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1. Introduction
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2. Notation and Preliminaries
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3. Illustration of Perturbation Bounds for d “ 3 Asymmetric Case
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Consider the per-
turbation model with R . Suppose . Define the block-

wise errors as in and denote the initialization errors of as

, . Assume the initialization error and
the signal strength satisfy

and

Let
U U U

be the estimator of after steps in Algorithm 1.

Then with inputs , , the mode- singular subspace updates in Algorithm 2 after
iterations satisfy

and the -step tensor estimation satisfies



Moreover, when for some , the outputs of the estimated
mode- singular subspaces of Algorithm 2 satisfy

and the output of tensor reconstruction satisfies

J K

Our theory relies on a
lower bound assumption of the least singular value: , which is in the same vein
as the classical matrix perturbation theory (Davis and Kahan, 1970; Wedin, 1972). More-
over, in the existing results on perturbation analysis for Canonical-Polyadic (CP) decom-
position, e.g., Theorem 5.1 of Anandkumar et al. (2014a) and Theorem 1 of Anandkumar
et al. (2014b), one assumes . Since ,
defined in can be seen as a counterpart of in Tucker decomposition.

In Theorem 1, we assume the initialization is warm
in the sense that the maximum error is upper bounded by a constant. The constant
in this upper bound is chosen for convenience and can be replaced by any fixed constant
less than . Our perturbation bound applies to HOOI with any initialization as long as this
condition holds, although the original HOOI algorithm was proposed with the initialization

scheme named HOSVD, i.e., . Next, we briefly discuss two spe-

cific initialization schemes: HOSVD for tensor PCA/SVD (Richard and Montanari, 2014;
Zhang and Xia, 2018) and diagonal-deletion SVD for tensor completion (Xia et al., 2020).
For convenience of presentation, we focus on the setting .

(Tensor Denoising) Suppose we observe a tensor R and aim to
recover from . To this end, we can apply HOOI by inputting . When has
i.i.d. entries, Theorem 1 in Zhang and Xia (2018) showed if one initializes

by HOSVD, as long as , the initialization condition
holds with high probability. Zhang and Xia (2018) also showed the signal strength
requirement is essential, which means HOSVD is a proper initialization in
the tensor denoising model.

(Tensor Completion) Suppose we observe a set of entries, selected uniformly at random
and indexed by , from a noisy tensor . Denote as

otherwise



Suppose has i.i.d. entries. Then, it is easy to check that is an
unbiased estimator of , where is the sampling ratio. Xia et al. (2020) proposed to

apply HOOI on to estimate . They proposed to set as the leading

singular vectors of with diagonal deletion (i.e., zero the diagonal

values of ) and showed that holds with high

probability when , where is the cardinality of . At the same time, they
proved that HOSVD requires to achieve the same initialization performance
and may not be an ideal initialization scheme for tensor completion.

In addition, the random initialization is also widely considered in the literature. For exam-
ple, Anandkumar et al. (2014a) proposed to pick the best one among many random trials. It
can be proved that if the number of random trials is large enough (usually polynomial in the
dimension), one can find a trial such that the initialization is good enough (Anandkumar
et al., 2014a).

The up-
per bound in includes two parts: a fixed quantity that represents the intrinsic
estimation error, and another quantity that decays linearly to with respect to iteration
index . The linear convergence of HOOI was observed in Ishteva et al. (2011), while
Theorem 1 gives a rigorous proof for it. Note that HOOI can be viewed as a special
alternating minimization method, which was shown to have asymptotic linear convergence
rate in solving nonlinear least squares problems (Ruhe and Wedin, 1980). This fact also
sheds light on the linear convergence of HOOI.

Our tensor perturbation bounds on singular subspace share the same spirit as the unilateral
perturbation bounds on singular subspaces of matrix SVD in Cai and Zhang (2018).
Consider the matrix perturbation setting mentioned in Section 2.1 with the additional
assumption that is rank- and has SVD . Cai and Zhang (2018) showed that
the upper bound of can be written as , which can be interpreted
as the sum of first and second order perturbations. In Theorem 1, the upper bound of

can be also written as which can be interpreted as summation

of the first, second, and third order perturbations. This phenomenon also generalizes to
order- case in Theorem 3.

Due to the unilateral property, when the tensor dimension of each mode is at different
order, the estimation error rate of singular subspace in each mode can vary significantly. For
example in the tensor denoising setting, where R is a multilinear
rank- tensor and is a random tensor with i.i.d. standard normal entries. Let

and suppose , . Consider , then by random
matrix theory (Vershynin, 2010), we can show , and

with high probability. Thus when , Theorem 1 immediately

implies, with high probability



for some . So we can see the perturbation of depends on . Also as decreases,
for different , different order perturbations in could dominate in the perturbation

bound of . For example, when , Theorem 1 yields

for constants . More details about the application of HOOI perturbation bounds
in order- tensor denoising and numerical studies for this unilateral property of singular
subspace perturbation can be found in Sections 6.1 and 7.1, respectively.

It is worth mentioning that the power iteration in Algorithm 1 plays an impor-
tant role for refining tensor reconstruction. Without power iteration, the estimator

U U U
with is called truncated

HOSVD (T-HOSVD) in the literature (De Lathauwer et al., 2000b). It is not hard to show
for some . Since and may

be much larger than , we can see the power iteration can greatly improve the accuracy for
tensor reconstruction, and this echos the findings in literature in tensor denoising setting
(Zhang and Xia, 2018).

J K

Suppose R is a general order- tensor and O are
general matrices with orthonormal columns. For any subset , we further
define projections of on as follows,

Then,

J K



Consider perturbation model , we have the following deterministic lower bound
for reconstructing ,

When tensor order is fixed, combining Theorem 1 and 2, we have shown that HOOI with
good initialization is optimal for tensor reconstruction in the class . At the
same time, from , we see the error rate of tensor reconstruction is optimal even after
one iteration of HOOI i.e., and more iterations can improve the coefficient in
front of . This suggests that in some applications where running HOOI until convergence
is prohibitive, we can just run it for one iteration to get a fairly good reconstruction. See
more in Section 7.2 about a numerical comparison of HOOI and one-step HOOI.

Apart from the optimality of our perturbation bound in tensor reconstruction, it is also
interesting to study whether the perturbation bounds in , for singular subspaces are
optimal or not and we leave it as an interesting future work.

4. A Blockwise Perturbation Bound of Higher-order Orthogonal
Iteration for Tensor Decomposition

V R
V

Consider the perturbation model with R , symmetric index
groups and blockwise errors in . Suppose . Denote the initial-

ization errors of as , .



Assume the initialization error and the signal strength satisfy

and

Let
U U

be the estimator of after steps in Algorithm 1.

Then with inputs , , , the mode- singular subspace updates in Algorithm
1 after iterations satisfy

and the -step tensor estimation satisfies

Moreover, when for some , the outputs of estimated
mode- singular subspace of Algorithm 1 satisfy

for where , and the output of tensor recon-

struction satisfies

It is easy to check based on and

the requirement of the signal strength . So we have in the

upper bounds of and . However, in many practical applica-

tions, such as tensor denoising to be introduced in Section 6.1, tensor order is fixed and

. In this case could be much smaller than and the scale of

can be very close to .



Compared with the per-
turbation bounds of power iteration for supersymmetric CP-low-rank decomposition (Anand-
kumar et al., 2014a, Theorem 5.1), our Theorem 3 covers more general symmetric and par-
tial symmetric multilinear low-rank decomposition settings. Also in Theorem 5.1 of Anand-
kumar et al. (2014a), the tensor reconstruction error bound of power iteration is given in
terms of tensor spectral norm, which does not improve upon the guarantee by the trivial
estimator . On the other hand, the tensor reconstruction error of in Theorem 3 is
given in Hilbert-Schmidt norm and can be significantly better than the guarantee for as

in most of the applications.

We note that in Theorem 3, the con-
stants in our condition and perturbation bounds and scales exponentially
w.r.t. the tensor order . We think this exponential dependence on is not sharp. In fact,
in Theorem 1 of the recent work Luo and Zhang (2021), they show the dependence on in

and can be reduced to poly .

We provide a sketch on how to prove
and . The rest of the results and follow easily from , by plugging

in . The idea is to develop the recursive error bounds of , i.e.,

the estimate of at iteration , based on the error bound of , i.e., the estimate at
iteration . The argument can be divided into three steps. It is worth mentioning that all
three steps involves complex tensor algebra and this makes the proof even more difficult.

First, we denote

. In HOOI procedure, the update for the mode- singular subspace satisfies

here . To give an upper bound for , we aim to give an
upper bound for

by using , . The main idea to bound is to introduce U U

in each mode multiplication, expand the mode products, then write the whole term into
summation of many small terms.

After getting an upper bound for , we use induction to prove the following
claim,



One technical difficulty is to deal with the sequential updating of singular subspaces in HOOI
and we use the induction idea again to tackle it. Tools we use in this step include the singular
subspace bound in (Luo et al., 2020, Theorem 5).

The final and most challenging step involves upper bounding the tensor recon-
struction error

U U
by the unified quantity . By decomposing

onto the estimated singular subspaces, we can show that

U U

U U

By definition,
U U

. We further show

Here is a quantity that depends on . The main challenge to prove (a) is
that is not the left singular subspace of . So to leverage the SVD property of

, we have to project onto and , then use the subspace perturbation
bounds established before.

5. Perturbation Bounds of Power Iteration for Tensors with Partial Low
Multilinear Rank Structure
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Consider the perturbation model with R . Suppose . Define

the blockwise errors as in and denote the initialization errors of as

, . Assume the initialization error
and the signal strength satisfy

and

Then with inputs , , the mode- singular subspace updates in Algorithm 3 after
iterations satisfy

Moreover, when for some , the outputs of estimated mode-
singular subspace of Algorithm 3 satisfy



The output of tensor reconstruction satisfies

U U

6. Implications in Statistics and Machine Learning
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Consider the tensor denoising

problem and Algorithm 1 with inputs , , initialization

and for some , where is

the minimal singular value of each matricization of . Assume and

. Then if , with probability

at least , the output satisfy

and

for some constants .
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Suppose has the tensor co-clustering/block structure , where is a mul-
tilinear rank- tensor. Assume with O is the Tucker

decomposition of . Then

with O for .

R R

M
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Consider the tensor
co-clustering/block model “ ” and the Algorithm 4 with inputs , initializa-

tions and for some , where

is the minimal singular value at each matricization of the core tensor

parameter . Assume , , and holds. Then if

for sufficiently large constant , with probability at least for some
, , satisfy

and we also have the following upper bound on cocluster recovery error,

Here are some constants depending only on and , is the
second largest cocluster size at mode .

7. Numerical Studies
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Fi g ur e 2: H O OI wit h g o o d i niti ali z ati o n. ( a) Te n s o r r e c o n str u cti o n err or } pT ´ T } H S f or
p P t 2 0 , 3 0 , . . . , 1 0 0 u , r “ 5, σ P t 1 , 2 , 3 , 4 u a n d λ “ 5

?
p r σ ; ( b) M o d e-k si n g ul ar

s u b s p a c e e sti m ati o n wit h a n d wit h o ut r e s c ali n g u n d er p 1 “ 1 0 , p2 “ 1 0 0 , p3 “

5 0 0, r P t 3 , 5 u , σ “ 1 a n d λ “ α ¨ p 3

?
r 1?
p 1

wit h v ar yi n g α

7. 1 P e r t u r b a ti o n B o u n d s of H O O I wi t h g o o d i ni ti ali z a ti o n

I n t hi s si m ul ati o n, w e st u d y t h e p ert ur b ati o n b o u n d s of H O OI wit h r a n d o ml y g e n e r at e d
g o o d i niti ali z ati o n. L et T “ S ˆ 1 U 1 ˆ 2 U 2 ˆ 3 U 3 , w h er e U i P R p i ˆ r i s g e n er at e d u nif or ml y
at r a n d o m fr o m O p i , r a n d S P R r ˆ r ˆ r i s a di a g o n al t e n s or wit h di a g o n al v al u e s t i λu r

i“ 1 . T h e

i niti ali z ati o n s of U i of Al g orit h m 1 a r e rU
p 0 q
i “ 1?

2
U i ` 1?

2
U 1

i , w h er e U 1
i “ U iK O f or s o m e

r a n d o m ort h o g o n al m atri x O P O p i ´ r, r . It i s e a s y t o c h e c k t h at } si n Θ pU i , rU
p 0 q
i q } “

?
2

2 f or
i “ 1 , 2 , 3.

Fir st f or t e n s o r r e c o n str u cti o n, l et p P t 2 0 , 3 0 , . . . , 1 0 0 u , r “ 5, σ P t 1 , 2 , 3 , 4 u a n d

λ “ 5
?

p r σ . We c a n c h e c k t h at wit h hi g h pr o b a bilit y, } Z } H S ď C p
3
2 σ a n d ξ ď C

?
p r σ

f or s o m e C ą 0 f oll o wi n g t h e s a m e pr o of a s T h e or e m 5. I n Fi g ur e 2( a), t h e R M S E of
t e n s or r e c o n str u cti o n of H O OI i s p r e s e nt e d. We fi n d a s t h e p ert ur b ati o n r e s ult s i n S e cti o n
4 s u g g e st, } pT ´ T } H S c a n b e m u c h s m all e r t h a n } Z } H S . T hi s d e m o n str at e s t h e s u p eri or
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p i m a k e s t h e m r o u g hl y o n t h e s a m e l e v el ( s e e Fi g ur e 2( b) ri g ht p a n el). T hi s m at c h e s t h e
u nil at er al pr o p ert y of t h e si n g ul ar s u b s p a c e p e rt ur b ati o n r e s ult s i n R e m ar k 4 t h at w h e n

λ “ O pp 3

?
r

?
p 1

q, } si n Θ p pU k , U k q } ď C
?

p i

λ { σ f or s o m e C ą 0, a n d t hi s u p p er b o u n d i n cr e a s e s

li n e arl y wit h r e s p e ct t o
?

p i .

2 4





Y. L u o, G. R a s k u t ti, M. Y u a n, a n d A. R. Z h a n g

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ●

4 0

6 0

8 0

1 0 0

1 2 0

1 2 3 4
α

R
M

S
E

si g
●●

●●
1
2

Al g orit h m

●
H O OI
O − H O OI
S T − H O S V D
T − H O S V D

( a ) Te n s o r R e c o n s t r u c ti o n

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ●

0. 2 5

0. 5 0

0. 7 5

1 2 3 4
α

∑ i
||

si
nΘ

(
U^
i,

U i|
|

3 si g
●●

●●
1
2

Al g orit h m

●
H O OI
O − H O OI
S T − H O S V D
T − H O S V D

( b ) Si n g ul a r S u b s p a c e E s ti m a ti o n

Fi g ur e 3: C o m p ari s o n of H O OI, o n e- st e p H O OI ( O- H O OI), tr u n c at e d H O S V D ( T-
H O S V D), s e q u e nti all y tr u n c at e d H O S V D ( S T- H O S V D) i n t e n s or d e n oi si n g u n d er

p “ 1 0 0, r “ 5, σ P t 1 , 2 u , λ “ α ¨ p
3
4 σ wit h α P r 1 , 4 s. ( a) Te n s or r e c o n str u cti o n;

( b) A v er a g e d si n g ul ar s u b s p a c e e sti m ati o n

●

●
●

●
●

● ● ● ● ● ● ● ●

●

●

●

●

● ● ● ● ● ● ● ● ●

●
●

●

●

●

● ● ● ● ● ● ● ●

0. 0

0. 2

0. 4

0. 6

0. 4 0. 6 0. 8 1. 0
α

Mi
sc

l
as

sif
ic

ati
n 

Er
r
or

 
R
at

e

r
●●

●●

●●

3
5
8

p

●
5 0
8 0

( a ) H O OI f o r C o cl u s t e r R e c o v e r y

● ●

●
●

●

●

●

●

● ● ● ● ● ● ●

0. 2

0. 4

0. 6

0. 4 0. 6 0. 8 1. 0
α

Mi
sc

l
as

sif
ic

ati
o
n 

Er
r
or

 
R
at

e

Al g orit h m

●
H O OI
O − H O OI
S T − H O S V D
T − H O S V D

( b ) C o m p a ri s o n i n C o cl u s t e r R e c o v e r y

Fi g ur e 4: Te n s or c o cl u st er r e c o v er y u n d er σ “ 1, λ “ α ¨ r 3 { 2

p 3 { 4 σ wit h v ar yi n g α . ( a) H O OI

o n t e n s or c o cl u st er r e c o v er y u n d er p P t 5 0 , 8 0 u , r P t 3 , 5 , 8 u . ( b) C o m p ari s o n of
H O OI, o n e- st e p H O OI ( O- H O OI), tr u n c at e d H O S V D ( T- H O S V D), s e q u e nti all y
tr u n c at e d H O S V D ( S T- H O S V D) i n c o cl u st er r e c o v er y u n d er p “ 8 0 , r “ 5.

2 6



8. Conclusion and Discussion
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Appendix A. Tensor Perturbation Bounds for HOOI in Asymmetric Case

Consider the perturbation model with R and , .

Define as the set of all possible index sets with elements

from and . For , let . Now we define the
blockwise errors as

V R
V

for

Denote the initialization errors of as ,

. Assume the initialization error and the signal strength satisfy

and

where .

Then with inputs , , , the estimated mode- singular subspaces up-
dates in Algorithm 1 after iterations satisfy

Moreover, when , the outputs of estimated mode- singular subspaces
of Algorithm 1 satisfy



for , where , and the output of tensor recon-

struction satisfies

J K

Appendix B. Additional Proofs
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