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Abstract

We present Uncertainty-aware Cascaded Stereo Network
(UCS-Net) for 3D reconstruction from multiple RGB im-
ages. Multi-view stereo (MVS) aims to reconstruct fine-
grained scene geometry from multi-view images. Previous
learning-based MV'S methods estimate per-view depth using
plane sweep volumes (PSVs) with a fixed depth hypothesis
at each plane; this requires densely sampled planes for high
accuracy, which is impractical for high-resolution depth be-
cause of limited memory. In contrast, we propose adaptive
thin volumes (ATVs); in an ATV, the depth hypothesis of
each plane is spatially varying, which adapts to the uncer-
tainties of previous per-pixel depth predictions. Our UCS-
Net has three stages: the first stage processes a small PSV to
predict low-resolution depth; two ATVs are then used in the
following stages to refine the depth with higher resolution
and higher accuracy. Our ATV consists of only a small num-
ber of planes with low memory and computation costs; yet,
it efficiently partitions local depth ranges within learned
small uncertainty intervals. We propose to use variance-
based uncertainty estimates to adaptively construct ATVs;
this differentiable process leads to reasonable and fine-
grained spatial partitioning. Our multi-stage framework
progressively sub-divides the vast scene space with increas-
ing depth resolution and precision, which enables recon-
struction with high completeness and accuracy in a coarse-
to-fine fashion. We demonstrate that our method achieves
superior performance compared with other learning-based
MVS methods on various challenging datasets.

1. Introduction

Inferring 3D scene geometry from captured images is a
core problem in computer vision and graphics with appli-
cations in 3D visualization, scene understanding, robotics
and autonomous driving. Multi-view stereo (MVS) aims to
reconstruct dense 3D representations from multiple images
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Figure 1: Our UCS-Net leverages adaptive thin volumes
(ATVs) to progressively reconstruct a highly accurate high-
resolution depth map through multiple stages. We show the
input RGB image, depth predictions with increasing sizes
from three stages, and our final point cloud reconstruction
obtained by fusing multiple depth maps. We also illustrate
a local slice (red) from our depth prediction with the cor-
responding ATV boundaries that reflect pixel-wise uncer-
tainty intervals. Our ATVs become thinner after a stage with
reduced uncertainty, which enables higher accuracy.

with calibrated cameras. Inspired by the success of deep
convolutional neural networks (CNN), several learning-
based MVS methods have been presented [23, 27, 54, 20,
47]; the most recent work leverages cost volumes in a learn-
ing pipeline [58, 21], and outperforms many traditional
MVS methods [13].

At the core of the recent success on MVS [58, 21] is
the application of 3D CNNs on plane sweep cost volumes
to effectively infer multi-view correspondence. However,
such 3D CNNs involve massive memory usage for depth
estimation with high accuracy and completeness. In par-
ticular, for a large scene, high accuracy requires sampling
a large number of sweeping planes and high completeness
requires reconstructing high-resolution depth maps. In gen-
eral, given limited memory, there is an undesired trade-off
between accuracy (more planes) and completeness (more
pixels) in previous work [58, 21].
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Our goal is to achieve highly accurate and highly com-
plete reconstruction with low memory and computation
consumption at the same time. To do so, we propose a novel
learning-based uncertainty-aware multi-view stereo frame-
work, which utilizes multiple small volumes, instead of a
large standard plane sweep volume, to progressively regress
high-quality depth in a coarse-to-fine fashion. A key in
our method is that we propose novel adaptive thin volumes
(ATVs, see Fig. 1) to achieve efficient spatial partitioning.

Specifically, we propose a novel cascaded network with
three stages (see Fig. 2): each stage of the cascade predicts
a depth map with a different size; each following stage con-
structs an ATV to refine the predicted depth from the previ-
ous stage with higher pixel resolution and finer depth par-
titioning. The first stage uses a small standard plane sweep
volume with low image resolution and relatively sparse
depth planes — 64 planes that are fewer than the number of
planes (256 or 512) in previous work [58, 59]; the following
two stages use ATVs with higher image resolutions and sig-
nificantly fewer depth planes — only 32 and 8 planes. While
consisting of a very small number of planes, our ATVs are
constructed within learned local depth ranges, which en-
ables efficient and fine-grained spatial partitioning for ac-
curate and complete depth reconstruction.

This is made possible by the novel uncertainty-aware
construction of an ATV. In particular, we leverage the vari-
ances of the predicted per-pixel depth probabilities, and in-
fer the uncertainty intervals (as shown in Fig. 1) by calcu-
lating variance-based confidence intervals of the per-pixel
probability distributions for the ATV construction. Specif-
ically, we apply the previously predicted depth map as a
central curved plane, and construct an ATV around the cen-
tral plane within local per-pixel uncertainty intervals. In
this way, we explicitly express the uncertainty of the depth
prediction at one stage, and embed this knowledge into the
input volume for the next stage.

Our variance-based uncertainty estimation is differen-
tiable and we train our UCSNet from end to end with depth
supervision for the predicted depths from all three stages.
Our network can thus learn to optimize the estimated un-
certainty intervals, to make sure that an ATV is constructed
with proper depth coverage that is both large enough — to
try to cover ground truth depth — and small enough — to en-
able accurate reconstruction for the following stages. Over-
all, our multi-stage framework can progressively sub-divide
the local space at a finer scale in a reasonable way, which
leads to high-quality depth reconstruction. We demonstrate
that our novel UCS-Net outperforms the state-of-the-art
learning-based MVS methods on various datasets.

2. Related Work

Multi-view stereo is a long-studied vision problem with
many traditional approaches [44, 39, 33, 32, 26, 10, 8, 13,

43]. Our learning-based framework leverages the novel spa-
tial representation, ATV to reconstruct high-quality depth
for fine-grain scene reconstruction. In this work, we mainly
discuss spatial representation for 3D reconstruction and
deep learning based multi-view stereo.

Spatial Representation for 3D Reconstruction. Exist-
ing methods can be categorized based on learned 3D rep-
resentations. Volumetric based approaches partition the
space into a regular 3D volume with millions of small vox-
els [23, 27, 54, 55, 60, 40], and the network predicts if
a voxel is on the surface or not. Ray tracing can be in-
corporated into this voxelized structure [49, 38, 50]. The
main drawback of these methods is computation and mem-
ory inefficiency, given that most voxels are not on the sur-
face. Researchers have also tried to reconstruct point clouds
[22, 13, 35, 52, 36, 2], however the high dimensional-
ity of a point cloud often results in noisy outliers since
a point cloud does not efficiently encode connectivity be-
tween points. Some recent works utilize single or multi-
ple images to reconstruct a point cloud given strong shape
priors [11, 22, 36], which cannot be directly extended to
large-scale scene reconstruction. Recent work also tried to
directly reconstruct surface meshes [34, 25, 53, 19, 46, 28],
deformable shapes [24, 25], and some learned implicit dis-
tance functions [7, 41, 37, 6]. These reconstructed surfaces
often look smoother than point-cloud-based approaches, but
often lack high-frequency details. A depth map repre-
sents dense 3D information that is perfectly aligned with
a reference view; depth reconstruction has been demon-
strated in many previous works on reconstruction with
both single view [9, 51, 16, 17, 62] and multiple views
[4, 48, 18, 14, 43, 57, 43]. Some of them leverage nor-
mal information as well [14, 15]. In this paper, we present
ATV, a novel spatial representation for depth estimation; we
use two AT Vs to progressively partition local space, which
is the key to achieve coarse-to-fine reconstruction.

Deep Multi-View Stereo (MVS). The traditional MVS
pipeline mainly relies on photo-consistency constraints to
infer the underlying 3D geometry, but usually performs
poorly on texture-less or occluded areas, or under complex
lighting environments. To overcome such limitations, many
deep learning-based MVS methods have emerged in the last
two years, including regression-based approaches [58, 21],
classification-based approaches [20] and approaches based
on recurrent- or iterative- style architectures [59, 61, 5]
and many other approaches [30, 38, 3, 45]. Most of these
methods build a single cost volume with uniformly sampled
depth hypotheses by projecting 2D image features into 3D
space, and then use a stack of either 2D or 3D CNNss to infer
the final depth [58, 12, 56]. However, a single cost volume
often requires a large number of depth planes to achieve
enough reconstruction accuracy, and it is difficult to recon-
struct high-resolution depth, limited by the memory bottle-
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Figure 2: Overview of our UCS-Net. Our UCS-Net leverages multi-scale cost volumes to achieve coarse-to-fine depth
prediction with three cascade stages. The cost volumes are constructed using multi-scale deep image features from a multi-
scale feature extractor. The last two stages utilize the uncertainty of the previous depth prediction to build adaptive thin
volumes (ATVs) for depth reconstruction at a finer scale. We mark different parts of the network in different colors. Please
refer to Sec 3 and the corresponding subsections for more details.

neck. R-MVSNet [59] leverages recurrent networks to se-
quentially build a cost volume with a high depth-wise sam-
pling rate (512 planes). In contrast, we apply an adaptive
sampling strategy with ATVs, which enables more efficient
spatial partitioning with a higher depth-wise sampling rate
using fewer depth planes (104 planes in total, see Tab. 3),
and our method achieves significantly better reconstruction
than R-MVSNet (see Tab. 1 and Tab. 2). On the other
hand, Point-MVSNet [5] densifies a coarse reconstruction
within a predefined local spatial range for better reconstruc-
tion with learning-based refinement. We propose to refine
depth in a learned local space with adaptive thin volumes to
obtain accurate high-resolution depth, which leads to better
reconstruction than Point-MVSNet and other state-of-the-
art methods (see Tab. 1 and Tab. 2).

3. Method

Some recent works aim to improve learning-based MVS
methods. Recurrent networks [59] have been utilized to
achieve fine depth-wise partitioning for high accuracy; a
PointNet-based method [5] is also presented to densify the
reconstruction for high completeness. Our goal is to recon-
struct high-quality 3D geometry with both high accuracy
and high completeness. To this end, we propose a novel
uncertainty-aware cascaded network (UCS-Net) to recon-
struct highly accurate per-view depth with high resolution.

Given a reference image Iy and N — 1 source im-
ages {I,}I¥,, our UCS-Net progressively regresses a fine-
grained depth map at the same resolution as the refer-

ence image. We show the architecture of the UCS-Net in
Fig. 2. Our UCS-Net first leverages a 2D CNN to ex-
tract multi-scale deep image features at three resolutions
(Sec. 3.1). Our depth prediction is achieved through three
stages, which leverage multi-scale image features to predict
multi-resolution depth maps. In these stages, we construct
multi-scale cost volumes (Sec. 3.2), where each volume is a
plane sweep volume or an adaptive thin volume (ATV). We
then apply 3D CNNs to process the cost volumes to pre-
dict per-pixel depth probability distributions, and a depth
map is reconstructed from the expectations of the distribu-
tions (Sec. 3.3). To achieve efficient spatial partitioning, we
utilize the uncertainty of the depth prediction to construct
ATVs as cost volumes for the last two stages (Sec. 3.4).
Our multi-stage network effectively reconstructs depth in a
coarse-to-fine fashion (Sec. 3.5).

3.1. Multi-scale feature extractor

Previous methods use downsampling layers [58, 59] or
a UNet [56] to extract deep features and build a plane
sweep volume at a single resolution. To reconstruct high-
resolution depth, we introduce a multi-scale feature extrac-
tor, which enables constructing multiple cost volumes at
different scales for multi-resolution depth prediction. As
schematically shown in Fig. 2, our feature extractor is a
small 2D UNet [42], which has an encoder and a decoder
with skip connections. The encoder consists of a set of con-
volutional layers followed by BN (batch normalization) and
ReLu activation layers; we use stride = 2 convolutions to
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downsample the original image size twice. The decoder
upsamples the feature maps, convolves the upsampled fea-
tures and the concatenated features from skip links, and
also applies BN and Relu layers. Given each input image
I,, the feature extractor provides three scale feature maps,
F; 1, Fi o, Fj3, from the decoder for the following cost
volume construction. We represent the original image size
as W x H, where W and H denote the image width and
height; correspondingly, 7 1, F; 2 and F; 3 have resolutions
of % X %, % X % and W x H, and their numbers of chan-
nels are 32, 16 and 8 respectively. Our multi-scale feature
extractor allows for the high-resolution features to properly
incorporate the information at lower resolutions through the
learned upsampling process; thus in the multi-stage depth
prediction, each stage is aware of the meaningful feature
knowledge used in previous stages, which leads to reason-

able high-frequency feature extraction.

3.2. Cost volume construction

We construct multiple cost volumes at multiple scales by
warping the extracted feature maps, I 1, Fj 2, F; 3 from
source views to a reference view. Similar to previous work,
this process is achieved through differentiable unprojection
and projection. In particular, given camera intrinsic and ex-
trinsic matrices { K, T; } for each view i, the 4 x 4 warping
matrix at depth d at the reference view is given by:

Hi(d) = K;T,T7 KL (1)

In particular, when warping to a pixel in the reference image
I; at location (x,y) and depth d, H;(d) multiplies the ho-
mogeneous vector (zd, yd,d, 1) to finds its corresponding
pixel location in each I; in homogeneous coordinates.
Each cost volume consists of multiple planes; we use
L. ; to denote the depth hypothesis of the jth plane at the
kth stage, and Ly, j(x) represents its value at pixel z. At
stage k, once we warp per-view feature maps F; j at all
depth planes with corresponding hypotheses Ly, ;, we cal-
culate the variance of the warped feature maps across views
at each plane to construct a cost volume. We use Dy, to rep-
resent the number of planes for stage k. For the first stage,
we build a standard plane sweep volume, whose depth hy-
potheses are of constant values, i.e. Ly (xz) = d;. We
uniformly sample {d; }f:ll from a pre-defined depth inter-
val [dyin, dmaz] to construct the volume, in which each
plane is constructed using H;(d;) to warp multi-view im-
ages. For the second and third stages, we build novel adap-
tive thin volumes, whose depth hypotheses have spatially-
varying depth values according to pixel-wise uncertainty es-
timates of the previous depth prediction. In this case, we
calculate per-pixel per-plane warping matrices by setting
d = L j(z) in Eqn. 1 to warp images and construct cost
volumes. Please refer to Sec. 3.4 for uncertainty estimation.

3.3. Depth prediction and probability distribution

At each stage, we apply a 3D CNN to process the cost
volume, infer multi-view correspondence and predict depth
probability distributions. In particular, we use a 3D UNet
similar to [58], which has multiple downsampling and up-
sampling 3D convolutional layers to reason about scene ge-
ometry at multiple scales. We apply depth-wise softmax at
the end of the 3D CNNs to predict per-pixel depth proba-
bilities. Our three stages use the same network architecture
without sharing weights, so that each stage learns to process
its information at a different scale. Please refer to the sup-
plemental material for details of our 3D CNN architecture.

The 3D CNN at each stage predicts a depth probability
volume that consists of D}, depth probability maps Py, ; as-
sociated with the depth hypotheses Ly ;. P ; expresses
per-pixel depth probability distributions, where Py ;(z)
represents how probable the depth at pixel z is Ly, ;(z). A
depth map L; at stage k is reconstructed by weighted sum:

Li(z) =Y Ly j(z) - Py j(x). )

j=1
3.4. Uncertainty estimation and ATV

The key for our framework is to progressively sub-
partition the local space and refine the depth prediction with
increasing resolution and accuracy. To do so, we construct
novel ATVs for the last two stages, which have curved
sweeping planes with spatially-varying depth hypotheses
(as illustrated in Fig. | and Fig. 2), based on uncertainty
inference of the predicted depth in its previous stage.

Given a set of depth probability maps, previous work
only utilizes the expectation of the per-pixel distributions
(using Eqn. (2)) to determine an estimated depth map. For
the first time, we leverage the variance of the distribution for
uncertainty estimation, and construct ATV using the uncer-
tainty. In particular, the variance Vk(x) of the probability
distribution at pixel = and stage k is calculated as:

Vi) =) Pry() - (Liy(z) - Li(2))?, O

Jj=1

and the corresponding standard deviation is 6 (x) = \/\AT;c .
Given the depth prediction Ly (z) and its variance 6, (x:)>
at pixel x, we propose to use a variance-based confidence
interval to measure the uncertainty of the prediction:

Ci(z) = [Li(x) = Adn(x), Li(z) + Aon(2)], @)

where )\ is a scalar parameter that determines how large
the confidence interval is. For each pixel =, we uniformly
sample Dy depth values from Cy(z) of the kth stage, to
get its depth values Ly 11(2), Lyg1,2(2),...Lkg 1,0, ()
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Figure 3: We illustrate detailed depth and uncertainty es-
timation of two examples. On the top, we show the RGB
image crops, predicted depth and ground truth depth. On
the bottom, we show the details of of two pixels (red points
in the images) with predicted depth probabilities (connected
blue dots) , depth prediction (red dash line), the ground truth
depth (black dash line) and uncertainty intervals (purple) in
the three stages.

of the depth planes for stage (k + 1). In this way, we
construct Dy spatially-varying depth hypotheses Ly 11 ;,
which form the ATV for stage (k + 1).

The estimated Cy(x) expresses the uncertainty inter-
val of the prediction Ly (), which determines the physi-
cal thickness of an ATV at each pixel. In Fig. 3, we show
two actual examples with two pixels and their estimated un-
certainty intervals Cy(z) around the predictions (red dash
line). The Cy, essentially depicts a probabilistic local space
around the ground truth surface, and the ground truth depth
is located in the uncertainty interval with a very high con-
fidence. Note that, our variance-based uncertainty estima-
tion is differentiable, which enables our UCS-Net to learn
to adjust the probability prediction at each stage to achieve
optimized intervals and corresponding ATVs for follow-
ing stages in an end-to-end training process. As a result,
the spatially varying depth hypotheses in ATVs naturally
adapt to the uncertainty of depth predictions, which leads to
highly efficient spatial partitioning.

3.5. Coarse-to-fine prediction

Our UCS-Net leverages three stages to reconstruct depth
at multiple scales from coarse to fine, which generally sup-
ports different numbers (Dj) of planes in each stage. In
practice, we use D1 = 64, Dy = 32 and D3 = 8 to
construct a plane sweep volume and two ATVs with sizes
of Wx 64, W xd x32and Hx W x 8 to es-
timate depth at corresponding resolutions. While our two
ATVs have small numbers (32 and 8) of depth planes, they
in fact partition local depth ranges at finer scales than the
first stage volume; this is achieved by our novel uncertainty-
aware volume construction process which adaptively con-
trols local depth intervals. This efficient usage of a small

Method | Acc. Comp. Overall
Camp [4] | 0.835 0.554 0.695
Furu [13] | 0.613 0.941 0.777
Tola [48] | 0.342 1.190 0.766
Gipuma [14] | 0.283 0.873 0.578
SurfaceNet [46] | 0.450 1.040 0.745
MVSNet [58] | 0.396 0.527 0.462
R-MVSNet [59] | 0.383 0.452 0.417
Point-MVSNet [5] | 0.342 0411 0.376
Our Ist stage | 0.548 0.529 0.539
Our 2nd stage | 0.401 0.397 0.399
Our full model | 0.338 0.349 0.344

Table 1: Quantitative results of accuracy, completeness and
overall on the DTU testing set. Numbers represent distances
in millimeters and smaller means better.

number of depth planes enables the last two stages to deal
with higher pixel-wise resolutions given the limited mem-
ory, which makes fine-grained depth reconstruction possi-
ble. Our novel ATV effectively expresses the locality and
uncertainty in the depth prediction, which enables state-of-
the-art depth reconstruction results with high accuracy and
high completeness through a coarse-to-fine framework.

3.6. Training details

Training set. We train our network on the DTU dataset [1].
We split the dataset into training, validate and testing set,
and create ground truth depth similar to [58]. In particular,
we apply Poisson reconstruction [29] on the point clouds
in DTU, and render the surface at the captured views with
three resolutions, - x £, W x X and the original W x H.
In particular, we use W x H = 640 x 512 for training.
Loss function. Our UCS-Net predicts depth at three resolu-
tions; we apply L1 loss on depth prediction at each resolu-
tion with the rendered ground truth at the same resolution.
Our final loss is the combination of the three L1 losses.
Training policy. We train our full three-stage network from
end to end for 60 epochs. We use Adam optimizer with
an initial learning rate of 0.0016. We use 8 NVIDIA GTX
1080Ti GPUs to train the network with a batch size of 16
(mini-batch size of 2 per GPU).

4. Experiments

We now evaluate our UCS-Net. We do benchmarking on
the DTU and Tanks and Temple datasets. We then justify
the effectiveness of the designs of our network, in terms of
uncertainty estimation and multi-stage prediction.

Evaluation on the DTU dataset [1]. We evaluate our
method on the DTU testing set. To reconstruct the final
point cloud, we follow [14] to fuse the depth from mul-
tiple views; we use this fusion method for all our exper-
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Method | Mean Family  Francis Horse Lighthouse M60 Panther  Playground Train

MVSNet[58] | 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69
R-MVSNet[59] | 48.40 69.96 46.65 32.59 42.95 51.88 48.80 52.00 42.38
Dense-R-MVSNet[59] | 50.55 73.01 54.46 43.42 43.88 46.80 46.69 50.87 45.25
Point-MVSNet[5] | 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06

Our full model | 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89

Table 2: Quantitative results of F-scores (higher means better) on Tanks and Temples.

Ground truth

Our result

RfTVSN,e»;t : obtained without losing accuracy; our accuracy is also sig-

Figure 4: Comparisons with R-MVSNet on an example in
the DTU dataset. We show rendered images of the point
clouds of our method, R-MVSNet and the ground truth.
In this example, the ground truth from scanning is incom-
plete. We also show insets for detailed comparisons marked
as a blue box in the ground truth. Note that our result is
smoother and has fewer outliers than R-MVSNet’s result.

iments. For fair comparisons, we use the same view se-
lection, image size and initial depth range as in [58] with
N =5 W = 1600, H = 1184, dpin = 425mm and
dmax = 933.8mm; similar settings are also used in other
learning-based MVS methods [5, 59]. We use a NVIDIA
GTX 1080 Ti GPU to run the evaluation.

We compare the accuracy and the completeness of the
final reconstructions using the distance metric in [1]. We
compare against both traditional methods and learning-
based methods, and the average quantitative results are
shown in Tab. 1. While Gipuma [14] (a traditional method)
achieves the best accuracy among all methods, our method
has significantly better completeness and overall scores.
Besides, our method outperforms all state-of-the-art base-
line methods in terms of both accuracy and completeness.
Note that with the same input, MVSNet and R-MVSNet
predict depth maps with a size of only % X %; our final
depth maps are estimated at the original image size, which
are of much higher resolution and lead to significantly bet-
ter completeness. Meanwhile, such high completeness is

nificantly better thanks to our uncertainty-aware progressive
reconstruction. Point-MVSNet [5] densifies low-resolution
depth within a predefined local depth range, which also re-
constructs depth at the original image resolution; in con-
trast, our UCS-Net leverages learned adaptive local depth
ranges and achieves better accuracy and completeness.

We also show results from our intermediate low-
resolution depth of the first and the second stages in Tab. 1.
Note that, because of sparser depth planes, our first-stage
results (64 planes) are worse than MVSNet (256 planes)
and R-MVSNet (512 planes) that reconstruct depth at the
same low resolution. Nevertheless, our novel uncertainty-
aware network introduces highly efficient spatial partition-
ing with ATVs in the following stages, so that our inter-
mediate second-stage reconstruction is already much better
than the two previous methods, and our third stage further
improves the quality and achieves the best reconstruction.

We show qualitative comparisons between our method
and R-MVSNet [59] in Fig. 4, in which we use the released
point cloud reconstruction on R-MVSNet’s website for the
comparison. While both methods achieve comparable com-
pleteness in this example, it is very hard for R-MVSNet to
achieve high accuracy at the same time, which introduces
obvious outliers and noise on the surface. In contrast, our
method is able to obtain high completeness and high ac-
curacy simultaneously as reflected by the smooth complete
geometry in the image.

Evaluation on Tanks and Temple dataset [31]. We now
evaluate the generalization of our model by testing our net-
work trained with the DTU dataset on complex outdoor
scenes in the Tanks and Temple intermediate dataset. We
use N = 5and W x H = 1920 x 1056 for this exper-
iment. Our method outperforms most published methods,
and to the best of our knowledge, when comparing with
all published learning-based methods, we achieve the best
average F-score (54.83) as shown in Tab. 2. In particu-
lar, our method obtains higher F-scores than MVSNet [58]
and Point-MVSNet [5] in all nine testing scenes. Dense-R-
MVSNet leverages a well-designed post-processing method
and achieves slightly better performance than ours on two
of the scenes, whereas our work is focused on high-quality
per-view depth reconstruction, and we use a traditional fu-
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Ratio Interval Dy, Unit
PSV | 100% 508.8mm 64 7.95mm
Ist ATV | 94.72%  13.88mm 32 0.43mm
2st ATV | 85.22%  3.83mm 8 0.48mm

Table 3: Evaluation of uncertainty estimation. The PSV
is the first-stage plane sweep volume; the 1st ATV is con-
structed after the first stage and used in the second stage;
the 2nd ATV is used in the third stage. We show the per-
centages of uncertainty intervals that cover the ground truth
depth. We also show the average length of the intervals, the
number of depth planes and the unit sampling distance.

sion technique for post-processing. Nonetheless, thanks to
our high-quality depth, our method still outperforms Dense-
R-MVSNet on most of the testing scenes and achieves the
best overall performance.

Evaluation of uncertainty estimation. One key design of
our UCS-Net is leveraging differentiable uncertainty esti-
mation for the ATV construction. We now evaluate our un-
certainty estimation on the DTU validate set. In Tab. 3, we
show the average length of our estimated uncertainty inter-
vals, the corresponding average sampling distances between
planes, and the ratio of the pixels whose estimated uncer-
tainty intervals cover the ground truth depth in the ATVs;
we also show the corresponding values of the standard plane
sweep volume (PSV) used in the first stage, which has an
interval length of dp.x — dmin = 508.8mm and covers the
ground truth depth with certainty.

We can see that our method is able to construct efficient
ATVs that cover very local depth ranges. The first ATV sig-
nificantly reduces the initial depth range from 508.8mm to
only 13.88mm in average, and the second ATV further re-
duces it to only 3.83mm. Our ATV enables efficient depth
sampling in an adaptive way, and obtains about 0.48mm
sampling distance with only 32 or 8 depth planes. Note
that, MVSNet and R-MVSNet sample the same large depth
range (508.8mm) in a uniform way with a large number of
planes (256 and 512); yet, the uniform sampling merely
obtains volumes with sampling distances of 1.99mm and
0.99mm along depth. In contrast, our UCS-Net achieves a
higher actual depth-wise sampling rate with a small number
of planes; this allows for the focus of the cost volumes to
be changed from sampling the depth to sampling the image
plane with dense pixels in ATVs given the limited memory,
which enables high-resolution depth reconstruction.

Besides, our adaptive thin volumes achieve high ratios
(94.72% and 85.22%) of covering the ground truth depth in
the validate set, as shown in Tab. 3; this justifies that our
estimated uncertainty intervals are of high confidence. Our
variance-based uncertainty estimation is equivalent to ap-

Stage Scale Size Acc. Comp. Overall
1 x1 400x296 0.548 0.529 0.539
1 X2 800x592 0.411 0.535 0.473
2 x1 800x592 0.401 0.397 0.399
2 X2 1600x1184 0.342 0.386 0.364
3 x1 1600x1184 0.338 0.349 0.344

Table 4: Ablation study on the DTU testing set with differ-
ent stages and upsampling scales (a scale of 1 represents the
original result at the stage). The quantitative results repre-
sent average distances in mm (lower is better).

proximating a depth probability distribution as a Gaussian
distribution and then computing its confidence interval with
a specified scale on its standard deviation as in Eqn. 4.

We note that our variance-based uncertainty estimation
is not only valid for single-mode Gaussian-like distributions
as in Fig. 3.a, but also valid for many multi-mode cases as
in Fig. 3.b, which shows a challenging example near object
boundary. In Fig. 3.b, the predicted first-stage depth distri-
bution has multiple modes; yet, it correspondingly has large
variance and a large enough uncertainty interval. Our net-
work predicts reasonable uncertainty intervals that are able
to cover the ground truth depth in most cases, which al-
lows for increasingly accurate reconstruction in the follow-
ing stages at finer local spatial scales. This is made possible
by the differentiable uncertainty estimation and the end-to-
end training process, from which the network learns to con-
trol per-stage probability estimation to obtain proper uncer-
tainty intervals for ATV construction. Because of this, we
observe that our network is not very sensitive to different \,
and learns to predict similar uncertainty. Our uncertainty-
aware volume construction process enables highly efficient
spatial partitioning, which further allows for the final recon-
struction to be of high accuracy and high completeness.

Evaluation of multi-stage depth prediction. We have
quantitatively demonstrated that our multi-stage framework
reconstructs scene geometry with increasing accuracy and
completeness in every stage (see Fig. 1). We now further
evaluate our network and do ablation studies about different
stages on the DTU testing set with detailed quantitative and
qualitative comparisons. We compare with naive upsam-
pling to justify the effectiveness of our uncertainty-aware
coarse-to-fine framework. In particular, we compare the re-
sults from our full model and the results from the first two
stages with naive bilinear upsampling using a scale of 2 (for
both height and width) in Tab. 4. We can see that upsam-
pling does improve the reconstruction, which benefits from
denser geometry and using our high-quality low-resolution
results as input. However, the improvement made by naive
upsampling is very limited, which is much lower than our
improvement from our AT V-based upsampling. Our UCS-
Net makes use of the ATV — a learned local spatial repre-
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Our first stage Our second stage

Our full model Ground truth

Figure 5: Qualitative comparisons between multi-stage point clouds and the ground truth point cloud on a scene in the DTU
validate set. We show zoom-out (top) and zoom-in (bottom) rendered point clouds; the corresponding zoom-in region is
marked in the ground truth as a green box. Our UCS-Net achieves increasingly dense and accurate reconstruction through
the multiple stages. Note that, the ground truth point cloud is obtained by scanning, which is even of lower quality than our

reconstructions in this example.

Method Running Memory Input size  Prediction
time (s) (MB) size
One stage 0.065 1309 160x120
Two stages 0.114 1607 640x480 320x240
Our full model 0.257 1647 640x480
MVSNet [58] 1.049 4511 640x480 160x120
R-MVSNet [59] 1.421 4261 640x480 160x120

Table 5: Performance comparisons. We show the running
time and memory of our method by running the first stage,
the first two stages and our full model.

sentation that is constructed in an uncertainty-aware way —
to reasonably densify the map with a significant increase of
both completeness and accuracy at the same time.

Figure. 5 shows qualitative comparisons between our re-
constructed point clouds and the ground truth point cloud.
Our UCS-Net is able to effectively refine and densify the re-
construction through multiple stages. Note that, our MV S-
based reconstruction is even more complete than the ground
truth point cloud that is obtained by scanning, which shows
the high quality of our reconstruction.

Comparing runtime performance. We now evaluate the
timing and memory usage of our method. We run our model
on the DTU validate set with an input image resolution of
W x H = 640 x 480; We compare performance with MV S-
Net and R-MVSNet with 256 depth planes using the same
inputs. Table 5 shows the performance comparisons includ-
ing running time and memory. Note that, our full model is
the only one that reconstructs the depth at the original image
resolution that is much higher than the comparison methods.
However, this hasn’t introduced any higher computation or
memory consumption. In fact, our method requires signif-

icantly less memory and shorter running time, which are
only about a quarter of the memory and time used in other
methods. This demonstrates the benefits of our coarse-to-
fine framework with fewer depth planes (104 in total), in
terms of system resource usage. Our UCS-Net with ATVs
achieves high-quality reconstruction with high computation
and memory efficiency.

5. Conclusion

In this paper, we present a novel deep learning-based
approach for multi-view stereo. We propose the novel
uncertainty-aware cascaded stereo network (UCS-Net),
which utilizes the adaptive thin volume (ATV), a novel spa-
tial representation. For the first time, we make use of the
uncertainty of the prediction in a learning-based MVS sys-
tem. Specifically, we leverage variance-based uncertainty
intervals at one cascade stage to construct an ATV for its
following stage. The ATVs are able to progressively sub-
partition the local space at a finer scale, and ensure that the
smaller volume still surrounds the actual surface with a high
probability. Our novel UCS-Net achieves highly accurate
and highly complete scene reconstruction in a coarse-to-fine
fashion. We compare our method with various state-of-the-
art benchmarks; we demonstrate that our method is able
to achieve the qualitatively and quantitatively best perfor-
mance with high computation- and memory- efficiency. Our
novel UCS-Net takes a step towards making the learning-
based MVS method more reliable and efficient.
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