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Abstract

We present a new polynomial-free prolongation scheme for Adaptive Mesh Re-
finement (AMR) simulations of compressible and incompressible computational
fluid dynamics. The new method is constructed using a multi-dimensional
kernel-based Gaussian Process (GP) prolongation model. The formulation for
this scheme was inspired by the two previous studies on the GP methods in-
troduced by A. Reyes et al., Journal of Scientific Computing, 76 (2017), and
Journal of Computational Physics, 381 (2019). In this paper, we extend the
previous GP interpolations and reconstructions to a new GP-based AMR pro-
longation method that delivers a third-order accurate prolongation of data from
coarse to fine grids on AMR grid hierarchies. In compressible flow simulations,
special care is necessary to handle shocks and discontinuities in a stable man-
ner. To meet this, we utilize the shock handling strategy using the GP-based
smoothness indicators developed in the previous GP work by A. Reyes et al.
We compare our GP-AMR results with the test results using the second-order
linear AMR method to demonstrate the efficacy of the GP-AMR method in a
series of test suite problems using the AMReX library, in which the GP-AMR
method has been implemented.
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1. Introduction

In the fields of geophysics, astrophysics, and laboratory plasma astrophysics,
simulations have become essential to characterizing and understanding complex
processes (e.g., [24, 29, 37, 58]). As increasingly complex systems are consid-
ered for computer modeling, modern simulation codes face increasingly versatile
challenges to meet expected metrics in vast parameter space. Computational
fluid dynamics (CFD) has been and will continue to be an indispensable tool
to improve our capabilities to investigate scientifically challenging conditions,
particularly where simplified theoretical models fail to adequately capture the
correct physical behavior, or physical experiments become too observationally
difficult and/or prohibitively expensive to be the sole pathways for discovery.

In computer simulations significant imbalances in length and temporal scales
can cause the underlying physics to become extremely challenging to simulate
with available computational resources. To alleviate such conditions, practi-
tioners have explored approaches by which a simulation can focus on localized
flow regions when the dynamics exhibit confined features that evolve on a much
shorter length scale relative to the flow dynamics on the rest of the computa-
tional domain.

Adaptive mesh refinement (AMR) is one such approach that allows com-
puter experiments to focus on localized dynamical changes by adaptively chang-
ing the simulation’s grid resolutions to focus resources on localized regions in
space and time. Since the 1980s, AMR has been an exceptional tool. It has be-
come a powerful strategy in utilizing CFD simulations for computational science
across many disciplines such as astrophysics, geophysics, atmospheric sciences,
oceanography, biophysics, engineering, and many others [41].

There have been many advancements in AMR, since the seminal paper by
Berger and Oliger [8]. In their paper, the primary concern was to focus on
a strategy for generating subgrids and managing the grid hierarchy for scalar
hyperbolic PDEs in one and two spatial dimensions (1D and 2D). In the subse-
quent work by Berger and Colella [7], further improvements were made possible
for numerical solutions of the 2D Euler equations to provide a robust shock-
capturing AMR algorithm that satisfies the underlying conservation property
on large-scale computer architectures. The novel innovations in their work have
become the AMR standards, namely refluxing (or flux correction) between fine-
coarse interface boundaries, conservative (linear) prolongation, and restriction
on AMR hierarchies timestep subcycling. Bell et al. extended the precedent
2D AMR algorithms of [7, 8] to a 3D AMR algorithm and applied it to solve
3D hyperbolic systems of conservation laws [6]. They demonstrated that the
AMR algorithm reduced the computational cost by more than a factor of 20
than on the equivalent uniform grid simulations in simulating a 3D dense cloud
problem interacting with a Mach 1.25 flow on Cray-2. By far, this is the main
benefit of using AMR, particularly in large 3D simulations, in that one could



gain such a computational speed-up by focusing computational resources on the
dynamically interesting regions of the simulation.

In [27], Jameson addressed the efficiency of AMR schemes. In his work, the
overall computational efficiency of using AMR is assessed based on the accuracy
of the AMR scheme and the fraction of the region of the domain requiring grid re-
finements. Jameson estimated that small scale features, such as shocks, vortices,
eddies, rotating flows, turbulence, etc., should not exceed more than a third of
the computational domain in order for low-order AMR schemes (e.g., the tra-
ditional second-order AMR methods) to be computationally more competitive
than a non-adaptive high-order calculation because the computational workload
of AMR is larger than that of non-adaptive high-order numerical methods. In
other words, a non-adaptive high-order calculation is practically beneficial for
a simulation that is abundant of small scales over the majority of the domain,
as the low-order AMR simulation would become computationally burdensome
without gaining further enhancements in solution accuracy compared with the
non-adaptive high-order simulation. He also points out that matching the nu-
merical order of accuracy of the AMR scheme to a high-order baseline solver
makes AMR competitive for larger fractions of the domain requiring the highest
refinement.  This study provides a criterion that helps determine how much
one could leverage computational efficiency in utilizing AMR schemes against
high-order non-AMR, schemes.

The computational gains of AMR are only useful if there is consistency
between the AMR calculations and those on a uniform grid. Mathematically
speaking, AMR calculations should converge to the corresponding uniform grid
solutions in the limit of grid convergence. In a numerical comparison study,
Schmidt et al. [48] considered conditions upon which statistical agreement can
be achieved between AMR and uniform grid calculations at the same effective
grid resolutions.

Modern AMR implementations may be categorized into two main types:
structured and unstructured. Unstructured AMR, and meshes in general, are
very useful for problems with irregular geometry (e.g., many structural engi-
neering problems) but are often computationally complex and difficult to han-
dle when regridding. On the other hand, structured AMR (SAMR, or block-
structured AMR) offers practical benefits over unstructured such as ease of
discretization, a global index space, accuracy gain through cancellation terms,
and ease of parallelization.

In block-structured AMR, a PDE solution is constructed on a hierarchy of
levels with different resolutions. Each level is composed of a union of logically
rectangular grids or patches. These patches can change dynamically throughout
a simulation. Different AMR schemes feature different patch/block shapes so
that some AMR codes allow logically different shapes of patch/block; some do
not. Fig. 1 illustrates the use of AMR in a block-structured environment.

The approach presented by Berger and Oliger [8] and Berger and Colella
[7] has set the foundation on the patch-based SAMR. An alternative to the
patch-based formulation is the octree-based approach, which has evolved into
the fully-threaded tree (FTT) formalism (or cell-based) of Khokhlov [31]; the



Figure 1: Multiple levels in a block-structured AMR grid hierarchy.

block-based octree formalism of MacNiece et al. [34] and van der Holst et al.
[59].

AMR methods have gained popularity over the past 30 years, and vari-
ous codes have adopted them in astrophysics. Some of the well-known exam-
ples implementing the patch-based AMR include AstroBEAR [18], ENZO [10],
ORION [32], PLUTO [38], CHARM [39], CASTRO [2], and MAESTRO [40];
the octree-based AMR has been implemented in FLASH [21, 23], NIRVANA
[64], and BATS-R-US [25, 42]; the FTT AMR in RAMSES [57] and ART [33].
The AMRVAC code [30] features both the patch-based and octree-based AMR
schemes.

In contrast to these codes that incorporate AMR to deliver specific astro-
physics applications, other frameworks have pursued a more general function-
ality. Examples include PARAMESH [34] that supplies the octree-based block-
structured mesh capability independent of any governing equations solely; AM-
ReX [62], Chombo [14, 1], and SAMRATI [26], on the other hand, supply both
AMR capabilities and broader support for solving general systems of equations
of hyperbolic, parabolic, and elliptic partial differential equations (PDEs) with-
out necessarily being tied to a physical application. A more compressive survey
on the block-structured AMR frameworks can be found in [20].

Recently, there have been many noticeable efforts aimed at designing high-
order accurate solvers for governing systems of equations (e.g., [44, 36, 61, 11,



35, 22, 5, 53, 45, 47]) per a trend of decreasing memory per compute core in
newer high-performance computing (HPC) architecture [4, 19, 55]. Such high-
order (4th or higher) PDE solvers are then combined with the AMR strategies
described above.

Traditionally, when combined with second-order PDE solvers, a second-order
linear interpolation scheme has been commonly adopted for data prolongation
from coarse to finer AMR levels. As recent developments have advanced the
order of PDE solvers to high-order accuracy beyond second-order, there have
also been efforts to push the accuracy of AMR interpolations correspondingly
[60, 35]. Such algorithms reduce accuracy gaps that would exist between an
underlying high-order PDE solvers and the traditional second-order AMR in-
terpolation, which otherwise can degrade the quality of solutions from the high-
order PDE solvers when the solutions are projected to AMR grids that are
progressively undergoing refinements and de-refinements. In addition, another
accuracy loss inevitably happens at fine-coarse boundaries. Therefore, it is nat-
ural to close the accuracy gap in the direction of providing high-order models
in AMR interpolations to serve better to maintain the overall solution accuracy
integrated as a whole on AMR grid configurations. The high-order AMR pro-
longations of Shen et al. [50] and Chen et al. [12] are in this vein. These authors
coupled high-order finite difference method (FDM) PDE solvers with fourth- or
fifth-order accurate prolongations based on the well-known high-order polyno-
mial interpolation schemes of WENO [28] and MP5 [56], respectively. These
studies have shown that the AMR simulations with a higher-order coupling can
produce better results in terms of increasing solution accuracy and lowering nu-
merical diffusion, thereby resolving fine-scale flow features as much as possible.

The present work focuses on developing a new high-order polynomial-free
interpolation scheme for AMR data prolongation on the block-structured AMR,
implementation using the AMReX library. Our high-order prolongation scheme
stems from the previous studies on applying Gaussian Process Modeling [43]
in designing high-order reconstruction/interpolation in finite volume method
(FVM) [45] and in finite difference method (FDM) [47].

The main goals of this paper are two-fold: (i) we aim to show how the
previous GP reconstruction and interpolation methods can be extended to a
volume-conserving third-order AMR prolongation method, and (ii) we aim to
demonstrate how the new GP-AMR method can be seamlessly integrated with
an existing FVM code framework. To meet our goals, we utilize a public AMR
framework called AMReX for our testbed, in which we have implemented our
third-order GP-AMR prolongation scheme. The new GP-AMR prolongation
method’s performance and accuracy are compared with those of the standard
second-order linear prolongation method in AMReX. Both prolongation meth-
ods are combined with a second-order PDE solver . We acknowledge that our

T Our results are represented in 5.2, where the tests derived in AMReX use a second-
order advection routine and Castro [2] tests use PPM [15] with the corner transport upwind
algorithm. It should be noted that the PPM method implemented in Castro only allows



third-order GP-AMR scheme is ideally better integrated with an underlying
PDE solver that is at least third-order accurate to match the overall solution
accuracy. However, such a work pre-requires to implement a third- or higher-
order FVM PDE solver, an attentive task [35] in general and beyond the scope
of the current work. For this reason, we leave such a task for future work.

This paper is organized as follows. In Section 2, we overview the relevant
AMR framework, AMReX, as our computational toolkit in which we integrate
our new GP-based prolongation algorithm. In Section 3, we provide a mathe-
matical overview of the GP modeling specific to high-order AMR prolongation.
We give step-by-step execution details of our algorithm in Section 4. Section
5 shows the code performance of the new GP prolongation on selected multi-
dimensional test problems, and finally, in Section 6, we summarize the main
results of our work. A brief introduction to our GP modeling is described in
Appendix A.

2. Overview of AMReX

AMReX is developed and managed by the Center for Computational Sci-
ence and Engineering at Lawrence Berkeley National Laboratory. AMReX is
funded through the Exascale Computing Project (ECP) as a software frame-
work to support the development of block-structured AMR applications focusing
on current and next-generation architectures [62]. AMReX supports for many
operations involving adaptive meshes, including multilevel synchronization op-
erations, particle and particle/mesh algorithms, solution of parabolic and elliptic
systems using geometric and algebraic multigrid solvers, explicit/implicit mesh
operations, to name a few. As part of an ECP funded project, AMReX takes
the hybrid MPI/OpenMP CPU parallelization along with GPU implementa-
tions (CUDA). AMReX is mostly comprised of source files that are written in
C++ and Fortran. Fortran is solely used for mathematics drivers, while C+-+
is used for I/0O, flow control, memory management, and mathematics drivers
(when portability is a requirement).

The novelty of the current study is the new GP-based prolongation method
implemented within the AMReX framework. The GP implementation furnishes
an optional high-order prolongation method from coarse to fine AMR, levels,
alternative to the default second-order linear prolongation method in AMReX.
In this way, the GP results in Section 5 naturally inherit all the generic AMReX
operations such as load balancing, guardcell exchanges, refluxing, AMR data,
and grid management, except for the new GP prolongation method. We display
a suite of test comparisons between the two prolongation methods. Scientific
motivations for adopting the GP algorithm will also be briefly discussed in the
next section.

AMR restriction is another important operation on the AMR data manage-
ment in the opposite direction, from fine to coarse levels. We use the default

second-order accuracy for finite volume simulations in multiple spatial dimensions.



averaging-based restriction method that maintains conservation on AMR grid
hierarchies. This approach populates data on coarse levels by averaging down
the corresponding fine level data according to

o 1xhgys

where U¢ and U/ are conservative quantities on the coarse and fine grids re-

spectively, and R = []rq is the normalization factor with ry4, integer values in
d
the form of powers of two, representing the refinement ratio in each direction

d=uwz,y,z.

Lastly, maintaining conservation across fine-coarse interface levels is done by
the operation called refluxing. This process corrects the coarse grid fluxes by
averaging down the fluxes computed on the fine grids abutting the coarse grid.
In practice, the conservation is managed as a posterior correction step after all
fluid variables U% on a coarse cell are updated. For other AMR operations
related to AMReX, interested readers are encouraged to refer to [62, 63, 65].

3. Gaussian Process Modeling for CFD

In this paper we present a new prolongation method based on Gaussian
Process (GP) Modeling. Our approach of designing a GP-based prolongation
method for CFD is primarily based on the two previous foundational works on
GP high-order methods: the 1D finite-volume GP method prescribed in [45]
and the 3D finite-difference GP method in [47].

Readers wishing to pursue the subject in greater detail are referred to the
sections in Appendix A of this paper as well as [9, 43]. Also, readers who are
more interested in the direct CFD applications of our new GP modeling in finite
difference and finite volume frameworks are encouraged to review our previous
studies [45, 47].

We describe two main modeling algorithms of the GP-based AMR prolon-
gation in the following sections. Section 3.1 describes the first method that
prolongs pointwise state data from coarse to fine levels. For AMR simulations
in which the state data is represented as volume-averaged, conserving such quan-
tities become crucial to satisfy the underlying conservation laws. To meet this
end, we introduce the second method in Section 3.2, which preserves volume-
averaged quantities in prolongation. We will refer to our GP-based AMR pro-
longation as GP-AMR for the rest of this paper.

3.1. The first version: a pointwise GP-AMR prolongation

We introduce the first GP-AMR prolongation method that is suitable for
AMR applications where the state data is comprised of pointwise values. In
this case, the GP-AMR model samples are given as pointwise evaluations of
the underlying function. Let Ad denote the grid distance between two distant
points in a coarse level in each d = x,y, z direction. Using the posterior mean



function in Eq. (A.4), we first devise a pointwise prolongation scheme for AMR,
i.e., an AMR prolongation of pointwise data from coarse to fine levels. The
choice of x, will depend on the refinement ratio r = [ry,r,,7,] and there will
be [ [, 74 new points generated for the new level in general. For example, if we
wished to refine a single coarse grid by two in all three directions in 3D (i.e.,
ry =1y =1, = 2), we would generate eight new grid points as well as the eight
new associated data values at those grid points in a newly refined level.

To illustrate the process, we consider a simple example of a two-level refine-
ment in 1D. In this refinement, two refined data values are to be newly generated
for every coarse value. Assume here that we utilize a stencil with the GP radius
of one (i.e., R = 1), in which case the local 3-point GP stencil f;, centered at
each i-th cell for interpolation, is laid out as

£ =[qim1. ¢, qie1]"

where each ¢; is a pointwise data value located x;_1,x;, ;11 respectively. We
wish to generate two finer pointwise data values g;4+,/4 for each ith coarse cell
from this given stencil data at the coarse level. To do this, we use the posterior
mean function in Eq. (A.4) on three 3-point GP stencils, f;, to populate two
new data points ¢;+1 at two new grid locations, x4 = {xii%},

Girs = kL K, (2)

where we used a zero mean prior, f = 0. In 2D or 3D, multidimensional data
values are to be reshaped into a 1D local array f; in an orderly fashion. This
strategy will be fully described in Section 4.

A common practice with GP modeling is to assume a zero prior mean as we
did with Eq. (2), which we also follow in our current implementation. Something
to note is that the GP weights, kLK1, where * denotes i & 1/4 for the present
purpose, are independent of the samples f;. Moreover, the GP weights are
solely constructed based on the choice of kernel function K and the location
of the samples, x;, and prediction point, x,, alone. This is particularly useful
in block-structured AMR applications, as we can compute the weights for each
level a priori, based on the minimum and maximum levels prescribed for each
run. Otherwise, we can generate the model weights at the initialization of level
is used and save them for later uses. This is in contrast to polynomial based
methods for high-order prolongation that requires a least squares solution for
each cell to be refined [35], which we explore further in Section 3.5.

Since the matrix K is symmetric and positive-definite, we can use the Cholesky
decomposition to compute the GP weights. In practice, we compute and save
wl = kITK~! using Cholesky decomposition followed by back-substitution only
once per refinement level and per simulation, either at an initial grid configu-
ration step or at the first time an AMR level is newly used. In this way, the
computational cost of the prolongation is reduced to a dot product between w
and f for each newly prolonged point.

Finally, we arrive at a compact form for a pointwise version of the GP
prolongation for each ith coarse cell, producing two new data points Git1 at
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8.2. The second version: a volume-averaged GP-AMR prolongation

For most AMReX and fluid dynamics application codes, the state data is
volume-averaged (or cell-averaged), as per the formulation of FVMs. The above
GP-AMR prolongation for pointwise data has to be modified for the volume-
conserving relation between fine and coarse data. This conservation property
is implicit in the integral formulation of the governing equations used in FVM
and is to be preserved in AMR prolongation steps; otherwise, simulations will
disobey the underlying principles of the conservation laws in hyperbolic systems
of PDEs.

The key observation from [45] is that the averaging over cells constitutes a
“linear” operation on a function f(x). Asis done for finite-dimensional Gaussian
Processes, linear operations on Gaussian random variables yields a new Gaus-
sian random variable with linearly transformed mean and covariance functions.
Accordingly, given that integration is a linear operator, we achieve an integrated
covariance GP kernel C to calculate the covariance between two cell-averaged
quantities, G and Gy, as described in [45]. That is,

[Cli, = Ckn = E[(Gr — G1)(Gr — G1)]
~ [BL60 - 7)) - FoNdgndany)

f K(x,y)dgi(x)dgn(y),

where, with abuse of notation, x = [z, 2y, xZ]T e RP with D = 3,

D

1
ix [[ ~— itxel,
dgs(x) = Ay Axq (5)

0 else,

is the cell-volume measure, and G; = (f(x;)) = %SZ f(x;)dV are the cell-

averaged data over the ith cell I; ¢ R with its cell volume V.
With the use of the squared-exponential kernel, Eq. (4) is written analytically
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+ exp

where we used Agp, = (Ta,n — Tak)/Azqg with d = z,y, 2.

Following similar arguments as for the covariance kernel function, the predic-
tion vector k, with one point anchored at x, must also be linearly transformed
to reflect the relationship between the input data averaged over coarse cells and
the output prolonged data averaged over the fine cells, which requires double
integrals over the cell I, and over each Ij. This leads to

[Tyl) = T = T(x4,%) = L . K (x4,%)dgr(x)dgs (Xx), (7)

where

D
A A
I, = X [xd,* - xda Td,x + $d] »

dezy.z 2ry 2ry

in which X denotes the Cartesian production on sets. Using the SE kernel, we
have a closed analytical form for Ty,

D 2 4
14 1
Ter = 7'('D/2 rd <) (*1)0( |:¢a,d erf(¢a,d) + — eXP(*¢2 )
(8)
where, for each a = 1,...,4 and for each d = z,, z,

J— Aa
V2 Az

with each numerator A® being given by

¢a,d (9)

Ay + 721 ifa=1,

2rd

Ay + 5 ifa =2,

2rq
A% — (10)

rq—1
A*k - grd if a = 3,

A*k—% if 0 = 4.
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Finally, with the combination of the cell-averaged kernel in Eq. (6) and the
cell-averaged weight vector in Eq. (8), we obtain our second GP-AMR, formula
given in the integral analog of Eq. (A.4) for cell-averaged data prolongation
from coarse to fine levels,

(f(x4)) = TLCT'Gy, (11)

where we used the zero mean as before. The ith data vector G; of cell-averaged
samples within the GP radius R is given as G; = [G;_g,...,Gi1r]*. Analogous
to the pointwise method, we cast TLC~! into a new GP weight vector z, to
rewrite Eq. (11) into a compact form,

(f(xs)) = 2, Gi. (12)

Many multidimensional numerical methods often perform interpolation in
a dimension-by-dimension manner for simplicity. In contrast, the above two
pointwise and volume-averaged GP-AMR methods are inherently multidimen-
sional in their spatial operations. Moreover, the use of the SE kernel as a base
in each d-direction facilitates the closed analytical form obtained in Eq. (6)
for multiple spatial dimensions. Therefore, our GP-AMR methods provide a
genuine framework where all interpolation procedures in AMR grid hierarchies
naturally support multidimensionality, as the evaluation of the covariance ma-
trices depends only on the distance between data points but not on the data
themselves. Furthermore, it is worth pointing out that the two prolongation
schemes in Egs. (3) and (12) are merely a straightforward calculation of dot
products between the GP weight vectors and the grid data (f and G).

This is the novelty of the use of GP modeling in AMR prolongation, which
reveals two new compact prolongation methods that are computed in the same
way for any stencil configuration in any number of spatial dimensions without
any added complexity. This is in stark contrast to polynomial-based methods
that each different interpolation algorithm requires the use of explicit basis
functions and have strict requirements on stencil sizes and configurations.

We summarize this section by noting two distinct advantages in the present
GP-AMR methods. First, the algorithm offers unique flexibility that can vary its
order of accuracy, (2R + 1), by varying the size of the GP data according to the
GP radius R. Second, the baseline 1D GP scheme can be seamlessly extended to
any higher dimension by including the corresponding higher dimensional term(s)
in the products in Egs. (6) and (8).

8.8. Ezxamples of GP prolongation in 1D and 2D using R =1

We present two simple examples of GP prolongation with R = 1 to illustrate
the relevant data layout and notations of our GP algorithm.

Example 1: GP prolongation in 1D with R = 1. Fig. 2 shows that two parent
cells I and I3 are prolonged to a total of six finer children cells, two from a
refinement level of two (r,, = 2) and the other four from a refinement level of four

11



(rp, = 4). The left-most child cell depicted as I, is centered at new prolonged
data point z, = x9 — Ax/4 with a uniform grid-scale Az of the coarse cells I;.
In Eq. (10), we compute three relative distances of Ay with & = 1,2, and 3,
each of which becomes Ay; = 3/4, Ay = 1/4, and Ayz = 5/4.

To obtain a new prolonged data at x4, GP-AMR uses either fo = [¢1, g2, g3
for pointwise data, or Go = [{q1), (g2), (g3)]* for volume-averaged data, over
which the GP interpolation takes place at third-order accuracy. With these three
3-point data configurations under R = 1, the 3 x3 GP kernel is either a pointwise
matrix K or a volume-averaged matrix C, while the pointwise weight vector w
and the volume-averaged weight vector z, are of length three. The GP data

vector fa (or Gz) are applied to the constant (precomputed) weight vector wi or

zl according to Eq. (3) (or Eq. (12)) to obtain a new GP-prolonged data at x.,
for which the three coarse data on I, Is and I3 have been correlated to produce
a third-order accurate GP prolonged prediction. The GP data prolongations of

the coarse cell I3 with r, = 4 can be obtained in a similar manner.

]T

I

L1

Figure 2: The figure illustrates two different data prolongations with two different refinement
levels. The parent cell I5 is refined with a refinement level of two, r, = 2, generating two
new children cells, while the parent cell I3 is refined with a refinement level of four, r, = 4,
producing four new children cells. The new children cells are shown at the bottom.

Example 2: GP prolongation in 2D with R = 1. The overall GP prolongation
in 2D can be processed in a similar way as we have discussed in the previous 1D
example. The only important point of discussion here is the local GP stencil
shape that takes a 5-point cross-shaped configuration with R = 1. The GP data
array, either f5 or Gg, can be constructed by rearranging the five coarse data
on I1,...,I5 into a 1D array in an orderly fashion. This data layout leads to a
5 x 5 GP covariance kernel, including all five coarse cell data on Iy,...,Is, in
either pointwise or volume-averaged. Accordingly, the GP weight vector is of
length five. The rest should follow easily by considering the 2D nature of the
grid configurations.

12
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Figure 3: The figure illustrates a 2D GP prolongation of the cell Is with a refinement level of
two, rz = ry = 2, generating four new children cells.

8.4. Handling discontinuities: a nonlinear multi-substencil method of GP-WENQO

Both of the above GP modeling techniques can suffer from non-physical os-
cillations near discontinuities. The pointwise SE kernel K and the cell-averaged
SE kernel C work very well for smoothly varying continuous data, but we need
to implement some “limiting” process to suppress ‘nonphysical’ oscillations in
flow regions with sharp gradients. As an example, the linear polynomial in-
terpolations used by default in AMReX adopts the monotonized central (MC)
slope limiter to produce limited slopes that do not introduce any new extrema
into the solution.

This study utilizes the GP-based smoothness indicator approach studied in
GP-WENO [45, 47]. The first step is to build (2D + 1) substencil data on
each substencil S,,, m = 1,...,2D + 1. In the second step, these data are
combined using linear weights +,,,. The linear weights are derived from an over-
determined linear system relating the weights generated by building a GP model
on all substencils S, and the weights generated from a GP model on a total
stencil S. The last step is to take the linear weights 7, to define nonlinear
weights w,, using the GP-based smoothness indicators f,, [46, 47].

We now describe in detail the GP-AMR method for the two-dimensional
case. Extensions to other dimensions are readily obtained due to the isotropic
SE kernel choice, with the only difference being in the number of stencil points
used. We begin with a total stencil S, taken as all cells whose index centers are
within a radius of two (i.e., R = 2) of the central cell I; ;. The total stencil S
is then subdivided into (2D + 1) candidate stencils, S,,,m = 1,...2D + 1, such

that
2D+1 2D+1

S = {x;;} and Sm = S. (13)
01 ’ L=J1

A schematic of these stencil configurations is given in Fig. 4, which illustrates
a prolongation of the grid data on the coarse cell I; ; to a newly refined data
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point at x, will have the form:

2D+1

Jx = Z wmwfnfm7 (14)
m=1
where wl = T, ,,C,! for the cell-averaged prolongation, or w’ = kz,mK:nl
for the pointwise prolongation.
The coefficients w,, are defined as in the WENO-JS method [52],
W - TYm
Wm = ——, Wwhere w,, =—"+——4 15
¥, (o Bul? 1o

where we set € = 10736 and p = 2, following [47].

As in [45, 47], we compute the nonlinear smoothness indicators f,, that
are derived as a data-dependent form by considering the negative log of the
GP likelihood function in Eq. (A.2), namely, —log(L) for the stencil data (see
[45, 47] for more details). The result is a new set of probability-based GP
smoothness indicators S,,, defined by,

Bm = £LK! (16)

m=rm,o M

for the pointwise prolongation, and

B = £5,Clo s (17)
for the cell-averaged prolongation. The subindices in the covariance kernels
K, - and C,, , represent that (i) they are computed over the data points on
each S,,, to measure the data correlations over the relative distance between the
two data points in S,,, and (ii) the kernels’ hyperparameter is now a smaller
parameter o, replacing the standard (and larger) length-scale ¢ in the covariance
kernels K and C on the total stencil S.

As described in [45, 47], the GP-based smoothness indicators f,, defined in
this way are derived by taking the negative log of the GP likelihood in Eq. (A.2).
This gives rise to the statistical interpretation of [3,,,, which relates that if there
is a shock or discontinuity in one of the substencils, say S, such a short length-
scale (or rapid) change on Sy makes f}, unlikely. Here, this likeliness is relative to
a GP model that assumes that the underlying function is smooth on the length
scale set by ¢. In other words, the GP model whose smoothness is represented
by the smoothness property of its covariance kernel, K, , or C,, ., gives a low
probability to fy, in which case 8 — given as the negative log likelihood of f —
becomes relatively larger than the other 3,,, m # k. In this way, analogous to
the original Weighted Essentially Non-Oscillatory (WENQ) [28] approach, the
nonlinear GP-WENO adaptively chooses a non-oscillatory stencil by nonlinearly
weighing GP predictions trained on a set of substencils according to a GP-based
local smoothness indicator 3, for each m. The smoothness is determined using
the GP likelihood to measure the compatibility of the substencil data f,,, with
the smooth SE kernel. Effectively, each (,, indicates how well the data in
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Total stencil S on a coarse level

Substencil S5 centered at (¢,7 + 1)

Substencil Si centered at (i + 1, 5)

Substencil S3 centered at (¢,7 — 1)

Substencil Sy centered at (i — 1, j)

Substencil S1 centered at (4, 7)

Zoom-in of the old coarse cell I; ;
prolonged with a 4-refined level

to new 16 cells

Figure 4: An illustration of the GP prolongation using five GP substencils, all of which are
combined to produce 16 new prolonged data on a 2D finer grid. The 4-refinement ratio in
both z and y directions is considered here to prolong the single data from the old coarse cell
I;,j to 16 newly refined locations, x4, pictured in the bottom. The vertical line is displayed to
indicate the position of the coarse cell I; ; in the total stencil S as well as the five substencils
S1,...,S5. The color schemes (e.g., green, red, orange, and blue) in each substencil Sy, are
used to match the corresponding areas of each Sy, as part of the total stencil S.
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f,, matches with the GP model assumptions encoded in the smooth, infinitely
differentiable SE kernels K, o (or Cpy ).

There two differences between K and K,, , in that (i) K € RM*M and
K, , € REPHDXCD+) “where M = 2D? 4 2D + 1 for each spatial dimension
D =1,2,3, and (ii) the scale-length hyperparameter o for K,, , is a length scale
corresponding to the narrow shock-widths spread over a couple of grid spacing;
hence o is much smaller than the length hyperparameter ¢ of K (i.e., o « £).
We typically set ¢ ~ ¢, ming(Azg) with 1 < ¢, < 3, and £ ~ ¢y ming(Azy)
with 6 < ¢, < 12 for our simulations. The same differences hold between C and
Cpn,o as well.

Notice that, due to the properties of the kernel matrices [45], we can cast
Bm in Egs. (16) and (17) into a simpler form,

2D+1
R |

Bm = Z X (Vinm)2a (18)

i=1 7

where v; and )\; are the eigenvectors and eigenvalues of the covariance kernel
matrix, K, - or Cp, ,.

In our method, it can be said that we use GP modeling for both a regres-
sion (prolongation) and a classification. The regression aspect enables us to
prolongate GP samples (i.e., function values or fluid values) over the longer
length-scale variability specified by ¢. On the other hand, the classification
aspect allows us to detect and handle discontinuities. This is achieved by em-
ploying a much shorter length-scale variability tuned by o, which is integrated
into the eigensystem in Eq. (18) generated with K,, , or C,,, ». Smaller than ¢,
the parameter o is chosen to reflect the short width of shocks and discontinuities
in numerical simulations, which is typically over a couple of grid spacings. In
this manner, we use two length scale parameters, ¢ for the interpolation model
and o for shock-capturing.

Another key factor are the linear weights 7,,, m = 1,...,2D + 1. Let
~ = [v1,---,72p+1]F be a vector containing (2D + 1) linear weights, each cor-
responding to one of the substencils. These weights are retrieved by solving an
over-determined linear system

My = w, (19)

where the nth column of M is given by w,,, and w, is the model weights for the
interpolation point x, relative to the total stencil S. As mentioned previously,
these weights are generated using the length scale parameter £. We should note
that M is a potentially sparse matrix and is constructed using the substencil
model weights (see below for an example).

We cast the multidimensional stencil S as a ‘flattened’ 1D array for our GP
modeling procedure in multiple spatial dimensions. To illustrate this concept,
we explore a 2D example where the coarse level cells are refined by the 4-
refinement ratio in both = and y directions, i.e., 7, = r, = 4. Suppose D = 2,
in which case and the total stencil S is in the 5 x 5 patch of cells centered at (i, )
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and contains 13 data points. The total stencil is subdivided into five 5-point
substencils S,,, m = 1,...,5. We take the natural cross-shape substencil for
each S,, on each of which GP will approximate function values (i.e., state values
of density, pressure, etc.) at 16 new refined locations, i.e., (¢ = 1/4,5 £ 1/4),
(i+1/4,j+3/4), (i £3/4,5+1/4), and (i £3/4,5 £ 3/4).

For instance, let’s choose X; ;1/4 j41/4 as the location we wish GP to compute
function values for prolongation. Explicitly, five 5-point substencils are chosen
as,

S1 [Xij—1, Xi-1j, Xij, Xit1j, Xij+1 s
Sy = [Xij—2, Xic1j-1,Xij-1, Xit1j-1,Xij |,
S3 = [Xit1-1,Xi5,  Xitlgs Xt Xitlj+1]s (20)
Ss = [xij Xi 141, Xij11, Xitlj+lXij+2 |,
S5 = [Xic1j-1,Xi—2j, Xi—1j, Xij, Xi1,j4+1] -
5
In this example, the total stencil S is constructed to satisfy ﬂ Sm = {x;,;} and
m=1

5
U Sm = S, containing 13 data points whose local indices range from ¢ —2,j —2

m=1

to i + 2,7 + 2, excluding the 12 cells in the corner regions. See Fig. 4, for a
detailed schematic of the multi-substencil approach.
Using these data points, we build a 13x5 over-determined system

wi,1 0 0 0 0 w1
Wi,2 W21 0 0 0 w2o
w1,3 0 w3, 1 0 0 ws
W1,4 0 0 W4,1 0 wq
0 w2 2 0 0 0 Y1 Ws
0 wyz w3z 0 0 Yo we
w15 W24 w33 Wiz ws1 ||y |=| wr |, (21)
0 0 wss wa3z O V4 ws
0 0 0 W4 4 0 Y5 Wy
0 wys O 0  wspe w10
0 0 w35 0 wsg w11
0 0 0 wyp wsg w12
0 0 0 0 Ws,5 w13

which is solved using the QR factorization method for least squares.

Notice that both the pointwise SE kernel and the integrated SE kernel in
Section 3.1 and Section 3.2 are both isotropic kernels. Hence, every K,, , and
C»,o are identical over each substencil, illustrating that the WENO combination
Welghts (i.e., wl) and GP model weights (i.e., wl and TZ) only need to be
computed and saved once per level, and reused later.

We remark here that the size of the total GP stencil S for GP-WENO is
larger than the stencil size of five in the case for the single-stencil GP calculation
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for smooth, non-discontinuous flows in Fig. 3. We design the grid configuration
of GP-WENO this way so that the size of each multi-substencil S, is the same
as the single-stencil size for the smooth GP case, as illustrated in Fig. 4. Given
that the main mechanism of the nonlinear WENO scheme [28] is basically to
select the least oscillatory solution at discontinuities among multiple candidate
solutions represented from multiple substencils S,,, the accuracy of the GP-
WENO prolongation on each five-point substencil S, of radius one R = 1 is
to be kept at least third-order when the local flow experiences sharp gradients.
Away from discontinuities, the single-stencil GP with R = 1 described in Sec-
tion 3.1 and Section 3.2 guarantees to prolong coarse solutions to finer cells at
third-order.

8.5. Comparison with polynomial based prolongation

Let us comment on comparing the proposed GP-WENO prolongation with
existing polynomial-based high-order prolongations, such as the work of Mc-
Corquodale & Colella [35] and Zhang et al. [60]. Multidimensionalipolynomial
interpolation suffers from some well known complications, namely that not all
stencils result in a well conditioned or solvable linear system. This issue may be
alleviated by utilizing a tensor product stencil [51, 54] or solving a least squares
problem with more than the minimum stencil points. The latter pathway is
taken by [35, 60], requiring a new least squares solve for the prolongation poly-
nomial coefficients at each coarse cell to be refined throughout a simulation. By
contrast, the non-parametric form of the GP method we have presented allows
for the prolongation to be expressed in terms of a set of pre-computed weights
(Egs. (3) and (12)) for the volume averages on the prolongation stencil. This
offers a considerable performance advantage for the GP approach, taking full
advantage of the structured AMR mesh. In addition to precomputing weights,
the covariance kernel is isotropic since this application is with block structured
AMR. As a result, the kernels for each substencil are identical; hence the same
kernel is used for all substencils under consideration.

Additionally, in contrast to the use of slope-limiting in the traditional second-
order linear prolongations or the nonlinear weighting of the present GP-WENO
approach, the least squares approach in high-order prolongation [35, 60] does
not leave a natural place to introduce any shock-controlling mechanism. As
such, it is distinctive in our approach that the capability to make use of GP-
WENO as a high-order prolongation allows the method to furnish essentially
non-oscillatory prolongations.

3.6. Further tuning of GP-WENO for enhanced performance

The nonlinear weighting approach of GP-WENO discussed in the previous
section has proven robust and accurate in treating discontinuities [45, 47]. Re-
gardless, the nature of its non-linearity requires frequent calculations of nonlin-
ear weights, which take place over the entire computational domain in practice,
consequently consuming an extra computing time. As such, one can save the
overall computation by applying the GP-WENO weighting only where needed,
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i.e., to regions involving sharp gradients, identified by a shock-detector. In our
GP formulation, we already have a good candidate for a shock-detector, that
is, the GP-based f,,. To meet this, we slightly modify Eq. (18) to introduce an
optional switching parameter «, defined by

2D+1 1
Y o (vif)?
i=1 /\1
]E2 [f] + €9 '

arith

a= (22)
Here, the data array f includes the (2D + 1) data solely chosen from the center-
most substencil, e.g., Sy in Fig. 4, E2 ., is the squared arithmetic mean over
the sampled coarse grid data points over (2D + 1) sized substencil centered at
the cell I; ;, or Sp, that is,

Ezrith[f] = <2Dl+1 Z f(x)) ) (23)

xESl

and finally, ey is a safety parameter in case the substencil data values are all
zeros. Notice that this is just a scaled version of the /3, in Eq. (18) for the central
substencil S7. Since the GP model is built with the smoothness of data in mind,
prescribed by the smooth SE kernel, this parameter a will detect “unlikeliness”
of the data f with respect to the GP model.

We choose a critical value, a., so that shocks and high variability in f
are detected when a > a,.; smooth and low variability when a < a.. We
heuristically set o, = 100 in this strategy. Using this o parameter, we have a
switching mechanism between the more expensive “nonlinear multi-substencil”
GP-WENO method in Section 3.4 and the “linear single-stencil” GP model in
Sections 3.1 and 3.2.

To illustrate, we show the a values associated with a Gaussian profile el-
evated by the circular cylinder of height 0.25 defined by the following simple
function f in 2D,

{1 +exp (—(z? +y?)), if (2% +y?) <0.5,
flay) = (24)
0.25, else.

In Fig. 5, we demonstrate how « varies over the profile, combining the smooth
continuous profile with the abrupt discontinuity. We observed that the « value is
close to 2 over the continuous region defined by (z%+%?) < 0.5. However, a soars
to over 300 at the points corresponding to the sharp discontinuity, (22 + y?) =
0.5, resulting in the full engagement of the multi-substencil GP-WENO model
near the discontinuity. In the rest of the smooth region, o« becomes much smaller,
which justifies well for the use of the linear GP model. This also tells us that
the linear GP model would be a sufficient AMR, prolongation algorithm for
incompressible flow simulations.

If needed, the parameter a, can be tuned to a different value to alleviate
the GP performance relating to sensitivity to shock-detection. By lowering «.,
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Figure 5: The top plot displays the « values associated with the data from the function
f(z,y) depicted in the bottom plot.
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shocks will be detected more frequently, leading the overall computation to
increase since GP-WENO will be activated on an increased number of cells. In
most practical applications, such a tuning would be unnecessary considering that
strong shocks are fairly localized. In such regions, o would retain a value much
larger than a.. Therefore, the condition o > a. for nonlinear GP-WENQO would
be met most likely over a wide span of possible values of a.. Nonetheless, shocks’
localized nature allows the computationally efficient linear GP model to be used
in simulations that do not require the frequent shock handling mechanism. As
such, we set o, = 100 in the numerical test cases presented in Section 5.2.

Note that determining a critical value of a will be based on the choice of
GP covariance kernels. Without the normalization by the squared arithmetic
mean, this factor will vary based on the mean value of the data. In this regard,
dividing by the average value of the data, f, helps to normalize the factor without
changing the variability detection. From the statistical interpretation of the GP
model E2 ., [f] may be viewed as a likelihood measure for a GP that assumes
uncorrelated data (i.e., K;; = d;;), so that a becomes normalized relative to the
likelihood of another model.

In the multi-substencil GP-WENO method, there are generally (2D + 1) dot
products of the stencil size for each prolonged point, [[,74. In patch-based
AMR, even though refined grids are localized around the regions containing
shocks and turbulence, there are often smooth flow areas in every patch. The
switch « allows us to reduce the computational complexity to one dot product of
the stencil size for each coarse stencil that has smooth data, therefore reducing
the computational cost to one dot product of the stencil size for each prolonged
point. This method is extremely useful in 3D, and when the refinement ratio is
larger than two.

We conclude this section by making a remark on one significant feature of GP
that we do not explore in our current study. The multi-substencil GP-WENO
methods on smooth flows, outlined in [45, 47], can variably increase/decrease
the order of accuracy. However, in the application for AMR prolongation, large
regions of grids may be refined, so the increased computational cost can become
undesirable. Note that the linear single-stencil GP interpolation is a third-
order scheme, which means that it can serve sufficiently well as a high-order
accurate prolongation that often matches the order of discrete solution accuracy
in simulations. Reyes et al. [45, 47] discuss how to vary accuracy as a tunable
parameter within the GP methodology. The studies show that the GP radius
R of the stencil dictates the order of accuracy. The method illustrated in this
paper utilizes a GP radius R = 1 and is O(Az?®). However, if one uses R = 2
one can retrieve a method that is O(Az®).

4. Step-by-step implementation of the GP-AMR prolongation

We have implemented our new GP-AMR prolongation method in the AM-
ReX framework. The AMReX framework utilizes a hybrid C++/Fortran library
with many routines to support the complex algorithmic nature of patch-based
AMR and state-of-the-art high-performance computing. As an example, the
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object-oriented programming of C++ is fully utilized to furnish simple data
and workflow. In AMReX, there is a virtual base class called Interpolator. This
class has many derivations, including CellConservativeLinear, an object for the
functions related to a cell-based conservative linear interpolation. The meth-
ods presented in the current work reside in the newly introduced CellGaussian
class within the AMReX framework. This class constructs a GP object, which
contains the model weights for each of the [[,_, . , rs new points per cell as
member data. When a simulation is executed in p’afallelized format, each MPI
rank has an Interpolator class, which helps to avoid unnecessary communication.
Computationally, the order of execution is as follows. The data-independent cal-
culations in Step 1 through Step 5 are computed only at the initialization of an
AMR level and are saved for the duration of the simulation.

1. The refinement ratio and Ax are passed on to the construction of the GP
object.

2. Build GP covariance matrices K and K,, for the single-stencil linear GP
prolongation; K,, , for the multi-substencil nonlinear GP-WENO (sim-
ilarly for C,C,,, and C,, , for cell-averaged data) using the SE kernel
in Eq. (A.6) for pointwise prolongation or Eq. (6) for volume-averaged
prolongation.

e K and K,, (also used for the single-stencil linear GP) are specifically
used for prolongation and should be used with the hyperparameter
£. The size of £ should be on the order of the size of the GP stencil to
match our model assumption that the data varies smoothly over the
stencil. We typically adopt £ = 12A, where A = ming—, , .{Azq}.

e K,, , is used for shock detection in the nonlinear multi-substencil
GP-WENO via the smoothness indicators 3,,. These covariance ker-
nels take the parameter ¢ as the characteristic length scale. In prac-
tice, we set 1.5A < o < 3A corresponding to the typical shock width
in high-order Godunov method simulations.

3. Calculate the GP weights w, for pointwise data using Eq. (3) (or z, for
volume-averaged data using Eq. (12) for all | [, r4 prolonged points. These
weights in Step 3 are calculated only once for every possible refinement
ratio and stored for use throughout the simulation before each simulation
begins. The GP-AMR prolongations themselves in Eq. (3) or Eq. (12) are
data-dependent, requiring updated calculations when data f; or G; are
updated.

4. Compute the eigensystem of K, , as part of building the shock-capturing
GP-WENO model. The eigenvectors v;/+/); are stored for re-use in cal-
culating 3, and « during simulations.

5. Solve for the linear weights « for each prolonged point using the weights
from S, and S, as given in Eq. (19) or Eq. (21). The linear weights ~ are
only calculated once and stored for each possible refinement ratio.

6. The switch model parameter « is data-dependent and hence is calculated
for each coarse cell I; ;. The cell-by-cell o values are compared to the
critical a., for which we choose . = 100 in this paper.
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e When a < a, the data is determined to be smooth enough, and hence
we do not to need the full nonlinear multi-substencil GP-WENO pro-
longation in Section 3.4. Instead, the GP-weights wq , (or z; ) on
S1 can be used without any nonlinear weighting to produce GP pro-
longed data on newly created fine cells as in Eq. (3) or Eq. (12),
the process of which utilizes only the linear single-stencil GP in Sec-
tion 3.1 or Section 3.2.

e In the case that a > a., the points are prolonged using the full non-
linear multi-substencil GP-WENO model (e.g., one of the methods
in Sections 3.1 and 3.2, plus the nonlinear controls in Section 3.4).

5. Results

In this section, we present the performance of the new third-order GP-based
prolongation model using R = 1 on a selected set of numerical test problems.
The GP results are compared with those obtained by the default conservative
second-order linear polynomial scheme in AMReX. We aim to demonstrate that
the GP prolongation method can be seamlessly integrated with an existing FVM
code framework, delivering the added third-order solution accuracy without in-
creasing extra computational overheads compared with the second-order linear
method. To illustrate the utility of the new GP-based prolongation scheme in
fluid dynamics simulations, we integrated the prolongation method into AMReX
that can be used by a number of AMReX application codes. More specifically,
we have utilized two application codes for the results in this section, includ-
ing Castro [2], a massively parallel, AMR, compressible astrophysics simulation
code, and a simple advection tutorial code built in AMReX.

5.1. Accuracy

To test GP-AMR’s order of accuracy, we first deploy a simple Gaussian
profile refined with the GP prolongation method. The profile is initialized using
the formula

F(x) = exp(—|Ix[I3), (25)

where x € [—-2,2] x [-2,2]. In Fig. 6, we compare the prolonged solution, de-
noted as f,(x), against the analytical value, f(x), associated with the Gaussian
profile function. We find that the third-order accuracy of the cell-averaged GP
prolongation routine matches the analysis in [45, 47]. The convergence rate of
the error in L; norm, E = ||f — fp||1, computed using the GP prolongation
model with R = 1, exhibits the expected third-order accuracy, following the
theoretical slope of third-order convergence on the grid scales, O(Az?). Also
shown in comparison is the second-order convergence of the linear polynomial
prolongation method. As seen in Fig. 6, the third-order accurate GP prolon-
gation delivers a faster convergence than the conventional second-order linear
prolongation as the computational grid further refines to finer scales, under-
lining the sheer value of designing a higher-order scheme in CFD simulations.
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Figure 6: Grid convergence rates of the GP-prolongation method and the linear polynomial
method. The quantities are measured in the log of base two to better cope with the two
refinement jump ratio. The grid resolutions N x N used for this test include N = 16, 32, 64, 128,
and 256.

5.2. GP-AMR tests

We present three tests to illustrate the efficacy of our new AMR, prolongation
method. The first problem is a single vortex advection, provided as the Advec-
tion_AmrLevel tutorial in AMReX. For the second test problem, we present a
modified version of the slotted cylinder problem from [13]. In the last prob-
lem, we use the Castro astrophysical simulation suite [2] to perform the Sedov
implosion test [49]. In all tests we use £ = 12 - ming_, ,{Azq}. For o, we use
o =3 -ming_, ,{Axq} for 2D cases and 0 = 1.5 - ming—, ,{Axz4} for 3D cases.

5.2.1. Single vortex advection using the AMReX tutorial
The first test is a simple reversible vortex advection run. A radial profile is
morphed into a vortex and reversed back into its original shape. This stresses
the AMR prolongation’s ability to recover the original profile after it has been
advected into the coarse cells, focusing on how well the numerical solution can
retain its original shape upon its return to the initial location at the final time.
The radial profile initially is defined by

f@ﬂﬂ=1+€m{7m00$*0@?+@*07@ﬂ} (26)
The profile is advected with the following velocity field,

v(z,y,t) =V x ¢, (27)
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which is the curl of the stream function,
1, 2 . 2 mt
Y(x,y,t) = —sin (7z)” sin (7y)” cos 5 ) (28)
T

where (z,y) € [0,1] x [0,1].

In this demonstration, the level 0 grid size is 64 x 64, and has two ad-
ditional levels of refinement (i.e., the level 1 and 2 grids with grid spacing
corresponding to 128 x 128 and 256 x 256 grids respectively) surrounding the
radial profile. The simulation is an incompressible advection problem using the
so-called Mac-Projection to compute the incompressibility condition that en-
forces the divergence-free velocity fields numerically, V - v = 0 [3]. The flux
is calculated by a simple second-order accurate upwind linear reconstruction
method. Although the overall solution is second-order that is lower than the
third-order accuracy of the GP prolongation method, this example still illus-
trates the computational performance of the GP-prolongation method over the
default conservative second-order prolongation.

The simulation is finished at ¢ = 2. We used sub-cycling of time-steps to
improve the overall performance, in which a smaller time-step At is used on
a finer level to advance the regional solutions for stability. The coarser level
solutions that advance with a larger time-step At. await until the solutions on
the finer levels catch up with the global simulation time ¢, = t™ + At. over the
number of sub-cycling steps Nqupeycle = Ate/Aty.

Table 1: Accuracy and performance of GP-AMR against the default linear AMR for the single
vortex test on a workstation with an Intel i7-8700K processor, with 6 MPI ranks.

‘ Execution time ‘ Prolongation time ‘ Number of calls ‘ L1 error

2D GP-AMR 0.2323s 0.004168s 9115 0.00033
2D Linear 0.2335s 0.008436s 9113 0.00071
3D GP-AMR 1.6523s 0.086361s 21929 0.00151
3D Linear 1.6640s 0.157623s 21893 0.00160

We present the performance and accuracy results for this problem in Table 1.
Since the two prolongation methods are of a different order, they can yield
different AMR level patterns that can lead to a slight difference in the number
of function calls. Regardless, we see that in the fourth column, the numbers of
function calls of GP-AMR and the linear method are almost equivalent in both
2D and 3D runs.

In the third column’s prolongation time, we find that the default linear
prolongation took approximately twice more time than the GP prolongation.
This is due to the smoothness of the solution profile, which does not require the
nonlinear multi-substencil GP-WENO treatment in GP-AMR, allowing for the
simpler, linear GP algorithm to be used. However, the overall execution times
in the second column were equally comparable since there were larger areas
(or more cells) that followed the profile and were computed in the finest AMR
level in the GP case than in the linear case. This illustrates that the GP-AMR
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Figure 7: The progression of the 2D radial profile with four levels of refinement using the
multi-substencil GP prolongation algorithm. The refinement criterion is set to track the region
whose value is larger than 1.5.
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algorithm is much less numerically diffusive than the default linear prolongation
method. Since the refinement criteria was based on the value of advected profile,
the less numerically diffusive algorithm will have larger portions of the domain
at higher AMR levels as the solution evolves.

We note that the cost of computing the GP model weights is 0.0002306
seconds on average in our runs and is negligible in comparison to the overall
execution time. This metric illustrates that the pre-computation of the GP
weights is very inexpensive, being called twice (since there were two levels) per
MPI rank.

In the last column in Table 1, we also report the Ly errors between the so-
lution at ¢ = 2 and the solution at t = 0 for both AMR prolongation methods.
In the 2D case, we find that the GP-AMR solution is approximately half of the
default linear method’s error. This highlights the utility of a high-order pro-
longation method, as smooth features are better recovered after being advected
into coarser cells.

Another useful examination is the analogous problem in 3D, in which the
computational stencils for both methods grow. For the 3D version, we use a
32 x 32 x 32 base grid with two higher levels of refinement. The details of this
simulation can also be found in Table 1. We note that a parallel copy operation
becomes slightly more expensive with GP because the need for the GP multi-
substencil grows on non-smooth regions to handle discontinuities in a stable
manner, as managed by the a. parameter. This becomes more apparent in
3D, as the computational stencil effectively grows from 7 cells with the single-
stencil linear GP to 25 cells with the multi-substencil nonlinear GP-WENO
approach. In this 3D benchmark, the difference in error between these methods
is smaller than in the 2D case. The GP-AMR simulation still outperforms the
simulation with the linear prolongation method but to a smaller degree. The
3D simulation has a base grid coarser than that of the 2D simulation by a factor
of two, resulting in a coarser finest grid in the simulation. This is why the L,
errors are greater in the 3D case.

In Fig. 7, we show the time-dependent evolutions of the 2D single vortex
advection with GP-AMR on a base grid of 64 x 64 with four refinement levels
to illustrate the GP method with a more production-level grid configuration.

5.2.2. Slotted cylinder as another AMReX test

Another useful test is the slotted cylinder advection presented in [13]. In
this paper, we do not use an exact replica of this problem, but instead, we
utilize the initial profile and perform a similar transformation as in the previous
problem. That is, the slotted cylinder is morphed using the same velocity used
in the single vortex test in Section 5.2.1. Because the advected profile is now
piecewise constant, in contrast to the smooth profile in the previous problem,
it will require using the multi-substencil nonlinear GP-WENO approach. This
will show how the GP-based smoothness indicators prolong non-smooth data
stably.

The 2D slotted cylinder is defined as a circle of radius R = 0.15 centered at
Xe = (xe,ye) = (0.5,0.75) with a slot of width W = 0.05 and height H = 0.25
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Figure 8: The slotted cylinder at t = 0 over the entire domain with three levels of refinement.

removed from the center of the cylinder. The initial condition is given by,

0, if R<+/(z—2)%+ (y—ye)2
¢o(x) =<0, if|2z.]<W and0<vy.+ R < H,
1, else,

where (z,y) € [0,1] x [0,1]. The initial profile is shown in Fig. 8.

In this case, we wish to find the simulation that best retains the profile of
the initial condition when it is completed at ¢ = 2 as in the previous test. We
have two levels of refinement on a base grid of size 64 x 64 resolution. Fig. 9
contains snapshots of the simulations at times ¢t = 0.28,1.44, and 2. The goal
is to retain the initial condition as much as possible, in a similar fashion to the
previous 2D vortex advection test.

The result shows that the multi-substencil GP-AMR prolongation preserves
the initial condition better than the default conservative linear scheme native
to AMReX. Notably, there is far less numerical smearing of the final slotted
cylinder at ¢ = 2, and the circular nature of the cylinder is better retained with
GP-AMR. Furthermore, it should be noted in the AMR patterns at ¢t = 1.44 and
2 that a larger area of the slotted cylinder is covered by the finest grid structure
with the GP-AMR prolongation. The refinement criterion in this test is set to
track the region whose value is larger than 0.99. This is analogous to refining on
regions of high density or pressure. Since we kept both the PDE solver and the
AMR restriction the same in both cases, the only difference is in the different
levels of numerical dissipation within the two AMR prolongation methods. We
intentionally set this threshold value 99% close to the initial cylinder value of
unity to rapidly reveal the numerical diffusivity of the two AMR prolongation
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Figure 9: The morphed slotted cylinder problem at times ¢t = 0.28,1.44, and 2, from top
to bottom in time. Left: (a) AMReX with the second-order linear polynomial prolongation.
Right: (b) AMReX with the third-order multi-substencil GP-WENO prolongation.
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methods. This allows us to see how well each method is able to track the critical
part of the cylinder. We wish to trace the slotted cylinder’s evolution with the
finest grid as much as possible for improved solution accuracy. In this way, we
can directly assess each method’s numerical diffusivity by monitoring how much
each method retains the finest grid along with the profile at each evolution step.
We see that the default linear prolongation experiences much larger numerical
diffusivity than GP-AMR.

In each panel of the left column in Fig. 9, the area covered by the finest patch
resolution is smaller in the linear AMR solution than the corresponding solutions
solved by the GP-AMR prolongation on the right column. This behavior can
be explained in terms of the numerical diffusivity in each AMR prolongation
method. As the initial slotted cylinder morphs into a crescent shape and returns
to the original state, the numerical solution repeats its discrete evolutions in two
steps: the solution updates of the underlying PDE solver at a given AMR level,
followed by the AMR prolongation and restriction to newly configured grid cells
according to the AMR’s refinement and derefinement criteria. We track the
cylinder’s critical values larger than 0.99 in this case. Thus, the area covered by
the finest patch level is a direct consequence of the second-order and the third-
order prolongation algorithms in this comparison. Since we set the refinement
criteria as high as 99% to track the initial cylinder profile, the area covered
by the finest patch manifests how well the cylinder is dynamically evolved,
while maintaining its values close to the original value of unity (colored in red).
The more the cylindrical shape gets smeared due to each AMR prolongation’s
numerical dissipation, the smaller the area will be tagged for further refinements.

The difference is evident in Fig. 9. The larger area of the slotted cylinder
with the GP-AMR prolongation remains close to the initial value of unity (the
red regions) during the evolution from the initial shape (¢ = 0) to the crescent
shape (t = 1.44), and finally returning to the initial shape (¢ = 2). The linear
method results in a far more blurred cylinder at ¢ = 2. While there is some loss
with GP-AMR, the profile at ¢t = 2 far better resembles the original cylinder at
the onset of the simulation, exhibiting the computational advantage of GP-AMR
over the linear method, even when paired with a second order algorithm.

5.2.3. Sedov blast wave using Castro

A perhaps more useful test of the GP-AMR algorithm is a compressible
flow condition, where shock-handling becomes necessary. To illustrate the per-
formance of the GP-AMR method in a compressible flow regime, we utilize the
Sedov blast wave problem [49] that simulates the evolution of a radially expand-
ing strong pressure wave. This simulation is performed using Castro with the
choice of the piecewise parabolic method (PPM) [16] for reconstruction along
with the Colella and Glaz Riemann solver [17]. For the 2D test, we have a base
grid of 64 x 64, padded with two additional AMR levels using a 7, = r, = 2.

The results in Fig. 10 illustrate the density propagation of the Sedov blast
wave at t = 0.1. They demonstrate that the GP solution compares equally well
with the solution using the linear prolongation method on a problem whose flow
condition evolves into a highly compressible regime. Although simple, the Sedov
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Figure 10: A comparison of the density profiles of the Sedov blast wave solution at ¢ = 0.1
with two levels of refinement.

blast wave is a good test illustrating the shock-handling capabilities of the GP
multi-substencil model. Notice, in Fig. 10, that visually, the radial shockwaves
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Figure 11: Top: Horizontal cuts over —0.5 < z < 0.5 holding y = 0 of the density profiles
of the Sedov test at ¢ = 0.1, computed using the GP-AMR prolongation and the linear
polynomial prolongation. Also overplotted in the solid curves is the solution computed using
the uniform grid solution on a 256 x 256 grid resolution, analogous to the grid resolution
at the highest refinement levels in the AMR solutions. The y-axis is log scaled, while the
density values and the z-axis remain unscaled. Bottom: The panel displays a zoomed-in view
around the center of the blast wave, —0.05 < z < 0.05 holding y = 0, to make the comparison
visually more distinctive at a finer scale. We see that the GP-AMR solution remains closer to
the reference uniform grid solution than the linear AMR solution in the central low-density
region, demonstrating slight performance improvements.
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Table 2: Performance of the GP-AMR, prolongation against the second-order linear prolonga-
tion on the Sedov blast wave with 6 MPI ranks on an Intel i7-8700K processor.

‘ Execution time ‘ Prolongation time ‘ Number of calls

2D GP-AMR 5.719s 0.07691s 19743
2D Linear 5.698s 0.12610s 19439
3D GP-AMR 64.27s 1.28912s 35202
3D Linear 67.76s 1.96204s 35202
3D Non-Adapitve GP-AMR 72.81s 5.09467s 35202

in both simulations appear identical. To make the comparison more accessible,
in Fig. 11, we illustrate a horizontal cross-section through the center of the 2D
density profiles in Fig. 10, along with a uniform grid solution on a 256 x 256 res-
olution that matches with the resolution of the AMR simulations at the highest
refinement level. On inspection of the zoomed-in figure on the bottom, we see
that the GP-AMR solution matches the uniform grid solution closer than the
linear method’s solution. The uniform solution is depicted by a black curve,
the linear solution is represented by the blue dots, and the GP-AMR solution
is depicted by the red crosses. In Fig. 10, the AMR levels track the shock as it
propagates radially, and the shock front is contained at the most refined level.
The shock is handled by the multi-substencil nonlinear GP-WENO treatment at
the most refined level, which increases the computational complexity in this re-
gion. Regardless, the GP algorithm is still less expensive than the linear method
because the shock is very well localized; the majority of the domain is computed
by the comparatively simpler, single-stencil linear GP model. The linear GP
model is no more than a collection of operations involving a series of simple
dot-products, utilizing the pre-computed weights. This computational benefit
of GP appears in the overall computational performance statistics, evidenced
in the half-reduced prolongation time on the 2D runs (i.e., 0.07691s for GP vs.
0.12610s for linear), as shown in the third column in Table 2.

However, we see that the entire execution time in the second column is
slightly higher with GP-AMR since the GP-AMR prolongation routine was in-
voked more frequently than the linear prolongation routine over the entire sim-
ulation time, due to a larger region (more cells) being tagged for refinements in
the GP-AMR run during the simulation, as evidenced by the greater number of
calls to the prolongation routine in the third column. The results are obtained
using the same workstation as the previous test.

A 3D Sedov blast was also tested, giving us a better look at the multi-
substencil GP-WENO cost in the shock regions. For this benchmark, the sim-
ulation utilized a base grid of 32 x 32 x 32 with two additional AMR refine-
ment levels, utilizing a refinement factor of two for both levels. The wave was
advected until ¢ = 0.01 with both simulations (the GP-AMR and the linear
prolongations). The performance metrics for the 3D test are also shown in
Table 2.

Lastly, by setting a,. = 0, we effectively have the multi-substencil nonlin-
ear GP-WENO method engaged on all cells. The metrics for this example
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are labeled as “Non-Adaptive GP-AMR” in Table 2. Using the GP-WENO
method fully on all computational cells roughly increases GP’s computational
performance by five times, making it more expensive as a prolongation method.
This performance increase is expected because the multi-substencil GP-WENO
method combines five sub-GP models, each of which is computed on each sub-
stencil S,,, m=1,...,5.

6. Conclusion

In this paper, we developed an efficient, third-order accurate, AMR prolonga-
tion method based on Gaussian Process Modeling. This method is flexible to the
type of data being interpolated, as illustrated with a substitution of covariance
kernels in Eqs. A.6 and 6. To handle shock waves, a multi-substencil GP-WENO
algorithm inspired by WENO [52] was employed based on the previous studies
on the GP high-order methods [45, 47]. We recognize that GP-WENO is more
computationally expensive than the default linear prolongation method. The «
tagging approach in Eq. (22) was proposed as a way to mitigate this situation.
This approach uses a normalized smoothness indicator, ,,, furnished from GP
to detect regions containing shocks or non-smooth flows.

The purpose of timing the simulations was to illustrate that the GP-AMR
based applications were just as computationally performant as instances with
the simple linear prolongation. Overall, the GP-AMR method is a balance
between speed, stability, and accuracy.

In the scope of this paper, the tunable parameters £ and o are either fixed
in relation to the grid-scale Axg, or fixed as constant. To further adapt the
algorithm, one could try and maximize the log of Eq. A.2 with respect to the
hyperparameter ¢ as is done in many applications utilizing Gaussian Process
regression (e.g., see Appendix B of [45]). However, in our application, a fixed
prescription for ¢ appears to hold the properties we desired.

The algorithm’s stability is inherently tied to the ¢ parameter, which we
recommend being no larger than three times the grid-scale (Az4 in practice). If
additional stability is required, we recommend tuning . to be smaller or to be
zero, requiring the algorithm to fully engage the multi-substencil GP model on
all computational cells. This setup gains extra numerical stability at the cost
of increased computational loads.

Finally, we remark that an even higher-order GP prolongation method can
be obtained by increasing the size of the GP stencil radius, R, from the current
value 1 to a larger value. Unlike the typical polynomial-based schemes, our GP
algorithm allows this flexible order variation within the single algorithmic GP
framework. This will be inherently useful as more simulation codes are mov-
ing to increasingly accurate methods, yielding fourth or higher-order accurate
solutions in delivering high fidelity in predictive science simulations. In this
case, the conventional second-order AMR interpolation may degrade the overall
quality of the solution.

34



7. Acknowledgements

This work was supported in part by the National Science Foundation un-
der grant AST-1908834. We acknowledge that the current work has come to
fruition with help from the Center for Computational Science and Engineering
at Lawrence Berkeley National Laboratory, the home of AMReX. We thank Dr.
Ann S. Almgren, Dr. Weiqun Zhang, and Dr. Marcus Day for their insight and
advice when completing this research. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725. The first and second authors also
acknowledge the use of the Lux supercomputer at UC Santa Cruz, funded by
NSF MRI grant AST-1828315.

Appendix A. A brief introduction to Gaussian Process Modeling for
CFD

For this paper to be self-contained, we give a brief overview of constructing
a GP model in this appendix. These step-by-step implementations of the GP-
prolongation method are summarized in Section 4.

Gaussian Processes are a family of stochastic processes in which any finite
collection of random variables sampled from this process is jointly and normally
distributed. In a more general sense, GPs take samples of functions from an
infinite-dimensional function space. In this way, the AMR prolongation routine
described in detail in Section 4 will be drawn from a data-informed distribution
space trained on the coarse grid data. Interested readers are further referred to
[43, 9] for more general introductions to GP modeling in general.

Appendiz A.1. A statistical introduction to Gaussian Processes

The construction of the posterior probability distribution over the function
space is the heart of GP modeling. To construct a GP, one needs to specify
a prior probability distribution for the function space. This can be done by
specifying two functions, a prior mean function and a prior covariance kernel
function (see more details below), by which a GP is fully defined. Samples,
namely function values evaluated at known locations, drawn from the GP prior
are then used to further update this prior probability distribution. As a conse-
quence, a posterior probability distribution, including a new updated posterior
mean function and a new updated posterior covariance kernel function, is gen-
erated as a combination of the newly updated prior along with these samples,
by means of Bayes’ Theorem.

Once constructed, one can draw functions from this data-adjusted GP pos-
terior space to generate a model for prolongation in AMR, or a model for more
general purposes such as reconstruction, regression, or classification. Specifi-
cally, the GP posterior mean function could probabilistically predict function
values at any arbitrary point where the function has not been previously sam-
pled. In [47, 45], Reyes et al. have utilized this posterior mean function as a
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high-order predictor to introduce a new class of high-order reconstruction/in-
terpolation algorithms for solving systems of hyperbolic equations.

Similarly, from the perspective of designing a probabilistically driven predic-
tion of function values, the posterior mean function becomes an AMR, prolon-
gator that delivers a high-order accurate approximation at the desired location
in a computational domain resolved by AMR’s hierarchical grid structures.

As briefly mentioned, GPs can be fully defined by two functions:

e a mean function f(x) = E[f(x)], and

e a covariance function which is a symmetric, positive-definite kernel K (x,y) :
RM x RM — R.

Notationally, we write f ~ GP(f, K) to denote that functions f have been dis-
tributed in accordance with the mean function f(x) and the covariance K (x,y)
of the GP prior. Analogous to finite-dimensional distributions, we write the
covariance as

K(xy)=E[(f(x) - fx) (f(y) = f¥)], (A.1)

where E is with respect to the GP distribution.

One controls the GP by specifying both f(x) and K (x,y), typically as some
functions parameterized by the so-called hyperparameters. These hyperparam-
eters allow us to give the “character” (i.e., length scales, differentiability, or
regularity) of functions generated by the posterior, which will define the under-
lying pattern of predictions using the posterior GP model. Suppose we have a
given GP and N locations, x,, € R”, where D = 1,2, or 3, and n = 1,..., N.
For samples f(x,) collected at those points, we can calculate the likelihood L,
viz., the probability of the data f(x,) given the GP model. Let us denote the
data array in a compact form, f = [f(x;),..., f(xN)]T. The likelihood L of f
is given by

L= P(fIgP(f,K)) = (2r) "N/ det K|~/ exp [ (f—f)K(f - F)] ,

1
2
(A.2)
where K is a matrix generated by K, ,, = K(Xy,Xm), n,m = 1,..., N, and
the mean f = [f(x1), - f(xn)]%. Since these samples (or functions) are prob-
abilistically distributed according to the GP prior, i.e., f ~ GP(f, K), we now
can make a probabilistic statement about the value of any agnostic function
f in the GP at a new point x,, at which we do not know the exact function
value, f(x4). In other words, the GP model enables us to predict the value of
f(x4) probabilistically based on the character of likely functions given in the
GP model prior.

For AMR, this is especially important as we need to construct data at a
finer resolution where we do not know the data values at newly generated grid
locations refined from a parent coarse level.

Finally, an application of Bayes’ Theorem directly onto the joint Gaussian
prior, along with the conditioning property, gives what we desire, namely, the
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updated (or data-informed) new posterior distribution of the predicted value f,
conditioned on the prior observations f,

P(flf) = (200%) 2 exp [—(f;U”] , (A.3)

where the first main ingredient is the posterior mean f* given as

fe = flxe) + kLK (- ), (A4)
and the second ingredient is the posterior covariance function given as
U? = kyy — KIK k. (A.5)

The posterior probability given in Eq. (A.3) is maximized by the choice
f+ = [+, leading to Eq. (A.4) being taken as the GP prediction for the unknown
f(x%). Meanwhile, the posterior covariance in Eq. (A.5) reflects the GP model’s
confidence in the prediction in Eq. (A.4) for the function at x4.

In this paper, we focus on the posterior mean function in Eq. (A.4), which
will become the basis for our interpolation in the GP-based AMR prolongation.

Appendiz A.2. Choice of GP kernels, the kernels’ hyperparameters, and the GP
prior mean function

There are covariance kernel functions available for GP modeling [43, 9]. One
of the most widely used kernels in GP modeling is the squared-exponential (SE)
covariance kernel function,

) (x—y)*
K(x,y) = X%exp [ 572 ] . (A.6)
The SE kernel is infinitely differentiable and, as a consequence, will sample func-
tions that are equally smooth. The kernel contains two model hyperparameters
3 and ¢. The scaling constant ¥ acts as an overall constant factor that has no
impact on the posterior mean *, which is the key ingredient of our GP-AMR
prolongation, and hence we take ¥ = 1. On the other hand, the hyperparameter
¢ controls the length scale on which likely functions will vary according to the
GP model. It is advisable to choose ¢ so that it is on the order of the size of
the prolongation stencil, e.g., £ > Ad, and preferably £ > R, because we want
GP’s data interpolation to be smooth or underfitting (as opposed to oscillatory
or overfitting) on the grid-scale over which the interpolation is considered. In
practice, we often choose ¢ = 12ming—, 4 . Ad in this paper.

All that remains to complete the GP model is to specify the prior mean
function. The prior mean function is often depicted as a constant mean function

¥This reasoning can be seen as a cancellation between the kg: and K~ terms in Eq. (A.4)
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for simplicity, i.e., f(x) = fo. Ideally, the optimal value f; can be analytically
determined from the data by maximizing the likelihood function in Eq. (A.2) (see
Appendix B in [45]). Although, for most practical applications, it is reasonable
to take a zero mean function fy = 0 as we aim for the simplest and most general
symmetry of any random samples. As such, we use the zero mean function in
this paper.

Appendiz A.3. Why is a GP high-order method attractive for CFD?

We outline the key computational advantages of using GP model over the
standard polynomial methods in the context of numerical interpolation and
reconstruction in finite difference and finite volume methods. The results sum-
marized here are based on the previous studies of the GP high-order methods for
FVM [45] and for FDM [47]. These features will hold in the current GP-AMR
prolongation method since the key algorithmic building-blocks are common in
all three formulations.

The first major attractive feature in GP is its variable order of convergence
within a single algorithmic framework with a minimal code adaptation of in-
creasing or decreasing the size of the GP stencil, controlled by the GP radius R.
The GP algorithms have shown novel algorithmic flexibility in which a variable
order of spatial accuracy is achieved and given by the convergence rate (2R+1),
corresponding to the local stencil size and the resulting (2R+ 1) x (2R+1) GP
covariance kernel K on the stencil. The GP radius R is given as a positive
integer value representing the radial distance between the central cell x; and
x;+pr- In general, the GP stencil can be either in simple 1D stencils or in gen-
uinely multidimensional stencils, depending on the dimensionality of problems
(i.e., 1D vs. 2D/3D) or the way how 2D/3D problems are formulated (i.e.,
dimension-by-dimension vs. genuinely multi-dimension). Simple 1D GP sten-
cils have been utilized in our previous studies as we focused on a 1D finite
volume GP method [45] and a 3D finite difference GP method [47] based on the
conventional dimension-by-dimension formalism. This is different in our cur-
rent study that a genuinely multidimensional GP stencil of R = 1 is employed
in the GP-AMR prolongation method to solve multidimensional finite volume
problems, see Fig. 4. By being inherently multidimensional, our GP method
incorporates the local data information simultaneously from all spatial direc-
tions. Practically speaking, the GP’s multidimensional handling of local data
can directly correspond to the strategy including multidimensional cross deriva-
tive terms in the traditional polynomial interpolation formalism, delivering the
anticipated high-order (higher than second-order) without the deficiency in ac-
curacy in multidimensions that could be bounded by second-order. This multi-
dimensional consideration is particularly essential in finite volume discretization
[11, 35, 22, 5].

Secondly, on smooth multidimensional advection problems, GP-WENO
methods demonstrate much faster convergence rates than the polynomial-based
WENO method [28] to reach the same solution accuracy. For example, the
GP solution with R = 2 converges at fifth-order to reach the target L; error of
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5x 1072 in only 43% in CPU times relative to the fifth-order WENO companion
solution [47].

Lastly, we remark that implementing the key computational components
of the GP prolongation method mostly involves a set of simple linear algebra
operations and algebraic manipulations such as the posterior mean function in
Eq. (A.4); the evaluations of GP kernels K and C in Eq. (A.6) and Eq. (4);
the volume-averaged GP prolongation in Eq. (11); the GP-based smoothness
indicators B, in Eq. (18); the overdetermined system in Eq. (19); the nonlinear
switching parameter « in Eq. (22), all of which are given as straightforward
linear algebra problems with simple algebraic manipulations. The step-by-step
procedure of how these individual components are integrated as a whole is dis-
cussed in Section 4.
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