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Abstract—In this paper, we present robust variants of dis-
tributed clustering algorithms for large datasets distributed
across multiple machines in the presence of Byzantines. We
propose a redundant data assignment scheme that enables us to
obtain global information about the entire dataset for clustering
purposes even when some machines are adversarial in nature.
Simulation results show that the distributed algorithms based on
the proposed assignment scheme provide good-quality solutions
for a variety of clustering problems.

I. INTRODUCTION

Clustering is one of the basic unsupervised learning tasks
used to infer informative patterns in data. The goal is to group
a given set of data points such that similarity within a group is
maximized and similarity across the groups is minimized. In
this work, we aim to find a subset of data points, called cluster
centers, that provide a good representation of the given dataset.
The quality of the clusters is measured using a cost function.
Commonly used cost functions for clustering are k-medians
and k-means, where the goal is to find k centers that minimize
the sum of the distances (or sum of the squared distances) of
the individual points to their closest cluster center.

Due to the large sizes of datasets, the centralized clustering
algorithms where the operations are performed on a single
machine are no longer feasible for real world applications.
Hence, clustering algorithms adapted for a distributed setup
have gained popularity. In the distributed setup, we assume
one fusion center (FC) and m machines such that the dataset
P consisting of n data points is partitioned arbitrarily and
distributed across the machines. We denote these partitions
by {P1,...,Pn} C P and assign each of these subsets
to a different machine. The setup involves the machines
performing computation on the locally available data points
and transmitting the obtained results to the FC. Then, the
FC aggregates these results to obtain the final clustering
result. Recent works have provided clustering algorithms in
the distributed setup where the cost of clustering is bounded
by a constant multiple of the cost of clustering obtained by
the centralized algorithms [1]-[3].

The distributed nature of the system makes it vulnerable to
adversarial attacks where some machines can potentially be
Byzantines [4]. Each honest machine sends a set of k-centers
to the FC. However, a Byzantine may transmit arbitrary values
to the FC instead of the correct set of k-centers. The goal of

the Byzantine machines is to gain the ability to influence the k-
centers in one (or more) of the clusters. This may lead to poor
quality solutions given by the distributed clustering algorithm
at the FC. In this work, we assume the static Byzantine attack
model where the nature of the machines does not change
as the algorithm progresses, i.e., Byzantine machines remain
adversarial for the entire process. Typically, a faulty machine
in the setup or an adversary corrupting the machines may lead
to adversarial behavior of the machines. A naive approach
for dealing with the Byzantines is to ignore their presence
and rely on vanilla clustering techniques. This may lead to
clustering results of extremely poor quality. Another approach
is to provide filters to identify and remove the Byzantines
in the setup as proposed in the Byzantine machine learning
literature [S]-[9].

Alternately, data can be distributed to the machines in a
redundant manner such that the information obtained from a
subset of machines is sufficient to compute the desired func-
tion on the entire dataset. Many redundant data distribution
schemes have been recently proposed [10]-[16] to mitigate
the effect of non-responsive or slow machines known as
stragglers. These coding based approaches were further used
to handle Byzantines as well [17]-[20], however these works
mainly focus on linear computations and first-order methods
for distributed optimization.

In [15], the authors present a data distribution scheme that
enables the computation of a good-quality clustering solution
in the presence of stragglers. In this work, we study the
distributed clustering algorithms using coded computations in
the presence of Byzantines. The formulation deals with a more
general scenario where a subset of the machines are adversarial
and can send arbitrary information. The identity of these
adversarial machines is not known to the FC which constitutes
the main bottleneck in obtaining Byzantine resilient clustering
algorithms. In particular, we show that a modification of data
distribution scheme of [15] allows us to compute provably
good-quality cluster centers even in the presence of a relatively
large number of Byzantines.

A. Our Results

In this work, we provide a clustering approach that generates
a solution with a cost at most c-OPT, for a small approximation
factor ¢ > 1 for the underlying dataset in the presence of at



most ¢ Byzantines, where OPT denotes the cost of the best
clustering solution. The following are our major contributions.

« We propose a Byzantine-resilient data assignment scheme
that enables us to filter out Byzantines and compute good-
quality clusters.

o We design a robust k-medians and k-means clustering
approach that generates a constant factor approximate
solution given a dataset P that is distributed across m
machines where at most ¢ machines are Byzantines.

« We propose various constructions of the assignment
scheme that can withstand large number of random or
adversarial Byzantines with little redundancy.

« Simulation results illustrate the excellent performance of
our algorithm.

B. Outline and Notation

The problem statement and the system model are presented
in Section II. The proposed algorithm is given in Section III-A.
The k-medians clustering problem is considered and extended
for k-means clustering in Section III-B and Section III-C,
respectively. Constructions of assignment matrix are presented
in Section IV. Simulation results are provided in Section V,
followed by our conclusions in Section VI. Please refer to
the full version for all the missing proofs.

Notation: Let d(x,y) denote the Euclidean distance between
two points x,y € R?. Let [n] = {1,...,n}, and let 1,, denote
a vector of all 1’s of length n.

II. SYSTEM MODEL

Given a dataset with n points P = {p;,ps,-..,p, } C R,
distributed among m machines. The goal in clustering is to
find a set of k cluster centers C* = {ej,¢a,...,¢x} C R4
that closely represent the entire dataset. The quality of these
centers is usually measured by a cost function cost(P,C).
For k-medians, the cost function is defined as cost(P,C) =
> zep d(x,C), where d(x,C) := minec d(x,c). The k-
means cost function for clustering is given by cost(P,C) =
> ocpd®(x,C). For any data point x € P, and any set
of centers C, we denote the cluster center by C(x) :=
arg mineec d(x, ¢).

We consider the distributed clustering framework with m
machines Wy, ..., W,,. Let P, C P be the set of points
assigned to the machine W;. Note that we require the FC
to have access to the entire dataset P. The FC needs them to
estimate the cost of computing cluster P; using Y; sent by the
machine W; (Step 8 in Algorithms 1 and 2). This assumption is
reasonable as in distributed optimization the server has access
to entire dataset and distributes it among the clients. Moreover,
one can possibly eliminate this requirement using sophisticated
data structures like locality sensitive hash maps at the FC to
approximately estimate the costs while incurring a slightly
larger approximation factors in the global clustering solution.
We denote the cluster of P; associated with the center y € C'
by cluster(y, P;) := {x € B;|C(x) =y}.

Definition IL.1 (a-approximate solution). For any o > 1,
the set of cluster centers C, is an a-approximate solution to
the clustering problem if the cost of clustering P with C,
cost(P,C), is at most « times the cost of clustering with
optimal (minimum) set k-centers, cost(P,C) < « - OPT.

If the dataset P is weighted with an associated non-negative
weight function g : P — R, the k-medians cost for the
weighted dataset (P, g) is then defined as cost(P, g,C) =
> xep 9(X)d(x,C). The k-means cost for (P,C) is defined
analogously.

In the distributed setup, each machine W, has access to
a partial dataset P; C P. In distributed clustering, each
machine transmits a summary of its local data to the fusion
center (FC). Hence, an approximate solution to the clustering
problem can be computed by aggregating the summaries
received at the FC. To mitigate the effect of Byzantines, we
assume that the FC can compute on the local summaries to
evaluate the quality of the data sent by each local machine.

Problem Statement: In this paper, the main goal is to design
the distributed clustering approach that is robust to the pres-
ence of Byzantines. Given a dataset P and distributed setup
with m machines where at most ¢ machines are Byzantines,
we design a clustering approach that generates a solution with
the cost at most c-OPT, for a small approximation factor ¢ > 1
for the k-medians and the k-means clustering problems.

III. BYZANTINE-RESILIENT CLUSTERING

We propose a modification of the initial data assignment to
the machines to mitigate the effect of Byzantines. In particular,
the assignment process incorporates redundancy so that every
data point in the dataset P is mapped to multiple machines.
This ensures that each data point affects the local computations
performed at multiple machines. Therefore, the final clusters
at the FC can be obtained by taking into account the con-
tribution of most of the data points in P even though some
of the machines are Byzantines. The assignment scheme with
Byzantine-resilient property is introduced below. This property
enables the aggregation of local computations from honest
machines at the FC and preserves the relevant information
present in the dataset P for clustering. This assignment scheme
is used to obtain good-quality solutions to the k-medians and
k-means clustering problems.

A. Byzantine-resilient Data Assignment

We denote by A € {0, 1}™*™ the binary assignment matrix
whose i-th row, a;, indicates the set P, C P of points
assigned to machine W;. Let R C [m] denote the set of
honest machines. We assume that |R| > m — t, where t < m
denotes an upper bound on the number of Byzantines in the
system. For any such set of honest machines R, we require
the assignment matrix A to satisfy the following property.

Property III.1 ((¢, 6)-Byzantine resilience property). Let § >
0 be a given constant. The assignment matrix A € {0, 1}™*"



has (t,d)-Byzantine resilience if 3p > 0 such that for any
subset of m — t rows R C [m],

17<p> a; <

I€ER

(1+6)17, (1)

where < indicates coordinate-wise inequality.

We remark that the (¢, d)-Byzantine resilience property is
significantly different from that in [10] where the property
depends on the gradients that are related to each other across
different machines. Furthermore, our resilience property is
much stronger than the straggler resilience property introduced
in [15]. For straggler resilience it is sufficient to have some
non-negative linear combination of the rows (corresponding to
the non-straggler machines) that is close to the all ones vector.
However, for Byzantine resilience, we need all these linear
combinations to be uniform and non-negative. Furthermore,
we also need this reconstruction factor to be the same across
all subsets of Byzantines.

B. Byzantine-Resilient Distributed k-medians Clustering

The dataset P is distributed among the m machines using
the assignment matrix A which satisfies Property III.1. The
basic idea of the proposed algorithm is that each honest
machine sends a set of k-medians centers of their respective
data subsets. Then, the FC combines the set of k-medians
centers from all the machines and computes on them to obtain
additional information about the quality of the centers sent
by each machine. Using this information, and the aggregated
summary, the FC then computes a good-quality clustering
solution for the entire dataset. We present the aforementioned
steps in detail in Algorithm 1.

Algorithm 1 Byzantine-resilient distributed k-medians

1: Initialize: A collection of n vectors P C R?

2: Allocate P to m machines according to A with Prop-
erty IIL.1.

3: Assign the set of points P; C P to worker W;

4: Each honest worker W; computes k-medians solution Y;
on set P;

5: Each honest worker W; sends the set of points Y; to FC

6: Byzantine workers send an arbitrary set of k points.

7: FC computes & arranges received point sets in non-
decreasing order of cost(P;,Y;).

8: Without loss of generality, assume cost(P;,Y;) <
cost(Pa, Ys) < ... < cost(Pp, Yy,).

9: For each point y € Y;, FC computes weight g;(y) =
|cluster(y, P;)|.

10: Let Y = UZe im—q Yi- Using p, define g : ¥ — R such

that g(y) = pgi(y), vy € ;
11: Return C, the k-medians solution on (Y g).

The information received from the honest machines is
combined using the following lemma to generate close to
optimal clustering solution.

Lemma IIL1. Let T C [m] be any set of m — t indices.
Let p be the reconstruction coefficient of the (t,0)-Byzantine
resilient assignment matrix. Then, for any set of centers C, we
have cost(P,C) <, p cost(P;,C) < (14 6)cost(P,C).

Proof. Proof follows based on the combinatorial characteriza-
tion for the assignment scheme enforced by Property III1.1. [

We present the following intermediate results which show
that the cost incurred by the weighted data subset Y; at
machine W; is close to the cost incurred by the local data
subset P; for any set of k centers C.

Lemma IIL2. For any i € [m], the weighted point set (Y, g;)
satisfies cost(Y;, gi, C) < cost(P;, C) + cost(P;,Y;).

Lemma IIL3. Let C be any set of k-centers, then for any
i € [m], we have cost(Y;, g;,C) > cost(P;,C) — cost(P;,Y;).

The above two lemmas show that the cost of clustering the
weighted data subset (Y;, g;) obtained from W; with any set
of centers C, cost(Y;, g;, C) is tightly bounded by cost(P;, C)
and cost(P;,Y;). Since the latter term can be computed by
the FC, we can use this information to filter out any bad
summaries. From these observations, we get our main result
that evaluates the quality of the clustering solution, C, obtained
by Algorithm 1 on the entire dataset P.

Theorem II1.4. Let C* be the optimal solution to the k-
medians problem on point set P. Then, Algorithm 1 returns a
set of k-centers C such that cost(P,C) < 3(1+6)cost(P,C*),
even in the presence of t Byzantines.

C. Byzantine-Resilient Distributed k-means Clustering

In this section, we extend the results obtained for k-
medians clustering to the k-means clustering problem. We use
Algorithm 2, which is similar to Algorithm 1, to compute the
k-means clustering. Here instead of returning the k-medians
solution to the partial data set P;, each machine returns the
k-means centers.

Similar to the analysis of Algorithm 1, we show that cost of
clustering weighted data subset sent by any machine with any
set of centers cost(Y;, g;, C) is tightly bounded by cost(P;, C)
and cost(P;,Y;). Using these observations, Algorithm 2 guar-
antees the following.

Theorem IIL5. Let C* be the optimal solution to the k-means
problem on point set P. Then, Algorithm 1 returns a set of k-
centers C' such that cost(P,C) < 10(1 + §)cost(P, C*), even
in the presence of t Byzantines.

We remark that no redundancy is a baseline to compare
our proposed algorithms with. We note that no redundancy
might lead to complete loss of contribution from the subset of
points that are assigned to the Byzantines. This phenomenon
is evident in the simulation results provided in Section V.

IV. CONSTRUCTION OF DATA ASSIGNMENT MATRIX

In this section, we present various constructions of the data
assignment matrices that satisfy Property III.1. We consider



Algorithm 2 Byzantine-resilient distributed k-means

1: Initialize: A collection of n vectors P C R¢

2: Allocate P to m machines according to A with Prop-
erty IIL.1.

3: Assign the set of points P; C P to worker W;

4: Each honest worker W, computes k-means solution Y; on
set P;

5: Each honest worker W; sends the set of points Y; to FC

6: Byzantine workers send an arbitrary set of & unweighted
points.

7: FC computes & arranges received point sets in non-
decreasing order of cost(P;,Y;).

8: Without loss of generality, assume cost(P;,Y;) <
cost(P, Ya) < ... <cost(Pp, Y,).

9: For each point y € Y;, FC computes weight g;(y) =
|cluster(y, P;)|.

10: Let Y = Uie[mft] Y;. Using p, define ¢ : Y — R such
that g(y) = pgi(y),Vy € Y;

11: Return C, the k-means solution on (Y, g).

both the random and the adversarial Byzantine models for
the construction of assignment matrices. For each of these
constructions, we analyse the tradeoffs between the load
per machine (¢) and the fraction of Byzantines that can be
tolerated.

Let n be the number of data points in P, and m be the
number of machines. Let B C [m], |B] < t denote the set of
Byzantines, and let R = [m]\ B be the set of non-Byzantines.
For the simplicity of presentation, we assume n = m. We
now present the construction of various assignment matrices
A € {0,1}™>™ that satisfy Property IIL1.

In the random Byzantine model, each machine W;, for
i € [m] behaves as a Byzantine independently with some
fixed probability p;. The Bernoulli matrix based randomized
construction of straggler-resilient assignment matrix presented
[15] was shown to be resilient to a constant fraction of
stragglers with £ = O(log m) load per machine. We note that
their construction satisfies the Byzantine-resilience property
(Property III.1) as well. We now provide an explicit construc-
tion of an assignment matrix based on Fractional Repetition
Codes that is resilient to a constant fraction of Byzantines with
¢ = O(logm) load per machine.

A. Explicit Construction for Random Byzantines

Fractional Repetition Codes (FRC) have been well-studied
in [21] for straggler resilient gradient computations. In this
section, we show that the FRC scheme also satisfies Prop-
erty III.1 for random Byzantines with high probability, and
hence provides redundant data assignment for Byzantine-
resilient clustering problems.

For simplicity, let us assume that we have m data points and
m machines. In FRC, the m data points are partitioned into
groups of size s (assume that s divides m), and each group

of data points is replicated across s machines. The assignment
matrix A for this scheme is given by

1S><S OSXS OSXS OSXS
OSXS 1S><S OSXS OSXS

A= ) 2
OSXS OSXS OSXS 1S><S

where 1545 denotes an s X s matrix of all 1’s.

Let Ar of size |R| x m denote the submatrix of honest
machines obtained by removing ¢ rows from A uniformly at
random. We now show that the random matrix Ay satisfies
Property III.1 with high probability.

Theorem IV.1. For any § > 0, the FRC based assignment
matrix A with { = s = O(logm), satisfies Property III.1 with
probability at least 1 — O(%) under the random Byzantine
model, and provides resilience against t = O(m) Byzantines.

Theorem IV.1 provides good tradeoffs between the load
per machine ¢, and the number of Byzantines tolerated, ¢.
However, the guarantees hold in the random Byzantine model.
In the adversarial Byzantine model, any subset 5 C [m] can
be Byzantines. This is a much stronger yet practical model for
Byzantines. We now give two constructions - one randomized
and one explicit construction that provide decent tradeoffs in
the adversarial Byzantine model.

B. Random Construction for Adversarial Byzantines

In this section we show that a random Bernoulli assignment
matrix satisfies Property III.1 under the adversarial Byzantine
model albeit with slightly degraded tradeoffs between ¢ and .

Consider an m x m random Bernoulli assignment matrix
A where each entry A; ; is set to 1 independently with some
probability p, and 0 otherwise.

Theorem IV.2. For any § > 0, the Bernoulli assignment
matrix A with p = O(;=-), satisfies Property .1 with
probability at least 1 — O(--) under the adversarial Byzantine

model, and is resilient to t = O(logir‘)m) Byzantines.

Alternatively, Theorem IV.2 can be stated as a randomized
construction that is resilient to ¢ arbitrary Byzantines with
expected load of O(:™L logm). Note that Theorem IV.2
provides lesser redundancy in the regime when ¢t = o(m)
compared to the naive solution of distributing all the points to
all the machines.

C. Explicit Construction for Adversarial Byzantines

We now present an explicit construction of assignment
matrix that satisfies Property III.1 in the adversarial Byzan-
tine model. The construction is based on expander graphs
which were recently used to construct explicit data assignment
schemes for gradient coding [12], [13].

Let G = (V,E) be a connected d-regular graph on m
vertices and let Ag denote its adjacency matrix. Let Ay >
Ao > ... > A\, be the m real eigenvalues of Ag. Define
the expansion parameter of graph G as A = max{|\z], | Am|}-
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(a) Ground Truth. (b) No Redundancy.

Fig. 1: Performance of the proposed Byzantine-resilient k-medians
algorithm with no redundancy.

We denote such d-regular graphs on n vertices with expansion
parameter A as (n,d, \)-expanders.

The double cover of a graph G = (V, E) on n vertices,
is a bipartite graph G = (L U R, E), on 2n vertices with
L = R = V. There is an edge (u,v) € L x R in G if and
only if (u,v) € E.

To construct our assignment matrix, we consider a bipartite
graph G = (L U R, F) that is a double cover of an (n,d, \)-
expander. The m x m assignment matrix A is obtained from
G by setting A, , = 1 if and only if there is an edge between
(u,v) € G for any v € R and, v € L. We now show
that the assignment matrix A obtained from G will satisty
Property III.1 for any set of ¢ Byzantines.

Theorem IV.3. For any § > 0, the assignment matrix A
satisfies Property III.1 under adversarial Byzantine model with

t = /logm/loglogm, and ¢ = O(logm).

The proof follows from the fact that if G is an expander,
then G satisfies the expander Mixing Lemma [22].

Theorem IV.4 (Expander Mixing Lemma). For any sets S and
T in a (n,d,\)-expander, we have |E(S,T) — 4|S||T|| <
M/|S||T), where, E(S,T) denotes the number of edges
between sets S and T.

Using Expander Mixing Lemma, we can show that no vertex
in L is incident to a large fraction of vertices in any ¢ subset of
R. This in turn translates to the fact that no column of A has
a large number of 1’s in any subset of ¢ rows of A. Therefore
removing any ¢ rows of A keeps all the column weights within
a fixed range.

The existence of graphs with appropriate expansion prop-
erties then completes the proof. We use the constructions of
(n,d, X)-expanders of [23], to get data assignment schemes
that are resilient to O(y/logm) Byzantines with an overhead
of O(logm) data points per machine.

Theorem IV.5 ( [23]). There exists a polynomial time algo-
rithm to construct (n,d,\) = (2¢,0 — 1, \/£log® ¢).
V. SIMULATION RESULTS

In this section, we illustrate the performance of our
Byzantine-resilient distributed k-medians algorithm and
benchmark it with the non-redundant data assignment scheme.

6
le6 e

(a) p=0.1. (b) p=10.2.

Fig. 2: Performance of the proposed Byzantine-resilient k-medians
algorithm.

We consider the synthetic Gaussian dataset [24] with n = 5000
two-dimensional points that are distributed among m = 10
machines with ¢ = 3 randomly chosen Byzantines. We present
the results in Figures la, 1b, 2a, and 2b.

We plot the ground truth using the centroids provided in
the dataset in Fig. la with k-medians clustering, for k£ = 15.
In Fig. 1b, we present the results by ignoring the local
computations from the Byzantines, i.e., Algorithm 1 is used
without any redundant data assignment. We randomly partition
the n = 5000 data points among m = 10 machines. The
honest machines send their respective k-medians centers to the
FC. Then, the FC runs a k-medians algorithm on the (m — t)
centers obtained from the honest machines. From Fig. 1b, the
set of poor quality k-centers obtained from this scheme is
noticeable.

In Fig. 2a, the result obtained by using Algorithm 1 is
shown. We choose the assignment matrix randomly with
p = Pr[A; ; = 1] = 0.1. Hence, using this assignment matrix
ensures that each machine receives 500 data points on an
average which results in a non-redundant data assignment.
Lastly, in Fig. 2b, we show the effect of increasing the value
of p to 0.2. Therefore, the redundancy in the data assignment
increases which results in each machine receiving about 1000
data points. We observe that the results are very close to the
ground truth clustering presented in Fig. la.

VI. CONCLUSION

In this paper, we provided O(1)-approximate solutions for
the distributed k-medians and k-means clustering problems
in the presence of Byzantines. Note that the approach for k-
means (Algorithm 2) used in this work can be generalized to
obtain Byzantine-resilient algorithms for a larger class of ¢,
fitting problems such as (r, k)-subspace clustering solutions.

An alternate viable approach to tackle Byzantines is to use
some outlier robust clustering at the FC to filter out Byzan-
tines. At a high level, Algorithm 1 achieves that by filtering
out all the points that incur large cost on the partial data sets.
This ensures that the Byzantines cannot send arbitrary points.

Finally, another interesting direction to explore would be to
reduce communication cost between the machines and the FC
resulting in communication efficient clustering algorithms in
the presence of Byzantines.
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VII. APPENDIX

A. Missing Proofs from Section IlI-B

Proof of Lemma II1.2. From the definition of cost(Y;, g;, C),

noting that g¢;(y) = |cluster(y,P;)|, and rewriting
|cluster(y, P;)[ as >, couster(y, p,)» We &6t
cost(V;,g;,C) = > > dy,C(y). 3

YEY; zecluster(y,P; )

For any x € RY, let C(x) denote its closest center in C. Tt
follows from (3) that

cost(V;,0:,C) < > Y d(y,C(x). &)
YEY; xEcluster(y, P;)
Applying triangular inequality, we obtain
cost(Ving, O) < S Y (dlxy) +d(x, C(x)).
yeY; xecluster(y, P; )
&)

Splitting the summation into two terms, simplifying further
yields, and utilizing the definition of cost(-,-) yields the final
result as the following.

cost(VingiC) < 330

YEY; xecluster(y, P;)
= cost(P;,Y;) + cost(P;, C).

d(x,y) + > d(x,C(x))

XEP;
(6)
O

Proof of Lemma II1.3. For any machine ¢ € [m], we have
cost(P;,C) = > d(x,C(x)).
xeP;

Let Y;(z) be the cluster center in Y; that is closest to = € P;.
Then, we get

cost(P;, €) < ) d(x, C(Yi(x))),
xeP;
applying triangular inequality, we have
cost(P;,0) < Y d(x,Yi(x) + Y d(Yi(x), C(Yi(x))).
XEP; xeP;
simplifying further, and utilizing the definitions of cost(F;, Y;)
and cost(Y;, g;, C'), we obtain the final result.

cost(P;, C) < cost(P;,Y;) + Y _ cluster(y, P;)|d(y, C(y))
YEY;
= cost(F;, ;) + cost(Y3, g;, C),



Proof of Theorem II1.4. Let C be the set of k-centers returned
by Algorithm 1. From Lemma III.1, we have

m—t
cost(P, () < Z p cost(P;, 0),

i=1

utilizing the result from Lemma II1.3 with C' = C’, we get

m—t m—t
cost(P,C) < Z p cost(P;,Y;) + Z p cost(Y;, gi, C).
i=1 i=1

Next, we note that for every Byzantine in [m — ¢], there is
an honest machine ¢ € R with a higher cost which yields the
following.

m—t
cost(P,C) < Z p cost(P;,Y;) + Z p cost(Y;, gi, C).
i€R i=1

The optimality of the k-centers Y; on the partial dataset P;
yields cost(FP;,Y;) < cost(P;, C'). Hence, we have

m—t

<> peost(P,C) + > p cost(Yi, gi, C),
iER =1

cost(P, C)

applying the result from Lemma III.1 to the first term. Utilizing
the definition of the cost function on a weighted point set,
cost(Y, g, C) and the optimality of Y; on the partial dataset P;
in the second term, we obtain

cost(P, C) < (1 + 8)cost(P, C*) 4 cost(Y, g, C*).
From the definition of the cost function, cost(Y, g, C*), we get
m—t
cost(P,C') < (1 + d)cost(P, C*) + Z cost(Y;, pgi, C*)
i=1
m—t
< (1 4+ d)cost(P,C*) + Z p cost(Y;, gi, C™).
i=1

Next, applying the result from Lemma III.2 to the second
term above, we have

m—t

cost(P,C) < (1 4 d)cost(P,C*) + Z p cost(P;, Y;)
i=1
m—t
+ Z p cost(P;, C™).
i=1

For the second term above, we use the fact that for every
Byzantine in [m — ¢], there is an honest machine i € R with
a higher cost, and the optimality of the centers Y; on P; to
obtain

cost(P,C) < (14 d)cost(P,C*) + Z p cost(P;, C™)
i€R
m—t
+ Z p cost(P;, C),
i=1

applying Lemma III.1 to the second and third terms, we obtain

cost(P,C) < (14 d)cost(P,C*) + (1 4 6)cost(P,C*)

+ (1 + d)cost(P,C*) = 3(1 + d)cost(P, C™)
O

B. Missing Proofs from Section III-C

Lemma VIL1 (Scaled Triangular Inequality). Let d(x,y)
denotes the Euclidean distance between two points x,y € R
Let z € R? be a point such that

d*(x,y) <2 d*(x,z) + 2 d*(z,y).

Proof of Lemma VII.1. From the definition of d(x,y), we
have

d*(x,y) =[x —y|*
=|x—z+z—y|*
=lx-2z)+(@z-y)?
< (IIx =zl + Iz = y[)?,

where the last inequality is from triangular inequality. Apply-
ing Cauchy-Schwarz inequality, we get

d*(x,y) < 2(|x —z|* + [z —y[*)
=2 d*(x,2) + 2 d*(z,y), (7

O

Lemma VIL2. For any machine W;, the weighted point set
(Y. g:) satisfies

cost(Y;, 9i, C) < 2 cost(P;,Y;) + 2 cost(P;, C).

Proof of Lemma VII.2. From the definition of k-means cost,
cost(Y;, gi, C), noting that g;(y) = |cluster(y, P;)|, and rewrit-
ing |cluster(y, P;)| as > we get

Py, C(y). (®)

z€Ecluster(y,P;)?

=2, 2

ye€Y; zecluster(y, P;)

cost(Y;, g;, C

For any x € R%, let C(x) denote its closest center in C. It
follows from (8) that

er x€Ecluster(y, P; )

cost(Y;, gi, C dQ(Ya C(x)),

applying the result from Lemma VII.1, we have

Z Z (2 d*(x,y) + 2 d*(x,C(x)))

YEY; xecluster(y, P;)

=> D 2dxy)+ ) 2d(xCx)

YEY; xecluster(y, P;) XEP;
=2 cost(P;,Y;) + 2 cost(P;, C), 9)

cost(Ys, g;, C

where the first equality follows by splitting the summation into
two terms, and utilizing the definition of cost(-,-) yields the
final result. O

Lemma VIL3. Let C be any set of k-centers, then for any
machine W;, we have

cost(P;,C) < 2 cost(P;,Y;) + 2 cost(Ys, g5, C).



Proof of Lemma VII.3. For any machine i € [m], we have

Zd2xC

xeP;

cost(P;, C) =

Let Y;(x) be the cluster center in Y; that is closest to « € P;.

Then, we get
< P (x,C(Vi(x)),
xeP;

cost(P;, C)

applying the result from Lemma VII.1, we have

< 2 d(xYi(x)+Y 2 d(Y;

xeP; XEP;

cost(P;, C) C(Yi(x))),
simplifying further, and utilizing the definitions of cost(F;, Y;)
and cost(Y;, g;, C'), we obtain the final result.

cost(P;, C') = 2cost(P;, Y;)+2 Z |cluster(y, P;)|d?(y,C(y))
yEY;
=2 cost(P;,Y;) + 2 cost(Y;, gi, C).

Proof of Theorem IIL.5. Let C be the set of k-centers returned
by Algorithm 2. From Lemma III.1, we have

m—t
cost(P,C) < Z p cost(P;, C),

i=1

utilizing the result from Lemma VIL.3 with C' = C, we get

m—t m—t
cost(P,C) < Z 2p cost(P;,Y;) + Z 2p cost(Y;, g;, C).
i=1 i=1

Using the fact that for every Byzantine in [m — t], there is
an honest machine ¢ € R with a higher cost to obtain the
following.

m—t
cost(P,C) < Z 2p cost(P;,Y;) + Z 2p cost(Y;, gi, C).
i€R i=1

The optimality of Y; on the partial dataset P; gives
cost(P;,Y;) < cost(P;, C). Therefore, we have

m—t
cost(P, C) < Z 2p cost(P;, C*) + Z 2p cost(Y;, gi, C)
i€R i=1

applying the result from Lemma III.1 to the first term. Utilizing
the definition of the cost function on a weighted point set,
cost(Y, g, C) and the optimality of Y; on the partial dataset P;
in the second term, we obtain

cost(P,C) < 2(1 + &)cost(P,C*) 4 2 cost(Y, g, C*).
Utilizing the definition of the cost function, cost(Y, g, C*), w
get

m—t
cost(P,C) < 2(1 + &)cost(P, C*) + 2 Z cost(Y;, pgi, C*)

=1

m—t
2(1 + d)cost(P,C*) + 2 Z p cost(Y;, gi, C™).
i=1
Next, applying the result from Lemma VII.2 to the second
term above, we have

m—t

cost(P,C) < 2(1 + &)cost(P,C*) + 4 Z p cost(P;,Ys)
i=1
m—t
+4 Z p cost(P;, C™).
i=1

We use the fact that for every Byzantine in [m — t], there is an
honest machine + € R with a higher cost, and the optimality
of the centers Y; on P; in the second term above, to obtain

cost(P,C) < 2(1 + 8)cost(P,C*) + 4 Z p cost(P;, C™)
i€R
m—t

+4 Z p cost(P;, C),

i=1

applying Lemma III.1 to the second and third terms, we obtain

cost(P,C) < 2(1 + 8)cost(P,C*) + 4(1 + &)cost(P, C*)
+ 4(1 + §)cost(P,C*) = 10(1 + d)cost(P, C™).

O

C. Missing Proofs from Section IV

Proof of Theorem IV.1. Recall that R C [m] indicates the set
of honest machines. Then, for any ¢ € [m], we have

Pr{ic R} =1—p,. (10)

Next, we show that the proposed construction satisfies Prop-
erty III.1 with high probability.

Consider the block of B; = 1545, of A for any i € [m/s].
First we show that for any block and a random set R of honest
machines, the weights of every column concentrates around it
expected values.

For any block ¢ € [m/s] and row in block j € [s], we define
an event F; ; as follows:

= 1 ifrowtjin block i € R (11
’ 0 otherwise.
From (10), we know that
PI'{FZ'J' = 1} =1 — Dt- (12)

Therefore, for any block fixed block 7 of s rows, we have

ZF,] =s(1—py). (13)
Utilizing Chernoff bound, for any «y € (0,1), we have
72s(1-py)
Pr ZFU s(1—p)| >vs(l—py) p <2 3
(14)



So, with high probability, the random set of Byzantines leave
about s(1 — py)(1 £ «) rows unaffected in each block. So
summing over the rows in block i of Az, we get that with
probability at least 1 — e~ (s(1=p+))

s(L=p)(1 =17 < Y FiBij < s(1—p)(1+)17.
Jj€ls]
where, B; ; denotes the j-th row in the i-th block B;.
Setting v = 5 + Pl then with high probability the following
holds for a given j € [m].
1
< —
(== p)
Taking union bound over all blocks i € [m/s], we have with
the probability at least 1 — Z2e~Xs(1=pe)),
v
(1 =)s(1—pr)

Z F; ;B;; < (1+ 5)13
J€ls]

(15)

17 < > FijBij < (140)1], Vi € [m/s].

JEls]
(16)
The result then follows from the fact that all the blocks are
in mutually exclusive rows of A. Setting s = O(logm) for
a constant p;, we see that the assignment scheme satisfies
Property III.1 with probabaility at least 1 — O(1/m) and p =
O

1
Ts(i—pn» Where 7 =

Proof of Theorem 1IV.2. The proof follows from the observa-
tion that on deleting any set of ¢ rows, the column weights in
Ag are almost preserved with high probability.

Let B C [m] denote a fixed set of ¢ Byzantines. the rows of
A indexed by B C [m], the expected weight of a fixed column
j is p(m — t). Therefore, from standard Chernoff bounds it
follows that

Pr{jwi(A}) — p(m

0
243"

2
— 1) = yp(m — 1)) < =T,

where wt(A”) denotes the number of non-zero entries in the j-
th column of A - the submatrix of A obtained from deleting
the rows in B.

By a union bound over all (7') subsets of rows and all n
columns of A, we get that with probability at least

2
t _—X-p(m—t
1—n-mt. e FPm=t)

all columns of A will have weight in the range [(1 —~)p(m —
t), (1 + v)p(m — t)]. Therefore, setting p = (1 — v)p(m —t),
we get that for any set of B of ¢ rows,

1I<p Y a<(1+01
i€[m\B

for 6 = —L
Settlng p O(1/logm), the result follows for any ¢ =
O(m/log® m), with probability at least 1 — 1/m. O

Proof of Theorem IV.3. Let G = (L U R, E) be the double
cover of a c-regular expander graph on m vertices with
expansion A = max{|Aa], |A\n|}

We construct the m x m assignment matrix A from G by
setting A, , = 1 if there is an edge between (u,v) € G for

any v € R and, v € L. Note that each column of A has weight
exactly c. Also, any set of ¢ Byzantines will now correspond
to a set of ¢ vertices in R. We show that removing any set of ¢
vertices from R does not reduce the individual degrees of any
vertex v € L by a lot. This implies that the column weight in
Ag is almost preserved.

Using Expander Mixing Lemma, we get that for any vertex
v € L, and any set of ¢ vertices B C R,

|E({v},B)| < %t—s—)\\/i

c(;LJr/C\\/%).

Therefore, for (% + %\/{f) = v, all vertices v € L are
connected to at most ¢y nodes in any set of ¢ nodes in R. So
on deleting any set of ¢ vertices in R all the vertices v € L

will have degree deg(v) € [(1 — v)e, ¢].
Therefore, setting p = ﬁ, we satisfy >, pa; <
=1 = (1+0)15, for v = 5.

Using the expander constructions in [23], we get an
assignment scheme that is resilient to any set of ¢t =

O(y/logm/loglogm) Byzantines with an overhead of

O(logm) tasks per machine. O



