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Abstract: We review the covariant density functional approach to the
equation of state of the dense nuclear matter in compact stars. The
main emphasis is on the hyperonization of the dense matter, and the
role played by the ∆-resonances. The implications of hyperonization
for the astrophysics of compact stars, including the equation of state,
composition, and stellar parameters are examined. The mass-radius re-
lation and tidal deformabilities of static and rapidly rotating (Keplerian)
configurations are discussed in some detail. We briefly touch upon some
other recent developments involving hyperonization in hot hypernuclear
matter at high- and low-densities.
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1. Introduction

Compact (or neutron) stars represent the endpoints of the evolution of
ordinary stars. They provide a natural astrophysical laboratory for par-
ticle and nuclear physics under conditions that are largely different from
and often inaccessible in terrestrial laboratories. For example, densities
reached in compact stars are by a factor 5-10 larger than found in or-
dinary nuclei. In the 60s and 70s of the past century it has been con-
jectured that they may contain non-nucleonic constituents of matter, for
example, hyperons (Ambartsumyan and Saakyan, 1960, 1961; Leung and
Wang, 1971; Moszkowski, 1974; Pandharipande, 1971) or deconfined quark
matter (Collins and Perry, 1975; Itoh, 1970). The state of (hyper)nuclear
matter found in compact stars may feature some extraordinary facets, such
as superfluidity and superconductivity, a trapped neutrino component at
the early stages of evolution, and super-strong magnetic fields, for reviews
see Glendenning (2012); Oertel et al. (2017); Sedrakian (2007); Shapiro and
Teukolsky (1983); Weber (1999).

One of the key theoretical challenges of the description of compact stars
is the diversity of the possible phases at high densities. A compact star
has a (conservatively estimated) mass in the range 1.1 ! M/M! ! 2.3,
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Fig. 1. Schematic illustration of the interior of a M = 1.4M! mass neutron star. The
transition density between different regions (in units of nuclear saturation density ρsat)
and the corresponding radial coordinate are indicated. The particle content of each
region are indicated as well. Note the possibility of mixed phases involving deconfined
quark matter and hypernuclear matter.

where M! is the solar mass, the central densities may reach up to about
10 times the nuclear saturation density (ρsat = 0.16 fm−3), and a radius
in the range 12 ! R ! 14 km. A compact star consists roughly of five
major regions: the atmosphere, the outer and inner crust, and the outer
and inner core, see Fig. 1. The outer and inner crusts are characterized by
the presence of the nuclear clusters immersed in electron gas and a neutron
sea in the inner crust. The outer core consists of neutrons, protons, and
leptons (mainly electrons with some admixture of muons). The composition
of the inner core starting at about twice the nuclear saturation density is
not well established: the multitude of possibilities include hyperonization,
the deconfinement phase transition to quark matter, the onset of meson
condensation, etc. For a textbook discussion of the phases of compact stars
see, for example Glendenning (2012); Shapiro and Teukolsky (1983); Weber
(1999).

During the last decade, there have been several breakthrough observa-
tional advances that reshaped our understanding of compact stars. These
include the measurements of heavy pulsar masses in binaries of neutron
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stars with white dwarfs, the observation of gravitational waves from double
neutron stars mergers, and the simultaneous mass and radius measurement
of nearby X-ray emitting neutron stars. These advances provided crucial
insights for the development of theoretical models of dense matter in recent
years. Most importantly, they allowed us to narrow down substantially the
theoretical range of parameters of the models of dense matter.

This review aims to present recent advances in the studies of the equa-
tion of state, composition, and physical manifestations of compact stars
that contain hypernuclear cores. This will be done in the framework of the
covariant density functional (hereafter CDF) methods (Serot and Walecka,
1997) for the description of dense hypernuclear matter - a method that pro-
vides a flexible enough approach to accommodate the information coming
from astrophysics and laboratory on hypernuclei. The Lagrangian-based
relativistic CDFs of nuclear systems (also known as nuclear relativistic
mean-field models) operate with effective degrees of freedom - baryons and
meson. They provide a well-motivated and straightforward way to obtain
the energy density of matter. At the same time, there is no true funda-
mental field theory (in the sense of electroweak theory or QCD) associated
with these models, i.e., the microscopic underpinning of these models is un-
known. Therefore, they are best viewed as CDFs with parameters to be de-
termined from available data in the sense of Kohn-Sham density functional
theories which have been successfully applied in many complex many-body
systems in various fields, including strongly correlated electronic systems,
quantum chemistry, atomic and molecular systems, etc. The relativistic
mean-field model based CDFs have been applied to hypernuclear systems
already in 80s and 90s (Glendenning, 1985; Glendenning and Moszkowski,
1991; Glendenning et al., 1992; Huber et al., 1994, 1998; Papazoglou et al.,
1998; Schaffner and Mishustin, 1996).

The motivation to study hypernuclear stars and the interest in hyper-
nuclear CDFs resurged after the observations of two solar mass pulsars in
a binary orbit with a white dwarf in 2010 (Demorest et al., 2010) when,
for the first time since the discovery of a pulsar in 1967, radioastronomy
provided us with a significant constraint on the mass of a pulsar. The rea-
son is that hyperons become energetically favorable once the Fermi energy
of neutrons exceeds their rest mass. The onset of hyperons reduces the
degeneracy pressure of a cold hypernuclear matter, therefore, its equation
of state (hereafter EoS) becomes softer than that of nucleonic matter. As
a result, the maximum possible mass of a compact star with hyperons de-
creases to values below 2M! (Baldo et al., 2000; Schulze and Rijken, 2011),
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which is in direct contradiction with the observations. This contradiction
is known as the “hyperon (or hyperonization) puzzle”. As discussed be-
low the modern density functionals for the hypernuclear matter not only
resolve the hyperon puzzle but also account for the data coming from grav-
itational wave physics and X-ray observations of nearby pulsars (Banik
et al., 2014; Bednarek et al., 2012; Bonanno and Sedrakian, 2012; Colucci
and Sedrakian, 2013; Drago et al., 2016; Fortin et al., 2017, 2020; Gomes
et al., 2019, 2015; Gusakov et al., 2014; Jiang et al., 2012; Li et al., 2018a,b;
Lopes and Menezes, 2014; Maslov et al., 2015; Maslov et al., 2016; Mas-
sot et al., 2012; Miyatsu et al., 2015; Oertel et al., 2016, 2015; Providencia
and Rabhi, 2013; Tolos et al., 2016; Torres et al., 2017; Tsubakihara and
Ohnishi, 2013; van Dalen et al., 2014; Weissenborn et al., 2012a). The pos-
sibility of nucleation of ∆-resonances has been considered along with the
hyperonization based on essentially the same arguments which make heavy
baryons preferable to highly energetic neutrons (Choudhury and Rakshit,
1993; Sawyer, 1972; Schürhoff et al., 2010; Waldhauser et al., 1987, 1988;
Weber and Weigel, 1989b). Again, after the discovery of massive pulsars,
the CDF methods have been invoked to treat ∆-resonance admixed (hy-
per)nuclear matter (Cai et al., 2015; Dexheimer et al., 2021b; Drago et al.,
2014; Kolomeitsev et al., 2017; Li et al., 2018b; Raduta et al., 2020; Ribes
et al., 2019; Sahoo et al., 2018; Spinella and Weber, 2020; Thapa et al.,
2020, 2021; Zhu et al., 2016).

Because of space limitations, we will focus in this review on the CDF
approach and do not cover the alternative many-body approaches as ap-
plied to hypernuclei and compact stars, which include lattice studies (Inoue
and HAL QCD Collaboration, 2019; Nemura et al., 2007; Sasaki et al.,
2020), many-body schemes based on G-matrix theory (Bombaci, 2017;
Haidenbauer et al., 2017; Yamamoto et al., 2014), Monte-Carlo (Gandolfi
and Lonardoni, 2017; Lonardoni et al., 2013a, 2015, 2013b) and varia-
tional (Shahrbaf et al., 2020; Shahrbaf and Moshfegh, 2019; Togashi et al.,
2016) methods, see also the reviews (Blaschke and Chamel, 2018; Chatter-
jee and Vidaña, 2016; Providência et al., 2019; Vidaña, 2018). An overview
of the many-body methods with an emphasis on the compact stars can be
found, for example, in Oertel et al. (2017); Sedrakian (2007).

Compact star properties will be discussed below exclusively with Ein-
stein’s theory of general relativity. However, there has been substantial
work in recent years on the interpretation of the astrophysics of compact
stars within alternative theories of gravity, see, for example Altaha Mota-
har et al. (2017); Astashenok et al. (2014, 2015a,b); Blázquez-Salcedo et al.
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(2016) and references therein.
This chapter is organized as follows. Section 2 discusses the astro-

physical constraints on compact star properties that became available in
recent years. The key ideas of the CDF theory are presented in Sec. 3.
Section 4 is devoted to the properties of hypernuclear stars, including the
equation of state, composition, and global properties. The recent results on
rapidly rotating hypernuclear stars are discussed in Sec. 5. The interplay
between clustering and heavy-baryon degrees of freedom in the warm and
low-density nuclear matter is exposed in Sec. 6. The cooling of hypernuclear
stars, the finite-temperature equation of state, and universal relations are
briefly touched upon in Sections 7 and 8, which is followed by concluding
remarks in Sec. 9.

2. Astrophysical Constraints on Neutron Stars

Pulsar timing is among the methods that provide information on the masses
of pulsars via measurements of the Keplerian parameters and the observed
spin properties of pulsars within neutron star–neutron star and neutron
star–white dwarf binaries. The Shapiro delay method of measurement of
pulsar mass is based on the observation that electromagnetic radiation ex-
periences a time delay as it passes in the vicinity companion compact object
(neutron star or white dwarf) due to its gravitational field. The Shapiro
delay method (Shapiro, 1964) has been successfully applied in binary sys-
tems involving millisecond pulsars, where the periodic pulsed signal from
the pulsar covers tracks of different length within the space-time continuum
depending on whether the pulsar passes in front or behind its binary com-
panion relative to a distant observer. In the general theory of relativity,
the Shapiro time delay depends on the companion mass and the degree of
inclination of the binary system. The first high-mass pulsar measurement
was carried out for PSR J1614-2230 which is a 3.2-ms pulsar in an 8.7-day
orbit with a massive white-dwarf companion in a highly inclined orbit (De-
morest et al., 2010). The second massive pulsar with high-precision mass
measurement is J0348+0432 which is 39 ms pulsar in a 2.46-hour orbit with
a white dwarf. In this case, optical observation and modeling of companion
white dwarf was used in addition to pulsar timing measurements of Kep-
lerian parameters of binary to place the mass of this millisecond pulsar at
2.01 ± 0.04M! (Antoniadis et al., 2013). Improved measurements by the
NANOGrav place the mass of this pulsar as 1.928(17)M! (Fonseca et al.,
2016). The third, most massive (measured with high-precision) neutron
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star to date is PSR J0740+6620 (Cromartie et al., 2020), which is a 2.89-
ms pulsar in a 4.77-day orbit with a white dwarf. The timing analysis which
measures Shapiro delay places the mass of this pulsar at 2.08± 0.07M! at
68.3% credibility (Fonseca et al., 2021). Thus, the timing observations of
three millisecond pulsars J1614-2230, J0348+0432, and J0740+6620 indi-
cate that compact stars with masses as large as 2M! exist in Nature. On the
other hand, general relativity predicts that stable compact star sequences
end at a maximal mass independent of the equation of state employed.
(The stable configurations are determined by the Bardeen-Thorne-Meltzer
criterion (Bardeen et al., 1966), which implies that a star is stable only as
long as its mass is increasing with the central density). Therefore, we may
conclude that this maximum mass predicted by any viable EoS must be at
least as large as those observed in the timing observations. In other words,
the millisecond pulsar observations place a lower limit on the maximum
mass of a compact star.

With the advent of gravitational wave astronomy and the first measure-
ment by the LIGO and Virgo collaboration (hereafter LVC) of the gravi-
tational waves from a binary neutron star (hereafter BNS) merger in the
GW170817 event (Abbott et al., 2017) it became possible to constrain the
properties of compact stars through the study of their tidal response. A
weaker signal was detected later in the GW190425 event, which is likely to
be a BNS coalescence (Abbott, 2020). These measurements, which were
carried by the LVC second-generation ground-based gravitational observa-
tories, are based on the idea that a neutron star is deformed in the tidal
gravitational field of the companion. To the lowest order, such deformations
are described through the star’s induced quadrupole moment. The grav-
itational wave signal emitted before the merger of a binary carries direct
information on the tidal properties of compact stars. The tidal deforma-
bility λ is defined as the coefficient which relates the induced quadrupole
Qij to the perturbing tidal field Eij that acts on a star perturbing its shape
Qij = −λEij , where i and j label the space coordinates. It is related to the
gravitational Love number k2 via the relation

λ =
2

3
k2R

5, (1)

which exhibits its sensitivity to the radius of the star R. Both k2 and R
depend on the EoS of matter (Baiotti, 2019). Frequently one uses dimen-
sionless tidal deformability defined as

Λ =
λ

M5
=

2

3
k2C, (2)
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where C = M/R is the compactness of the star. Frequently one also defines
an effective tidal deformability as (Flanagan and Hinderer, 2008)

Λ̃ =
16

13

(M1 + 12M2)M4
1Λ1 + (M2 + 12M1)M4

2Λ2

(M1 +M2)5
, (3)

involving the masses and tidal deformabilities of both stars. The analysis
of the GW170817 and GW190425 events were carried out for high- and
low-spin priors. We give below some characteristic numbers only for low-
spin priors as suggested by galactic observations. The total binary mass
values 2.73+0.04

−0.01M! and 3.4+0.3
−0.1M! were deduced from the GW170817 and

GW190425 events. The masses of the components are in the range 1.16−
1.6M! for GW170817 and 1.46−1.87M! for GW190425 event. The analysis
of GW170817 event led to an upper limit Λ1.4 < 700 for a 1.4M! star (90%
confidence). In the case of the GW190425 event, Λ̃ ≤ 600 has been inferred
for the binary mass range indicated above.

Neutron star surfaces are emitting X-rays due to their thermal heat-
ing by currents associated with the particle flows in the magnetosphere.
The location of the emitting hot spots reflects the structure and topol-
ogy of the magnetosphere. Due to the rotation of the star, the hot spots
are generating pulsed emission. The thermal X-ray emission pulse pro-
file of millisecond pulsar J0030+0451 has been used by the NICER team
to place limits on its mass and radius (Miller et al., 2019; Riley et al.,
2019). The procedure involves modeling the soft X-ray pulses produced
by the rotation of hot spots on the surface of the star and fitting them
to the NICER waveform data. In doing so it was assumed that the star’s
emitting atmosphere is ionized hydrogen and that the magnetic field does
not play any role. The two independent analyses predict (68% credible
interval) M = 1.44+0.15

−0.14M!, R = 13.02+1.24
−1.06 km (Miller et al., 2019)

and M = 1.34+0.15
−0.16M!, R = 12.71+1.14

−1.19 km (Riley et al., 2019). The
same collaboration has also measured the radius of PSR J0740+662 to be
R = 13.7+2.6

−1.5 km (Miller et al., 2021) and R = 12.39+1.3
−0.98 km (Riley et al.,

2021) (68% credible interval). In addition to the above constraints, the
masses of neutron stars in binaries have been measured with high accuracy
which lie in the range 1.2 ! M/M! ! 1.6 with a significant concentration
around the value 1.4 M! (Lattimer, 2019; Özel and Freire, 2016). Further-
more, the moment of inertia of a neutron star is expected to be measured
in the double pulsar system PSR J0737-3039 (Lattimer and Schutz, 2005),
where both masses of stars are already accurately determined by observa-
tions.
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3. Density Functionals for Hypernuclear Matter

Density functional theory offers a flexible framework to study the equi-
librium thermodynamics of nuclear and neutron star matter. In nuclear
physics, a particular class of density functionals can be obtained within the
so-called “relativistic mean-field” models of nuclear matter, which by con-
struction posses the main feature of density functional theory: the potential
energy of the zero-temperature system is a functional of (energy) density
alone. The self-energies in these theories are evaluated either in the Hartree
or Hartree-Fock theories of many-body theory, the first approximation be-
ing the simplest realization of such scheme. The Hartree-Fock theories allow
one to introduce the pion contribution explicitly in the density functional,
which could be an advantage for a detailed treatment of the tensor force.
Once the density functional is constructed the parameters of the relativistic
Lagrangian are adjusted to reproduce the laboratory data within a range
that is compatible with other constraints, such as those available from com-
pact star observations. The microscopic ab initio many-body calculations
are treated as data, i.e., they constrain the admissible range of parame-
ters entering the functional. (In passing we note that density functionals
have been derived directly from microscopic theories, but this will not be
reviewed here). An advantage of the approach taken here is the straightfor-
ward extension of the density functional from nuclear to hypernuclear and
∆-resonance matter. The fast numerical implementations allow us to scan
a large parameter space associated with the density functional, which can
become quite large as one includes the heavy baryons in the functional.

3.1. Relativistic density functional with density-dependent
couplings

In this section, we briefly review the construction of the density functional
of hypernuclear matter starting from a relativistic Lagrangian and adopting
the Hartree approximation. The Hartree-Fock scheme is discussed in detail
elsewhere (Li et al., 2018a). We will use a particular class of such function-
als that assign a density dependence to the coupling constants describing
the meson-baryon interactions, which incorporate modifications of the in-
teraction due to changes in the density of the medium in which baryons
and mesons are embedded (Lalazissis et al., 2005; Typel, 2018; Typel and
Wolter, 1999). The scheme discussed below will include successively the
J = 1/2 baryon octet and J = 3/2 resonances; see Fig. 2 for an illustra-
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Fig. 2. An illustration of the spin-1/2 octet of baryons (left) and spin-3/2 decuplet of
resonances (right), where the vertical axis is the strangeness and the horizontal axis is
the third component of the isospin.

tion of the octet and decuplet arrangement of the heavy baryons and their
quantum numbers. The Lagrangian of stellar matter with baryonic degrees
of freedom can be written as

L = Lb +Lm +Ll +Lem, (4)

where the baryon Lagrangian is given by

Lb =
∑

b

ψ̄b

[
γµ

(
i∂µ − gωbωµ − 1

2
gρBτ · ρµ

)
− (mb − gσbσ)

]
ψb, (5)

where the b-sum is over the JP = 1
2

+
baryon octet, ψb are the baryonic

Dirac fields of baryons with masses mb, and σ,ωµ, and ρµ are the mesonic
fields which mediate the interaction among baryon fields. The coupling
constants gmb, in general, are density-dependent. The mesonic part of the
Lagrangian is given by

Lm =
1

2
∂µσ∂µσ − m2

σ

2
σ2 − 1

4
ωµνωµν +

m2
ω

2
ωµωµ − 1

4
ρµν · ρµν +

m2
ρ

2
ρµ · ρµ,

(6)

where mσ, mω, and mρ are the meson masses and ωµν and ρµν represent
the strength tensors of vector mesons

ωµν = ∂µων − ∂µων , ρµν = ∂νρµ − ∂µρν . (7)

The leptonic Lagrangian is given by

Ll =
∑

λ

ψ̄λ(iγ
µ∂µ −mλ)ψλ, (8)
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where ψλ are lepton fields (in stellar matter the λ-summation includes elec-
tron, muons, and at high temperatures the three flavors of neutrinos when
neutrinos are trapped) and mλ are their masses. Finally, if the stellar
matter is permeated by sizable magnetic fields (which is the case, for ex-
ample, in magnetars) then we need to include the electromagnetism via its
gauge-field Lagrangian

Lem = −1

4
FµνFµν , (9)

where Fµν is the electromagnetic field strength tensor and replace the par-
tial derivatives by their gauge-invariant counterparts Dµ = ∂µ + ieQAµ

where Aµ is the electromagnetic vector potential and eQ is the charge of
the particle (Dexheimer et al., 2021b; Thapa et al., 2020).

The baryonic Lagrangian can be extended to include the non-strange
J = 3/2 members of the baryons decuplet which is the quartet of ∆-
resonances, see Fig. 2, by adding to the Lagrangian (4) the term

Ld =
∑

d

ψ̄ν
d

[
γµ

(
i∂µ − gωdωµ − 1

2
gρdτ · ρµ

)
− (md − gσdσ)

]
ψdν , (10)

where the d-summation is over the resonances described by the Rarita-
Schwinger fields ψdν . Furthermore, to describe the interactions between the
strange particles the Lagrangian (4) can be extended to include the inter-
actions in the hypernuclear sector via two additional (hidden strangeness)
mesons σ∗ and φ

Lm′ =
1

2
∂µσ∗∂µσ

∗ − m∗2
σ

2
σ∗2 − 1

4
φµνφ

µν +
1

2
m2

φφµφ
µ, (11)

with field strength tensor φµν = ∂νφµ − ∂µφν . These mesons do not couple
to nucleons, i.e., gσ∗N = gφN = 0, see however Eq. (29) below.

Let us now turn to the coupling constants in the nucleonic sector. These
are given by their values at the saturation density ρsat and by functional
form describing their dependence on baryon density ρB

giN (ρB) = giN (ρsat)hi(x), (12)

where x = ρB/ρsat and

hi(x) =
ai + bi(x+ di)2

ai + ci(x+ di)2
, i = σ,ω, hρ(x) = e−aρ(x−1). (13)

The density dependence of the couplings implicitly takes into account many-
body correlations that modify the interactions in the medium. In the fol-
lowing we will adopt the DDME2 parametrization (Lalazissis et al., 2005);
the values of the parameters are listed for completeness in Table 1.
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Table 1. The values of parameters of the DDME2 CDF.

Meson (i) mi (MeV) ai bi ci di giN
σ 550.1238 1.3881 1.0943 1.7057 0.4421 10.5396
ω 783 1.3892 0.9240 1.4620 0.4775 13.0189
ρ 763 0.5647 7.3672

The masses of ω and ρ mesons are taken to be their free values. The five
constraints hi(1) = 1, h′′

i (0) = 0 and h′′
σ(1) = h′′

ω(1) allow one to reduce the
number of free parameters in isocalar-scalar and iso-scalar-vector sector to
three. Three additional parameters in this channel are gσN (ρsat), gωN (ρsat)
and mσ - the mass of the phenomenological σ meson. With two additional
parameter in the isovector-vector channel, the parameterization has in to-
tal eight parameters (seven entering the definition of the coupling constants
and the mass of the σ-meson) which are adjusted to reproduce the proper-
ties of symmetric and asymmetric nuclear matter, binding energies, charge
radii, and neutron skins of spherical nuclei.

The ground-state expectation values of mesons in the mean-field and
infinite system approximations are given by

m2
σσ =

∑

b

gσbn
s
b +

∑

d

gσdn
s
d, m2

σ∗σ∗ =
∑

b

gσ∗bn
s
b, (14)

m2
ωω0 =

∑

b

gωbnb +
∑

d

gωdnd, m2
φφ0 =

∑

b

gφbnb, (15)

m2
ρρ03 =

∑

b

gρbτ b3nb +
∑

d

gρdτ d3nd, (16)

where the scalar and baryon (vector) number densities are defined for the
baryon octet as ns

b = 〈ψ̄bψb〉 and nb = 〈ψ̄bγ0ψb〉, respectively. For the
∆-resonances, these are defined as ns

d = 〈ψ̄dνψν
d 〉 and nd = 〈ψ̄dνγ0ψν

d 〉, re-
spectively. The effective (Dirac) baryon masses in the same approximation
are given by

m∗
b = mb − gσbσ − gσ∗bσ

∗, m∗
d = md − gσdσ. (17)

Given the Lagrangian density (5), the energy stress tensor can be con-
structed

Tµν =
∂L

∂(∂µϕi)
∂νϕi − gµνL , (18)

where ϕi stands generically for a boson or fermion field. Then, its diagonal
elements define the energy density and pressure

E = 〈T 00〉, P =
1

3

∑

i

〈T ii〉, (19)
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where the brackets refer to statistical averaging. Explicitly one finds

P = −m2
σ

2
σ2 − m∗2

σ

2
σ∗2 +

m2
ω

2
ω2
0 +

m2
ρ

2
ρ203 +

m2
φ

2
φ2
0

+
1

3

∑

b,d

2Jb,d + 1

2π2

∫ ∞

0

dk k4

Eb,d
k

[
f(Eb,d

k − µ∗
b,d) + f(Eb,d

k + µ∗
b,d)

]

+
1

3π2

∑

λ

∫ ∞

0

dk k4

Eλ
k

[
f(Eλ

k − µλ) + f(Eλ
k + µλ)

]
, (20)

and

E =
m2

σ

2
σ2 +

m∗2
σ

2
σ∗2 +

m2
ω

2
ω2
0 +

m2
ρ

2
ρ203 +

m2
φ

2
φ2
0

+
∑

b,d

2Jb,d + 1

2π2

∫ ∞

0
dk k2Eb,d

k

[
f(Eb,d

k − µ∗
b,d) + f(Eb,d

k + µ∗
b,d)

]

+
∑

λ

∫ ∞

0

dk

π2
k2Eλ

k

[
f(Eλ

k − µλ) + f(Eλ
k + µλ)

]
, (21)

where JB is the baryon degeneracy factor,

µb =
√
p2Fb

+m∗2
b + gωbω0 + gφbφ0 + gρbτb3ρ03 + Σr, (22)

µd =
√
p2Fd

+m∗2
d + gωdω0 + gρdτd3ρ03 + Σr, (23)

are the baryon chemical potentials, I3 is the third component of baryon

isospin, Eb,d
k =

√
k2 +m∗2

b,d and Eλ
k =

√
k2 +m2

λ are the single particle

energies of baryons and leptons respectively, and f(E) = [1+ exp(E/T )]−1

is the Fermi distribution function at temperature T . The lepton mass mλ

can be taken equal to its free-space value. The self-energy Σr arises due to
the density-dependence of the coupling constant and guarantees the ther-
modynamic consistency of the theory, i.e., the fact that the thermodynamic
relation

P = ρ2
∂

∂ρ

(
E
ρ

)
, (24)

is fulfilled.

3.2. Hyperonic and ∆-resonance couplings

The lack of reliable information on the hyperon-nucleon and hyperon-
hyperon interactions prevents a high-precision determination of the pa-
rameters entering the Lagrangian (5). The SU(3) flavor symmetric model
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allows one to determine the magnitude of the coupling constants appearing
in the Lagrangian (5) based on symmetry argument and the principles of the
“eightfold way” of elementary particle classification in particle physics (de
Swart, 1963). The SU(3) symmetry in flavor space is, of course, broken
by the strange quark mass at the densities and temperatures relevant to
compact stars. Nevertheless, it provides some guidance in instances where
no or little information is available.

Within this model, the spin-1/2 baryons and mesons are arranged in
octets, which is the lowest non-trivial irreducible representation of the sym-
metry group. The interaction part of the SU(3) invariant Lagrangian de-
scribing the coupling of baryons and mesons is constructed using matrix
representations for the baryon JP = 1/2+ octet of baryons B and JP = 1−

meson octet (M8) which is supplemented by meson singlet (M1) which
allows describing physical mesons via mixing mechanism. The Lagrangian
contains linear combinations of the antisymmetric (F -type), symmetric (D-
type), and singlet (S-type) scalar contributions (using the standard nota-
tions)

LSU(3) = −g8
√
2[αTr([B̄,M8]B) + (1− α)Tr({B̄,M8}B)]

− g1√
3
Tr(B̄B)Tr(M1), (25)

where g8 and g1 denote the meson octet and singlet coupling constant
respectively and α = F/(F +D) with 0 ≤ α ≤ 1.

The physical mesons ω and φ then appear as a mixture of the ω0 and
ω8 members of the vector meson nonet:

(
ω8

ω0

)
=

(
cos θV sin θV
− sin θV cos θV

)(
ω
φ

)
, (26)

where θV is the vector mixing angle. Within this mixing scheme the cou-
pling of a baryon to the physical ω-meson is given by

gBω = cos θV g1 + sin θV
g8√
3
δB , B ∈ {N,Ξ,Λ,Σ}, (27)

where δN = 4αV − 1, δΞ = 1 + 2αV and δΣ = −δΛ = 2(1 − αV ). It
is convenient to express the coupling of hyperons to mesons by using the
nucleonic couplings as normalization

RωB =
gωB

gωN
=

1− g8
g1

√
3
δB tan θV

1− g8
g1

√
3
(1− 4αV ) tan θV

. (28)
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The φ-meson couplings can be obtained from those for ω meson by the sub-
stitution cos θV → − sin θV and sin θV → cos θV . In general, it is possible
that φ meson couples to the nucleon with the coupling given by

RφN = −
tan θV − g8

g1
√
3
δN

1 + g8
g1

√
3
δN tan θV

. (29)

The coupling for the isovector ρ meson is given by

gρN = g8, RρΞ = −(1− 2αV ), RρΣ = 2αV , RρΛ = 0. (30)

Note that the ρ couplings vanish exponentially at high densities according
to Eq. (13) and their effect on the properties of dense matter (beyond the
threshold for the onset of hyperons) is small.

The approximate equality of the masses of ω and ρ-mesons implies that
the mixing is ideal, in which case φ meson is a pure s̄s state and the mixing
angle is given by the ideal mixing value tan θ∗V = 1/

√
2. Since the nucleon

does not couple to pure strange meson φ, Eq. (29) implies that this is
the case when g1 =

√
6 g8 and αV = 1, the latter being the universality

assumption for the (electric) F/(F +D) ratio, i.e., only F -type coupling is
non-zero. In this case the coupling constants of heavy baryons are related
to those of the nucleon as in the additive quark model.

The couplings in the case of the scalar mesons σ and σ∗, are obtained
from those of ω and φ, respectively, with the replacements ω → σ, φ → σ∗,
and changing the vector indices to scalar ones V → S. In the case of
σ-meson the coupling constants are given by

gBσ = cos θS g1 + δBg8 sin θS/
√
3, (31)

where in the definitions of δB the scalar ratio αS appears instead of its vec-
tor counterpart. It can be shown that the coupling defined in this manner
obey the following relation (Colucci and Sedrakian, 2013)

2(gNσ + gΞσ) = 3gΛσ + gΣσ, (32)

which is valid for arbitrary values of the four parameters αS , g1, g8 and θS .
It is easy to verify that Eq. (32) is satisfied for the coupling constants in
the SU(6) spin-flavor symmetric quark model. Table 2 lists the couplings
within this model.

The information on the couplings of hyperons to the scalar mesons can
be obtained from the fits to their potentials in nuclear matter and nuclei
within a particular model. For example, the single Λ-hypernuclei has been
used to fix the value of gΛσ coupling (van Dalen et al., 2014). Similarly,



June 5, 2021 12:5 ws-rv9x6 Book Title AstrophysicsXXICentury
page 20

20 Armen Sedrakian, Jia-Jie Li, and Fridolin Weber

Table 2. The ratios of the couplings of hyperons in the
SU(6) spin-flavor model.

Y \R RσY Rσ∗Y RωY RφY RρY

Λ 2/3 −
√
2/3 2/3

√
2/3 0

Σ 2/3 −
√
2/3 2/3 -

√
2/3 2

Ξ 1/3 −2
√
2/3 1/3 −2

√
2/3 1

Fig. 3. The ranges of coupling constants RσΣ and RσΞ (shaded areas) compatible with
experimental/theoretical information and relation (32) (solid line) for DDME2 CDF and
fixed RσΛ = 0.6164. The combined area of RσΣ and RσΞ has no overlap with prediction
based on the SU(3) flavor symmetry, indicating its breaking in the scalar-meson sector.

the coupling to the σ∗ is obtained from the fits to the binding of double
Λ hypernuclei (Fortin et al., 2017). Furthermore, density functionals have
been adapted to treat multi-strange nuclei hypernuclei (Güven et al., 2018;
Khan et al., 2015; Margueron et al., 2017).

Figure 3 shows the range of the (dimensionless) couplings RσΣ and RσΞ

which covers the potential depths ranges UΣ(ρsat) = [−10 : +30] MeV
and UΣ(ρsat) = [−24 : 0] MeV at nuclear saturation density. The value
UΞ(ρsat) = −24 MeV has been given in (Friedman and Gal, 2021) and is
much deeper than the one expected from Lattice 2019 results (Inoue and
HAL QCD Collaboration, 2019; Sasaki et al., 2020). The fixed value of
the RσΛ = 0.6164 (van Dalen et al., 2014) has been used. It is seen that
in contrast to the SU(6) model, the values of RσΞ predicted by relation
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(32) do not intercept the overlap area of RσΣ and RσΞ couplings, which
indicates the breaking of corresponding symmetry.

The results pertaining hyperonic compact stars below have been ob-
tained with the parameters RσΛ = 0.6106, RσΣ = 0.4426, and RσΞ =
0.3024 (Li et al., 2018b) in the framework of the DDME2 CDF extension
to hypernuclear sector.

Most studies of∆s in dense matter have been carried out in the relativis-
tic mean-field approach (Cai et al., 2015; Choudhury and Rakshit, 1993;
Lavagno, 2010; Waldhauser et al., 1987, 1988; Weber and Weigel, 1989b),
the density-dependent CDF approach (Drago et al., 2014; Kolomeitsev
et al., 2017; Li et al., 2018b), the relativistic Hartree-Fock approach (We-
ber and Weigel, 1989a; Zhu et al., 2016) and the quark-meson coupling
model (Motta et al., 2020). The interactions of ∆-resonance within the
matter are not well known. Some information on the ∆-potential in the
isospin symmetric nuclear matter is available from the analysis of scatter-
ing of electrons and pions off nuclei with ∆-excitation (Horikawa et al.,
1980; Koch, 1997; Nakamura et al., 2010; O’Connell and Sealock, 1990;
Wehrberger et al., 1989) and photo-absorption (Alberico et al., 1994; Riek
et al., 2009). The extracted value of the potential is (Drago et al., 2014)

−30 MeV + VN (ρsat) ≤ V∆(ρsat) ≤ VN (ρsat), (33)

where VN (ρsat) is the nucleon isoscalar potential at the saturation density.
The∆-resonance production in heavy-ion collisions is another channel of in-
formation, where however collective dynamics of nuclear matter comes into
play (Cozma, 2016; Cozma and Tsang, 2021; Ono et al., 2019; Xu, 2019).
Numerical simulations provide hints towards the values of the potential in
the range (Kolomeitsev et al., 2017)

VN (ρsat) ≤ V∆(ρsat) ≤ 2/3VN (ρsat). (34)

The isovector meson-∆-resonance couplings are not known. In the following
we use the ratios Rm∆ = gm∆/gmN to describe the ∆-resonance couplings.
In the recent work, these parameters have been varied in the range (Li and
Sedrakian, 2019a; Li et al., 2018b)

Rρ∆ = 1, 0.8 ≤ Rω∆ ≤ 1.6, Rσ∆ = Rω∆ ± 0.2, (35)

to explore the consequences of the inclusion of ∆-resonance in the CDF of
(hyper)nuclear matter.
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Table 3. The coefficients of the expansion (36) for the DDME2
parametrization in MeV units, where we show the values of higher-order
parameters not defined in (36), see Margueron et al. (2018a).

Density expansion
ρsat [fm−3] m∗

N/m Esat Ksat Qsat Zsat

0.152 0.57 −16.14 251.15 479 4448
Isospin-asymmetry expansion

Esym Lsym Ksym Qsym

32.31 51.27 −87 777

3.3. Characteristics of nuclear matter close to saturation

As is well known, the EoS of nuclear matter can be parametrized via an
expansion in the vicinity of saturation density and isospin-symmetrical limit
via a double-expansion in the Taylor series:

E(χ, δ) ( Esat +
1

2!
Ksatχ

2 +
1

3!
Qsatχ

3 + Esymδ
2 + Lsymδ

2χ+O(χ4,χ2δ2),

(36)

where χ = (ρ − ρsat)/3ρsat, δ = (ρn − ρp)/ρ with ρn and ρp being the
neutron and proton densities. The coefficients of the expansion are known
as incompressibility Ksat, the skewness Qsat, the symmetry energy Esym

and the slope parameter Lsym. The definitions of parameters are standard,
see Margueron et al. (2018a). These four low-order coefficients can be
constrained from experimental data on nuclear systems. The higher-order
terms are less constrained (Margueron et al., 2018a; Zhang and Li, 2019).

While the CDFs provide full access to the spectra of particles, the mat-
ter compositions, etc. the expansions of the type (36) provide only a more
limited set of physical parameters, for example, the EoS. Since the uncer-
tainties in the nuclear matter properties are easily characterized in terms of
uncertainties in the characteristics entering the expansion (36), it is impor-
tant to establish a one-to-one correspondence between the two descriptions.

The five macroscopic characteristics in Eq. (36) together with the preas-
signed values of saturation density ρsat and the nucleon Dirac mass m∗

N/m
uniquely determine the seven adjustable parameters of the CDFs of the
DDME2 type. This allows one to generate new parametrizations which
reproduce desired values of the characteristics (Li and Sedrakian, 2019a),
especially those that are associated with high-density and large-isospin be-
havior. As finite nuclei do not probe these regimes the loss of accuracy of
the new CDFs in reproducing the binding energies, charge radii and neutron
skins of finite nuclei is marginal.
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Having such a tool at the disposal one can now proceed to vary indi-
vidually the characteristics within their acceptable ranges and extract the
EoS of dense matter and, consequently, the properties of compact stars.
This allows one to explore the correlation(s) between specific properties
of nuclear matter and/or compact stars (Cai and Chen, 2017; Cai and Li,
2021; Li et al., 2021; Li and Magno, 2020; Li and Sedrakian, 2019a; Li
and Sedrakian, 2019b). Detailed investigations of the EoS were carried out
where the higher-order coefficients of the expansion, specifically, Qsat and
Lsym were varied since their values are weakly constrained by the conven-
tional fitting protocol of CDF (Li and Sedrakian, 2019a; Margueron and
Gulminelli, 2019; Margueron et al., 2018a,b; Zhang et al., 2018). It is inter-
esting that the one-to-one mapping described above allows one to predict
the higher-order terms in the expansion (36) (Li and Sedrakian, 2019a),
which are highly model dependent (Dutra et al., 2014, 2012).

4. Hypernuclear Stars: static properties

4.1. EoS and composition

Given a CDF one could compute the EoS of the stellar matter by imple-
menting the additional conditions of weak equilibrium and change neutral-
ity that prevail in compact star matter (except for the first instances after
birth). The strangeness changing weak equilibrium conditions are given

µΛ = µΣ0 = µΞ0 = µ∆0 = µn = µB , (37)

µΣ− = µΞ− = µ∆− = µB − µQ, (38)

µΣ+ = µ∆+ = µB + µQ, (39)

µ∆++ = µB + 2µQ, (40)

where µB and µQ = µp−µn are the baryon and charge chemical potentials,
µi with i ∈ {Λ,Σ0,±,Ξ0,±,∆0,±,++} are the chemical potentials of the
baryons. The baryonic charge is given by

np + nΣ+ + 2n∆++ + n∆+ − (nΣ− + nΞ− + n∆−) = nQ,

where ni are the baryon number densities. The electrical charge neutrality
is then implemented by equating this quantity with the lepton charge

nQ = ne + nµ, (41)

where ne,µ are the number densities of electrons and muons. Figure 4
shows the EoS for nucleonic (N), hyperonic (NY ) and ∆-admixed hyper-
onic (NY∆) matter at zero temperature and in weak β-equilibrium. The
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Fig. 4. The EoS of nucleonic (N), hyperonic (NY ) and ∆-admixed hyperonic (NY∆)
matter at zero temperature and in β-equilibrium. The ∆-potential is fixed by V∆(ρsat) =
VN (ρsat).

onset of hyperons and ∆ particles are seen by the change in the slope of
the pressure above the saturation density and significant softening of the
EoS. In the case where ∆’s are included in the composition, the EoS soft-
ens at low and stiffens at high densities compared to the purely hyperonic
case. Figure 5 shows the particle abundances of hyperonic matter for the
DDME2 plus hyperons parameterization. This EoS is smoothly matched at
the density ρsat/2 to that of the crust EoS (Baym et al., 1971a,b). It is seen
that the first hyperon to appear is the Λ, which is followed by the Ξ− hy-
peron. The Σ− hyperons do not appear because they are disfavored by their
repulsive potential at nuclear saturation density (Bart et al., 1999; Dover
and Gal, 1984; Gomes et al., 2015; Lopes and Menezes, 2014; Maslov et al.,
2016; Miyatsu et al., 2015). Similar ordering of hyperon thresholds was
found with other hypernuclear CDFs (Fortin et al., 2017; Li et al., 2018a,b;
Weissenborn et al., 2012a,b); note also that this picture is in contrast to
the case of free hyperonic gas, in which case Σ− is, in fact, the first hyperon
to nucleate (Ambartsumyan and Saakyan, 1960). The modification of the
particle abundances in the cases when ∆’s are included is as follows (Li
et al., 2018b). For strong enough ∆ potential V (N)

∆ the ∆-threshold den-

sity is considerably lower than that for the Λ hyperon. The larger V (N)
∆ the
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Fig. 5. Particle fractions Yi = ni/n, where ni is the number density of species i and n
is the total density, in zero-temperature hypernuclear matter according to the DDME2
model as a function of the ratio ρ/ρsat.

lower is the onset densities of ∆’s. Because of its negative charge, the first
∆ resonance to appear is the ∆−, which competes with negatively charged
leptons, effectively eliminates the Σ− and shifts the threshold for the Ξ− to
higher densities. The Λ hyperon abundance is weakly affected by the ∆’s.
For V∆ ≥ VN , the remaining ∆0,+,++ resonances also nucleate. By electric
charge neutrality between the baryons and leptons, the appearance of nega-
tively charged ∆− and Ξ− depletes the electron-muon population. Finally,
for large (V∆ ≥ VN ) potentials ∆’s appear already in 1.4M! compact stars.

4.2. Global static properties

The static properties of the compact stars in spherical symmetry (assum-
ing no rotation and significant magnetic fields) are obtained from the inte-
gration of the Tolman-Oppenheimer-Volkoff equations (Oppenheimer and
Volkoff, 1939; Tolman, 1939), which represent the solution of Einstein’s
equation for a spherically symmetrical distribution of mass. It is often use-
ful to compare the theoretical predictions with the observations on plots
that contain only observable quantities, i.e. combinations of mass, radius,
the moment of inertia, spin frequency, etc. As an example, we show in
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Fig. 6. MR relations for EoS of state with N , NY , and NY∆ compositions. The
shaded areas labeled PSR J0030+0451 corresponds to the 1σ constraints set by the
NICER experiment (Miller et al., 2019; Riley et al., 2019). We also show the 2σ range
mass for MSPJ0740+6620 (Cromartie et al., 2020) and the mass range extracted from
the GW190814 event. The maximum mass for each stellar sequence is indicated by a
solid dot

Fig. 6 the mass-radius (MR) relations for purely nucleonic, hyperonic, and
hyperon-∆ admixed EoS presented in Fig. 4. The following observational
constraints are included: (a) the 1σ constraints set by the NICER experi-
ment on the mass and radius of PSR J0030+0451 (Miller et al., 2019; Riley
et al., 2019); (b) the 2σ mass-limit on the largest millisecond pulsar MPS
J0740+6620 mass measured (Cromartie et al., 2020) in combination with
the recent NICER teams’ report of its 1σ radius measurement in the range
12 ≤ R ≤ 14 km (Miller et al., 2021; Riley et al., 2021); (c) the mass range
inferred for the light companion of the binary observed in the GW190814
event to be discussed in detail in Sec. 5. The softening of the EoS when
the heavy baryons are allowed is reflected in the significant reduction of
the maximum mass of compact stars in both cases of only hyperons (NY )
and hyperons and ∆-resonances (NY∆). The additional softening of EoS
at intermediate densities in the case when ∆-resonances are allowed results
in a shift of the radius of the corresponding configuration to smaller values.
Since in this case, the stiffness of the EoS is comparable to that of purely
hyperonic matter at high densities (and even exceeds it asymptotically) the
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Fig. 7. Mass-radius relation for a set of EoS with varying Lsym (a) and Qsat (b) and
assuming purely nucleonic (N), hyperonic (NY ), and hyperon-∆ admixed (NY∆) com-
positions of stellar matter (Li and Sedrakian, 2019b). Three values of the ∆-potential
have been used: R∆N = V∆/VN = 1, 4/3 and 5/3, where VN is the nucleon potential in
isospin-symmetrical matter at saturation density.

values of the maximum masses (Mmax " 2.0M!) are comparable in both
cases of pure and ∆-admixed hypernuclear matter, see Fig. 6.

To illustrate the effect of variations of the nuclear characteristics on the
mass and radius of compact stars Fig. 7 shows the MR plot for the three
cases N , NY and NY∆ where the isoscalar Qsat, and the isovector Lsym

characteristics are varied, while the remaining parameters in Eq. (36) are
fixed at their values predicted by the DDME2 functional (see Table 3). Note
that the variation ofQsat is achieved by varying the three density-dependent
parameters, i.e., these variations do not impact the meson-hyperon and
meson-∆ couplings at nuclear saturation density. It is seen that smaller
values of Lsym and Qsat imply smaller radius for a given mass. At the
same time, a smaller value of Qsat predicts smaller maximal mass, as the
high-density asymptotics of Eq. (36) is reduced. The effect of varying the
∆-meson couplings are shown by using various values of ∆ potential R∆N =
V∆(ρsat)/VN (ρsat) = 1; 4/3; 5/3. It is seen that the larger is the value of
V∆(ρsat) the smaller is the radius of the predicted configuration, as can be
anticipated from the discussion of Fig. 6. Furthermore, the overall trends
are rather similar when varying individually the characteristics for NY and
NY∆ matter, as these are related to the properties of nuclear matter itself
and not the heavy baryon admixture. The differences between the two
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compositions (i.e. NY vs NY∆) seen in Fig. 7 (e.g. in the radius of a
canonical neutron star) arise from the factors that have been discussed in
the context of Fig. 6. We close by noting that the parameter space used
in Fig. 7 implies maximum masses of configurations larger than 2 M! and
radii within the range 12 ! R ! 14 km independent of the composition.
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Fig. 8. Dimensionless tidal deformabilities extracted observationally from the
GW170817 event (shaded areas) are compared with the predictions of EoS with vari-
ous compositions and varying values of Lsym, Qsat and RN∆ (Li and Sedrakian, 2019b).
The light and heavy shadings correspond to the 50% and 90% credibility regions (Abbott
et al., 2019). The results of the earlier analysis by LVC (Abbott et al., 2017) is shown
by the gray dash-dotted curves. The dots correspond to the predictions for a BNS with
mass ratio q = 0.73.

4.3. Tidal deformabilities

Since the first observation of gravitational waves from a BNS merger - the
GW170817 event - the tidal deformability of compact stars has become
accessible observationally (Abbott et al., 2017, 2019) and, thus, can be
confronted with the theoretical predictions, as already indicated in Sec. 2.
Figure 8 shows tidal deformabilities of two stars Λ1 and Λ2 as defined by
Eq. (2) forN , NY , andNY∆ compositions, three values of the∆-resonance
potential in nuclear matter expressed through the ratio R∆N = V∆/VN
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and BNS member masses M1 and M2. A variation in the characteristics
is also allowed by varying Qsat and Lsym. The diagonal line corresponds
to the case of an equal-mass binary assumption for GW170817 event, in
which case M1 = M2 = 1.362M!. The light and heavily shaded areas
represent the 90% and 50% confidence limits extracted from the analysis
of GW170817 event (Abbott et al., 2019). It is seen that the data favors
low values of Qsat ( 300 MeV and Lsym ( 40 MeV for purely nucleonic
compact stars, which are otherwise outside the allowed range. The inclusion
of hyperons and ∆’s reduces the tidal deformability, as seen clearly from
the inset in Fig. 8. The most significant reduction arises from the inclusion
of the ∆’s with large attractive potential, i.e., large R∆N value. Thus,
the appearance of ∆-resonances with reasonably attractive ∆-potential in
the nuclear matter is needed to make the EoS models compatible with the
data from GW170817. Purely hyperonic models are compatible with the
90% confidence limits for selected values of Qsat and Lsym. We note that
the softening of EoS at intermediate densities caused by the onset of ∆’s
is similar in its effect to a first-order phase transition to a quark matter
in which case again more compact configurations arise, see, for example,
Alford et al. (2013); Alford and Sedrakian (2017); Alvarez-Castillo et al.
(2019); Alvarez-Castillo et al. (2019); Antić et al. (2021); Bonanno and
Sedrakian (2012); Fukushima et al. (2020); Kojo (2020); Li et al. (2020a);
Otto et al. (2020); Zdunik and Haensel (2013). In closing, we note that the
information gained from MR and Λ1 − Λ2 relations are complementary to
each other: different EoS models predicting different MR relations could
feature Λ1 − Λ2 relations that are rather close to each other.

5. Rapidly Rotating Hyperonic Stars

A generic feature of Einstein’s gravity is the existence of the maximum
mass for compact stars assuming that the pressure originates from “ordi-
nary” baryonic matter. The exact value of this maximum mass is currently
unknown. Rotating compact stars accommodate larger masses than their
static (non-rotating) counterparts by about 20% because the centrifugal
force provides additional support against the gravitational pull towards the
center of the star. There exist several public domain codes for computing
stellar configurations of rapidly rotating compact stars (see the RNS code
at Stergioulas (2003) and Gourgoulhon et al. (2021)). They are based on
an iterative method of solution of Einstein’s equations (Cook et al., 1994;
Nozawa et al., 1998) in axial symmetry and use a tabulated EoS as an
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Fig. 9. The mass-radius relations for nonrotating (solid lines) and maximally rotat-
ing (dashed lines) nucleonic (N), hypernuclear (Y ) and ∆-admixed-hypernuclear (∆)
stars. The colored areas show the constraints inferred from the most massive pulsar
MSP J0740+6620 (Cromartie et al., 2020), the mass-radius limits inferred from the
NICER experiment (Miller et al., 2019; Riley et al., 2019) and the mass limits from
GW190814 (Abbott et al., 2020). The circles indicate the maximum masses of the se-
quences, to the left of which the stars are unstable.

input. The method of solution is iterative: it starts with a “guess” configu-
ration (density profile), integrates the stellar structure equations, and uses
this result as an input for a new iteration. This procedure is repeated until
convergence to the desired accuracy is reached at each point of the spatial
grid. Rotating compact stars with hyperonic cores have been considered in
recent years as well (Haensel et al., 2016; Lenka et al., 2019). The interest
in the exploration of rapidly rotating analogous of the models discussed
in the previous sections arose after the measurement by the LVC (Abbott
et al., 2020) of gravitational waves from a binary coalescence of a 24.3M!
black hole with a compact object in the mass the range of 2.50 − 2.67M!
(the GW190814 event). The light member of this binary has a mass that
lies in the so-called “mass gap” 2.5 ! M/M! ! 5 where neither a neu-
tron star nor a black hole has been observed and their existence is not
obvious from the point of view of stellar evolution scenarios. A natural
question that arises in this context is the possible compact star nature of
the light companion. Below we discuss the conjecture that it could be a
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compact object which is rotating at a frequency that is close to the mass-
shedding (Keplerian) limit (Li et al., 2020b; Sedrakian et al., 2020) based
on an EoS which contains hyperons and ∆-resonances; see also Dexheimer
et al. (2021a). Figure 9 shows the mass-radius relations of compact stars
with three compositions N , NY and NY∆ based on the EoS with underly-
ing DDME2 parametrization. The nucleonic models cover the mass range
2.48 ≤ M/M! ≤ 3 in the spin frequency range 0 ≤ Ω ≤ ΩK , where ΩK

is the Kepler frequency. Therefore, the nucleonic models account for the
mass of a compact star in GW190814 even without rotation. In the case
of NY and NY∆ compositions, the maximum masses (but not the radii)
are quite similar in the static case and this feature extends to the case of
rapidly rotating stars. As already noticed, the softening of the EoS in the
case of NY and NY∆ compositions imply a lower maximum mass com-
pared to the nucleonic case. The maximum masses for these compositions
are close to 2.0M!, therefore the corresponding EoS are inconsistent with
the compact star interpretation of the light companion in the GW190814
event. Their maximally rotating Keplerian analogs on the other hand have
maximum masses ≤ 2.4M! suggesting that the maximal rotation is not
sufficient to raise masses to the required value 2.5M!. Thus, there ex-
ists a significant tension between the hyperonization (with or without an
admixture of ∆-resonances) and the interpretation of the light companion
of GW190814 as a compact star. The results shown so far were obtained
within a specific density functional and a valid question is whether the
modifications of the CDF can alter this conclusion. A study of rapidly
rotating stars in the case where the modifications of EoS of NY∆ matter
were framed in the language of the characteristics appearing in Eq. (36),
in particular the values of Qsat and Lsym parameters, was carried out in Li
et al. (2020b). The maximal value RN∆ = 5/3 was adopted although, as
discussed above, the appearance of ∆-resonances increases the maximum
mass of a configuration only slightly.

Figure 10 shows the dependence of maximum masses of the Keplerian
models on parameters Qsat and Lsym for RN∆ = 5/3. It is seen that large
masses, which are compatible with the compact star in GW190814, arise in
the region of large Qsat which imply larger energies at asymptotically large
densities. Large masses are also favored for smaller values of parameter
Lsym (which implies smaller radii of stars and, therefore, more compact
objects). One may compare the required values of Qsat with other existing
functionals (to avoid, in a first approximation, a full-scale computation with
any given functional). A comparison shows that the range of Qsat values
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Fig. 10. The maximum masses of Keplerian sequences (color coded column on the right)
as a function parameter space spanned by Qsat and Lsym. The ∆-resonance potential
is fixed at assuming RN∆ = 5/3. The large-Qsat and small-Lsym range corresponds to
compact stars with masses exceeding 2.5M!.

compatible with a compact star in GW190814 has no overlap with the values
predicted by large samples of non-relativistic and relativistic density func-
tionals (Dutra et al., 2014, 2012), exceptions being the DDME2 (Lalazissis
et al., 2005) and some of the recently proposed functionals (Fattoyev et al.,
2020; Taninah et al., 2020).

One may therefore conclude that the secondary object in GW190814
event must have been a low-mass black hole. The compact star interpre-
tation is in strong tension with the idea of hyperonization of dense matter
(with and without ∆-resonances). Several extreme assumptions are re-
quired to state the contrary, such as maximally rapid rotation, as well as
Qsat and Lsym values that are outside the range covered by most of the
functionals.

6. Hyperonization vs Clustering at Low Densities

So far we concentrated on the hyperonization in the cold and dense matter
as it occurs in the mature compact stars, where the appearance of hyper-
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ons was made energetically favorable by the fact that in the compressed
matter the neutron Fermi energy can exceed the in-medium rest masses of
various hyperons. However, thermodynamic conditions may be favorable
for the hyperonization in a different setting, such as in dilute and warm
matter that may be (transiently) formed in supernova explosions and BNS
mergers (Nakazato et al., 2012; Peres et al., 2013). Because under these con-
ditions nuclear matter is composed of nucleons and clusters (characterized
by a mass number and a charge) at certain isospin asymmetry one needs to
resort to the ideas of nuclear statistical equilibrium (Avancini et al., 2017;
Botvina and Mishustin, 2010; Furusawa and Mishustin, 2017; Grams et al.,
2018; Gulminelli and Raduta, 2012, 2015; Hempel et al., 2012, 2015; Pais
et al., 2020; Raduta and Gulminelli, 2010, 2019; Röpke, 2020; Typel et al.,
2010; Zhang and Chen, 2019). Additional facets are the pionization (at
sufficiently high temperatures) (Colucci et al., 2014; Fore and Reddy, 2020;
Ishizuka et al., 2008; Peres et al., 2013) and formation of condensates of
deuterons (Lombardo et al., 2001; Sedrakian and Clark, 2006; Sedrakian
and Clark, 2019) and alpha-particles (Furusawa and Mishustin, 2020; Sa-
tarov et al., 2019, 2021; Wu et al., 2017; Zhang and Chen, 2017, 2019) at
low temperatures.

An interesting question to be explored is the interplay between the clus-
tering and heavy-baryon degrees of freedom in dilute, finite-temperature
nuclear matter (Fortin et al., 2018; Menezes and Providência, 2017; Se-
drakian, 2020). The rich nucleon-∆-pion dynamics, extensively explored in
the heavy-ion context, suggests that one needs to include the quartet of
∆-resonances and the isotriplet of pions π±,0 along with the nucleons and
clusters (Sedrakian, 2020). In a first approximation, the full nuclear sta-
tistical ensemble can be approximated by the light clusters with the mass
number A ≤ 4 and a heavy nucleus, for example, 56Fe. Since the hyperonic
interactions are less important at low densities the lightest Λ-hyperon is ex-
pected to contribute dominantly to the strangeness content of matter. As
an illustrative example we show in Fig. 11 the composition of dilute nuclear
matter in the temperature range 10 ≤ T ≤ 30 MeV and density 10−2ρsat
for charge fractions YQ = 0.4 (characteristic for supernova matter) and
YQ = 0.1 (characteristic for BNS mergers) (Sedrakian, 2020). We show the
mass fraction Xj = Ajnj/n, where Aj is the mass number of a constituent,
nj is their number density, and n is the total density. The mass fraction of
56Fe is not visible on the figure’s scale. The main observation is that there
is a transition from light baryons and clusters to heavy-baryon featuring
matter at about temperature Ttr ∼ 30 MeV. Once heavy baryons and pions
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Fig. 11. Mass fractions of the constituents as a function of temperature at fixed density
10−2ρsat for charge fractions YQ = 0.4 (top panels) and 0.1 (bottom panels). In the
two left panels include only nucleons and light clusters, whereas the two right panels the
full composition. The composition includes neutrons n, protons p, deuterons d, triton t
helium h, α-particles, ∆ resonances, Λ-hyperon and pions π.

are included the isospin asymmetry in the neutron and proton components
is reduced. This affects the abundances of the helion and triton which are
then closer together. We believe that these are generic, model-independent
features. The transition temperature itself is dependent on the treatment of
the interactions and assumed composition; for alternatives see Fortin et al.
(2018); Menezes and Providência (2017). Other generic aspects worth men-
tioning are: (a) in the presence of a heavy nucleus the abundances of light
clusters are strongly suppressed at low temperatures; (b) the phase-space
occupation suppresses completely the light clusters for densities ≥ 0.1ρsat
due to the Pauli blocking (Röpke, 2020); (c) at low enough temperatures
deuterons can cross-over from Bose-Einstein to Bardeen-Cooper-Schrieffer
pair condensate (Lombardo et al., 2001; Sedrakian and Clark, 2006; Se-
drakian and Clark, 2019).
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7. Hypernuclear Stars: pairing patterns and cooling

The long-term cooling of compact stars is a sensitive probe of the interior
composition of such stars (Page, 2009; Page et al., 2006; Potekhin, 2010;
Schaab et al., 1996; Sedrakian, 2007; Shapiro and Teukolsky, 1983). It
is characterized by neutrino emission from the bulk of the stellar interior
during the time-span t ≤ 105 yr after the star’s birth, which is followed
by late-time photon cooling from its surface, assuming that there is no
internal heating mechanism operating at any stage of evolution. With the
advent of CDFs which were tuned to reproduce the available astrophysical
and laboratory data, it became feasible to perform simulations of cooling
of compact stars with hyperonization in a more constrained manner than
was possible initially (Fortin et al., 2021; Grigorian et al., 2018; Negreiros
et al., 2018; Raduta et al., 2019, 2017).

Hyperonic matter cools via the direct Urca processes (Prakash et al.,
1992). There exist density thresholds for these processes to operate, which
are dictated by the kinematics involved in the reaction, but these densities
are very low for hyperons, i.e., they start operating at a density that is
slightly above the onset density for a hyperon participating in a reaction.
Baryon pairing is known to suppress the rates of the Urca (and other bary-
onic) processes, therefore another unknown in the cooling simulations is the
magnitude of the gaps in the spectra of various hyperons (Raduta et al.,
2019, 2017).

Nevertheless, with the input provided by any given CDF which can
be supplemented by the solutions of the BCS equations for the hyperons,
the simulations of the cooling of compact stars provided some generic in-
sights (Raduta et al., 2019, 2017). There appears to be a mass hierarchy
with respect to the cooling behavior. The lightest stars that contain hy-
perons with M/M! " 1.5 cool via the Urca process Λ → p+ l+ ν̄l, where l
stands for lepton, ν̄l for the associated antineutrino. The appearance of Ξ−

in slightly more massive stars opens a competing channel via Ξ− → Λ+l+ν̄l,
the degree of its efficacy depending on the pairing gaps of Ξ−. For very
massive stars with M/M! ∼ 2 the S-wave gaps of protons and Λ’s will
vanish at high densities (because the interactions will become repulsive at
large energies) and therefore the Urca process involving Λ, p baryons will be
the dominant one. Simulations show that the massive is the star the faster
it cools. If Σ− appears in the matter, the corresponding Urca process via Λ
hyperon may be the dominant cooling agent, since Σ− interaction is likely
repulsive with no BCS gap in their spectrum. Given the mass hierarchy,
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the observations of the surface temperatures of neutron stars can be ex-
plained by the variation of their masses within their population (the light
objects are hot, the heavier ones – cold). Note that the massive models
may not develop normal cores of hyperons due to the possible pairing in
the P -wave channel in the high-density matter in which case fast cooling
will not take place (Raduta et al., 2019). The pairing in the hyperonic
sector remains the main unknown for cooling simulations of hypernuclear
stars. Given this uncertainty, some studies neglect the hyperonic pairing
altogether (Grigorian et al., 2018; Negreiros et al., 2018).

There are uncertainties in the studies of cooling of neutron stars, that
are unrelated to the hyperonic component, which we list here for complete-
ness. These include the composition of the atmosphere (Potekhin et al.,
2020) which substantially affects the surface temperature of the star and
the pairing gaps of neutrons and protons in the domains where interactions
are attractive (Sedrakian and Clark, 2019). Large magnetic fields are a
factor, as they dissipate sufficient energy to heat up the star (Viganò et al.,
2021).

8. Universal Relations

In recent years universal relations among the global properties of compact
stars were established under various conditions, including stationary (non-
rotating), rigidly rotating, magnetized, and finite-temperature stars, for a
review, see Yagi and Yunes (2017). The universality of relations between
global parameters refers to their independence of the EoS that has been
input to compute them. These have proven to be rather useful for the
interpretation of observational data because they reduce the uncertainties
which are related to the EoS.

In the case of hypernuclear stars (with and without ∆-resonances) it
has been established that the universality is maintained among the mo-
ment of inertia, quadruple moment and the Love number of the star (the
so-called I-Love-Q relations) and the dependence of the moment of inertia,
quadrupole moment, tidal deformability on the compactness in cold (Lenka
et al., 2017) and warm neutron stars (Raduta et al., 2020). Their extension
to finite temperature poses some challenges: it turns out that universali-
ties are maintained if one considers stars at the same entropy per baryon
S/A and lepton fraction (Raduta et al., 2020), otherwise the universality is
lost (Marques et al., 2017; Maselli et al., 2013). Clearly, constant entropy
approximation will break down under realistic conditions to some degree.
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While we can be certain that there are no physical obstacles to maintain-
ing the universality in the finite-temperature domain, a formulation that
accounts for entropy gradients needs to be tested. The universalities so far
established extend further to the rapidly rotating stars at finite temperature
without loss of accuracy (Khadkikar et al., 2021).

9. Concluding Remarks

The hyperonization of dense matter and the astrophysics of compact stars
featuring hyperons and ∆-resonances is a vivid field of research with a
strong relation to the observational multimessenger astronomy of compact
stars. The recent advances on the observational front, which include the
observation of gravitational waves from BNS mergers, notably GW170817,
simultaneous measurement of masses and radii of neutron stars and the
discovery of very massive pulsars motivate further improvements of the ex-
isting models and exploration of their new implications in novel astrophys-
ical scenarios. The ongoing and future hypernuclear programs at CERN,
BNL, JLab, GSI-FAIR, and J-PARC, and elsewhere will eventually provide
us with insights on hypernuclei as they occur in terrestrial laboratories.
These can be used to narrow down the parameters of the CDFs and con-
strain other theoretical models. The results achieved so far indicate that
the combination of theoretical work with the observational advances has
the potential of revealing the detailed features of the high-density matter
found in compact stars in the observable future.
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