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ABSTRACT
Modern software developers tend to engage in social coding plat-
forms (e.g., Stack Overflow) to reuse code snippets for expediting
the development process. To address code retrieval issue based
on natural language queries over these platforms, in this paper,
we introduce an attributed heterogeneous information network
(AHIN) to model the corresponding data. Based on the constructed
AHIN, we design an interaction schema meta-tree for the first time
to search both local and global relatedness in AHIN, and elaborate
a novel network embedding model metatree2vec to seamlessly fuse
network structure and node attributes for embedding. This new
embedding paradigm can better bridge the gap between the seman-
tics of code snippets and queries. Comprehensive experiments on
the data collection from Stack Overflow are conducted to validate
the effectiveness of our code retrieval method.
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1 INTRODUCTION
In order to expedite software development process, developers
tend to engage in collaborative social coding platforms to reuse
codes. Despite the apparent benefits, it still takes effort for them
to locate the specific code snippets from searching over millions
that reside on these platforms. As such, an effective code retrieval
engine requires a higher-level semantic matching between code
snippets and natural language queries (e.g., intent descriptions)
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[8]. Recent studies [2, 8, 10, 12, 24] have shown some promising
research results in code retrieval based on natural language queries.
Though leveraging embeddings [8] and collaborations among learn-
ing models [24] can improve the code retrieval performance, the
existing approaches are still faced with limitations in code under-
standing: all the information is completely learned from individual
code snippets without considering any potential network structure
and semantics. Generally, social coding platforms are characterized
by user communications through different threads, which provide a
rich source of descriptive and comprehensive information to depict
code snippets. In other words, such information can be exploited
to better bridge the gap between the high-level intent of queries
and low-level implementation of source code snippets [2].

To address the above challenge, an effective paradigm elaborated
by this work is to leverage social coding properties for code retrieval
based on natural language queries. We consider Stack Overflow as
a case study for our approach, since it is the largest online program-
ming discussion platform. To utilize these properties, in this paper,
we introduce an attributed heterogeneous information network
(AHIN) [5, 17] as an abstract representation to model Stack Over-
flow data. Based on the constructed AHIN, we design an interaction
schema meta-tree for the first time to search both local and global
relatedness in AHIN, and accordingly formulate a novel network
embedding model metatree2vec for representation learning. Our
metatree2vec makes the node embedding as two-step implementa-
tion: (1) we first instantiate a meta-tree to guide the generation of
the semantic units among tightly inter-connected nodes, and utilize
a graph auto-encoder model to preserve the local topology struc-
ture and semantics; (2) we then further devise another meta-tree to
guide the generation of the node sequences, and adopt a seq2seq
model to capture the long-range similarity over nodes, where the
final representations of nodes (e.g., code snippets in our application)
can thus be obtained. This allows a refined architecture to cope
better with network structure and node attributes over AHIN in
a local and global fashion for embedding, and thus build better
lexical connections between the representations of code snippets
and natural language queries.

2 PROBLEM STATEMENT
Given a set of natural language queries Q and code snippets C, the
problem of code retrieval can be stated in the form of 𝑓 : Q → C
which learns a similarity measure model 𝑓 to score the matching
degrees between Q and C in order to retrieve the 𝑘 (𝑘 ≥ 1) highest
scoring code snippets 𝑐𝑘 ∈ C to an input query 𝑞 ∈ Q:

𝑐𝑘 =

{
argmax𝑐∈C 𝑓 (𝑞, 𝑐) 𝑘 = 1
argmax𝑐∈C,𝑓 (𝑞,𝑐)<𝑓 (𝑞,𝑐𝑘−1) 𝑓 (𝑞, 𝑐) 𝑘 > 1

(1)
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Figure 1: Network schema for AHIN in our application.

We assume that developers may provide natural language descrip-
tions (NL𝑑𝑒𝑠 ) with or without keywords (NL𝑤𝑜𝑟𝑑 ) such as method
names for code retrieval; thus, the space of possible queries Q is
concatenated as Q = [NL𝑑𝑒𝑠 ; [NL𝑤𝑜𝑟𝑑 ]] where NL𝑤𝑜𝑟𝑑 is optional.

Since the query 𝑞 and code snippet 𝑐 is heterogeneous, we need
to jointly embed them into a unified vector space so that we can rea-
sonably measure the semantical similarity between them. Formally,
the joint embeddings of 𝑞 and 𝑐 can be formulated as [8]:

𝑞
F𝑞 (𝑞)
−−−−−→ q→ 𝑓 (q, c) ← c

F𝑐 (𝑐)←−−−−− 𝑐 (2)
where F𝑞 : 𝑞 → q ∈ R𝑑 and F𝑐 : 𝑐 → c ∈ R𝑑 are embedding
functions to map query 𝑞 and code 𝑐 into 𝑑-dimensional vector
space respectively. In this paper, we employ cosine similarity for
measuring 𝑓 (q, c), where the higher the cosine similarity, the more
matched the code snippet is to the query.

3 PROPOSED METHOD
3.1 Meta-tree Formulation
We first construct an AHIN 𝐺 = (𝑉 , 𝐸,X) to model Stack Over-
flow data, where 𝑉 is node set, 𝐸 is the edge set, and X ∈ R𝑛×𝑑
is node attribute matrix. To avoid introducing unexpected noises
into network, we intuitively extract the most significant entities
(i.e., code snippet, question, answer, user) and their relations (i.e.,
question-have-code, answer-include-code, user-post-question, user-
supply-answer, answer-echo-question) from StackOverflow for AHIN
construction. Attribute vectors attached on nodes are learned us-
ing doc2vec [15] over their corresponding contents. Considering
different types of nodes and edges in AHIN, we further map 𝑉
and 𝐸 to their types through functions 𝜙 : 𝑉 → V and 𝜓 : 𝐸 → E
respectively, and thus enable a network schema [19] N𝐺 = (V, E)
to abstract the AHIN, which is shown in Figure 1.

Based on the constructed AHIN, meta-paths [20] are generally
used to characterize the relationships among nodes, which have
been shown to be useful in different applications. However, they
can only express simple pairwise relationships between source and
target objects [11], while fail to capture more complex relationships.
For example, a meta-path is not able to depict the inter-connection
among a question and all its answers with code snippets, which
is an individual and indecomposable semantic unit. Decomposing
it into pairwise-node relations will enforce some semantic infor-
mation loss [6, 22]. Therefore, here we design a new interaction
schemameta-tree to encapsulate both local topology and long-range
relatedness over AHIN nodes, which can be defined as follows:

Definition 3.1. Meta-tree. Ameta-treeT is an interaction schema
of tree structure defined on the network schemaN𝐺 = (V, E). For-
mally, in meta-tree T = (VT , ET ,V𝑖𝑑 ),V𝑖𝑑 ∈ VT is the tree root
to represent the type of task identifier, and each branch between

parent node and child node (V𝑝 ,V𝑐 ) ∈ ET represents the type of
object connection, whereVT ⊆ V , and ET ⊆ E.

Clearly, meta-tree is a prefix tree (or search tree), where each path
from root to any internal or leaf node forms a meta-path; therefore,
it can be comprehensively instantiated to depict the local topology
structure, and higher-order relatedness over nodes in AHIN. That is
to say, guided by different meta-tree schemas, we can dynamically
search the nodes, and generate not only the semantic units with
strong relationships, but also variable-length paths with long-range
proximity. Although there are a variety of approaches for network
embedding [4, 6, 7, 9, 18, 21–23], none of these approaches has a
focus on simultaneously dealing with the local and global structural
and attributed information over AHIN. In this respect, effective
embedding method for AHIN is in need.

3.2 Metatree2vec
The AHIN embedding task is to learn a function F : 𝑉 → R𝑑
that maps each node 𝑣 ∈ 𝑉 to a vector in a 𝑑-dimensional space
(𝑑 ≪ |𝑉 |) that is capable of encoding network structure and node
attributes. To this end, we propose a two-step model metatree2vec
to learn node representations in AHIN as follows.
Embedding over local semantic units. For our code retrieval
in Stack Overflow, the task identifier can be specified by the code
snippets. The important insight here is that code snippets are always
semantically related to question and answer threads that provide
them. The semantic unit is accordingly defined as the affiliation of
each code snippet, with the additional information of the questions
and answers. Since user information does not necessarily have a
strong and direct relationship with code semantics, we exclude it
from semantic units while leveraging it for next step. In this regard,
a meta-tree can be instantiated as semantic-unit search schema to
visualize relationships among the task identifier and participating
nodes, and guide semantic unit generation for each task identifier.
As such, based on the network schema shown in Figure 1, starting
with code snippet, we traverse all the distinctive paths that interact
with code snippet, question, and answer, and formulate a meta-tree
as semantic unit search schema (shown in Figure 2) with three
types: the first is code snippet being directly provided in questions
and answers; the second is code snippet being associated with
answers through questions attaching it; the third is code snippet
being related to questions and answers in the same threads through
answers including it.

Semantic unit generation. We view the problem of semantic unit
generation as a form of local search guided by meta-tree. For each
search schema type, we exploit breadth-first search (BFS) strat-
egy in both search schema and AHIN to restrict the neighborhood
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Figure 2: Meta-tree built for semantic unit search schema.
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Figure 3: BFS for semantic unit generation by search schema.

of a node to nodes which are immediate neighbors of the source
[7]. Specifically, let V𝑖 be the current type node (i.e., root node)
in search schema, and 𝑣𝑖 be the current node in AHIN ofV𝑖 type.
We first generateV𝑖 ’s neighborhood 𝑁V𝑖

; for eachV𝑗 ∈ 𝑁V𝑖
, we

then traverse the AHIN to enumerate 𝑣𝑖 ’s neighborhood 𝑁𝑣𝑖 ofV𝑗

type, and merge all the nodes and the corresponding links into the
node set and edge set of the semantic unit respectively; afterwards,
update the current nodes toV𝑗 ∈ 𝑁V𝑖

and 𝑣 𝑗 ∈ 𝑁𝑣𝑖 (𝜙 (𝑣 𝑗 ) = V𝑗 )
and repeat the same traversal until all type nodes in search schema
have been visited or no nodes are available in AHIN. For instance,
as shown in Figure 3, given a search schema and an AHIN, the gen-
erated semantic unit has node set {𝑐2}∪{𝑞3, 𝑞5}∪{𝑎1, 𝑎2} and edge
set {(𝑐2, 𝑞3), (𝑐2, 𝑞5)} ∪ {(𝑐2, 𝑎1), (𝑐2, 𝑎2)} where 𝑐 , 𝑞, and 𝑎 denote
code, question, and answer respectively. As each semantic unit is
an indirect graph, while intuitively, nodes in the same semantic
unit should have significant impact on their neighborhood, a graph
learning model is feasible for embedding over local semantic units.

Graph auto-encoder.We propose to exploit graph auto-encoder
model [14] to implement this step, which encodes graph data to
a compact representation, and then reconstructs the topological
structure from such representation. Since graph convolutional net-
work (GCN) has shown its effectiveness to learn graph structure
and node attributes [13], we devise a two-layer GCN as an encoder
to learn the compact representation:

Z = ÃReLU (Ã XW0)W1, (3)
where A ∈ R𝑛×𝑛 is the adjacency matrix for a semantic unit, Ã is a
symmetric normalization ofAwith self-loop,X is the node attribute
matrix, andW𝑙 denotes weight matrix for the 𝑙-th layer. Afterwards,
we train a decoder to reconstruct graph adjacency structure, whose
aim is to minimize a reconstruction loss L:

L = −
𝑛∑
𝑖=1

𝑛∑
𝑗=1

A𝑖 𝑗 log(𝜎 (z𝑇𝑖 z𝑗 )), (4)

where 𝜎 (𝑥) is a sigmoid function, and batch gradient descent meth-
ods can be used to optimize parameters in L. Generally, there are
multiple meta-trees that can be instantiated as search schema (e.g.,
three in Figure 2). Let search schema number be𝐾 . We can apply av-
erage pooling on Z𝑖 , 𝑖 = 1, 2, ..., 𝐾 to compute the node embedding
over semantic units.
Embedding over long-range node sequences. Local semantic
units only preserve similarities among task identifiers and their one
or two-hop neighborhoods, which is not sufficient due to the spar-
sity of networks [22]. Higher-order relatedness over task identifiers
also entails explicit or implicit similarities to further enhance AHIN
embedding [25]. In real-world scenarios, the typical meta-path
based sequence formulation is apparently not ideal to thoroughly
capture intrinsic node correlations as it overlooks the complex

interactions among different types of nodes. A remedy to this for-
mulation is to use meta-tree to guide node sequence generation.
Thus, we first enumerate all the meaningful meta-paths from net-
work schema (Figure 4 (left)), and design a meta-tree to further
integrate them for characterizing relatedness over code snippets
(Figure 4 (right)). This allows us to flexibly interpolate among dif-
ferent meta-paths during sequence generation, which reflects a real
and natural affinity for different code snippets in each sequence.

Sequence generation. To increase AHIN sampling rate and de-
crease the potential noises, we develop an attribute-aware random
walk guided by meta-tree to explore the neighborhoods in a top-
down fashion. The transition probability between two nodes is
decided by not only the meta-path selection probability but also
the attribute similarity. Specifically, we put a biased random walker
to traverse the AHIN and then set the transition probability at step
𝑖 as follows:

𝑃 (𝑣𝑖+1 |𝑣𝑖 , T) =

𝑝 (V𝑡+1 |V𝑡 ) sim(x𝑣̂ ,x𝑣𝑖+1 )∑
𝑣∈𝑁 (𝑣𝑖 ,V𝑡+1 ) sim(x𝑣̂ ,x𝑣 )

if (𝑣𝑖+1, 𝑣𝑖 ) ∈ 𝐸,𝜙 (𝑣𝑖+1) = 𝜙 (𝑣) = V𝑡+1
𝑝 (V𝑡+1 |V𝑡 )
|𝑁 (𝑣𝑖 ,V𝑡+1 ) |

if (𝑣𝑖+1, 𝑣𝑖 ) ∈ 𝐸,𝜙 (𝑣𝑖+1) = V𝑡+1, 𝑣 = ∅
0 otherwise,

(5)

where sim(x𝑣, x𝑣𝑖+1 ) is the similarity between two nodes’ attribute
vectors, 𝑣 denotes the latest node visited with the same type of
𝑣𝑖+1, 𝑁 (𝑣𝑖 ,V𝑡+1) is V𝑡+1 type of neighborhood of node 𝑣𝑖 , and
𝑝 (V𝑡+1 |V𝑡 ) is the probability of choosingV𝑡+1 meta-path branch
conditioned on the current V𝑡 type guided by meta-tree T . Let
𝑙 (·) be the number of meta-paths from the current type to the
leaves, 𝑝 (V𝑡+1 |V𝑡 ) can be calculated as 𝑙 (V𝑡+1)/𝑙 (V𝑡 ). After re-
moving nodes whose types are not code, the remaining ones form
a needed sequence, represented by embedding from semantic units
(z1, z2, ..., z𝑙 ). As such, embedding over node sequences can be
viewed as a sequence modeling task.

Sequence modeling with GRU. As Gated Recurrent Unit (GRU) [3]
has shown significant improvement in language modeling [1, 3],
we leverage the power of an encoder-decoder GRU architecture for
node sequence modeling: the encoder reads (z1, z2, ..., z𝑙 ) to calcu-
late the summary vector, while the decoder takes such a summary
vector to reconstruct its identity y for each node in sequence in
order. The sequence loss L is adopted to measure the correctness
of decoding, which is computed as

L = −
𝑙∑

𝑡=1
log𝑝 (𝑖𝑑𝑡 |y𝑡 ) . (6)
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As intermediate states, hidden vectors are extracted as the em-
bedding for the corresponding nodes in the input sequence. Since
each code snippet may appear in multiple sequences, by doing avg
pooling, we can obtain final embedding for each code snippet.

3.3 Code Retrieval Model Training
Using metatree2vec, we can embed code snippets C into a vector
space C. As for queries Q, since each one is a natural language
sentence, we embed them into vectors Q during model training
through a GRU encoder layer. Afterwards, embeddings of each code
snippet and query pair are fed to a multilayer perceptron (MLP) and
the similarity between them is measured. The code retrieval model
is trained by minimizing a ranking loss with a triple of ⟨𝑞, 𝑐+, 𝑐-⟩ as
training instance [24], where 𝑐+ answers query 𝑞 while 𝑐- doesn’t.
Accordingly, the ranking loss is defined as [24]:

L(𝜃 ) =
∑

⟨𝑞,𝑐+,𝑐-⟩∈𝐷
max(0, 𝜖 − 𝑓 (q, c+) + 𝑓 (q, c-)), (7)

where 𝜃 denotes model parameters, 𝐷 denotes training dataset, and
𝜖 is a constant margin. Minimizing the ranking loss L(𝜃 ) enables
the cosine similarity between 𝑞 and 𝑐+ to be greater than that
between𝑞 and 𝑐-, and thus the trainedmodel can facilitate retrieving
the relevant code snippets with respect to the given queries.

4 EXPERIMENTAL EVALUATIONS
4.1 Experimental Setup
Dataset.We test ourmodel on a Stack Overflow data collection [25]:
429,523 question threads, 623,746 answer threads, 213,560 users, and
737,215 code snippets. 5,120 pairs of title and code snippet provided
in the best answer thread are annotated as positive examples (𝑞,
𝑐+), while 5,120 pairs of title and random code snippet (except for
positive 𝑐+) are used as negative examples (𝑞, 𝑐-). We further extract
tokens from each code snippet as keywords for evaluation.
Performance measure. To quantitatively validate the effective-
ness of different methods, we use FRank, SuccessRate@k (SR@k),
and Mean Reciprocal Rank (MRR) as the performance measures
[8, 16]. For a pair of (𝑞, 𝑐), the FRank is the rank of 𝑐 for query 𝑞 in
the evaluation list of 𝐾 samples (including 𝑐 itself) in the ascending
order. Following the common settings in [2], we set 𝐾 as 50 in
our experiments. The SR@k is the percentage of queries whose
paired code snippet exists in the top 𝑘 ranked samples, which can
be computed by:

SR@k =
1
|Q|

|Q |∑
𝑞=1

𝜎 (FRank𝑞 ≤ 𝑘), (8)

where 𝜎 (·) = 1 if FRank𝑞 ≤ 𝑘 ; otherwise, 𝜎 (·) = 0. MRR is the
average of the inverse FRanks for a set of query Q:

MRR =
1
|Q|

|Q |∑
𝑞=1

1
FRank𝑞

. (9)

The lower the FRank value, the higher SR@k and MRR, and the
better the code retrieval performance.
Baselines. We validate the performance of our proposed method
by comparisons with different groups of baselines. (1) Features:
code content (original code attribute using doc2vec), semantic unit

Table 1: Comparisons of different baselines

Baselines MRR SR@1 SR@5 SR@10

(a) Different types of features

Code content 0.4556 0.3418 0.5703 0.6718
Semantic unit embedding 0.5600 0.4316 0.7089 0.8378
Code sequence embedding 0.5413 0.4043 0.6875 0.8359

(b) Different embedding methods

DeepWalk 0.5128 0.3710 0.6738 0.7988
LINE 0.5168 0.3886 0.6503 0.8203
metapath2vec 0.5346 0.4023 0.6816 0.8203

(c) Different code retrieval models

DeepCS 0.5145 0.3691 0.6621 0.8671
CoaCor 0.5395 0.3984 0.7148 0.8593

metatree2vec 0.5878 0.4609 0.7207 0.8867

embedding (the first step of metatree2vec), and code sequence em-
bedding (the second step of metatree2vec). (2) Embedding methods:
DeepWalk [18], LINE [21], and metapath2vec [4] (vector dimension
𝑑 = 100, walks per node 𝑟 = 10, walk length 𝑙 = 50). For DeepWalk
and LINE, we ignore the heterogeneous property and directly feed
the network for embedding. Since these three baselines are inca-
pable of dealing with node attributes, we simply concatenate the
node embedding with attribute vectors to represent a code snippet.
(3) code retrieval models: DeepCS (feed code tokens to LSTM to
learn the code representations) [8] and CoaCor (score the matching
degrees between code snippets and their annotations, which are
incorporated with the original scores between code snippets and
queries to distinguish relevant code snippets from others) [24].

4.2 Comparisons and Analysis
Comparisons of features. The results are illustrated in Table 1(a).
We can observe that different features show different performances.
(1) Compared to code content, network embedding is beneficial for
code retrieval, which improves MRR from 0.4556 to greater than
0.55, and makes SR@1, SR@5 and SR@10 reach to a new level. (2)
Semantic unit embedding outperforms code sequence embedding.
The reason behind this could be that questions and answers that
directly provide code, or connect to code through the same threads
are likely to better describe code semantics than the ones related
through long-range interactions; (3) metatree2vec achieves the best
result by leveraging local and global structure over AHIN.
Comparisons of embeddingmethods.The comparisons are shown
in Table 1(b). We can see that metatree2vec outperforms all base-
lines in terms of MRR and SR@k. DeepWalk, LINE, and metap-
ath2vec merely embed the AHIN structure without considering any
node attributes, while the brute-force concatenation of such node
embedding and attribute vectors fails to capture the intrinsic corre-
lations between them. By contrast, metatree2vec learns better node
representations in AHIN. The success of metatree2vec lies in: (1)
the proper consideration and accommodation of the heterogeneous
property of AHIN, (2) the flexibility of meta-tree interaction schema
to guide embedding, and (3) the advantage of graph auto-encoder
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and GRU sequence modeling to incorporate both local and global
structure and node attributes for representation learning.
Comparisons of code retrieval models. In this experiment, we
slightly modify the original DeepCS to directly embed code snip-
pets using LSTM. Table 1(c) shows the evaluation results, which
demonstrate that our method produces more relevant results than
DeepCS and CoaCor, and also higher MRR and SR@1. For DeepCS,
it significantly relies on the pairwise correlations between code
snippets and queries to bridge their semantic gaps without any
help from other supportive information. For CoaCor, code annota-
tions provide a rich source of supportive information, but it may
also generate irrelevant or noisy descriptions to annotate the code
snippets such that the code retrieval model may be mistrained.
Evaluation of parameters. In this experiment, we assess how
different choices of parameters will affect the performance of our
method. From Figure 5(a) and 5(b), we can observe that the balance
between computational cost (r and l in 𝑥-axis) and efficacy (MRR
in 𝑦-axis) can be achieved when r ≥ 10 and l ≥ 50. As shown in
Figure 5(c), the performance tends to be stable once c reaches around
100; similarly, Figure 5(d) shows that the performance inclines to
be stable when d increases to around 100. Overall, our method
is not strictly sensitive to these parameters, and can reach high
performance under a cost-effective parameter choice.
Evaluation of keywords. Though keyword-based code retrieval
methods fail to match semantically relevant code snippets [2], we
would still like to evaluate if the keywords can be integrated with
natural language queries to further improve the performance of
code retrieval. We extract tokens from each code snippet. Since
the keywords have no sequential relationships, we embed them
separately as vectors which are then fed to the fully connected
layer to be fused with queries. Figure 6 illustrates the results, where
the keywords increasingly added into queries indeed improve the
code retrieval performance. Considering that developers may have
knowledge about tokens in code snippets, code retrieval based on
natural language queries and keywords may yield great value on
social coding platforms.

5 CONCLUSION
In this paper, we leverage social coding properties for code retrieval
based on natural language queries on social coding platforms. To
model such data, we first introduce AHIN for abstraction and pro-
pose a new interaction schema meta-tree to capture both local and
global semantics in AHIN. Guided by meta-tree, we elaborate a
novel model metatree2vec to seamlessly embed AHIN structure
and attributes for representation learning and build better lexical
connections between the intent of queries and implementation

of code snippets. metatree2vec is a generic framework which is
able to learn desirable node representation in AHIN and thus can
be further applied to various network mining tasks. The experi-
mental results on Stack Overflow data demonstrate our method
outperforms alternative approaches in code retrieval.
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