A Sharp Blockwise Tensor Perturbation Bound for Orthogonal Iteration

Department of Statistics University of Wisconsin-Madison Madison, WI 53706, USA

Department of Statistics University of Wisconsin-Madison Madison, WI 53706, USA

Department of Statistics Columbia University New York, NY 10027, USA

Department of Statistics University of Wisconsin-Madison Madison, WI 53706, USA

Abstract

 $_{\mathrm{HS}}$

k k q

1. Introduction

_ _

 \mathbb{R}

 $\mathbb R$

1:

2:

 ${f U}$

2. Notation and Preliminaries

 $\mathbb R$

© **U** ©

 \mathbb{R}

 $\mathbb R$

 \mathbb{R} \mathbb{R}

 $\mathbb R$

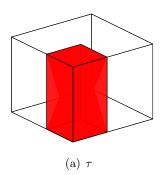
 $\mathbb R$

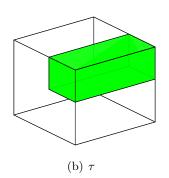
 $\mathbb R$ $\mathbb R$

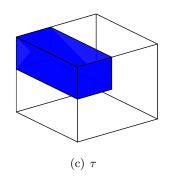
$$\mathbf{V} \ \mathbb{R}$$

$$\mathbf{V}_{\mathbb{R}}$$

$$egin{array}{cccc} \mathbf{V} & \mathbb{R} & & & & & \\ \mathbf{V} & \mathbb{R} & & & & & & \mathbf{V} \end{array}$$







3. Illustration of Perturbation Bounds for d=3 Asymmetric Case

$\mathbb R$	0
1:	
2:	
2.	
	f U = f U = f U
	Consider the per-
urbation model with	\mathbb{R} . Suppose . Define the block-
vise errors as in and	d denote the initialization errors of as
, he signal strength satisfy	. Assume the initialization error and
ne siynai sirenyiii sansjy	
	and
Let U U	$_{\mathbf{U}}$ be the estimator of after steps in Algorithm 1.
Then with inputs , , , iterations satisfy	the mode- singular subspace updates in Algorithm 2 after
	- -
and the -step tensor estimation	$a\ satisfies$
•	-

Our theory relies on a lower bound assumption of the least singular value: , which is in the same vein as the classical matrix perturbation theory (Davis and Kahan, 1970; Wedin, 1972). Moreover, in the existing results on perturbation analysis for Canonical-Polyadic (CP) decomposition, e.g., Theorem 5.1 of Anandkumar et al. (2014a) and Theorem 1 of Anandkumar et al. (2014b), one assumes . Since , defined in can be seen as a counterpart of in Tucker decomposition.

In Theorem 1, we assume the initialization is warm in the sense that the maximum error is upper bounded by a constant. The constant in this upper bound is chosen for convenience and can be replaced by any fixed constant less than . Our perturbation bound applies to HOOI with any initialization as long as this condition holds, although the original HOOI algorithm was proposed with the initialization scheme named HOSVD, i.e.,

Next, we briefly discuss two specific initialization schemes: HOSVD for tensor PCA/SVD (Richard and Montanari, 2014; Zhang and Xia, 2018) and diagonal-deletion SVD for tensor completion (Xia et al., 2020). For convenience of presentation, we focus on the setting

(Tensor Denoising) Suppose we observe a tensor \mathbb{R} and aim to recover from . To this end, we can apply HOOI by inputting . When has i.i.d. entries, Theorem 1 in Zhang and Xia (2018) showed if one initializes by HOSVD, as long as , the initialization condition — holds with high probability. Zhang and Xia (2018) also showed the signal strength requirement is essential, which means HOSVD is a proper initialization in the tensor denoising model.

(Tensor Completion) Suppose we observe a set of entries, selected uniformly at random and indexed by , from a noisy tensor . Denote as

otherwise

Supposehas i.i.d. entries. Then, it is easy to check that unbiased estimator of , where is the sampling ratio. Xia et al. (2020) proposed to apply HOOI on to estimate . They proposed to set as the leading singular vectors of with diagonal deletion (i.e., zero the diagonal) and showed that — holds with high values of probability when is the cardinality of . At the same time, they , where proved that HOSVD requires to achieve the same initialization performance and may not be an ideal initialization scheme for tensor completion.

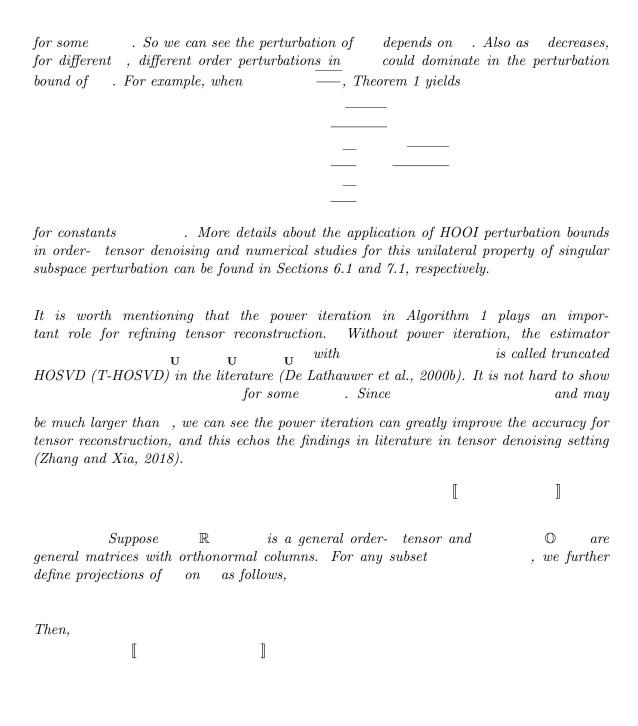
In addition, the random initialization is also widely considered in the literature. For example, Anandkumar et al. (2014a) proposed to pick the best one among many random trials. It can be proved that if the number of random trials is large enough (usually polynomial in the dimension), one can find a trial such that the initialization is good enough (Anandkumar et al., 2014a).

 $The \quad up$ -

per bound in includes two parts: a fixed quantity that represents the intrinsic estimation error, and another quantity that decays linearly to with respect to iteration index. The linear convergence of HOOI was observed in Ishteva et al. (2011), while Theorem 1 gives a rigorous proof for it. Note that HOOI can be viewed as a special alternating minimization method, which was shown to have asymptotic linear convergence rate in solving nonlinear least squares problems (Ruhe and Wedin, 1980). This fact also sheds light on the linear convergence of HOOI.

Our tensor perturbation bounds on singular subspace share the same spirit as the unilateral perturbation bounds on singular subspaces of matrix SVD in Cai and Zhang (2018). Consider the matrix perturbation setting mentioned in Section 2.1 with the additional assumption that is rank- and has SVD. Cai and Zhang (2018) showed that the upper bound of can be written as — —, which can be interpreted as the sum of first and second order perturbations. In Theorem 1, the upper bound of can be also written as — which can be interpreted as summation of the first, second, and third order perturbations. This phenomenon also generalizes to order- case in Theorem 3.

Due to the unilateral property, when the tensor dimension of each mode is at different order, the estimation error rate of singular subspace in each mode can vary significantly. For example in the tensor denoising setting, where is a multilinear rankis a random tensor with i.i.d. standard normal entries. Let tensor and . Consider , then by random and suppose matrix theory (Vershynin, 2010), we can show and-, Theorem 1 immediately with high probability. Thus when implies, with high probability



Consider perturbation model $\,$, we have the following deterministic lower bound for reconstructing $\,$.

When tensor order—is fixed, combining Theorem 1 and 2, we have shown that HOOI with good initialization is optimal for tensor reconstruction in the class——. At the same time, from——, we see the error rate of tensor reconstruction is optimal even after one iteration of HOOI i.e.,———and more iterations can improve the coefficient in front of—. This suggests that in some applications where running HOOI until convergence is prohibitive, we can just run it for one iteration to get a fairly good reconstruction. See more in Section 7.2 about a numerical comparison of HOOI and one-step HOOI.

Apart from the optimality of our perturbation bound in tensor reconstruction, it is also interesting to study whether the perturbation bounds in , for singular subspaces are optimal or not and we leave it as an interesting future work.

4. A Blockwise Perturbation Bound of Higher-order Orthogonal Iteration for Tensor Decomposition

 $egin{array}{ccc} f V & \mathbb{R} \ f V \end{array}$

Consider the perturbation model with \mathbb{R} , symmetric index groups and blockwise errors in . Suppose . Denote the initialization errors of as .

Assume the initialization error and the signal strength satisfy
$\stackrel{-}{-}$ and $\stackrel{-}{-}$
Let U U be the estimator of after steps in Algorithm 1. Then with inputs , , the mode-singular subspace updates in Algorithm 1. 1 after iterations satisfy U
and the -step tensor estimation satisfies ———————————————————————————————————
Moreover, when for some , the outputs of estimated mode- singular subspace of Algorithm 1 satisfy —————
for where — -, and the output of tensor reconstruction satisfies
It is easy to check — based on and the requirement of the signal strength . So we have — in the upper bounds of and . However, in many practical applications, such as tensor denoising to be introduced in Section 6.1, tensor order is fixed and — . In this case — could be much smaller than – and the scale of

— can be very close to .

Compared with the per-

turbation bounds of power iteration for supersymmetric CP-low-rank decomposition (Anand-kumar et al., 2014a, Theorem 5.1), our Theorem 3 covers more general symmetric and partial symmetric multilinear low-rank decomposition settings. Also in Theorem 5.1 of Anand-kumar et al. (2014a), the tensor reconstruction error bound of power iteration is given in terms of tensor spectral norm, which does not improve upon the guarantee by the trivial estimator . On the other hand, the tensor reconstruction error of in Theorem 3 is given in Hilbert-Schmidt norm and can be significantly better than the guarantee for as in most of the applications.

We note that in Theorem 3, the constants in our condition and perturbation bounds and scales exponentially w.r.t. the tensor order. We think this exponential dependence on is not sharp. In fact, in Theorem 1 of the recent work Luo and Zhang (2021), they show the dependence on in and can be reduced to poly.

We provide a sketch on how to prove and . The rest of the results and follow easily from , by plugging in . The idea is to develop the recursive error bounds of , i.e., the estimate of at iteration , based on the error bound of , i.e., the estimate at iteration . The argument can be divided into three steps. It is worth mentioning that all three steps involves complex tensor algebra and this makes the proof even more difficult. First, we denote

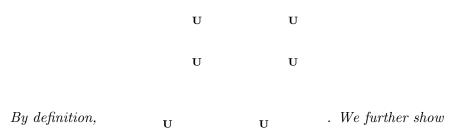
. In HOOI procedure, the update for the mode- singular subspace satisfies

here __ _ _ . To give an upper bound for __ , we aim to give an upper bound for

by using , . The main idea to bound is to introduce \mathbf{U} \mathbf{U} in each mode multiplication, expand the mode products, then write the whole term into summation of many small terms.

 $A \textit{fter getting an upper bound for} \qquad \text{, we use induction to prove the following } \\ \textit{claim,}$

On a tackmical diffe	ulturio to doci	lawith the com	contial and ating of singular subspaces in HOOI
One technical affic	uny is io aeai	wun ine sequ	ential updating of singular subspaces in HOOI
and we use the indu	ction idea age	ain to tackle is	t. Tools we use in this step include the singular
subspace bound in (Luo et al., 2	020, Theorem	n 5).
The fin	nal and most	challenging s	tep involves upper bounding the tensor recon-
struction error	TI	TI	by the unified quantity . By decomposing
onto the estimat	$ed\ singular\ s$	ubspaces, we	can show that



5. Perturbation Bounds of Power Iteration for Tensors with Partial Low Multilinear Rank Structure

 \mathbb{R}

 $\mathbb{R} \qquad \mathbb{O}$ 1: \mathbb{C} 2: $\mathbb{U} \qquad \mathbb{U}$

V R

Consider the perturbation model \mbox{with} $\mbox{$\mathbb{R}$}$. Suppose . Define the blockwise errors as in and denote the initialization errors of as , . Assume the initialization error and the signal strength satisfy

Then with inputs , , the mode- singular subspace updates in Algorithm 3 after iterations satisfy

Moreover, when for some , the outputs of estimated mode-singular subspace of Algorithm 3 satisfy $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right)$

The output of tensor reconstruction satisfies

 $\mathbf{U} \qquad \quad \mathbf{U}$

6. Implications in Statistics and Machine Learning

 \mathbb{R}

 \mathbb{E}

 ${\mathbb E}$

 $\mathbb R$

0

 \mathbb{R}

		Consider th	ne tensor denoising
problem	and Algorithm 1 with inputs	, in	itialization
and	- for some	$, \ \ where$	is
the minimal	singular value of each matricization	of . Assume	and
	$^-$. Then if		—, with probability
$at\ least$, the output satisfy		
and			

for some constants

 \mathbb{M}

J E

Suppose has the tensor co-clustering/block structure , where is a multilinear rank- tensor. Assume with $\mathbb O$ is the Tucker decomposition of $\overline{}$. Then

with $^ \mathbb O$ for .

 \mathbb{R}

 \mathbb{M}

1:

2: $\mathbb{M} \qquad \qquad \mathbb{R}$

 $oldsymbol{\Pi} \ \mathbb{M} \ \mathbb{X} \ \mathbb{R}$

co-clustering/block model "	Consider the tensor " and the Algorithm 4 with inputs , initializa-
tions and	- for some , where
is the n	ninimal singular value at each matricization of the core tensor, —, and holds. Then if
for sufficiently large constant, , satisfy	, with probability at least for some
and we also have the following	g upper bound on cocluster recovery error, —————————————————————————————————
Here second largest cocluster size as	are some constants depending only on $\ $ and $\ $, $\ $ is the $t\ mode$.

7. Numerical Studies

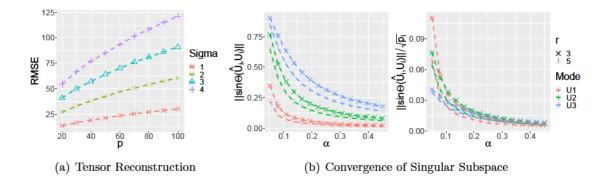


Figure 2: HOOI with good initialization. (a) Tensor reconstruction error $\|\widehat{\mathcal{T}} - \mathcal{T}\|_{\text{HS}}$ for $p \in \{20, 30, \dots, 100\}, r = 5, \sigma \in \{1, 2, 3, 4\}$ and $\lambda = 5\sqrt{pr}\sigma$; (b) Mode-k singular subspace estimation with and without rescaling under $p_1 = 10, p_2 = 100, p_3 = 500, r \in \{3, 5\}, \sigma = 1$ and $\lambda = \alpha \cdot p_3 \frac{\sqrt{r_1}}{\sqrt{p_1}}$ with varying α

7.1 Perturbation Bounds of HOOI with good initialization

In this simulation, we study the perturbation bounds of HOOI with randomly generated good initialization. Let $\mathcal{T} = \mathcal{S} \times_1 \mathbf{U}_1 \times_2 \mathbf{U}_2 \times_3 \mathbf{U}_3$, where $\mathbf{U}_i \in \mathbb{R}^{p_i \times r}$ is generated uniformly at random from $\mathbb{O}_{p_i,r}$ and $\mathcal{S} \in \mathbb{R}^{r \times r \times r}$ is a diagonal tensor with diagonal values $\{i\lambda\}_{i=1}^r$. The initializations of \mathbf{U}_i of Algorithm 1 are $\widetilde{\mathbf{U}}_i^{(0)} = \frac{1}{\sqrt{2}}\mathbf{U}_i + \frac{1}{\sqrt{2}}\mathbf{U}_i'$, where $\mathbf{U}_i' = \mathbf{U}_{i\perp}\mathbf{O}$ for some random orthogonal matrix $\mathbf{O} \in \mathbb{O}_{p_i-r,r}$. It is easy to check that $\|\sin\Theta(\mathbf{U}_i,\widetilde{\mathbf{U}}_i^{(0)})\| = \frac{\sqrt{2}}{2}$ for i=1,2,3.

First for tensor reconstruction, let $p \in \{20, 30, ..., 100\}, r = 5$, $\sigma \in \{1, 2, 3, 4\}$ and $\lambda = 5\sqrt{pr}\sigma$. We can check that with high probability, $\|\boldsymbol{\mathcal{Z}}\|_{\mathrm{HS}} \leqslant Cp^{\frac{3}{2}}\sigma$ and $\xi \leqslant C\sqrt{pr}\sigma$ for some C > 0 following the same proof as Theorem 5. In Figure 2(a), the RMSE of tensor reconstruction of HOOI is presented. We find as the perturbation results in Section 4 suggest, $\|\hat{\boldsymbol{\mathcal{T}}} - \boldsymbol{\mathcal{T}}\|_{\mathrm{HS}}$ can be much smaller than $\|\boldsymbol{\mathcal{Z}}\|_{\mathrm{HS}}$. This demonstrates the superior performance of the HOOI estimator compared to the trivial estimator $\tilde{\boldsymbol{\mathcal{T}}}$. At the same time, the RMSE for tensor reconstruction increases as p and σ become bigger and this matches our theoretical findings in Theorem 3 that the error bound of HOOI for $\|\hat{\boldsymbol{\mathcal{T}}} - \boldsymbol{\mathcal{T}}\|_{\mathrm{HS}}$ is $O(\xi)$, which increases as p, σ increase.

Next we demonstrate the unilateral perturbation bounds for mode-k singular subspace estimation. Specifically, we consider $p_1=10, p_2=100, p_3=500, r\in\{3,5\}, \sigma=1$ and $\lambda=\alpha\cdot p_3\frac{\sqrt{r}}{\sqrt{p_1}}$ with varying α . The errors of the mode-1, mode-2, mode-3 estimated singular subspaces with and without rescaling are provided in Figure 2(b). We can see from Figure 2(b) left panel the errors of estimated singular subspaces converge to different values depending on the corresponding mode size p_i , and a further rescaling of estimation error by $\sqrt{p_i}$ makes them roughly on the same level (see Figure 2(b) right panel). This matches the unilateral property of the singular subspace perturbation results in Remark 4 that when $\lambda=O(p_3\frac{\sqrt{r}}{\sqrt{p_1}})$, $\|\sin\Theta(\hat{\mathbf{U}}_k,\mathbf{U}_k)\|\leqslant C\frac{\sqrt{p_i}}{\lambda/\sigma}$ for some C>0, and this upper bound increases linearly with respect to $\sqrt{p_i}$.

_		

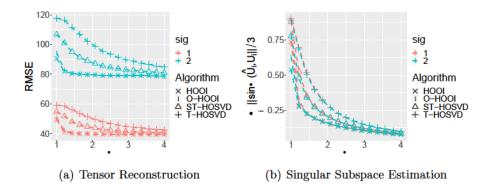


Figure 3: Comparison of HOOI, one-step HOOI (O-HOOI), truncated HOSVD (T-HOSVD), sequentially truncated HOSVD (ST-HOSVD) in tensor denoising under $p=100,\ r=5,\ \sigma\in\{1,2\},\ \lambda=\alpha\cdot p^{\frac{3}{4}}\sigma$ with $\alpha\in[1,4]$. (a) Tensor reconstruction; (b) Averaged singular subspace estimation

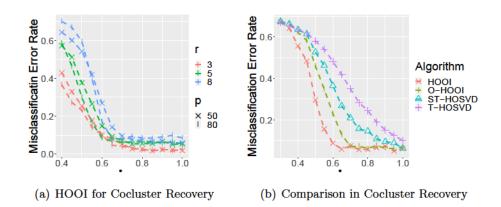


Figure 4: Tensor cocluster recovery under $\sigma=1,\ \lambda=\alpha\cdot\frac{r^{3/2}}{p^{3/4}}\sigma$ with varying α . (a) HOOI on tensor cocluster recovery under $p\in\{50,80\},\ r\in\{3,5,8\}$. (b) Comparison of HOOI, one-step HOOI (O-HOOI), truncated HOSVD (T-HOSVD), sequentially truncated HOSVD (ST-HOSVD) in cocluster recovery under p=80, r=5.

8. Conclusion and Discussion

Acknowledgments

Appendix A. Tensor Perturbation Bounds for HOOI in Asymmetric Case

Consider	the perturbation	model	with			\mathbb{R}		and		,	
Define			as	the	set of	all	possible	index	sets	with	elements
from	and	. For			, let				Nov	v we	$de fine \ the$
blockwise	errors as										
	7	$egin{array}{ccc} \mathbb{R} & \mathbb{V} \end{array}$									
fo	r										
Denote th	ne initialization	errors of			as						,
	. A	ssume the	initio	ılizai	tion er	ror	and the	signal	stren	ngth	satisfy
		_					_	Ü		U	• •
			and								
where											
where			•								
Then	with inputs ,	,		,	the est	time	ated mod	de- si	ngula	r sub	spaces up-
dates in A	llgorithm 1 after	iteration	ns sata	isfy							
								_			
Moreover, of Algoriti	when hm 1 satisfy		, th	e ou	tputs	of e	stimated	l mode-	sin	gular	r subspaces

for , where — — — — — — — — — , and the output of tensor reconstruction satisfies

Appendix B. Additional Proofs

 \mathbf{U} \mathbb{O}

 \mathbf{U} \mathbb{O}

 \mathbf{U} \mathbb{O}

 \mathbb{R}

 \mathbf{U} \mathbb{O}

U U U U
U U
U U

 \llbracket U U

 \mathbb{R}

_

 \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U} U \mathbf{U} – \mathbf{U} \mathbf{U} U \mathbf{U}

 \mathbf{U}

 \mathbf{U}

U

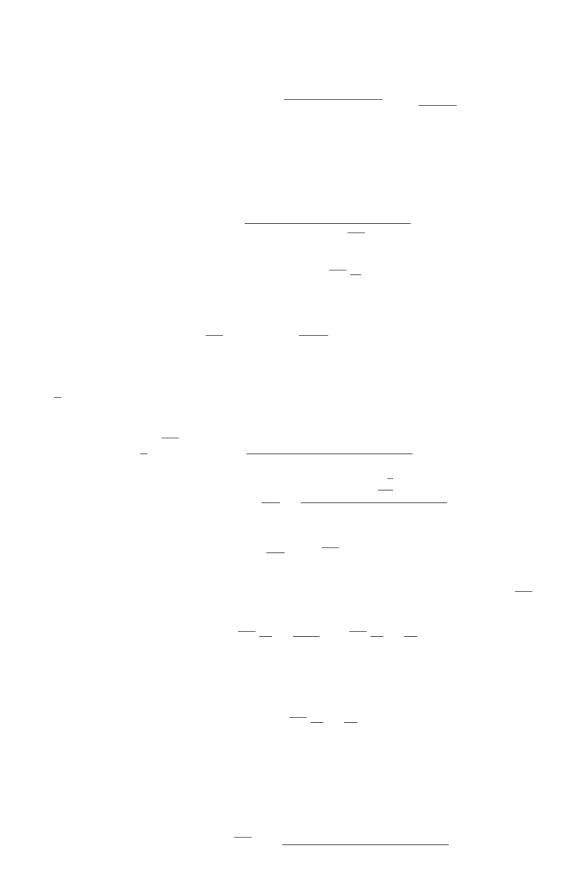
U U

_ u u - u

U U U

______U _____U ____U

$$\frac{\mathrm{U}}{\mathrm{U}}$$
 $\frac{\mathrm{U}}{\mathrm{U}}$



U U

 U
 U
 U
 U
 U
 U

 U
 U
 U
 U
 U
 U

 U
 U
 U
 U
 U
 U
 \mathbf{U} \mathbf{U}

 \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{U}

 \mathbf{U} \mathbf{U}

 ${f U}$ \mathbf{U} \mathbf{U} \mathbf{U}

U U

_ _ _ _

_

 ${f U}$

U U

P — —

- - -

- **■**

_ ___ _______

References

Annals of Statistics

IEEE Journal of Selected Topics in Signal Processing

Artificial

 $Intelligence\ and\ Statistics$

Journal of Machine Learning

Research

 $arXiv\ preprint\ arXiv:1402.5180$

arXiv preprint

arXiv:2007.09024

Available online,

January

 $arXiv\ preprint$

arXiv:1807.06693

Numerical linear algebra with applications

 $Advances\ in\ Mathematics$

 $Journal\ of\ Multivariate$

Analysis

Matrix analysis

The Annals of Statistics

The Annals of Statistics

Journal of the American Statistical Association

Biometrika

The Annals of Statistics

Conference on Learning

Theory

The Journal of Machine Learning Research

arXiv preprint

arXiv:1811.12804

Journal of Machine Learning Research

IEEE Transactions on Information Theory

Conference on

Learning Theory

IEEE Signal Processing Magazine

SIAM Journal on Numerical Analysis

Journal of Chemometrics: A Journal of the Chemometrics

Society

Applications

SIAM journal on Matrix Analysis

 $and\ Applications$

SIAM journal on Matrix Analysis and Applications

Psychometrika

SIAM Journal on Matrix Analysis

 $and\ applications$

SIAM journal on matrix analysis and

applications

 $arXiv\ preprint\ arXiv:1706.06516$

Journal of Machine Learning Research

Advances in Neural Information

Processing Systems

 $The \ Annals \ of \ Statistics$

SIAM Journal on Matrix Analysis and Applications

Linear Algebra and its applications

Geometric aspects of functional analysis

SIAM Journal on

Matrix Analysis and Applications

$GAMM ext{-}Mitteilungen$

 $Advances\ in\ Neural\ Information\ Processing\ Systems$

Journal

of Fourier analysis and applications

 $arXiv\ preprint\ arXiv:2002.11255$

IEEE Transactions on Information Theory

Journal of the

ACM (JACM)

Conference on Learning Theory

Numer-

 $ical\ Algorithms$

SIAM Journal on Matrix Analysis and Applications

International Conference on Algorithmic Learning Theory

arXiv preprint

arXiv: 2002.04457

 $arXiv\ preprint\ arXiv:1909.06503$

 $arXiv\ preprint$

arXiv:1807.02884

SIAM Journal on Matrix Analysis

and Applications

SIAM

review

2008 Eighth IEEE international conference on data mining

High Dimensional Probability VII Applied multiway data analysis

Psychometrika

 $45th\ Annual\ IEEE$

Symposium on Foundations of Computer Science

 $arXiv\ preprint\ arXiv:2002.06524$

The Annals of Statistics

Biometrika

Journal of Statistical Software

2010 IEEE International Conference on Image Processing

arXiv preprint arXiv:1702.07449

Advances

in Neural Information Processing Systems

IEEE transactions on Neural

Networks

 $arXiv\ preprint\ arXiv:2005.10743$

arXiv preprint arXiv:2104.12031

$arXiv\ preprint\ arXiv:2008.01312$

 $Advances\ in\ Neural\ Information\ Processing\ Systems$

The quarterly

journal of mathematics

SIAM Journal on Matrix Analysis and Applications

Linear Algebra and its Applications

SIAM Journal on Scientific Computing

SIAM Journal on Scientific Computing

IEEE

transactions on signal processing

Annales de l'Institut Henri Poincaré, Probabilités et Statistiques

The Annals of Statistics

Advances in

Neural Information Processing Systems

The Annals of Statistics

SIAM review

SIAM Journal on Scientific Computing

Journal of Multivariate Analysis

Advances in Neural Information Processing Systems

Proceedings of the 2007 SIAM International Conferen	ice
---	-----

on Data Mining

IEEE Transactions on Signal Processing

Available

online, January

Linear

algebra and its applications

Proceedings of the 2009 SIAM International Conference on Data Mining

SIAM Journal on Mathematics of Data

Science

Journal of the American

Statistical Association

Proceedings

of the 2010 SIAM International Conference on Data Mining

Psychometrika

Pacific Journal Of Optimization

SIAM Journal on Scientific Computing

arXiv

preprint arXiv:1011.3027

IEEE Transactions on Knowledge and Data Engineering

SIAM Journal on Matrix Analysis

 $and\ Applications$

Advances

in Neural Information Processing Systems

SIAM Journal on

Matrix Analysis and Applications

BIT

 $Numerical\ Mathematics$

Math-

ematische Annalen

Advances in Neural Information Processing Systems

Foundations of Computational Mathematics

Journal of Machine Learning Research

The Annals of Statistics, to

appear

2005 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR'05)

Linear and Multi-

linear Algebra

2005 IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR'05)

Biometrika

Foundations of Computational Mathematics

IEEE Transactions on Information Theory

The Annals of Statistics

Journal of the American Statistical Association

IEEE Trans-

actions on Information Theory

SIAM Journal on Mathematics of

Data Science

SIAM

Journal on Matrix Analysis and Applications

Advances in Neural Information Processing Systems

Journal of the American Statistical Association

 $arXiv\ preprint\ arXiv:2010.02482$