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ABSTRACT

Communication compression has become a key strategy to speed up distributed
optimization. However, existing decentralized algorithms with compression
mainly focus on compressing DGD-type algorithms. They are unsatisfactory in
terms of convergence rate, stability, and the capability to handle heterogeneous
data. Motivated by primal-dual algorithms, this paper proposes the first LinEAr
convergent Decentralized algorithm with compression, LEAD. Our theory de-
scribes the coupled dynamics of the inexact primal and dual update as well as
compression error, and we provide the first consensus error bound in such settings
without assuming bounded gradients. Experiments on convex problems validate
our theoretical analysis, and empirical study on deep neural nets shows that LEAD
is applicable to non-convex problems.

1 INTRODUCTION

Distributed optimization solves the following optimization problem

x∗ := argmin
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)
]

(1)

with n computing agents and a communication network. Each fi(x) : Rd → R is a local objective
function of agent i and typically defined on the data Di settled at that agent. The data distributions
{Di} can be heterogeneous depending on the applications such as in federated learning. The vari-
able x ∈ Rd often represents model parameters in machine learning. A distributed optimization
algorithm seeks an optimal solution that minimizes the overall objective function f(x) collectively.
According to the communication topology, existing algorithms can be conceptually categorized into
centralized and decentralized ones. Specifically, centralized algorithms require global communica-
tion between agents (through central agents or parameter servers). While decentralized algorithms
only require local communication between connected agents and are more widely applicable than
centralized ones. In both paradigms, the computation can be relatively fast with powerful computing
devices; efficient communication is the key to improve algorithm efficiency and system scalability,
especially when the network bandwidth is limited.

In recent years, various communication compression techniques, such as quantization and sparsi-
fication, have been developed to reduce communication costs. Notably, extensive studies (Seide
et al., 2014; Alistarh et al., 2017; Bernstein et al., 2018; Stich et al., 2018; Karimireddy et al., 2019;
Mishchenko et al., 2019; Tang et al., 2019b; Liu et al., 2020) have utilized gradient compression
to significantly boost communication efficiency for centralized optimization. They enable efficient
large-scale optimization while maintaining comparable convergence rates and practical performance
with their non-compressed counterparts. This great success has suggested the potential and signifi-
cance of communication compression in decentralized algorithms.

While extensive attention has been paid to centralized optimization, communication compression
is relatively less studied in decentralized algorithms because the algorithm design and analysis are
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more challenging in order to cover general communication topologies. There are recent efforts
trying to push this research direction. For instance, DCD-SGD and ECD-SGD (Tang et al., 2018a)
introduce difference compression and extrapolation compression to reduce model compression error.
(Reisizadeh et al., 2019a;b) introduce QDGD and QuanTimed-DSGD to achieve exact convergence
with small stepsize. DeepSqueeze (Tang et al., 2019a) directly compresses the local model and
compensates the compression error in the next iteration. CHOCO-SGD (Koloskova et al., 2019;
2020) presents a novel quantized gossip algorithm that reduces compression error by difference
compression and preserves the model average. Nevertheless, most existing works focus on the
compression of primal-only algorithms, i.e., reduce to DGD (Nedic & Ozdaglar, 2009; Yuan et al.,
2016) or P-DSGD (Lian et al., 2017). They are unsatisfying in terms of convergence rate, stability,
and the capability to handle heterogeneous data. Part of the reason is that they inherit the drawback
of DGD-type algorithms, whose convergence rate is slow in heterogeneous data scenarios where the
data distributions are significantly different from agent to agent.

In the literature of decentralized optimization, it has been proved that primal-dual algorithms can
achieve faster converge rates and better support heterogeneous data (Ling et al., 2015; Shi et al.,
2015; Li et al., 2019; Yuan et al., 2020). However, it is unknown whether communication compres-
sion is feasible for primal-dual algorithms and how fast the convergence can be with compression.
In this paper, we attempt to bridge this gap by investigating the communication compression for
primal-dual decentralized algorithms. Our major contributions can be summarized as:

• We delineate two key challenges in the algorithm design for communication compression in
decentralized optimization, i.e., data heterogeneity and compression error, and motivated by
primal-dual algorithms, we propose a novel decentralized algorithm with compression, LEAD.

• We prove that for LEAD, a constant stepsize in the range (0, 2/(µ + L)] is sufficient to ensure
linear convergence for strongly convex and smooth objective functions. To the best of our knowl-
edge, LEAD is the first linear convergent decentralized algorithm with compression. Moreover,
LEAD provably works with unbiased compression of arbitrary precision.

• We further prove that if the stochastic gradient is used, LEAD converges linearly to the O(σ2)
neighborhood of the optimum with constant stepsize. LEAD is also able to achieve exact con-
vergence to the optimum with diminishing stepsize.

• Extensive experiments on convex problems validate our theoretical analyses, and the empirical
study on training deep neural nets shows that LEAD is applicable for nonconvex problems.
LEAD achieves state-of-art computation and communication efficiency in all experiments and
significantly outperforms the baselines on heterogeneous data. Moreover, LEAD is robust to
parameter settings and needs minor effort for parameter tuning.

2 RELATED WORKS

Decentralized optimization can be traced back to the work by Tsitsiklis et al. (1986). DGD (Nedic
& Ozdaglar, 2009) is the most classical decentralized algorithm. It is intuitive and simple but con-
verges slowly due to the diminishing stepsize that is needed to obtain the optimal solution (Yuan
et al., 2016). Its stochastic version D-PSGD (Lian et al., 2017) has been shown effective for train-
ing nonconvex deep learning models. Algorithms based on primal-dual formulations or gradient
tracking are proposed to eliminate the convergence bias in DGD-type algorithms and improve the
convergence rate, such as D-ADMM (Mota et al., 2013), DLM (Ling et al., 2015), EXTRA (Shi
et al., 2015), NIDS (Li et al., 2019), D2 (Tang et al., 2018b), Exact Diffusion (Yuan et al., 2018),
OPTRA(Xu et al., 2020), DIGing (Nedic et al., 2017), GSGT (Pu & Nedić, 2020), etc.

Recently, communication compression is applied to decentralized settings by Tang et al. (2018a). It
proposes two algorithms, i.e., DCD-SGD and ECD-SGD, which require compression of high accu-
racy and are not stable with aggressive compression. Reisizadeh et al. (2019a;b) introduce QDGD
and QuanTimed-DSGD to achieve exact convergence with small stepsize and the convergence is
slow. DeepSqueeze (Tang et al., 2019a) compensates the compression error to the compression in
the next iteration. Motivated by the quantized average consensus algorithms, such as (Carli et al.,
2010), the quantized gossip algorithm CHOCO-Gossip (Koloskova et al., 2019) converges linearly
to the consensual solution. Combining CHOCO-Gossip and D-PSGD leads to a decentralized algo-
rithm with compression, CHOCO-SGD, which converges sublinearly under the strong convexity and
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gradient boundedness assumptions. Its nonconvex variant is further analyzed in (Koloskova et al.,
2020). A new compression scheme using the modulo operation is introduced in (Lu & De Sa, 2020)
for decentralized optimization. A general algorithmic framework aiming to maintain the linear con-
vergence of distributed optimization under compressed communication is considered in (Magnússon
et al., 2020). It requires a contractive property that is not satisfied by many decentralized algorithms
including the algorithm in this paper.

3 ALGORITHM

We first introduce notations and definitions used in this work. We use bold upper-case letters such
as X to define matrices and bold lower-case letters such as x to define vectors. Let 1 and 0 be
vectors with all ones and zeros, respectively. Their dimensions will be provided when necessary.
Given two matrices X, Y ∈ Rn×d, we define their inner product as 〈X,Y〉 = tr(X>Y) and the
norm as ‖X‖ =

√
〈X,X〉. We further define 〈X,Y〉P = tr(X>PY) and ‖X‖P =

√
〈X,X〉

P
for

any given symmetric positive semidefinite matrix P ∈ Rn×n. For simplicity, we will majorly use
the matrix notation in this work. For instance, each agent i holds an individual estimate xi ∈ Rd of
the global variable x ∈ Rd. Let Xk and∇F(Xk) be the collections of {xki }ni=1 and {∇fi(xki )}ni=1
which are defined below:

Xk =
[
xk1 , . . . ,x

k
n

]> ∈ Rn×d, ∇F(Xk) =
[
∇f1(xk1), . . . ,∇fn(xkn)

]> ∈ Rn×d. (2)

We use ∇F(Xk; ξk) to denote the stochastic approximation of ∇F(Xk). With these notations, the
update Xk+1 = Xk − η∇F(Xk; ξk) means that xk+1

i = xki − η∇fi(xki ; ξki ) for all i. In this
paper, we need the average of all rows in Xk and ∇F(Xk), so we define Xk = (1>Xk)/n and
∇F(Xk) = (1>∇F(Xk))/n. They are row vectors, and we will take a transpose if we need a
column vector. The pseudoinverse of a matrix M is denoted as M†. The largest, ith-largest, and
smallest nonzero eigenvalues of a symmetric matrix M are λmax(M), λi(M), and λmin(M).
Assumption 1 (Mixing matrix). The connected network G = {V, E} consists of a node set V =
{1, 2, . . . , n} and an undirected edge set E . The primitive symmetric doubly-stochastic matrix W =
[wij ] ∈ Rn×n encodes the network structure such that wij = 0 if nodes i and j are not connected
and cannot exchange information.

Assumption 1 implies that −1 < λn(W) ≤ λn−1(W) ≤ · · ·λ2(W) < λ1(W) = 1 and W1 =
1 (Xiao & Boyd, 2004; Shi et al., 2015). The matrix multiplication Xk+1 = WXk describes that
agent i takes a weighted sum from its neighbors and itself, i.e., xk+1

i =
∑
j∈Ni∪{i} wijx

k
j , where

Ni denotes the neighbors of agent i.

3.1 THE PROPOSED ALGORITHM

The proposed algorithm LEAD to solve problem (1) is showed in Alg. 1 with matrix notations for
conciseness. We will refer to the line number in the analysis. A complete algorithm description from
the agent’s perspective can be found in Appendix A. The motivation behind Alg. 1 is to achieve two
goals: (a) consensus (xki − (Xk)> → 0) and (b) convergence ((Xk)> → x∗). We first discuss how
goal (a) leads to goal (b) and then explain how LEAD fulfills goal (a).

In essence, LEAD runs the approximate SGD globally and reduces to the exact SGD under con-
sensus. One key property for LEAD is 1>n×1D

k = 0, regardless of the compression error in Ŷk.
It holds because that for the initialization, we require D1 = (I −W)Z for some Z ∈ Rn×d,
e.g., D1 = 0n×d, and that the update of Dk ensures Dk ∈ Range(I − W) for all k and
1>n×1(I −W) = 0 as we will explain later. Therefore, multiplying (1/n)1>n×1 on both sides of
Line 7 leads to a global average view of Alg. 1:

Xk+1 = Xk − η∇F(Xk; ξk), (3)

which doesn’t contain the compression error. Note that this is an approximate SGD step be-
cause, as shown in (2), the gradient ∇F(Xk; ξk) is not evaluated on a global synchronized model
Xk. However, if the solution converges to the consensus solution, i.e., xki − (Xk)> → 0, then
Eξk [∇F(Xk; ξk)−∇f(Xk; ξk)]→ 0 and (3) gradually reduces to exact SGD.
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Algorithm 1 LEAD
Input: Stepsize η, parameter (α, γ), X0, H1, D1 = (I−W)Z for any Z

Output: XK or 1/n
∑n
i=1 X

K
i

1: H1
w = WH1

2: X1 = X0 − η∇F(X0; ξ0)

3: for k = 1, 2, · · · ,K − 1 do
4: Yk = Xk − η∇F(Xk; ξk)− ηDk

5: Ŷk, Ŷk
w,H

k+1,Hk+1
w = COMM(Yk,Hk,Hk

w)
6: Dk+1 = Dk + γ

2η (Ŷ
k − Ŷk

w)

7: Xk+1 = Xk − η∇F(Xk; ξk)− ηDk+1

8: end for

9: procedure COMM(Y,H,Hw)
10: Q = COMPRESS(Y −H)
11: Ŷ = H+Q

12: Ŷw = Hw +WQ

13: H = (1− α)H+ αŶ

14: Hw = (1− α)Hw + αŶw

15: Return: Ŷ, Ŷw,H,Hw

16: end procedure

With the establishment of how consensus leads to convergence, the obstacle becomes how to achieve
consensus under local communication and compression challenges. It requires addressing two is-
sues, i.e., data heterogeneity and compression error. To deal with these issues, existing algorithms,
such as DCD-SGD, ECD-SGD, QDGD, DeepSqueeze, Moniqua, and CHOCO-SGD, need a dimin-
ishing or constant but small stepsize depending on the total number of iterations. However, these
choices unavoidably cause slower convergence and bring in the difficulty of parameter tuning. In
contrast, LEAD takes a different way to solve these issues, as explained below.

Data heterogeneity. It is common in distributed settings that there exists data heterogeneity among
agents, especially in real-world applications where different agents collect data from different sce-
narios. In other words, we generally have fi(x) 6= fj(x) for i 6= j. The optimality condition of
problem (1) gives 1>n×1∇F(X∗) = 0, where X∗ = [x∗, · · · ,x∗] is a consensual and optimal so-
lution. The data heterogeneity and optimality condition imply that there exist at least two agents i
and j such that ∇fi(x∗) 6= 0 and ∇fj(x∗) 6= 0. As a result, a simple D-PSGD algorithm cannot
converge to the consensual and optimal solution as X∗ 6= WX∗ − ηEξ∇F(X∗; ξ) even when the
stochastic gradient variance is zero.

Gradient correction. Primal-dual algorithms or gradient tracking algorithms are able to convergence
much faster than DGD-type algorithms by handling the data heterogeneity issue, as introduced in
Section 2. Specifically, LEAD is motivated by the design of primal-dual algorithm NIDS (Li et al.,
2019) and the relation becomes clear if we consider the two-step reformulation of NIDS adopted
in (Li & Yan, 2019):

Dk+1 = Dk +
I−W

2η
(Xk − η∇F(Xk)− ηDk), (4)

Xk+1 = Xk − η∇F(Xk)− ηDk+1, (5)

where Xk and Dk represent the primal and dual variables respectively. The dual variable Dk plays
the role of gradient correction. As k → ∞, we expect Dk → −∇F(X∗) and Xk will converge
to X∗ via the update in (5) since Dk+1 corrects the nonzero gradient ∇F(Xk) asymptotically.
The key design of Alg. 1 is to provide compression for the auxiliary variable defined as Yk =
Xk − η∇F(Xk) − ηDk. Such design ensures that the dual variable Dk lies in Range(I −W),
which is essential for convergence. Moreover, it achieves the implicit error compression as we will
explain later. To stabilize the algorithm with inexact dual update, we introduce a parameter γ to
control the stepsize in the dual update. Therefore, if we ignore the details of the compression, Alg. 1
can be concisely written as

Yk = Xk − η∇F(Xk; ξk)− ηDk (6)

Dk+1 = Dk +
γ

2η
(I−W)Ŷk (7)

Xk+1 = Xk − η∇F(Xk; ξk)− ηDk+1 (8)

where Ŷk represents the compression of Yk and F(Xk; ξk) denote the stochastic gradients.
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Nevertheless, how to compress the communication and how fast the convergence we can attain with
compression error are unknown. In the following, we propose to carefully control the compression
error by difference compression and error compensation such that the inexact dual update (Line 6)
and primal update (Line 7) can still guarantee the convergence as proved in Section 4.

Compression error. Different from existing works, which typically compress the primal variable
Xk or its difference, LEAD first construct an intermediate variable Yk and apply compression to
obtain its coarse representation Ŷk as shown in the procedure COMM(Y,H,Hw):

• Compress the difference between Y and the state variable H as Q;
• Q is encoded into the low-bit representation, which enables the efficient local communication

step Ŷw = Hw +WQ. It is the only communication step in each iteration.
• Each agent recovers its estimate Ŷ by Ŷ = H+Q and we have Ŷw = WŶ.
• States H and Hw are updated based on Ŷ and Ŷw, respectively. We have Hw = WH.

By this procedure, we expect when both Yk and Hk converge to X∗, the compression error vanishes
asymptotically due to the assumption we make for the compression operator in Assumption 2.

Remark 1. Note that difference compression is also applied in DCD-PSGD (Tang et al., 2018a)
and CHOCO-SGD (Koloskova et al., 2019), but their state update is the simple integration of the
compressed difference. We find this update is usually too aggressive and cause instability as showed
in our experiments. Therefore, we adopt a momentum update H = (1−α)H+αŶ motivated from
DIANA (Mishchenko et al., 2019), which reduces the compression error for gradient compression in
centralized optimization.

Implicit error compensation. On the other hand, even if the compression error exists, LEAD es-
sentially compensates for the error in the inexact dual update (Line 6), making the algorithm more
stable and robust. To illustrate how it works, let Ek = Ŷk −Yk denote the compression error and
eki be its i-th row. The update of Dk gives

Dk+1 = Dk +
γ

2η
(Ŷk − Ŷk

w) = Dk +
γ

2η
(I−W)Yk +

γ

2η
(Ek −WEk)

where −WEk indicates that agent i spreads total compression error −
∑
j∈Ni∪{i} wjie

k
i = −eki to

all agents and Ek indicates that each agent compensates this error locally by adding eki back. This
error compensation also explains why the global view in (3) doesn’t involve compression error.

Remark 2. Note that in LEAD, the compression error is compensated into the model Xk+1 through
Line 6 and Line 7 such that the gradient computation in the next iteration is aware of the compression
error. This has some subtle but important difference from the error compensation or error feedback
in (Seide et al., 2014; Wu et al., 2018; Stich et al., 2018; Karimireddy et al., 2019; Tang et al., 2019b;
Liu et al., 2020; Tang et al., 2019a), where the error is stored in the memory and only compensated
after gradient computation and before the compression.

Remark 3. The proposed algorithm, LEAD in Alg. 1, recovers NIDS (Li et al., 2019), D2 (Tang
et al., 2018b), Exact Diffusion (Yuan et al., 2018). These connections are established in Appendix B.

4 THEORETICAL ANALYSIS

In this section, we show the convergence rate for the proposed algorithm LEAD. Before showing
the main theorem, we make some assumptions, which are commonly used for the analysis of decen-
tralized optimization algorithms. All proofs are provided in Appendix E.

Assumption 2 (Unbiased and C-contracted operator). The compression operator Q : Rd → Rd
is unbiased, i.e., EQ(x) = x, and there exists C ≥ 0 such that E‖x − Q(x)‖22 ≤ C‖x‖22 for all
x ∈ Rd.

Assumption 3 (Stochastic gradient). The stochastic gradient ∇fi(x; ξ) is unbiased, i.e.,
Eξ∇fi(x; ξ) = ∇fi(x), and the stochastic gradient variance is bounded: Eξ‖∇fi(x; ξ) −
∇fi(x)‖22 ≤ σ2

i for all i ∈ [n]. Denote σ2 = 1
n

∑n
i=1 σ

2
i .
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Assumption 4. Each fi is L-smooth and µ-strongly convex with L ≥ µ > 0, i.e., for i = 1, 2, . . . , n
and ∀x,y ∈ Rd, we have

fi(y) + 〈∇fi(y),x− y〉+ µ

2
‖x− y‖2 ≤ fi(x) ≤ fi(y) + 〈∇fi(y),x− y〉+ L

2
‖x− y‖2.

Theorem 1 (Constant stepsize). Let {Xk,Hk,Dk} be the sequence generated from Alg. 1 and X∗

is the optimal solution with D∗ = −∇F(X∗). Under Assumptions 1-4, for any constant stepsize
η ∈ (0, 2/(µ+ L)], if the compression parameters α and γ satisfy

γ ∈
(
0,min

{ 2

(3C + 1)β
,

2µη(2− µη)
[2− µη(2− µη)]Cβ

})
, (9)

α ∈
[

Cβγ

2(1 + C)
,
1

a1
min

{2− βγ
4− βγ

, µη(2− µη)
}]

, (10)

with β := λmax(I−W). Then, in total expectation we have
1

n
ELk+1 ≤ ρ 1

n
ELk + η2σ2, (11)

where

Lk := (1− a1α)‖Xk −X∗‖2 + (2η2/γ)E‖Dk −D∗‖2(I−W)† + a1‖Hk −X∗‖2,

ρ := max

{
1− µη(2− µη)

1− a1α
, 1− γ

2λmax((I−W)†)
, 1− α

}
< 1, a1 :=

4(1 + C)

Cβγ + 2

The result holds for C → 0.
Corollary 1 (Complexity bounds). Define the condition numbers of the objective function and com-
munication graph as κf = L

µ and κg = λmax(I−W)

λ+
min(I−W)

, respectively. Under the same setting in

Theorem 1, we can choose η = 1
L , γ = min{ 1

Cβκf
, 1
(1+3C)β }, and α = O( 1

(1+C)κf
) such that

ρ = max

{
1−O

( 1

(1 + C)κf

)
, 1−O

( 1

(1 + C)κg

)
, 1−O

( 1

Cκfκg

)}
.

With full-gradient (i.e., σ = 0), we obtain the following complexity bounds:

• LEAD converges to the ε-accurate solution with the iteration complexity

O
((

(1 + C)(κf + κg) + Cκfκg
)
log

1

ε

)
.

• When C = 0 (i.e., there is no compression), we obtain ρ = max{1−O( 1
κf

), 1−O( 1
κg

)},

and the iteration complexity O
(
(κf + κg) log

1
ε

)
. This exactly recovers the convergence

rate of NIDS (Li et al., 2019).

• When C ≤ κf+κg

κfκg+κf+κg
, the asymptotical complexity is O

(
(κf + κg) log

1
ε

)
, which also

recovers that of NIDS (Li et al., 2019) and indicates that the compression doesn’t harm the
convergence in this case.

• With C = 0 (or C ≤ κf+κg

κfκg+κf+κg
) and fully connected communication graph (i.e.,

W = 11>

n ), we have β = 1 and κg = 1. Therefore, we obtain ρ = 1 − O( 1
κf

) and the

complexity boundO(κf log 1
ε ). This recovers the convergence rate of gradient descent (Nes-

terov, 2013).
Remark 4. Under the setting in Theorem 1, LEAD converges linearly to the O(σ2) neighborhood
of the optimum and converges linearly exactly to the optimum if full gradient is used, e.g., σ = 0.
The linear convergence of LEAD holds when η < 2/L, but we omit the proof.
Remark 5 (Arbitrary compression precision). Pick any η ∈ (0, 2/(µ+ L)], based on the
compression-related constant C and the network-related constant β, we can select γ and α in cer-
tain ranges to achieve the convergence. It suggests that LEAD supports unbiased compression with
arbitrary precision, i.e., any C > 0.

6



Published as a conference paper at ICLR 2021

Corollary 2 (Consensus error). Under the same setting in Theorem 1 , let xk = 1
n

∑n
i=1 x

k
i be the

averaged model and H0 = H1, then all agents achieve consensus at the rate

1

n

n∑
i=1

E
∥∥xki − xk

∥∥2 ≤ 2L0

n
ρk +

2σ2

1− ρ
η2. (12)

where ρ is defined as in Corollary 1 with appropriate parameter settings.
Theorem 2 (Diminishing stepsize). Let {Xk,Hk,Dk} be the sequence generated from Alg. 1 and
X∗ is the optimal solution with D∗ = −∇F(X∗). Under Assumptions 1-4, if ηk = 2θ5

θ3θ4θ5k+2 and
γk = θ4ηk, by taking αk = Cβγk

2(1+C) , in total expectation we have

1

n

n∑
i=1

E
∥∥xki − x∗

∥∥2 . O
(
1

k

)
(13)

where θ1, θ2, θ3, θ4 and θ5 are constants defined in the proof. The complexity bound for arriving at
the ε-accurate solution is O( 1ε ).
Remark 6. Compared with CHOCO-SGD, LEAD requires unbiased compression and the conver-
gence under biased compression is not investigated yet. The analysis of CHOCO-SGD relies on
the bounded gradient assumptions, i.e., ‖∇fi(x)‖2 ≤ G, which is restrictive because it conflicts
with the strong convexity while LEAD doesn’t need this assumption. Moreover, in the theorem of
CHOCO-SGD, it requires a specific point set of γ while LEAD only requires γ to be within a rather
large range. This may explain the advantages of LEAD over CHOCO-SGD in terms of robustness
to parameter setting.

5 NUMERICAL EXPERIMENT

We consider three machine learning problems – `2-regularized linear regression, logistic regression,
and deep neural network. The proposed LEAD is compared with QDGD (Reisizadeh et al., 2019a),
DeepSqueeze (Tang et al., 2019a), CHOCO-SGD (Koloskova et al., 2019), and two non-compressed
algorithms DGD (Yuan et al., 2016) and NIDS (Li et al., 2019).

Setup. We consider eight machines connected in a ring topology network. Each agent can only
exchange information with its two 1-hop neighbors. The mixing weight is simply set as 1/3. For
compression, we use the unbiased b-bits quantization method with∞-norm

Q∞(x) :=
(
‖x‖∞2−(b−1) sign(x)

)
·
⌊
2(b−1)|x|
‖x‖∞

+ u

⌋
, (14)

where · is the Hadamard product, |x| is the elementwise absolute value of x, and u is a random vec-
tor uniformly distributed in [0, 1]d. Only sign(x), norm ‖x‖∞, and integers in the bracket need to be
transmitted. Note that this quantization method is similar to the quantization used in QSGD (Alistarh
et al., 2017) and CHOCO-SGD (Koloskova et al., 2019), but we use the∞-norm scaling instead of
the 2-norm. This small change brings significant improvement on compression precision as justified
both theoretically and empirically in Appendix C. In this section, we choose 2-bit quantization and
quantize the data blockwise (block size = 512).

For all experiments, we tune the stepsize η from {0.01, 0.05, 0.1, 0.5}. For QDGD, CHOCO-SGD
and Deepsqueeze, γ is tuned from {0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}. Note that different notations
are used in their original papers. Here we uniformly denote the stepsize as η and the additional
parameter in these algorithms as γ for simplicity. For LEAD, we simply fix α = 0.5 and γ = 1.0 for
all experiments since we find LEAD is robust to parameter settings as we validate in the parameter
sensitivity analysis in Appendix D.1. This indicates the minor effort needed for tuning LEAD.
Detailed parameter settings for all experiments are summarized in Appendix D.3.

Linear regression. We consider the problem: f(x) =
∑n
i=1(‖Aix−bi‖2+λ‖x‖2). Data matrices

Ai ∈ R200×200 and the true solution x′ is randomly synthesized. The values bi are generated by
adding Gaussian noise to Aix

′. We let λ = 0.1 and the optimal solution of the linear regression
problem be x∗. We use full-batch gradient to exclude the impact of gradient variance. The perfor-
mance is showed in Fig. 1. The distance to x∗ in Fig. 1a and the consensus error in Fig. 1c verify
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that LEAD converges exponentially to the optimal consensual solution. It significantly outperforms
most baselines and matches NIDS well under the same number of iterations. Fig. 1b demonstrates
the benefit of compression when considering the communication bits. Fig. 1d shows that the com-
pression error vanishes for both LEAD and CHOCO-SGD while the compression error is pretty
large for QDGD and DeepSqueeze because they directly compress the local models.
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Figure 1: Linear regression problem.

Logistic regression. We further consider a logistic regression problem on the MNIST dataset. The
regularization parameter is 10−4. We consider both homogeneous and heterogeneous data settings.
In the homogeneous setting, the data samples are randomly shuffled before being uniformly par-
titioned among all agents such that the data distribution from each agent is very similar. In the
heterogeneous setting, the samples are first sorted by their labels and then partitioned among agents.
Due to the space limit, we mainly present the results in heterogeneous setting here and defer the ho-
mogeneous setting to Appendix D.2. The results using full-batch gradient and mini-batch gradient
(the mini-batch size is 512 for each agent) are showed in Fig. 2 and Fig. 3 respectively and both
settings shows the faster convergence and higher precision of LEAD.
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Figure 2: Logistic regression problem in the heterogeneous case (full-batch gradient).
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Figure 3: Logistic regression in the heterogeneous case (mini-batch gradient).
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Figure 4: Stochastic optimization on deep neural network (∗ means divergence).

Neural network. We empirically study the performance of LEAD in optimizing deep neural net-
work by training AlexNet (240 MB) on CIFAR10 dataset. The mini-batch size is 64 for each agents.
Both the homogeneous and heterogeneous case are showed in Fig. 4. In the homogeneous case,
CHOCO-SGD, DeepSqueeze and LEAD perform similarly and outperform the non-compressed
variants in terms of communication efficiency, but CHOCO-SGD and DeepSqueeze need more ef-
forts for parameter tuning because their convergence is sensitive to the setting of γ. In the hetero-
geneous cases, LEAD achieves the fastest and most stable convergence. Note that in this setting,
sufficient information exchange is more important for convergence because models from differ-
ent agents are moving to significantly diverse directions. In such case, DGD only converges with
smaller stepsize and its communication compressed variants, including QDGD, DeepSqueeze and
CHOCO-SGD, diverge in all parameter settings we try.

In summary, our experiments verify our theoretical analysis and show that LEAD is able to handle
data heterogeneity very well. Furthermore, the performance of LEAD is robust to parameter settings
and needs less effort for parameter tuning, which is critical in real-world applications.

6 CONCLUSION

In this paper, we investigate the communication compression in decentralized optimization. Mo-
tivated by primal-dual algorithms, a novel decentralized algorithm with compression, LEAD, is
proposed to achieve faster convergence rate and to better handle heterogeneous data while enjoy-
ing the benefit of efficient communication. The nontrivial analyses on the coupled dynamics of
inexact primal and dual updates as well as compression error establish the linear convergence of
LEAD when full gradient is used and the linear convergence to the O(σ2) neighborhood of the
optimum when stochastic gradient is used. Extensive experiments validate the theoretical analysis
and demonstrate the state-of-the-art efficiency and robustness of LEAD. LEAD is also applicable
to non-convex problems as empirically verified in the neural network experiments but we leave the
non-convex analysis as the future work.
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A LEAD IN AGENT’S PERSPECTIVE

In the main paper, we described the algorithm with matrix notations for concision. Here we further
provide a complete algorithm description from the agents’ perspective.

Algorithm 2 LEAD in Agent’s Perspective
input: stepsize η, compression parameters (α, γ), initial values x0

i , h1
i , zi, ∀i ∈ {1, 2, . . . , n}

output: xKi , ∀i ∈ {1, 2, . . . , n} or
∑n

i=1 xK
i

n

1: for each agent i ∈ {1, 2, . . . , n} do
2: d1

i = zi −
∑
j∈Ni∪{i} wijzj

3: (hw)
1
i =

∑
j∈Ni∪{i} wij(hw)

1
j

4: x1
i = x0

i − η∇fi(x0
i ; ξ

0
i )

5: end for
6: for k = 1, 2, . . . ,K − 1 do in parallel for all agents i ∈ {1, 2, . . . , n}
7: compute ∇fi(xki ; ξki ) B Gradient computation
8: yki = xki − η∇fi(xki ; ξki )− ηdki
9: qki = Compress(yki − hki ) B Compression

10: ŷki = hki + qki
11: for neighbors j ∈ Ni do
12: Send qki and receive qkj B Communication
13: end for
14: (ŷw)

k
i = (hw)

k
i +

∑
j∈Ni∪{i} wijq

k
j

15: hk+1
i = (1− α)hki + αŷki

16: (hw)
k+1
i = (1− α)(hw)ki + α(ŷw)

k
i

17: dk+1
i = dki +

γ
2η

(
ŷki − (ŷw)

k
i

)
18: xk+1

i = xki − η∇fi(xki ; ξki )− ηd
k+1
i B Model update

19: end for

B CONNECTIONS WITH EXITING WORKS

The non-compressed variant of LEAD in Alg. 1 recovers NIDS (Li et al., 2019), D2 (Tang et al.,
2018b) and Exact Diffusion (Yuan et al., 2018) as shown in Proposition 1. In Corollary 3, we show
that the convergence rate of LEAD exactly recovers the rate of NIDS whenC = 0, γ = 1 and σ = 0.
Proposition 1 (Connection to NIDS, D2 and Exact Diffusion). When there is no communication
compression (i.e., Ŷk = Yk) and γ = 1, Alg. 1 recovers D2:

Xk+1 =
I+W

2

(
2Xk −Xk−1 − η∇F(Xk; ξk) + η∇F(Xk−1; ξk−1)

)
. (15)

Furthermore, if the stochastic estimator of the gradient∇F(Xk; ξk) is replaced by the full gradient,
it recovers NIDS and Exact Diffusion with specific settings.
Corollary 3 (Consistency with NIDS). When C = 0 (no communication compression), γ = 1 and
σ = 0 (full gradient), LEAD has the convergence consistent with NIDS with η ∈ (0, 2/(µ+ L)]:

Lk+1 ≤ max

{
1− µ(2η − µη2), 1− 1

2λmax((I−W)†)

}
Lk. (16)

See the proof in E.5.

Proof of Proposition 1. Let γ = 1 and Ŷk = Yk. Combing Lines 4 and 6 of Alg. 1 gives

Dk+1 = Dk +
I−W

2η
(Xk − η∇F(Xk; ξk)− ηDk). (17)
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Based on Line 7, we can represent ηDk from the previous iteration as

ηDk = Xk−1 −Xk − η∇F(Xk−1; ξk−1). (18)

Eliminating both Dk and Dk+1 by substituting (17)-(18) into Line 7, we obtain

Xk+1 = Xk − η∇F(Xk; ξk)−
(
ηDk +

I−W

2
(Xk − η∇F(Xk; ξk)− ηDk)

)
(from (17))

=
I+W

2
(Xk − η∇F(Xk; ξk))− I+W

2
ηDk

=
I+W

2
(Xk − η∇F(Xk; ξk))− I+W

2
(Xk−1 −Xk − η∇F(Xk−1; ξk−1)) (from (18))

=
I+W

2
(2Xk −Xk−1 − η∇F(Xk; ξk) + η∇F(Xk−1; ξk−1)), (19)

which is exactly D2. It also recovers Exact Diffusion with A = I+W
2 and M = ηI in Eq. (97)

of (Yuan et al., 2018).

C COMPRESSION METHOD

C.1 P-NORM B-BITS QUANTIZATION

Theorem 3 (p-norm b-bit quantization). Let us define the quantization operator as

Qp(x) :=
(
‖x‖p sign(x)2−(b−1)

)
·
⌊
2b−1|x|
‖x‖p

+ u

⌋
(20)

where · is the Hadamard product, |x| is the elementwise absolute value and u is a random dither
vector uniformly distributed in [0, 1]d. Qp(x) is unbiased, i.e., EQp(x) = x, and the compression
variance is upper bounded by

E‖x−Qp(x)‖2 ≤
1

4
‖ sign(x)2−(b−1)‖2‖x‖2p, (21)

which suggests that ∞-norm provides the smallest upper bound for the compression variance due
to ‖x‖p ≤ ‖x‖q,∀x if 1 ≤ q ≤ p ≤ ∞.

Remark 7. For the compressor defined in (20), we have the following the compression constant

C = sup
x

‖ sign(x)2−(b−1)‖2‖x‖2p
4‖x‖2

.

Proof. Let denote v = ‖x‖p sign(x)2−(b−1), s = 2b−1|x|
‖x‖p , s1 =

⌊
2b−1|x|
‖x‖p

⌋
and s2 =

⌈
2b−1|x|
‖x‖p

⌉
. We

can rewrite x as x = s · v.

For any coordinate i such that si = (s1)i, we have Qp(xi) = (s1)ivi with probability 1. Hence
EQp(x)i = sivi = xi and

E(xi −Qp(x)i)2 = (xi − sivi)2 = 0.

For any coordinate i such that si 6= (s1)i, we have (s2)i − (s1)i = 1 and Qp(x)i satisfies

Qp(x)i =

{
(s1)ivi, w.p. (s2)i − si,
(s2)ivi, w.p. si − (s1)i.

Thus, we derive

EQp(x)i = vi(s1)i(s2 − s)i + vi(s2)i(s− s1)i = visi(s2 − s1)i = visi = xi,
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and

E[xi −Qp(x)i]2 = (xi − vi(s1)i)
2(s2 − s)i + (xi − vi(s2)i)

2(s− s1)i
= (s2 − s1)ix2

i +
(
(s1)i(s2)i(s1 − s2)i + si((s2)

2
i − (s1)

2
i )
)
v2
i − 2si(s2 − s1)ixivi

= x2
i +

(
− (s1)i(s2)i + si(s2 + s1)i

)
v2
i − 2sixivi

= (xi − sivi)2 +
(
− (s1)i(s2)i + si(s2 + s1)i − s2i

)
v2
i

= (xi − sivi)2 + (s2 − s)i(s− s1)iv2
i

= (s2 − s)i(s− s1)iv2
i

≤ 1

4
v2
i .

Considering both cases, we have EQ(x) = x and

E‖x−Qp(x)‖2 =
∑

{si=(s1)i}

E[xi −Qp(x)i]2 +
∑

{si 6=(s1)i}

E[xi −Qp(x)i]2

≤ 0 +
1

4

∑
{si 6=(s1)i}

v2
i

≤ 1

4
‖v‖2

=
1

4
‖ sign(x)2−(b−1)‖2‖x‖2p.

C.2 COMPRESSION ERROR
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Figure 5: Relative compression error ‖x−Q(x)‖2
‖x‖2 for p-norm b-bit quantization

To verify Theorem 3, we compare the compression error of the quantization method defined in (20)
with different norms (p = 1, 2, 3, . . . , 6,∞). Specifically, we uniformly generate 100 random vec-
tors in R10000 and compute the average compression error. The result shown in Figure 5 verifies
our proof in Theorem 3 that the compression error decreases when p increases. This suggests that
∞-norm provides the best compression precision under the same bit constraint.

Under similar setting, we also compare the compression error with other popular compression meth-
ods, such as top-k and random-k sparsification. The x-axes represents the average bits needed to rep-
resent each element of the vector. The result is showed in Fig. 6. Note that intuitively top-k methods
should perform better than random-k method, but the top-k method needs extra bits to transmit-
ted the index while random-k method can avoid this by using the same random seed. Therefore,
top-k method doesn’t outperform random-k too much under the same communication budget. The
result in Fig. 6 suggests that∞-norm b-bits quantization provides significantly better compression
precision than others under the same bit constraint.
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Figure 6: Comparison of compression error ‖x−Q(x)‖2
‖x‖2 between different compression methods

D EXPERIMENTS

D.1 PARAMETER SENSITIVITY

In the linear regression problem, the convergence of LEAD under different parameter settings of α
and γ are tested. The result showed in Figure 7 indicates that LEAD performs well in most settings
and is robust to the parameter setting. Therefore, in this paper, we simply set α = 0.5 and γ = 1.0
for LEAD in all experiment, which indicates the minor effort needed for parameter tuning.
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(b) γ = 0.6
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(c) γ = 0.8
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Figure 7: Parameter analysis on linear regression problem.

D.2 EXPERIMENTS IN HOMOGENEOUS SETTING

The experiments on logistic regression problem in homogeneous case are showed in Fig. 8 and
Fig. 9. It shows that DeepSqueeze, CHOCO-SGD and LEAD converges similarly while Deep-

17



Published as a conference paper at ICLR 2021

Squeeze and CHOCO-SGD require to tune a smaller γ for convergence as showed in the parameter
setting in Section D.3. Generally, a smaller γ decreases the model propagation between agents since
γ changes the effective mixing matrix and this may cause slower convergence. However, in the
setting where data from different agents are very similar, the models move to close directions such
that the convergence is not affected too much.
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Figure 8: Logistic regression in the homogeneous case (full-batch gradient)
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Figure 9: Logistic regression in the homogeneous case (mini-batch gradient)

D.3 PARAMETER SETTINGS

The best parameter settings we search for all algorithms and experiments are summarized in Ta-
bles 1– 4. QDGD and DeepSqueeze are more sensitive to γ and CHOCO-SGD is slight more robust.
LEAD is most robust to parameter settings and it works well for the setting α = 0.5 and γ = 1.0 in
all experiments in this paper.

Algorithm η γ α
DGD 0.1 - -
NIDS 0.1 - -

QDGD 0.1 0.2 -
DeepSqueeze 0.1 0.2 -
CHOCO-SGD 0.1 0.8 -

LEAD 0.1 1.0 0.5

Table 1: Parameter settings for the linear regression problem.
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Algorithm η γ α
DGD 0.1 - -
NIDS 0.1 - -

QDGD 0.1 0.4 -
DeepSqueeze 0.1 0.4 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Homogeneous case

Algorithm η γ α
DGD 0.1 - -
NIDS 0.1 - -

QDGD 0.1 0.2 -
DeepSqueeze 0.1 0.6 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Heterogeneous case

Table 2: Parameter settings for the logistic regression problem (full-batch gradient).

Algorithm η γ α
DGD 0.1 - -
NIDS 0.1 - -

QDGD 0.05 0.2 -
DeepSqueeze 0.1 0.6 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Homogeneous case

Algorithm η γ α
DGD 0.1 - -
NIDS 0.1 - -

QDGD 0.05 0.2 -
DeepSqueeze 0.1 0.6 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Heterogeneous case

Table 3: Parameter settings for the logistic regression problem (mini-batch gradient).

Algorithm η γ α
DGD 0.1 - -
NIDS 0.1 - -

QDGD 0.05 0.1 -
DeepSqueeze 0.1 0.2 -
CHOCO-SGD 0.1 0.6 -

LEAD 0.1 1.0 0.5

Homogeneous case

Algorithm η γ α
DGD 0.05 - -
NIDS 0.1 - -

QDGD * * -
DeepSqueeze * * -
CHOCO-SGD * * -

LEAD 0.1 1.0 0.5

Heterogeneous case

Table 4: Parameter settings for the deep neural network. (* means divergence for all options we try)

E PROOFS OF THE THEOREMS

E.1 ILLUSTRATIVE FLOW

The following flow graph depicts the relation between iterative variables and clarifies the range
of conditional expectation. {Gk}∞k=0 and {Fk}∞k=0 are two σ−algebras generated by the gradient
sampling and the stochastic compression respectively. They satisfy

G0 ⊂ F0 ⊂ G1 ⊂ F1 ⊂ · · · ⊂ Gk ⊂ Fk ⊂ · · ·

(X1,D1,H1) (X2,D2,H2) (X3,D3,H3) (Xk,Dk,Hk) · · ·

Y1 Y2 Yk−1 Yk

F0 F1 Fk−2 Fk−1

∇F(X1;ξ1)∈G0 ∇F(X2;ξ2)∈G1 ··· ∇F(Xk;ξk)∈Gk−1E1

1st round

E2

···

Ek−1

(k−1)th round

⊂ ··· ⊂

The solid and dashed arrows in the top flow illustrate the dynamics of the algorithm, while in the
bottom, the arrows stand for the relation between successive F-σ-algebras. The downward arrows
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determine the range of F-σ-algebras. E.g., up to Ek, all random variables are in Fk−1 and up
to ∇F(Xk; ξk), all random variables are in Gk−1 with Gk−1 ⊂ Fk−1. Throughout the appendix,
without specification, E is the expectation conditioned on the corresponding stochastic estimators
given the context.

E.2 TWO CENTRAL LEMMAS

Lemma 1 (Fundamental equality). Let X∗ be the optimal solution, D∗ := −∇F(X∗) and Ek

denote the compression error in the kth iteration, that is Ek = Qk − (Yk − Hk) = Ŷk − Yk.
From Alg. 1, we have

‖Xk+1 −X∗‖2 + (η2/γ)‖Dk+1 −D∗‖2M
=‖Xk −X∗‖2 + (η2/γ)‖Dk −D∗‖2M − (η2/γ)‖Dk+1 −Dk‖2M − η2‖Dk+1 −D∗‖2

− 2η〈Xk −X∗,∇F(Xk; ξk)−∇F(X∗)〉+ η2‖∇F(Xk; ξk)−∇F(X∗)‖2 + 2η〈Ek,Dk+1 −D∗〉,

where M := 2(I−W)†− γI and γ < 2/λmax(I−W) ensures the positive definiteness of M over
range(I−W).

Lemma 2 (State inequality). Let the same assumptions in Lemma 1 hold. From Alg. 1, if we take
the expectation over the compression operator conditioned on the k-th iteration, we have

E‖Hk+1 −X∗‖2 ≤ (1− α)‖Hk −X∗‖2 + αE‖Xk+1 −X∗‖2 + αη2E‖Dk+1 −Dk‖2

+
2αη2

γ
E‖Dk+1 −Dk‖2M + α2E‖Ek‖2 − αγE‖Ek‖2I−W − α(1− α)‖Yk −Hk‖2.

E.3 PROOF OF LEMMA 1

Before proving Lemma 1, we let Ek = Ŷk −Yk and introduce the following three Lemmas.

Lemma 3. Let X∗ be the consensus solution. Then, from Line 4-7 of Alg. 1, we obtain

I−W

2η
(Xk+1 −X∗) =

(
I

γ
− I−W

2

)
(Dk+1 −Dk)− I−W

2η
Ek. (22)

Proof. From the iterations in Alg. 1, we have

Dk+1 = Dk +
γ

2η
(I−W)Ŷk (from Line 6)

= Dk +
γ

2η
(I−W)(Yk +Ek)

= Dk +
γ

2η
(I−W)(Xk − η∇F(Xk; ξk)− ηDk +Ek) (from Line 4)

= Dk +
γ

2η
(I−W)(Xk − η∇F(Xk; ξk)− ηDk+1 −X∗ + η(Dk+1 −Dk) +Ek)

= Dk +
γ

2η
(I−W)(Xk+1 −X∗) +

γ

2
(I−W)(Dk+1 −Dk) +

γ

2η
(I−W)Ek,

where the fourth equality holds due to (I−W)X∗ = 0 and the last equality comes from Line 7 of
Alg. 1. Rewriting this equality, and we obtain (22).

Lemma 4. Let D∗ = −∇F(X∗) ∈ span{I−W}, we have

〈Xk+1 −X∗,Dk+1 −Dk〉 =η
γ
‖Dk+1 −Dk‖2M − 〈Ek,Dk+1 −Dk〉, (23)

〈Xk+1 −X∗,Dk+1 −D∗〉 =η
γ
〈Dk+1 −Dk,Dk+1 −D∗〉M − 〈Ek,Dk+1 −D∗〉, (24)

where M = 2(I−W)† − γI and γ < 2/λmax(I−W) ensures the positive definiteness of M over
span{I−W}.

20



Published as a conference paper at ICLR 2021

Proof. Since Dk+1 ∈ span{I−W} for any k, we have

〈Xk+1 −X∗,Dk+1 −Dk〉
=〈(I−W)(Xk+1 −X∗), (I−W)†(Dk+1 −Dk)〉

=

〈
η

γ
(2I− γ(I−W))(Dk+1 −Dk)− (I−W)Ek, (I−W)†(Dk+1 −Dk)

〉
(from (22))

=

〈
η

γ
(2(I−W)† − γI

)
(Dk+1 −Dk)−Ek,Dk+1 −Dk

〉
=
η

γ
‖Dk+1 −Dk‖2M − 〈Ek,Dk+1 −Dk〉.

Similarly, we have

〈Xk+1 −X∗,Dk+1 −D∗〉
=〈(I−W)(Xk+1 −X∗), (I−W)†(Dk+1 −D∗)〉

=

〈
η

γ
(2I− γ(I−W))(Dk+1 −Dk)− (I−W)Ek, (I−W)†(Dk+1 −D∗)

〉
=

〈
η

γ
(2(I−W)† − I)(Dk+1 −Dk)−Ek,Dk+1 −D∗

〉
=
η

γ
〈Dk+1 −Dk,Dk+1 −D∗〉M − 〈Ek,Dk+1 −D∗〉.

To make sure that M is positive definite over span{I−W}, we need γ < 2/λmax(I−W).

Lemma 5. Taking the expectation conditioned on the compression in the kth iteration, we have

2ηE〈Ek,Dk+1 −D∗〉 = 2ηE
〈
Ek,Dk +

γ

2η
(I−W)Yk +

γ

2η
(I−W)Ek −D∗

〉
= γE〈Ek, (I−W)Ek〉 = γE‖Ek‖2I−W,

2ηE〈Ek,Dk+1 −Dk〉 = 2ηE
〈
Ek,

γ

2η
(I−W)Yk +

γ

2η
(I−W)Ek

〉
= γE〈Ek, (I−W)Ek〉 = γE‖Ek‖2I−W.

Proof. The proof is straightforward and omitted here.

Proof of Lemma 1. From Alg. 1, we have

2η〈Xk −X∗,∇F(Xk; ξk)−∇F(X∗)〉
=2〈Xk −X∗, η∇F(Xk; ξk)− η∇F(X∗)〉
=2〈Xk −X∗,Xk −Xk+1 − η(Dk+1 −D∗)〉 (from Line 7)

=2〈Xk −X∗,Xk −Xk+1〉 − 2η〈Xk −X∗,Dk+1 −D∗〉
=2〈Xk −X∗,Xk −Xk+1〉 − 2η〈Xk −Xk+1,Dk+1 −D∗〉 − 2η〈Xk+1 −X∗,Dk+1 −D∗〉
=2〈Xk −X∗ − η(Dk+1 −D∗),Xk −Xk+1〉 − 2η〈Xk+1 −X∗,Dk+1 −D∗〉
=2〈Xk+1 −X∗ + η(∇F(Xk; ξk)−∇F(X∗)),Xk −Xk+1〉 − 2η〈Xk+1 −X∗,Dk+1 −D∗〉 (from Line 7)

=2〈Xk+1 −X∗,Xk −Xk+1〉+ 2η〈∇F(Xk; ξk)−∇F(X∗),Xk −Xk+1〉
− 2η〈Xk+1 −X∗,Dk+1 −D∗〉. (25)

Then we consider the terms on the right hand side of (25) separately. Using 2〈A − B,B − C〉 =
‖A−C‖2 − ‖B−C‖2 − ‖A−B‖2, we have

2〈Xk+1 −X∗,Xk −Xk+1〉 =2〈X∗ −Xk+1,Xk+1 −Xk〉
=‖Xk −X∗‖2 − ‖Xk+1 −Xk‖2 − ‖Xk+1 −X∗‖2. (26)
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Using 2〈A,B〉 = ‖A‖2 + ‖B‖2 − ‖A−B‖2, we have

2η〈∇F(Xk; ξk)−∇F(X∗),Xk −Xk+1〉
=η2‖∇F(Xk; ξk)−∇F(X∗)‖2 + ‖Xk −Xk+1‖2 − ‖Xk −Xk+1 − η(∇F(Xk; ξk)−∇F(X∗))‖2

=η2‖∇F(Xk; ξk)−∇F(X∗)‖2 + ‖Xk −Xk+1‖2 − η2‖Dk+1 −D∗‖2. (from Line 7)
(27)

Combining (25), (26), (27), and (23), we obtain

2η〈Xk −X∗,∇F(Xk; ξk)−∇F(X∗)〉
= ‖Xk −X∗‖2 − ‖Xk+1 −Xk‖2 − ‖Xk+1 −X∗‖2︸ ︷︷ ︸

2〈Xk+1−X∗,Xk−Xk+1〉

+ η2‖∇F(Xk; ξk)−∇F(X∗)‖2 + ‖Xk −Xk+1‖2 − η2‖Dk+1 −D∗‖2︸ ︷︷ ︸
2η〈∇F(Xk;ξk)−∇F(X∗),Xk−Xk+1〉

−
(2η2
γ
〈Dk+1 −Dk,Dk+1 −D∗〉M − 2η〈Ek,Dk+1 −D∗〉

)
︸ ︷︷ ︸

2η〈Xk+1−X∗,Dk+1−D∗〉

=‖Xk −X∗‖2 − ‖Xk+1 −Xk‖2 − ‖Xk+1 −X∗‖2

+ η2‖∇F(Xk; ξk)−∇F(X∗)‖2 + ‖Xk −Xk+1‖2 − η2‖Dk+1 −D∗‖2

+
η2

γ

(
‖Dk −D∗‖2M − ‖Dk+1 −D∗‖2M − ‖Dk+1 −Dk‖2M

)
︸ ︷︷ ︸

−2〈Dk+1−Dk,Dk+1−D∗〉M

+2η〈Ek,Dk+1 −D∗〉,

where the last equality holds because

2〈Dk −Dk+1,Dk+1 −D∗〉M =‖Dk −D∗‖2M − ‖Dk+1 −D∗‖2M − ‖Dk+1 −Dk‖2M.

Thus, we reformulate it as

‖Xk+1 −X∗‖2 + η2

γ
‖Dk+1 −D∗‖2M

=‖Xk −X∗‖2 + η2

γ
‖Dk −D∗‖2M −

η2

γ
‖Dk+1 −Dk‖2M − η2‖Dk+1 −D∗‖2

− 2η〈Xk −X∗,∇F(Xk; ξk)−∇F(X∗)〉+ η2‖∇F(Xk; ξk)−∇F(X∗)‖2 + 2η〈Ek,Dk+1 −D∗〉,

which completes the proof.

E.4 PROOF OF LEMMA 2

Proof of Lemma 2. From Alg. 1, we take the expectation conditioned on kth compression and obtain

E‖Hk+1 −X∗‖2

=E‖(1− α)(Hk −X∗) + α(Yk −X∗) + αEk‖2 (from Line 13)

=‖(1− α)(Hk −X∗) + α(Yk −X∗)‖2 + α2E‖Ek‖2

=(1− α)‖Hk −X∗‖2 + α‖Yk −X∗‖2 − α(1− α)‖Hk −Yk‖2 + α2E‖Ek‖2. (28)

In the second equality, we used the unbiasedness of the compression, i.e., EEk = 0. The last
equality holds because of

‖(1− α)A+ αB‖2 = (1− α)‖A‖2 + α‖B‖2 − α(1− α)‖A−B‖2.
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In addition, by taking the conditional expectation on the compression, we have

‖Yk −X∗‖2 =‖Xk − η∇F(Xk; ξk)− ηDk −X∗‖2 (from Line 4)

=E‖Xk+1 + ηDk+1 − ηDk −X∗‖2 (from Line 7)

=E‖Xk+1 −X∗‖2 + η2E‖Dk+1 −Dk‖2 + 2ηE〈Xk+1 −X∗,Dk+1 −Dk〉
=E‖Xk+1 −X∗‖2 + η2E‖Dk+1 −Dk‖2

+
2η2

γ
E‖Dk+1 −Dk‖2M − 2ηE〈Ek,Dk+1 −Dk〉. (from (23))

=E‖Xk+1 −X∗‖2 + η2E‖Dk+1 −Dk‖2

+
2η2

γ
E‖Dk+1 −Dk‖2M − γE‖Ek‖2I−W. (from Line 6) (29)

Combing the above two equations (28) and (29) together, we have

E‖Hk+1 −X∗‖2

≤(1− α)‖Hk −X∗‖2 + αE‖Xk+1 −X∗‖2 + αη2E‖Dk+1 −Dk‖2 + 2αη2

γ
E‖Dk+1 −Dk‖2M

− αγE‖Ek‖2I−W + α2E‖Ek‖2 − α(1− α)‖Yk −Hk‖2, (30)

which completes the proof.

E.5 PROOF OF THEOREM 1

Proof of Theorem 1. Combining Lemmas 1, 2, and 5, we have the expectation conditioned on the
compression satisfying

E‖Xk+1 −X∗‖2 + η2

γ
E‖Dk+1 −D∗‖2M + a1E‖Hk+1 −X∗‖2

≤‖Xk −X∗‖2 + η2

γ
‖Dk −D∗‖2M −

η2

γ
E‖Dk+1 −Dk‖2M − η2E‖Dk+1 −D∗‖2

− 2η〈Xk −X∗,∇F(Xk; ξk)−∇F(X∗)〉+ η2‖∇F(Xk; ξk)−∇F(X∗)‖2 + γE‖Ek‖2I−W
+ a1(1− α)‖Hk −X∗‖2 + a1αE‖Xk+1 −X∗‖2 + a1αη

2E‖Dk+1 −Dk‖2

+
2a1αη

2

γ
E‖Dk+1 −Dk‖2M + a1α

2E‖Ek‖2 − a1αγE‖Ek‖2I−W − a1α(1− α)‖Yk −Hk‖2

= ‖Xk −X∗‖2 − 2η〈Xk −X∗,∇F(Xk; ξk)−∇F(X∗)〉+ η2‖∇F(Xk; ξk)−∇F(X∗)‖2︸ ︷︷ ︸
A

+ a1αE‖Xk+1 −X∗‖2 + η2

γ
‖Dk −D∗‖2M − η2E‖Dk+1 −D∗‖2

+ a1(1− α)‖Hk −X∗‖2−(1− 2a1α)
η2

γ
E‖Dk+1 −Dk‖2M + a1αη

2E‖Dk+1 −Dk‖2︸ ︷︷ ︸
B

+ a1α
2E‖Ek‖2 + (1− a1α)γE‖Ek‖2I−W − a1α(1− α)‖Yk −Hk‖2︸ ︷︷ ︸

C

, (31)

where a1 is a non-negative number to be determined. Then we deal with the three terms on the right
hand side separately. We want the terms B and C to be nonpositive. First, we consider B. Note that
Dk ∈ Range(I−W). If we want B ≤ 0, then, we need 1−2a1α > 0, i.e., a1α < 1/2. Therefore
we have

B =− (1− 2a1α)
η2

γ
E‖Dk+1 −Dk‖2M + a1αη

2E‖Dk+1 −Dk‖2

≤
(
a1α−

(1− 2a1α)λn−1(M)

γ

)
η2E‖Dk+1 −Dk‖2,
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where λn−1(M) > 0 is the second smallest eigenvalue of M. It means that we also need

a1α+
(2a1α− 1)λn−1(M)

γ
≤ 0,

which is equivalent to

a1α ≤
λn−1(M)

γ + 2λn−1(M)
< 1/2. (32)

Then we look at C. We have

C =a1α2E‖Ek‖2 + (1− a1α)γE‖Ek‖2I−W − a1α(1− α)‖Yk −Hk‖2

≤((1− a1α)βγ + a1α
2)E‖Ek‖2 − a1α(1− α)‖Yk −Hk‖2

≤C((1− a1α)βγ + a1α
2)‖Yk −Hk‖2 − a1α(1− α)‖Yk −Hk‖2

Because we have 1− a1α > 1/2, so we need

C((1− a1α)βγ + a1α
2)− a1α(1− α) = (1 + C)a1α

2 − a1(Cβγ + 1)α+ Cβγ ≤ 0. (33)

That is

α ≥ a1(Cβγ + 1)−
√
a21(Cβγ + 1)2 − 4(1 + C)Ca1βγ

2(1 + C)a1
=: α0, (34)

α ≤ a1(Cβγ + 1) +
√
a21(Cβγ + 1)2 − 4(1 + C)Ca1βγ

2(1 + C)a1
=: α1. (35)

Next, we look at A. Firstly, by the bounded variance assumption, we have the expectation condi-
tioned on the gradient sampling in kth iteration satisfying

E‖Xk −X∗‖2 − 2ηE〈Xk −X∗,∇F(Xk; ξk)−∇F(X∗)〉+ η2E‖∇F(Xk; ξk)−∇F(X∗)‖2

≤‖Xk −X∗‖2 − 2η〈Xk −X∗,∇F(Xk)−∇F(X∗)〉+ η2‖∇F(Xk)−∇F(X∗)‖2 + nη2σ2

Then with the smoothness and strong convexity from Assumptions 4, we have the co-coercivity of
∇gi(x) with gi(x) := fi(x)− u

2 ‖x‖
2
2, which gives

〈Xk −X∗,∇F(Xk)−∇F(X∗)〉 ≥ µL

µ+ L
‖Xk −X∗‖2 + 1

µ+ L
‖∇F(Xk)−∇F(X∗)‖2.

When η ≤ 2/(µ+ L), we have

〈Xk −X∗,∇F(Xk)−∇F(X∗)〉

=

(
1− η(µ+ L)

2

)
〈Xk −X∗,∇F(Xk)−∇F(X∗)〉+ η(µ+ L)

2
〈Xk −X∗,∇F(Xk)−∇F(X∗)〉

≥
(
µ− ηµ(µ+ L)

2
+
ηµL

2

)
‖Xk −X∗‖2 + η

2
‖∇F(Xk)−∇F(X∗)‖2

=µ
(
1− ηµ

2

)
‖Xk −X∗‖2 + η

2
‖∇F(Xk)−∇F(X∗)‖2.

Therefore, we obtain

− 2η〈Xk −X∗,∇F(Xk)−∇F(X∗)〉
≤ − η2‖∇F(Xk)−∇F(X∗)‖2 − µ(2η − µη2)‖Xk −X∗‖2. (36)

Conditioned on the kthe iteration, (i.e., conditioned on the gradient sampling in kth iteration), the
inequality (31) becomes

E‖Xk+1 −X∗‖2 + η2

γ
E‖Dk+1 −D∗‖2M + a1E‖Hk+1 −X∗‖2

≤
(
1− µ(2η − µη2)

)
‖Xk −X∗‖2 + a1αE‖Xk+1 −X∗‖2

+
η2

γ
‖Dk −D∗‖2M − η2E‖Dk+1 −D∗‖2 + a1(1− α)‖Hk −X∗‖2 + nη2σ2, (37)
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if the step size satisfies η ≤ 2
µ+L . Rewriting (37), we have

(1− a1α)E‖Xk+1 −X∗‖2 + η2

γ
E‖Dk+1 −D∗‖2M + η2E‖Dk+1 −D∗‖2 + a1E‖Hk+1 −X∗‖2

≤
(
1− µ(2η − µη2)

)
‖Xk −X∗‖2 + η2

γ
‖Dk −D∗‖2M + a1(1− α)‖Hk −X∗‖2 + nη2σ2,

(38)

and thus

(1− a1α)E‖Xk+1 −X∗‖2 + η2

γ
E‖Dk+1 −D∗‖2M+γI + a1E‖Hk+1 −X∗‖2

≤
(
1− µ(2η − µη2)

)
‖Xk −X∗‖2 + η2

γ
‖Dk −D∗‖2M + a1(1− α)‖Hk −X∗‖2 + nη2σ2.

(39)

With the definition of Lk in (12), we have

ELk+1 ≤ ρLk + nη2σ2, (40)

with

ρ = max

{
1− µ(2η − µη2)

1− a1α
,

λmax(M)

γ + λmax(M)
, 1− α

}
.

where
λmax(M) = 2λmax((I−W)†)− γ.

Recall all the conditions on the parameters a1, α, and γ to make sure that ρ < 1:

a1α ≤
λn−1(M)

γ + 2λn−1(M)
, (41)

a1α ≤ µ(2η − µη2), (42)

α ≥ a1(Cβγ + 1)−
√
a21(Cβγ + 1)2 − 4(1 + C)Ca1βγ

2(1 + C)a1
=: α0, (43)

α ≤ a1(Cβγ + 1) +
√
a21(Cβγ + 1)2 − 4(1 + C)Ca1βγ

2(1 + C)a1
=: α1. (44)

In the following, we show that there exist parameters that satisfy these conditions.

Since we can choose any a1, we let

a1 =
4(1 + C)

Cβγ + 2
,

such that

a21(Cβγ + 1)2 − 4(1 + C)Ca1βγ = a21.

Then we have

α0 =
Cβγ

2(1 + C)
→ 0, as γ → 0,

α1 =
Cβγ + 2

2(1 + C)
→ 1

1 + C
, as γ → 0.

Conditions (43) and (44) show

a1α ∈
[

2Cβγ

Cβγ + 2
, 2

]
→ [0, 2], if C = 0 or γ → 0.
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Hence in order to make (41) and (42) satisfied, it’s sufficient to make

2Cβγ

Cβγ + 2
≤ min

{
λn−1(M)

γ + 2λn−1(M)
, µ(2η − µη2)

}
= min

{
2
β − γ
4
β − γ

, µ(2η − µη2)

}
. (45)

where we use λn−1(M) = 2
λmax(I−W) − γ = 2

β − γ.

When C > 0, the condition (45) is equivalent to

γ ≤ min

{
(3C + 1)−

√
(3C + 1)2 − 4C

Cβ
,

2µη(2− µη)
[2− µη(2− µη)]Cβ

}
. (46)

The first term can be simplified using

(3C + 1)−
√
(3C + 1)2 − 4C

Cβ
≥ 2

(3C + 1)β

due to
√
1− x ≤ 1− x

2 when x ∈ (0, 1).

Therefore, for a given stepsize η, if we choose

γ ∈
(
0,min

{ 2

(3C + 1)β
,

2µη(2− µη)
[2− µη(2− µη)]Cβ

})
and

α ∈
[

Cβγ

2(1 + C)
,min

{Cβγ + 2

2(1 + C)
,
2− βγ
4− βγ

Cβγ + 2

4(1 + C)
, µη(2− µη)Cβγ + 2

4(1 + C)

}]
,

then, all conditions (41)-(44) hold.

Note that γ < 2
(3C+1)β implies γ < 2

β , which ensures the positive definiteness of M over span{I−
W} in Lemma 4.

Note that η ≤ 2
µ+L ensures

µη(2− µη)Cβγ + 2

4(1 + C)
≤ Cβγ + 2

2(1 + C)
. (47)

So, we can simplify the bound for α as

α ∈
[

Cβγ

2(1 + C)
,min

{2− βγ
4− βγ

Cβγ + 2

4(1 + C)
, µη(2− µη)Cβγ + 2

4(1 + C)

}]
.

Lastly, taking the total expectation on both sides of (40) and using tower property, we complete the
proof for C > 0.

Proof of Corollary 1. Let’s first define κf = L
µ and κg = λmax(I−W)

λ+
min(I−W)

= λmax(I −W)λmax((I −
W)†).

We can choose the stepsize η = 1
L such that the upper bound of γ is

γupper =min
{ 2

(3C + 1)β
,

2
κf

(
2− 1

κf

)
[
2− 1

κf

(
2− 1

κf

)]
Cβ

,
2

β

}
≥ min

{
2

(3C + 1)β
,

1

κfCβ

}
,

due to x(2−x)
2−x(2−x) ≥

x
2−x ≥ x when x ∈ (0, 1).

Hence we can take γ = min{ 1
(3C+1)β ,

1
κfCβ

}.
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The bound of α is

α ∈
[

Cβγ

2(1 + C)
,min

{
2− βγ
4− βγ

Cβγ + 2

4(1 + C)
,
1

κf
(2− 1

κf
)
Cβγ + 2

4(1 + C)

}]
When γ is chosen as 1

κfCβ
, pick

α =
Cβγ

2(1 + C)
=

1

2(1 + C)κf
. (48)

When 1
(3C+1)β ≤

1
κfCβ

, the upper bound of α is

αupper = min

{
2− βγ
4− βγ

Cβγ + 2

4(1 + C)
,
1

κf
(2− 1

κf
)
Cβγ + 2

4(1 + C)

}
= min

{
6C + 1

12C + 3
,
1

κf
(2− 1

κf
)

}
7C + 2

4(C + 1)(3C + 1)

≥ min

{
6C + 1

12C + 3
,
1

κf

}
7C + 2

4(C + 1)(3C + 1)
.

In this case, we pick

α = min

{
6C + 1

12C + 3
,
1

κf

}
7C + 2

4(C + 1)(3C + 1)
. (49)

Note α = O
(

1
(1+C)κf

)
since 6C+1

12C+3 is lower bounded by 1
3 . Hence in both cases (Eq. (48) and

Eq. (49)), α = O
(

1
(1+C)κf

)
, and the third term of ρ is upper bounded by

1− α ≤ max

{
1− 1

2(1 + C)κf
, 1−min

{
6C + 1

12C + 3
,
1

κf

}
7C + 2

4(1 + C)(3C + 1)

}
In two cases of γ, the second term of ρ becomes

1− γ

2λmax((I−W)†)
= max

{
1− 1

2Cκfκg
, 1− 1

(1 + 3C)κg

}

Before analysing the first term of ρ, we look at a1α in two cases of γ. When γ = 1
κfCβ

,

a1α =
2Cβγ

Cβγ + 2
=

2

2κf + 1
≤ 1

κf
.

When γ = 1
(3C+1)β ,

a1α = min

{
6C + 1

(12C + 3)
,
1

κf

}
≤ 1

κf
.

In both cases, a1α ≤ 1
κf

. Therefore, the first term of ρ becomes

1− µη(2− µη)
1− a1α

≤
1− 1

κf
(2− 1

κf
)

1− 1
κf

= 1−
1− 1

κf

κf − 1
= 1− 1

κf
.

To summarize, we have

ρ ≤ 1−min

{
1

κf
,

1

2Cκfκg
,

1

(1 + 3C)κg
,

1

2(1 + C)κf
,min

{
6C + 1

12C + 3
,
1

κf

}
7C + 2

4(1 + C)(3C + 1)

}
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and therefore

ρ = max

{
1−O

( 1

(1 + C)κf

)
, 1−O

( 1

(1 + C)κg

)
, 1−O

( 1

Cκfκg

)}
.

With full-gradient (i.e., σ = 0), we get ε−accuracy solution with the total number of iterations

k ≥ Õ((1 + C)(κf + κg) + Cκfκg).

When C = 0, i.e., there is no compression, the iteration complexity recovers that of NIDS,
Õ (κf + κg) .

When C ≤ κf+κg

κfκg+κf+κg
, the complexity is improved to that of NIDS, i.e., the compression doesn’t

harm the convergence in terms of the order of the coefficients.

Proof of Corollary 2. Note that (xk)> = Xk and 1n×1X
∗ = X∗, then

n∑
i=1

E‖xki − xk‖2 = E
∥∥Xk − 1n×1X

k
∥∥2

= E
∥∥Xk −X∗ +X∗ − 1n×1X

k
∥∥2

= E
∥∥∥∥Xk −X∗ −

1n×11
>
n×1

n

(
Xk −X∗

)∥∥∥∥
≤ E‖Xk −X∗‖2

≤ ρELk−1 + nη2σ2(1− ρ)−1

1− a1α

≤ 2ρkL0 + 2
nη2σ2

1− ρ
. (50)

The last inequality holds because we have a1α ≤ 1/2.

Proof of Corollary 3. From the proof of Theorem 1, when C = 0, we can set γ = 1, α = 1, and
a1 = 0. Plug those values into ρ, and we obtain the convergence rate for NIDS.

E.6 PROOF OF THEOREM 2

Proof of Theorem 2. In order to get exact convergence, we pick diminishing step-size, set α =
Cβγ

2(1+C) , a1α = 2Cβγk
Cβγk+2 , θ1 = 1

2λmax((I−W)†)
and θ2 = Cβ

2(1+C) , then

ρk = max

{
1− µηk(2− µηk)− a1α

1− a1α
, 1− θ1γk, 1− θ2γk

}
If we further pick diminishing ηk and γk such that µηk(2− µηk)− a1α ≥ a1α, then

µηk(2− µηk)− a1α
1− a1α

≥ a1α

1− a1α
=

2Cβγk
2− Cβγk

≥ Cβγk.

Notice that Cβγ ≤ 2
3 since (3C + 1) −

√
(3C + 1)2 − 4C is increasing in C > 0 with limit 2

3 at
∞.

In this case we only need,

γk ∈

(
0,min

{ (3C + 1)−
√
(3C + 1)2 − 4C

Cβ
,

2µηk(2− µηk)
[4− µηk(2− µηk)]Cβ

,
2

β

})
. (51)

And
ρk ≤ max {1− Cβγk, 1− θ1γk, 1− θ2γk} ≤ 1− θ3γk
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if θ3 = min{θ1, θ2} and note that θ2 ≤ Cβ.
We define

Lk := (1− a1αk)‖Xk −X∗‖2 + (2η2k/γk)E‖Dk+1 −D∗‖2(I−W)† + a1‖Hk −X∗‖2.

Hence
ELk+1 ≤ (1− θ3γk)ELk + nσ2η2k.

From a1α ≤ µηk(2−µηk)
2 , we get

4Cβγk
Cβγk + 2

≤ µηk(2− µηk).

If we pick γk = θ4ηk, then it’s sufficient to let

2Cβθ4ηk ≤ µηk(2− µηk).

Hence if θ4 < µ
Cβ and let η∗ =

2(µ−Cβθ4)
µ2 , then ηk = γk

θ4
∈ (0, η∗) guarantees the above discussion

and
ELk+1 ≤ (1− θ3θ4ηk)ELk + nσ2η2k.

So far all restrictions for ηk are

ηk ≤ min

{
2

µ+ L
, η∗

}
and

ηk ≤
1

θ4
min

{
(3C + 1)−

√
(3C + 1)2 − 4C

Cβ
,
2

β

}

Let θ5 = min

{
2

µ+L , η∗,
(3C+1)−

√
(3C+1)2−4C

Cβθ4
, 2
βθ4

}
, ηk = 1

Bk+A and D = max
{
AL0, 2nσ

2

θ3θ4

}
,

we claim that if we pick B = θ3θ4
2 and some A, by setting ηk = 2

θ3θ4k+2A , we get

ELk ≤ D

Bk +A
.

Induction:
When k = 0, it’s obvious. Suppose previous k inequalities hold. Then

ELk+1 ≤
(
1− 2θ3θ4

θ3θ4k + 2A

)
2D

θ3θ4k + 2A
+

4nσ2

(θ3θ4k + 2A)2
.

Multiply M := (θ3θ4k + θ3θ4 + 2A)(θ3θ4k + 2A)(2D)−1 on both sides, we get

MELk+1 ≤
(
1− 2θ3θ4

θ3θ4k + 2A

)
(θ3θ4k + θ3θ4 + 2A) +

4nσ2(θ3θ4k + θ3θ4 + 2A)

2D(θ3θ4k + 2A)

=
2D(θ3θ4k + 2A− 2θ3θ4)(θ3θ4k + θ3θ4 + 2A) + 4nσ2(θ3θ4k + θ3θ4 + 2A)

2D(θ3θ4k + 2A)

=
2D(θ3θ4k + 2A)2 + 4nσ2(θ3θ4k + 2A)− 4Dθ3θ4(θ3θ4k + 2A) + 2Dθ3θ4(θ3θ4k + 2A)

2D(θ3θ4k + 2A)

+
−4D(θ3θ4)

2 + 4nσ2θ3θ4
2D(θ3θ4k + 2A)

≤θ3θ4k + 2A.

Hence
ELk+1 ≤ 2D

θ3θ4(k + 1) + 2A

29



Published as a conference paper at ICLR 2021

This induction holds for any A such that ηk is feasible, i.e.

η0 =
1

A
≤ θ5.

Here we summarize the definition of constant numbers:

θ1 =
1

2λmax((I−W)†)
, θ2 =

Cβ

2(1 + C)
, (52)

θ3 = min{θ1, θ2}, θ4 ∈
(
0,

µ

Cβ

)
, η∗ =

2(µ− Cβθ4)
µ2

, (53)

θ5 = min

{
2

µ+ L
, η∗,

(3C + 1)−
√
(3C + 1)2 − 4C

Cβθ4
,

2

βθ4

}
. (54)

Therefore, let A = 1
θ5

and ηk = 2θ5
θ3θ4θ5k+2 , we get

1

n
ELk ≤

2max
{

1
nL

0, 2σ
2θ5

θ3θ4

}
θ3θ4θ5k + 2

.

Since 1− a1αk ≥ 1/2, we complete the proof.
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