of unconstrained natural images is an ill-posed

problem. Complex light paths induced by refraction and re-

flection have prevented both traditional and deep multiview

stereo from solving this challenge. We propose a physically-

based network to recover 3D shape of transparent objects

using a few images acquired with a mobile phone camera,

under a known but arbitrary environment map. Our novel

contributions include a normal representation that enables

the network to model complex light transport through local

computation, a rendering layer that models refractions and

reflections, a cost volume specifically designed for normal re-

finement of transparent shapes and a feature mapping based

on predicted normals for 3D point cloud reconstruction. We

render a synthetic dataset to encourage the model to learn

refractive light transport across different views. Our experi-

ments show successful recovery of high-quality 3D geometry

for complex transparent shapes using as few as 5-12 natural

images. Code and data will be publicly released.

1. Introduction
Transparent objects abound in real-world environments,

thus, their reconstruction from images has several applica-

tions such as 3D modeling and augmented reality. However,

their visual appearance is far more complex than that of

opaque objects, due to complex light paths with both refrac-

tions and reflections. This makes image-based reconstruc-

tion of transparent objects extremely ill-posed, since only

highly convoluted intensities of an environment map are

observed. In this paper, we propose that data-driven priors

learned by a deep network that models the physical basis of

image formation can solve the problem of transparent shape

reconstruction using a few natural images acquired with a

commodity mobile phone camera.

While physically-based networks have been proposed to

solve inverse problems for opaque objects [25], the com-

plexity of light paths is higher for transparent shapes and

small changes in shape can manifest as severely non-local

changes in appearance. However, the physical basis of image

formation for transparent objects is well-known – refraction
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Figure 1. We present a novel physically-based deep network for

image-based reconstruction of transparent objects with a small

number of views. (a) An input photograph of a real transparent

object captured under unconstrained conditions (1 of 10 images).

(b) and (c): The reconstructed shape rendered under the same view

with transparent and white diffuse material. (d) The reconstructed

shape rendered under a novel view and environment map.

at the interface is governed by Snell’s law, the relative frac-

tion of reflection is determined by Fresnel’s equations and

total internal reflection occurs when the angle of incidence

at the interface to a medium with lower refractive index is

below critical angle. These properties have been used to

delineate theoretical conditions on reconstruction of trans-

parent shapes [23], as well as acquire high-quality shapes

under controlled settings [46, 52]. In contrast, we propose to

leverage this knowledge of image formation within a deep

network to reconstruct transparent shapes using relatively

unconstrained images under arbitrary environment maps.

Specifically, we use a small number of views of a glass

object with known refractive index, observed under a known

but arbitrary environment map, using a mobile phone cam-

era. Note that this is a significantly less restricted setting

compared to most prior works that require dark room envi-

ronments, projector-camera setups or controlled acquisition

of a large number of images. Starting with a visual hull

construction, we propose a novel in-network differentiable

rendering layer that models refractive light paths up to two

bounces to refine surface normals corresponding to a back-

projected ray at both the front and back of the object, along

with a mask to identify regions where total internal reflection
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Figure 2. Reconstruction using 10 images of synthetic kitten model. The left image is rendered with the reconstructed shape while the right

image is rendered with the ground-truth shape.

occurs. Next, we propose a novel cost volume to further

leverage correspondence between the input image and envi-

ronment map, but with special considerations since the two

sets of normal maps span a four-dimensional space, which

makes conventional cost volumes from multiview stereo

intractable. Using our differentiable rendering layer, we

perform a novel optimization in latent space to regularize

our reconstructed normals to be consistent with the manifold

of natural shapes. To reconstruct the full 3D shape, we use

PointNet++ [32] with novel mechanisms to map normal fea-

tures to a consistent 3D space, new loss functions for training

and architectural changes that exploit surface normals for

better recovery of 3D shape.

Since acquisition of transparent shapes is a laborious

process, it is extremely difficult to obtain large-scale training

data with ground truth [40]. Thus, we render a synthetic

dataset, using a custom GPU-accelerated ray tracer. To avoid

category-specific priors, we render images of random shapes

under a wide variety of natural environment maps. On both

synthetic and real data, the benefits of our physically-based

network design are clearly observed. Indeed, we posit that

such physical modeling eases the learning for a challenging

problem and improves generalization to real images. Figures

1 and 2 show example outputs on real and synthetic data. All

code and data will be publicly released.

To summarize, we propose the following contributions

that solve the problem of transparent shape reconstruction

with a limited number of unconstrained views:

• A physically-based network for surface normal recon-

struction with a novel differentiable rendering layer and

cost volume that imbibe insights from image formation.

• A physically-based 3D point cloud reconstruction that

leverages the above surface normals and rendering layer.

• Strong experimental demonstration using a photorealisti-

cally rendered large-scale dataset for training and a small

number of mobile phone photographs for evaluation.

2. Related Work
Multiview stereo Traditional approaches [37] and deep

networks [49] for multiview stereo have achieved impressive

results. A full review is out of our scope, but we note that

they assume photoconsistency for opaque objects and cannot

handle complex light paths of transparent shapes.

Theoretical studies In seminal work, Kutulakos and Ste-

ger [23] characterize the extent to which shape may be recov-

ered given the number of bounces in refractive (and specular)

light paths. Chari and Sturm [5] further constrain the sys-

tem of equations using radiometric cues. Other works study

motion cues [3, 29] or parametric priors [43]. We derive in-

spiration from such works to incorporate physical properties

of image formation, by accounting for refractions, reflections

and total internal reflections in our network design.

Controlled acquisition Special setups have been used in

prior work, such as light field probes [44], polarimetry

[9, 15, 28], transmission imaging [20], scatter-trace pho-

tography [30], time-of-flight imaging [41] or tomography

[42]. An external liquid medium [14] or moving spotlights

in video [50] have been used too. Wu et al. [46] also start

from a visual hull like us, to estimate normals and depths

from multiple views acquired using a turntable-based setup

with two cameras that image projected stripe patterns in a

controlled environment. A projector-camera setup is also

used by [35]. In contrast to all of the above works, we only

require unconstrained natural images, even obtainable with

a mobile phone camera, to reconstruct transparent shapes.

Environment matting Environment matting uses a

projector-camera setup to capture a composable map [56, 8].

Subsequent works have extended to mutliple cameras [27],

natural images [45], frequency [55] or wavelet domains [31],

with user-assistance [52] or compressive sensing to reduce

the number of images [10, 33]. In contrast, we use a small

number of unconstrained images acquired with a mobile

phone camera in arbitrary scenes, to produce full 3D shape.

Reconstruction from natural images Stets et al. [39]

propose a black-box network to reconstruct depth and nor-

mals from a single image. Shan et al. [38] recover height

fields in controlled settings, while Yeung et al. [51] have

user inputs to recover normals. In contrast, we recover high-

quality full 3D shapes and normals using only a few images

of transparent objects, by modeling the physical basis of

image formation in a deep network.

Refractive materials besides glass Polarization [7], dif-

ferentiable rendering [6] and neural volumes [26] have been

used for translucent objects, while specular objects have

been considered under similar frameworks as transparent

ones [16, 57]. Gas flows [2, 18], flames [17, 47] and flu-

ids [13, 34, 54] have been recovered, often in controlled

setups. Our experiments are focused on glass, but similar

ideas might be applicable for other refractive media too.
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Figure 3. Our framework for transparent shape reconstruction.

3. Method

Setup and assumptions Our inputs are V images

{Iv}
V
v=1 of a transparent object with known refractive in-

dex (IoR), along with segmentation masks {Mv}
V
v=1. We

assume a known and distant, but otherwise arbitrary, envi-

ronment map E. The output is a point cloud reconstruction

P of the transparent shape. Note that our model is different

from (3-2-2) triangulation [22] that requires two reference

points on each ray for reconstruction, leading to a significant

relaxation over prior works [46, 52] that need active lighting,

carefully calibrated devices and controlled environments.

We tackle this severely ill-posed problem through a novel

physically-based network that models the image formation in

transparent objects over three sub-tasks: shape initialization,

cost volume for normal estimation and shape reconstruction.

To simplify the problem and due to GPU memory limits,

we consider light paths with only up to two bounces, that is,

either the light ray gets reflected by the object once before

hitting the environment map or it gets refracted by it twice

before hitting the environment map. This is not a severe lim-

itation – more complex regions stemming from total internal

reflection or light paths with more than two bounces are

masked out in one view, but potentially estimated in other

views. The overall framework is summarized in Figure 3.

Shape initialization We initialize the transparent shape

with a visual hull [21]. While a visual hull method cannot

reconstruct some concave or self-occluded regions, it suffices

as initialization for our network. We build a 3D volume of

size 1283 and project segmentation masks from V views to

it. Then we use marching cubes to reconstruct the hull and

loop L3 subdivision to obtain smooth surfaces.

3.1. Normal Reconstruction

A visual hull reconstruction from limited views might be

inaccurate, besides missed concavities. We propose to recon-

struct high quality normals by estimating correspondences

between the input image and the environment map. This is a

very difficult problem, since different configurations of trans-

parent shapes may lead to the same appearance. Moreover,

small perturbations of normal directions can cause pixel

intensities to be completely different. Thus, strong shape

priors are necessary for a high quality reconstruction, which

we propose to learn with a physically-inspired deep network.

Basic network Our basic network architecture for normal

estimation is shown in Figure 4. The basic network structure

consists of one encoder and one decoder. The outputs of our

network are two normal maps N1 and N2, which are the

normals at the first and second hit points P 1 and P 2 for a ray

backprojected from camera passing through the transparent

shape, as illustrated in Figure 5(a). The benefit of modeling

the estimation through N1 and N2 is that we can easily

use a network to represent complex light transport effects

without resorting to ray-tracing, which is time-consuming

and difficult to treat differentiably. In other words, given N1

and N2, we can directly compute outgoing ray directions

after passage through the transparent object. The inputs to

our network are the image I , the image with background

masked out I � M and the Ñ1 and Ñ2 of the visual hull

(computed off-line by ray tracing). We also compute N̂1 and

N̂2 of the ground-truth shape for supervision. The definition

of Ñ1, Ñ2 and N̂1, N̂2 are visualized in Figure 5(b). The

basic network estimates:

N
1
, N

2 = NNet(I, I �M, Ñ
1
, Ñ

2) (1)

The loss function is simply the L2 loss for N1 and N2.

LN = ||N1 − N̂
1||22 + ||N2 − N̂

2||22 (2)

Rendering layer Given the environment map E, we can

easily compute the incoming radiance through direction l

using bilinear sampling. This allows us to build a differen-

tiable rendering layer to model the image formation process

of refraction and reflection through simple local computa-

tion. As illustrated in Figure 5(a), for every pixel in the

image, the incident ray direction li through that pixel can be

obtained by camera calibration. The reflected and refracted

rays lr and lt can be computed using N1 and N2, following

Snell’s law. Our rendering layer implements the full physics

of an intersection, including the intensity changes caused

by the Fresnel term F of the refractive material. More for-

mally, with some abuse of notation, let Li, Lr and Lt be the

radiance of incoming, reflected and refracted rays. We have

F =
1

2

(
li ·N − ηlt ·N

li ·N + ηlt ·N

)2

+
1

2

(
ηli ·N − lt ·N

ηli ·N + lt ·N

)2

.

Lr = F · Li, Lt = (1−F) · Li

Due to total internal reflection, some rays entering the

object may not be able to hit the environment map after one

more bounce, for which our rendering layer returns a binary

mask, M tr. With Ir and It representing radiance along the

directions lr and lt, the rendering layer models the image

formation process for transparent shapes through reflection,

refraction and total internal reflection:

I
r
, I

t
,M

tr = RenderLayer(E,N
1
, N

2). (3)
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Figure 4. The network architecture for nor-

mal reconstruction. Yellow blocks repre-

sent NNet and blue blocks represent FNet.

IX1-OX2-WX3-SX4 represents a convolu-

tional layer with input channel X1, output

channel X2, kernel size X3 and stride X4.

UX5 represents bilinear upsampling layer

with scale factor X5.

Figure 5. (a) Illustration of the first and second normal (N1 and

N2), the first and second hit points (P 1 and P 2), and the reflection

and refraction modeled by our deep network. (b) Illustration of

visual hull (Ñ1, Ñ2) and ground-truth normals (N̂1, N̂2).

Figure 6. We build an efficient cost volume by sampling directions

around visual hull normals according to their error distributions.

Our in-network rendering layer is differentiable and end-to-
end trainable. But instead of just using the rendering loss
as an extra supervision, we compute an error map based on
rendering with the visual hull normals:

Ĩ
r
, Ĩ

t
, M̃

tr = RenderLayer(E, Ñ
1
, Ñ

2), (4)

Ĩ
er = |I − (Ĩr + Ĩ

t)| �M. (5)

This error map is used as an additional input to our normal

reconstruction network, to help it better learn regions where

the visual hull normals Ñ1 and Ñ2 may not be accurate:

N
1
, N

2 = NNet(I, I �M, Ñ
1
, Ñ

2
, Ĩ

er
, M̃

tr) (6)

Cost volume We now propose a cost volume to leverage

the correspondence between the environment map and the

input image. While cost volumes in deep networks have

led to great success for multiview depth reconstruction of

opaque objects, extension to normal reconstruction for trans-

parent objects is non-trivial. The brute-force approach would

be to uniformly sample the 4-dimensional hemisphere of

N1 × N2, then compute the error map for each sampled

normal. However, this will lead to much higher GPU mem-

ory consumption compared to depth reconstruction due to

higher dimensionality of the sampled space. To limit mem-

ory consumption, we sample N1 and N2 in smaller regions

around the initial visual hull normals Ñ1 and Ñ2, as shown

in Figure 6. Formally, let U be the up vector in bottom-to-top

direction of the image plane. We first build a local coordinate

system with respect to Ñ1 and Ñ2:

Z = Ñ i, Y = U − (UT · Ñ i)Ñ i, X = cross(Y, Z), (7)

where Y is normalized and i = 1, 2. Let {θk}
K
k=1, {φk}

K
k=1

be the sampled angles. Then, the sampled normals are:

Ñ i
k = X cosφk sin θk + Y sinφk sin θk + Z cos θk. (8)

We sample the angles {θk}
K
k=1, {φk}

K
k=1 according to the

error distribution of visual hull normals. The angles and

distributions are shown in the supplementary material. Since

we reconstruct N1 and N2 simultaneously, the total number

of configurations of sampled normals is K ×K. Directly

using the K2 sampled normals to build a cost volume is too

expensive, so we use a learnable pooling layer to aggregate

the features from each sampled normal configuration in an

early stage. For each pair of Ñ1
k and Ñ2

k′ , we compute their

total reflection mask M̃ tr
k,k′ and error map Ĩerk,k′ using (4) and

(5), then perform a feature extraction:

F (k, k′) = FNet(Ñ1
k , Ñ

2
k′ , Ĩ

er
k,k′ , M̃

tr
k,k′). (9)

We then compute the weighted sum of feature vectors

F (k, k′) and concatenate them with the feature extracted

from the encoder of NNet for normal reconstruction:

F =

K∑

k

K∑

k′

ω(k, k′)F (k, k′), (10)

where ω(k, k′) are positive coefficients with sum equal to 1,

that are also learned during the training process. The detailed

network structure is shown in Figure 4.

Post processing The network above already yields reason-

able normal reconstruction. It can be further improved by

optimizing the latent vector from the encoder to minimize

the rendering error using the predicted normal N1 and N2:

L
Opt
N = ||(I − (Ir + I

t))�M
tr||22, (11)
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Figure 7. Our method for point cloud reconstruction.

AX1-SX2-L(X3, X4)-RX5 represents a set abstrac-

tion layer with X1 anchor points, X2 sampled points,

2 fully connected layers with X3, X4 feature channels

and sampling radius X5. IY1-L(Y2, Y3) represents

a unit PointNet with Y1 input channels and 2 fully

connected layers with Y2, Y3 feature channels.

where It, It,M
tr are obtained from the rendering layer (3).

For this optimization, we keep the network parameters un-

changed and only update the latent vector. Note that directly

optimizing the predicted normal N1 and N2 without the

deep network does not yield comparable improvements. This

is due to our decoder acting as a regularization that prevents

the reconstructed normal from deviating from the manifold

of natural shapes during the optimization. Similar ideas have

been used for BRDF reconstruction [11].

3.2. Point Cloud Reconstruction

We now reconstruct the transparent shape based on the

predictions of NNet, that is, the normals, total reflection

mask and rendering error. Our idea is to map the predic-

tions from different views to the visual hull geometry. These

predictions are used as input features for a point cloud re-

construction to obtain a full 3D shape. Our point cloud

reconstruction pipeline is illustrated in Figure 7.

Feature mapping We propose three options to map pre-

dictions from different views to the visual hull geometry.

Let {p̃} be the point cloud uniformly sampled from visual

hull surfaces and Sv(p̃, h) be a function that projects the 3D

point p̃ to the 2D image plane of view v and then fetches

the value of a function h defined on image coordinates using

bilinear sampling. Let Vv(p̃) be a binary function that veri-

fies if point p̃ can be observed from view v and Tv(p̃) be a

transformation that maps a 3D point or normal direction in

view v to world coordinates. Let Cv(p̃) be the cosine of the

angle between the ray passing through p̃ and camera center.

The first option is a feature f that averages observations

from different views. For every view v that can see the point

p̃, we project its features to the point and compute a mean:

p̃N1 =
∑

v
Tv(Sv(p̃,N

1

v ))Vv(p̃)
∑

v
Vv(p̃)

, p̃Ier =
∑

v
Sv(p̃,I

er
v )Vv(p̃)

∑
v
Vv(p̃)

,

p̃Mtr =
∑

v
Sv(p̃,M

tr
v )Vv(p̃)

∑
v
Vv(p̃)

, p̃c =
∑

v
Cv(p̃)Vv(p̃)

∑
v
Vv(p̃)

.

We concatenate to get: f = [p̃N1 , p̃Ier , p̃Mtr , p̃c].
Another option is to select a view v∗ with potentially the

most accurate predictions and compute f using the features

from only that view. We consider two view-selection strate-

gies. The first is nearest view selection, in which we simply

select v∗ with the largest Cv(p̃). The other is to choose the

view with the lowest rendering error and no total reflection,

with the algorithm detailed in supplementary material. Note

that although we do not directly map N2 to the visual hull

geometry, it is necessary for computing the rendering error

and thus, needed for our shape reconstruction.

Point cloud refinement We build a network following

PointNet++ [32] to reconstruct the point cloud of the trans-

parent object. The input to the network is the visual hull

point cloud {p̃} and the feature vectors {f}. The outputs are

the normals {N} and the offset of visual hull points {δp̃},

with the final vertex position is computed as p = p̃+ δp̃:

{δp̃}, {N} = PNet({p̃}, {f}). (12)

We tried three loss functions to train our PointNet++. The

first loss function is the nearest L2 loss Lnearest
P . Let p̂ be the

nearest point to p̃ on the surface of ground-truth geometry

and N̂ be its normal. We compute the weighted sum of L2

distance between our predictions p, N and ground truth:

Lnearest
P =

∑
{p},{N}

λ1||p− p̂||22 + λ2||N − N̂ ||22. (13)

The second loss function is a view-dependent L2 loss Lview
P .

Instead of choosing the nearest point from ground-truth ge-

ometry for supervision, we choose the point from the best

view v∗ by projecting its geometry into world coordinates:

p̂v∗ , N̂v∗ =

{
Tv∗ (Sv∗ (p̃,P̂1

v∗
)),Tv∗ (Sv∗ (p̃,N̂1

v∗
)), v∗ �= 0

p̂, N̂ , v∗ = 0.

Then we have

Lview
P =

∑
{p},{N}

λ1||p− p̂v∗ ||22 + λ2||N − N̂v∗ ||22. (14)

The intuition is that since both the feature and ground-truth
geometry are selected from the same view, the network can
potentially learn their correlation more easily. The last loss
function, LCD

P , is based on the Chamfer distance. Let {q} be
the set of points uniformly sampled from the ground-truth
geometry, with normals Nq. Let G(p, {q}) be a function
which finds the nearest point of p in the point set {q} and
function Gn(p, {q}) return the normal of the nearest point.
The Chamfer distance loss is defined as

LCD
P =

∑

{p},{N}

λ1

2
||p−G(p, {q})||+

λ2

2
||N−Gn(p, {q})||+

∑

{q},{Nq}

λ1

2
||q−G(q, {p})||+

λ2

2
||Nq−Gn(q, {p})||. (15)

Figure 8 is a demonstration of the three loss functions. In all

our experiments, we set λ1 = 200 and λ2 = 5.
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Figure 8. A visualization of the loss functions for point cloud

reconstruction. From left to the right are nearest L2 loss Lnearest
P ,

view-dependent L2 loss Lview
P and chamfer distance loss LCD

P .

Our network, shown in Figure 7, makes several improve-

ments over standard PointNet++. First, we replace max-

pooling with average-pooling to favor smooth results. Sec-

ond, we concatenate normals {N} to all skip connections

to learn details. Third, we augment the input feature of set

abstraction layer with the difference of normal directions

between the current and center points. Section 4 and supple-

mentary material show the impact of our design choices.

4. Experiments

Dataset We procedurally generate random scenes follow-

ing [25, 48] rather than use shape repositories [4], to let the

model be category-independent. To remove inner structures

caused by shape intersections and prevent false refractions,

we render 75 depth maps and use PSR [19] to fuse them into

a mesh, with L3 loop subdivision to smooth the surface. We

implement a physically-based GPU renderer using NVIDIA

OptiX [1]. With 1499 HDR environment maps of [12] for

training and 424 for testing, we render 3000 random scenes

for training and 600 for testing. The IoR of all shapes is set

to 1.4723, to match our real objects.

Implementation Details When building the cost volume

for normal reconstruction, we set the number of sampled

angles K to be 4. Increasing the number of sampled angles

will drastically increase the memory consumption and does

not improve the normal accuracy. We sample φ uniformly

from 0 to 2π and sample θ according to the visual hull normal

error. The details are included in the supplementary material.

We use Adam optimizer to train all our networks. The initial

learning rate is set to be 10−4 and we halve the learning rate

every 2 epochs. All networks are trained over 10 epochs.

4.1. Ablation Studies on Synthetic Data

Normal reconstruction The quantitative comparisons of

10 views normal reconstruction are summarized in Table 1.

We report 5 metrics: the median and mean angles of the first

and the second normals (N1, N2), and the mean rendering

error (Ier). We first compare the normal reconstruction of

the basic encoder-decoder structure with (wr) and without

rendering error and total reflection mask as input (basic).

While both networks greatly improve the normal accuracy

vh10 basic wr wr+cv
wr+cv wr+cv

+op var. IoR

N
1 median (◦) 5.5 3.5 3.5 3.4 3.4 3.6

N
1 mean (◦) 7.5 4.9 5.0 4.8 4.7 5.0

N
2 median (◦) 9.2 6.9 6.8 6.6 6.2 7.3

N
2 mean (◦) 11.6 8.8 8.7 8.4 8.1 9.1

Render Err.(10−2) 6.0 4.7 4.6 4.4 2.9 5.5

Table 1. Quantitative comparisons of normal estimation from 10

views. vh10 represents the initial normals reconstructed from 10

views visual hull. wr and basic are our basic encoder-decoder

network with and without rendering error map (Ier) and total re-

flection mask (M tr) as inputs. wr+cv represents our network with

cost volume. wr+cv+op represents the predictions after optimizing

the latent vector to minimize the rendering error. wr+cv var. IoR

represents sensitivity analysis for IoR, explained in text.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)

vh10 5.14 7.19 4.90 15.2

RE-Lnearest
P 2.17 6.23 4.50 7.07

RE-Lview
P 2.15 6.51 4.76 6.79

RE-LCD
P 2.00 6.02 4.38 5.98

NE-LCD
P 2.04 6.10 4.46 6.02

AV-LCD
P 2.03 6.08 4.46 6.09

RE-LCD
P , var. IoR 2.13 6.24 4.56 6.11

PSR 5.13 6.94 4.75 14.7

Table 2. Quantitative comparisons of point cloud reconstruction

from 10 views. RE, NE and AV represent feature mapping methods:

rendering error based view selection, nearest view selection and

average fusion, respectively. Lnearest
P , Lview

P and LCD
P are the loss

functions defined in Sec. 3. RE-LCD
P , var. IoR represents sensitivity

analysis for IoR, as described in text. PSR represents optimization

[19] to refine the point cloud based on predicted normals.

compared to visual hull normals (vh10), adding rendering

error and total reflection mask as inputs can help achieve

overall slightly better performances. Next we test the effec-

tiveness of the cost volume (wr+cv). Quantitative numbers

show that adding cost volume achieves better results, which

coincides with our intuition that finding the correspondences

between input image and the environment map can help our

normal prediction. Finally we optimize the latent vector from

the encoder by minimizing the rendering error (wr+cv+op).

It significantly reduces the rendering error and also improves

the normal accuracy. Such improvements cannot be achieved

by directly optimizing the normal predictions N1 and N2

in the pixel space. Figure 9 presents normal reconstruction

results from our synthetic dataset. Our normal reconstruction

pipeline obtains results of much higher quality compared

with visual hull method. Ablation studies of 5 views and 20

views normal reconstruction and the optimization of latent

vector are included in the supplementary material.

Point cloud reconstruction Quantitative comparisons of

the 10-view point cloud reconstruction network are summa-
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Figure 9. An example of 10 views normal reconstruction from our synthetic dataset. The region of total reflection has been masked out in the

rendered images.

Figure 10. Our transparent shape reconstruction results from 5 views, 10 views and 20 views from our synthetic dataset. The images rendered

with our reconstructed shapes are much closer to the ground-truth compared with images rendered with the visual hull shapes. The inset

normals are rendered from the reconstructed shapes.

CD(10−4) CDN-mean(◦) CDN-med(◦) Metro(10−3)

vh5 31.7 13.1 10.3 66.6

Rec5 6.30 11.0 8.7 15.2

vh20 2.23 4.59 2.71 6.83

Rec20 1.20 4.04 2.73 4.18

Table 3. Quantitative comparisons of point cloud reconstruction

from 5 views and 20 views. In both cases, our pipeline significantly

improves the transparent shape reconstruction accuracy compared

with classical visual hull method.

rized in Table 2. After obtaining the point and normal predic-

tions {p} and {N}, we reconstruct 3D meshes as described

above. We compute the Chamfer distance (CD), Chamfer

normal median angle (CDN-med), Chamfer normal mean

angle (CDN-mean) and Metro distance by uniformly sam-

pling 20000 points on the ground-truth and reconstructed

meshes. We first compare the effectiveness of different loss

functions. We observe that while all the three loss functions

can greatly improve the reconstruction accuracy compared

with the initial 10-view visual hull, the Chamfer distance loss

(RE-LCD
P ) performs significantly better than view-dependent

loss (RE-Lview
P ) and nearest L2 loss (RE-Lnearest

P ). Next, we

test different feature mapping strategies, where the rendering

error based view selection method (RE-LCD
P ) performs con-

sistently better than the other two methods. This is because

our rendering error can be used as a meaningful metric to

predict normal reconstruction accuracy, which leads to better

point cloud reconstruction. Ablation studies for the modified

PointNet++ are included in supplementary material.

The last row of Table 2 shows that an optimization-based

method like PSR [19] to refine shape from predicted normals

does not lead to much improvement, possibly since visual

hull shapes are still significantly far from ground truth. In

contrast, our network allows large improvements.

Different number of views We also test the entire recon-

struction pipeline for 5 and 20 views, with results summa-

rized in Table 3. We use the setting that leads to the best

performance for 10 views, that is, wr + cv + op for nor-

mal reconstruction and RE-LCD
P for point cloud reconstruc-

tion, achieving significantly lower errors than the visual hull

method. Figure 10 shows an example from the synthetic test

set for reconstructions with different number of views. Fur-

ther results and comparisons are in supplementary material.

Sensitivity analysis for IoR We also evaluate the model

on another test set with the same geometries, but unknown

IoRs sampled uniformly from the range [1.3, 1.7]. As shown

in Tables 1 and 2, errors increase slightly but stay reasonable,

showing that our model can tolerate inaccurate IoRs to some

extent. Detailed analysis is in the supplementary material.

4.2. Results on Real Transparent Objects

We acquire RGB images using a mobile phone. To cap-

ture the environment map, we take several images of a mirror

sphere at the same location as the transparent shape. We use

COLMAP [36] to obtain the camera poses and manually

create the segmentation masks.

Normal reconstruction We first demonstrate the normal

reconstruction results on real transparent objects in Figure 11.

Our model significantly improves visual hull normal quality.

The images rendered from our predicted normals are much

more similar to the input RGB images compared to those

rendered from visual hull normals.

3D shape reconstruction In Figure 12, we demonstrate

our 3D shape reconstruction results on real world transparent

objects under natural environment map. The dog shape in

the first row only takes 5 views and the mouse shape in

the second row takes 10 views. We first demonstrate the

reconstructed shape from the same view as the input images

by rendering them under different lighting and materials.

Even with very limited inputs, our reconstructed shapes

are still of high quality. To test the generalizability of our

predicted shapes, we render them from novel views that have

not been used as inputs and the results are still reasonable.

Figure 13 compares our reconstruction results with the visual
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Figure 11. Normal reconstruction of real transparent objects and the rendered images. The initial visual hull normals are built from 10 views.

The region of total reflection has been masked out in the rendered images.

Figure 12. 3D shape reconstruction on real data. Columns 1-6 show reconstruction results from 2 known view directions. For each view, we

show the input image and the reconstructed shape rendered from the same view under different lighting and materials. Columns 7-8 render

the reconstructed shape from a novel view direction that has not been used to build the visual hull. The first shape is reconstructed using only

5 views (top row) while the second uses 10 views (bottom row). Also see comparisons to ground truth scans in supplementary material.

Figure 13. Comparison between visual hull initialization and our

shape reconstruction on real objects. Our method recovers more

details, especially for concave regions.

hull initialization. We observe that our method performs

much better, especially for concave regions. Comparisons

with scanned ground truth are in supplementary material.

Runtime Our method requires around 46s to reconstruct a

transparent shape from 10 views on a 2080 Ti, compared to

5-6 hours for previous optimization-based methods [46].

5. Discussion
We present the first physically-based deep network to

reconstruct transparent shapes from a small number of views

captured under arbitrary environment maps. Our network

models the properties of refractions and reflections through

a physically-based rendering layer and cost volume, to esti-

mate surface normals at both the front and back of the object,

which are used to guide a point cloud reconstruction. Exten-

sive experiments on real and synthetic data demonstrate that

our method can recover high quality 3D shapes.

Limitations and future work Our limitations suggest in-

teresting future avenues of research. A learnable multiview

fusion might replace the visual hull initialization. We be-

lieve more complex light paths of length greater than 3 may

be handled by differentiable path tracing along the lines of

differentiable rendering [24, 53]. While we assume a known

refractive index, it may be jointly regressed. Finally, since

we reconstruct N2, future works may also estimate the back

surface to achieve single-view 3D reconstruction.
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