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ABSTRACT: The need to solve complex phenomena that still do not have a closed form analytical solution is one of the
challenges of current practice, including the susceptibility estimation of cavity blowout during horizontal directional
drilling (HDD). Computational tools and high frequency data acquisition in conjunction with machine learning open up
new opportunities to create tools that can aid in the understanding and design of these problems. We propose the
use of a predictor function, calibrated with a pool of numerical simulations that can predict the susceptibility of blow-
out of a cavity, given a fixed geometrical and stress configuration based on the mechanical parameters of the soil the
cavity is embedded in; results using k-means clustering (for classification) and support vector machines (SVM) to cre-
ate the predictor function, showed and accuracy of about 87% in predicting the blowout susceptibility.

1 INTRODUCTION

The study of the response of geomaterials under complex
loading conditions is an important portion of the geotech-
nical research and practice. Even though significant
breakthroughs have been made towards the understand-
ing and solution of many of these problems, oftentimes
they become too complex to be solved analytically. For-
tunately, advances in computational science and increase
of computing power have made possible to adopt numer-
ical methods to solve these complex problems with ex-
ceptional detail and within reasonable computing time.

This same increase in computational power has gener-
ated unprecedented amounts of data, both because of
the increased number of simulations and because of the
level of detail achieved in these simulations (Diebold et
al., no date). The necessity to analyze and interpret all this
data has deemed conventional tools as insufficient to a
level such that data science has become a leading field
both in scientific research and in industrial practice
(Provost and Fawcett, 2013; van der Aalst, 2016). These
new (or reinvigorated) data science tools have been en-
cased into the keyword category of Machine learning, the

use of which is ubiquitous to any research discipline, in-
cluding geotechnical engineering and its goal of under-
standing the response of soils to complex loading condi-
tions (Shahin, Jaksa and Maier, 2009; Puri, Prasad and
Jain, 2018).

In the present study, we explore and propose the use
of machine learning, specifically supervised and unsuper-
vised learning, as tools that can aid both scientific re-
search, giving insights towards the understanding of con-
trolling mechanisms; and the industry, by creating
reliable and fast tools and functions that help on projects
design.

One particular problem that lacks an analytical, accu-
rate solution is finding the maximum internal pressure
that can be applied inside the cavity before causing un-
confined shear failure (blowout) of the soil surrounding
the borehole during horizontal directional drilling (HDD).
In this paper, we focus on the problem of a pressurized,
(initially) cylindric cavity embedded inside a soil subjected
to biaxial far field stresses under drained loading condi-
tions. This problem is not only pertinent to HDD (6-8), but



also, to micro tunneling, in situ testing (Mair and Wood,
1987; Li, Li and Sun, 2016; Zhou, Kong and Liu, 2016)
(pressuremeter testing under anisotropic conditions) and
resource storage and withdrawal (Wang et al., 2009).

The role of the drilling fluid is crucial during every stage
of the HDD process, including the boring of the pilot hole,
its enlargement to the objective diameter (reaming) and
the installation of the product pipe into the bored cavity
(pullback) (Baumert, Allouche and Moore, 2005). This
fluid acts as a cooling agent for the drill head, suspends
and transports the cuttings from the excavation front to
the surface for and effective drilling and it can even be
responsible for rotating the drill bit (American Society for
Testing and Materials, 2011); therefore, having an appro-
priate fluid pressure inside the borehole is paramount for
HDD operation at any of its stages.

However, if the minimum required pressure of the drill-
ing fluid exceeds the maximum allowable for the soil at a
given point in the borehole, mud can return inadvertently
or drilling fluid can be lost into the surrounding soil, which
can affect the integrity of surrounding structures (e.g.
pavements, foundations), water bodies (subterranean
aquifers, ponds and rivers) or cause significant surface
settlements (Kennedy, Skinner and Moore, no date;
Keulen, 2001). The current state of the practice relies
mainly on two equations to find this maximum allowable
pressure value; the first is commonly known as the Delft
equation (Keulen, 2001) developed in 2001; it is the first
closed form solution that was proposed to quantify the
maximum allowable pressure of the drilling fluid inside
the bore cavity, nevertheless, it assumes isotropic far field
stresses and cylindrical deformation of the cavity, and it
is limited to the calculations in the elastic range until the
yield point is reached.

These assumptions are not realistic in practice, and
may become unconservative as far field stresses become
anisotropic (Xia and Moore, 2006; Shu, Zhang and Liang,
2018). The second widespread equation used to quantify
the blowout pressure, known as the Queens equation (Xia
and Moore, 2006), releases some of the assumptions
made in the Delft equation, by using an elasto-plastic ma-
terial and anisotropic stress conditions. Nevertheless, it
stills assumes that the plastic region is circular and en-
compasses the cavity, and it assumes that the plastic
point that is the farthest away from the cavity is above
the crown of the cavity.

Several other authors have attempted to propose new,
improved solutions including (Xia, 2009; Rostami et al.,
2016; Shu, Zhang and Liang, 2018). Still, the lack of con-
sensus and limited practicality of new solutions has
caused the state of the practice to still rely on the Delft
and Queens equations, as can be seen on the Best prac-
tices manual from the NASTT on its latest version to this
date (2017).

In this study, we create a numerical, finite element (FE)
model, which is run using a wide range of combinations
of the mechanical parameters from the soil that control
its response. Then, we analyze the soil response by de-
scribing the geometry of the cavity and that of the plastic
zone after the internal cavity pressurization. Geometric
parameter combinations are then classified (using k-
means algorithm) into 3 categories defined as low, mid
and high susceptibility of blowout; finally, we make use of
supervised learning (SVM) to generate a function that can
predict the blowout susceptibility based on the mechani-
cal parameters of the soil surrounding the expanding cav-

ity.

2 FINITE ELEMENT MODEL

A finite element model is built in Abaqus is used to gener-
ate the source data that will later feed the classifica-
tion/prediction algorithms. This model consists of a plane
strain (2D) domain which approximates the cross section
of the cavity since the drill length is significantly larger
than the diameter of the cavity. Additionally, the exist-
ence of two planes of symmetry allowed us to use a quar-
ter of the domain. The resulting square domain is shown
in Figure 1.

Figure 1. FEM domain of the simulation, the length of the
edges of the square domain are 100 times larger than the cav-
ity radius in order to avoid boundary effects. Left: full domain,
Right: Close up of the cavity at the lower left corner.



The radius of the cavity was set to 1 m and, in order to
avoid any possible boundary effects, the width (and
height) of the model were set to 100 m. The correspond-
ing symmetry boundary conditions were applied at the
bottom and left edges of the domain; the right edge of
the domain was fixed in order to generate a horizontal
reaction to the later imposed vertical stress; during the
first step, when the far field stress was applied, the dis-
placement of the nodes along the edge of the cavity was
fixed in order to prevent unrealistic and excessive defor-
mations, this boundary condition was later removed
when the outwards radial pressure was applied.

The vertical far field stress was fixed to 200 kPa
throughout the simulations and similarly, the outwards
radial pressure applied at the cavity nodes was fixed to
500 kPa. The horizontal far field stress is controlled by the
at-rest lateral earth pressure coefficient (Ko) which is a
function of the friction angle of the material. We used the
Drucker-Prager (DP) constitutive model for the elasto-
plastic soil, because it ensures better convergence than
the more popular Mohr-Coulomb (MC) model.

Because the limits and meaning of MC resistance pa-
rameters are more broadly known than the DP ones, we
chose MC parameters and used the matching plane strain
DP parameters in the FEM model. The match between the
plane strain response of the two models was obtained
from Abaqus’ documentation and is explained in Equation
1 and Equation 2 below:
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where ¢, y and c are the Mohr-Coulomb friction angle,
dilation angle and cohesion respectively; and and 3 and
d are the Drucker Prager friction angle and cohesion re-
spectively.

3 DATA GENERATION — POOL OF SIMULATIONS
In order to study the blowout potential of a cavity under

the loading conditions described, we run a pool of simu-
lations with mechanical parameters varying over a range

of values realistic for soil. Two elastic parameters are var-
ied: Young’s modulus (E) and Poisson’s ratio (v). The other
two parameters varied thorough the tests are the
Drucker-Prager friction angle (B) and dilation angles ()
of the material; a constant shear yield stress (also known
as Drucker-Prager cohesion) of 5kPa is assigned to the
material, since completely cohesionless materials result
in early localized plastic strains around the cavity, result-
ing in lack of convergence. Non-associated, dilatant soil
conditions are always ensured by setting a dilation angle
(b) within the range 0< < B.

We assign five different values to each of the four me-
chanical parameters, which results in a total of 625 (5%)
different combinations simulated. The same combinato-
rial strategy was used by the authors in a previous study
done with a feature selection algorithm (Patino-Ramirez
and Arson, 2018) that allowed to determine which me-
chanical parameters had a higher influence on the cavity
elasto-plastic boundary shape.

The present study covers a broad range of values appli-
cable to each parameter, going from fine to coarse gran-
ular materials and from loose to dense configurations
(Kulhawy and Mayne, P.W. (Cornell Univ., Ithaca, 1990;
Terzaghi, Peck and Mesri, 1996). The intervals of varia-
tions of the parameters are indicated in Table 1 below:

Table 1. Ranges of variation of soil mechanical parameters

. Lower Upper
Parameter Units Bound Bound
Young’s Modulus (E) kPa 10 100
Poisson Ratio (v) - 0.15 0.45

MC friction angle (¢)
MC Dilation angle ()

Deg (°) 20 45
%ofd 5%  95%

4 RESPONSE VARIABLES — OUTPUT CHARACTERIZATION

After the simulations finished, the elastoplastic (EP)
boundary was found by interpolating the values of the
plastic strain stored at each element integration points. In
order to get a smooth boundary, the boundary was de-
fined as the contour corresponding to a level curve with
an interpolated plastic strain of 1e-3. The deformed cavity
shape was also retrieved from the output database, fol-
lowing the final coordinates of the nodes along the cavity.



One of the simulations corresponding to a combination
of very low stiffness and resistance parameters could not
converge and aborted because of excessive distortion of
the nodes when the internal pressure was applied, there-
fore, a total of 624 scenarios were considered in our anal-
ysis.

Contrary to the common assumption that the EP
boundary is ellipsoidal, EP boundary shapes varied
widely, progressing towards a localized plastic region that
forms a band at a given angle towards the surface. The
extent and orientation of these plastic regions are remi-
niscent of the behavior observed, for instance, in the
shear bands developed on trap door tests (Ladanyi and
Hoyaux, 1969).

Once the boundaries were extracted, they were char-
acterized by a set of shape indexes. In the case of the EP
boundary, four different indexes were defined: (i) The
area of the plastic region plus the cavity (calculated from
the polygon that encloses the EP boundary and the center
point of the cavity); (ii) The solidity of the region (a con-
vexity metric defined as the ratio between the area of the
region to the area of its convex hull -- the smallest convex
polygon that encloses the region), (iii) The distance be-
tween the center of the cavity to the point along the EP
boundary that is the furthest away from the cavity center;
(iv) The angle from the horizontal of the line joining the
cavity center to the point that is the furthest away from
the cavity center.

The area of the region is a measure of the extent of the
plastic zone, not taking into account its shape. The solidity
of the region is a value between 0 and 1 that decreases as
the shape becomes less convex, where 1 corresponds to
a convex region (an ellipse section for instance). Index 3
tracks the localized development of narrow elasto-plastic
bands that appear and quantifies their extension, distanc-
ing from the center of the cavity. Lastly, index 4 measures
the orientation of this fingering region. If the case the EP
boundary is a perfect ellipse, indexes 3 and 4 correspond
to the length of the major axis and a 90° angle, respec-
tively.

The shape of the deformed cavity was fitted to an el-
lipse with great accuracy in every case and its area and
eccentricity were calculated to describe the cavity size
and shape respectively. The eccentricity of an ellipse is

defined as the ratio of the distance between the foci of
the ellipse and its major axis; a value of 0 corresponds to
a circle and the maximum value of 1 corresponds to the
degenerate case of a line.

5 UNSUPERVISED LEARNING — BLOWOUT
SUSCEPTIBILITY

From the extracted elasto-plastic boundaries, it becomes
evident that the common assumption of an elliptical plas-
tic region around the cavity is only valid when the soil is
able to resist the internal pressure with little plastic de-
formation, nevertheless, when as the soil becomes
weaker (in relation to the internal pressure), the extent of
the plastic region increases rapidly, deviating from an el-
liptical shape and causing the blowout as it loses the ca-
pacity to withstand the load. Since the relation between
the strength and deformability of the soil and the internal
pressure is highly complex, and no comprehensive analyt-
ical solution is available, we will classify the elastoplastic
boundaries in terms of their susceptibility to blowout.

We defined three categories: low, medium and high
susceptibility to blowout. Making use of the geometric in-
dexes defined for the boundaries, we use an automated
classification technique, formally known as an unsuper-
vised learning algorithm, in order to assign a category to
each one of our performed simulations. We used a K-
means implementation with the 4 different indexes as the
features, 3 clusters (classes to classify into) and sample
correlation as the similarity metric (Dhanachandra,
Manglem and Chanu, 2015). Figure 2 shows all the EP
boundaries and the corresponding blowout susceptibility
category they were classified to.
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Figure 2. Elasto-plastic boundaries for all the numerical simu-
lations (624) classified into susceptibility to blowout
categories.

We then analyzed the distribution of the shape indexes
by class. A good index should be able to split clearly the
different categories, meaning that it should show very lit-
tle overlap between the histograms of the different clas-
ses. The frequency histograms are shown on Figure 3.
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Figure 3. Frequency histograms by blowout susceptibility cate-
gory, shown for the four EP boundary indexes: Area (m2), so-
lidity, max distance from origin (m) and angle to farthest plas-
tic point (degrees).

From these histograms, we can observe that there is a
clear separation between the classes, suggesting a good

choice of indexes, and confirming the expected relation-
ship between the blowout susceptibility formulated. High
susceptibility simulations show significantly higher plastic
region areas (the horizontal axis on Figure 3 is shown in
log scale) in addition to highly non-convex shapes, due to
the generation of a preferred plastic region extending far
from the cavity at a relatively constant angle from the
horizontal. This “fingering” phenomenon is supported by
the distance to the cavity center and the angle to the fur-
thest point (index 4).

Conversely, low susceptibility regions are elliptical,
showing the angle to the furthest point is consistently
around 90 degrees (major axis), very high solidity (convex
shape) and small plastic extent. The mid susceptibility re-
gion falls in between the extremes, showing the transition
from an ellipse to a plastic band of preferred orientation
(fingering effect).

Lastly, we tested the same strategy with the deformed
cavity indexes in order to test whether their distribution
was directly linked to the blowout susceptibility. The re-
sults are shown on Figure 4.
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Figure 4. Frequency histograms by blowout susceptibility cate-
gory for deformed cavity shape indexes: eccentricity and area
(m2).

From these results it becomes apparent that the eccen-
tricity (sometimes referred to as the ovality) and extent
of the deformed cavity are not explained by the plastic
region that surrounds it. The high overlap between cate-
gories shows that two given cavities of similar extent and
shape can underlie completely different plasticity states.



6 SUPERVISED LEARNING —SUSCPETIBILITY ESTIMATION
FROM SOIL PARAMETERS

We now make use of a supervised learning algorithm in
order to generate a predictor function that returns the
predicted blowout susceptibility category (classification
class) based on the soil mechanical parameters (acting as
predictors variables)

To this end, we tried different learning algorithms cat-
egories: classification trees, naive Bayes classifiers, sup-
port vector machines (SVM) and neural networks. After
evaluating the performance of each one of the variations
within these algorithms, we found out that the best per-
forming algorithms were the neural networks and the cu-
bic SVM, both with accuracies of between 82 and 87%.

Neural networks gave us a maximum accuracy of
86.7%, corresponding to a network with 10 hidden layers
trained using scaled conjugate gradient backpropagation.
We partitioned the data as: 70% of as the training set, and
15% for the validation and test sets each. On the other
hand, the best performing SVM algorithm used a cubic
boundary and 10 fold cross validation. The final accuracy
of the algorithm was 82.5%.

Nevertheless, the performance of the neural network
seemed to be highly variable depending on the tuning pa-
rameters and the separation of data into training and val-
idations sets. This fact, added to the increased training
time diverted us towards choosing the SVM algorithm as
the most convenient, which achieved similar accuracy
without the mentioned caveats. Figure 5 shows the con-
fusion matrix for the predictor function gotten from the
cubic SVM algorithm.

The confusion matrix shows that the class with the
worst prediction accuracy is the medium susceptibility
class, which is not surprising since it acts as the transition
buffer between the two extreme classes. From the mis-
classified cases, 2.4% correspond to low susceptibility,
which overestimates the blowout potential. 4% corre-
spond to the medium class, from which 2.9% correspond
to underestimation of blowout (unsafe scenario). Finally,
the high susceptibility class underestimates 6.9% of the
cases, from which 5.3% correspond to samples of high
blowout susceptibility classified as low.
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Figure 5. Total confusion matrix for the susceptibility to blow-
out prediction model using a cubic SVM learning algorithm.

7 CONCLUSIONS

The developed strategy showed promising results that
could be implemented as a readily available tool to assess
blowout potential or any other complex phenomena that
has to be addressed even though it is not completely un-
derstood yet. These tools build upon the best capabilities
of FEM (capability to model complex geometries and
loading scenarios), unsupervised algorithms (capacity to
find similarities and cluster large sets of data) and super-
vised learning algorithms (capacity to find correlations
and causality relationships that explain and predict the in-
teractions within the data).

Nevertheless, further research is needed in order to in-
crease the reliability of these algorithms, especially to
prevent unsafe predictions that may compromise the sta-
bility of structures. It is important to mention as well that
this type of tool should not be seen as a replacement to
traditional, analytic methods, but rather as an extra tool
that can hint and guide towards the development of new
comprehensive methods.
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