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Abstract— Earlier work has shown that reusing experience
from prior motion planning problems can improve the efficiency
of similar, future motion planning queries. However, for robots
with many degrees-of-freedom, these methods exhibit poor
generalization across different environments and often require
large datasets that are impractical to gather. We present SPARK

and FLAME, two experience-based frameworks for sampling-
based planning applicable to complex manipulators in 3D

environments. Both combine samplers associated with features
from a workspace decomposition into a global biased sampling
distribution. SPARK decomposes the environment based on
exact geometry while FLAME is more general, and uses an
octree-based decomposition obtained from sensor data. We
demonstrate the effectiveness of SPARK and FLAME on a real
and simulated Fetch robot tasked with challenging pick-and-
place manipulation problems. Our approaches can be trained
incrementally and significantly improve performance with only
a handful of examples, generalizing better over diverse tasks
and environments as compared to prior approaches.

I. INTRODUCTION

For many high-dimensional systems, sampling-based meth-

ods have proven very successful at efficient motion plan-

ning [1]. However, as noted by [2], they are sensitive to

“challenging regions”, such as narrow passages in the search

space, which have a low probability of being sampled. The

existence of such “challenging regions” hinders the perfor-

mance of sampling-based planners.

Many methods have improved the performance of sampling-

based planners by using experience from prior motion plan-

ning problems, e.g., [3], [4]. In particular, experience can be

used to learn how to explore the “challenging regions” of the

search space. However, for high dimensional robots, learning-

based methods typically face difficulties in generalizing even

between similar environments [5]–[7].

This work presents two experience-based planning

frameworks—one using exact geometry (SPARK) and one

using sensor data (FLAME)—for high DOF robots in 3D

environments. Both frameworks build on the decomposition

paradigm introduced by [5]. That work introduced the idea

of local primitives, which capture important local workspace

features. Each primitive is associated with a local sampler,

which produces samples in “challenging regions” created

by the primitive, and are stored in an experience database.

The database is updated offline by adding experiences from
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Fig. 1. The proposed sampling-biasing frameworks applied in a real
challenging motion planning problem. a) The 8 DOF Fetch robot must
reach into a shelf to grasp one of the randomly positioned blocks. Between
problems, the base pose varies by up ±90

◦ in angular position and up to
±10 cm along the X- and Y-coordinates. b) A VICON camera system was
used to gather object poses for SPARK. The Fetch’s depth camera was used
to build an octomap [8] for FLAME which can retrieve relevant experience
even from partial noisy octomaps. c) Both improve RRT-Connect even with
few given examples.

past planning problems in an incremental manner. Given a

planning query, similar local primitives to those in the current

workspace are retrieved; their local samplers are combined and

used by a sampling-based planner. In such a framework several

questions arise on the definition and use of local primitives.

[5] required a priori knowledge of local primitives and was

designed for 2D environments with circular obstacles.

The contributions of this paper are the following. We

present SPARK which scales to 3D environments when ex-

act geometric information is available and FLAME which

relies only on sensor information. In order to develop these

frameworks, we revisit and enrich the framework of [5] by

introducing novel local primitives, distance functions, and

utilizing efficient retrieval structures. Furthermore, we propose

a new criticality test that enables incremental training of

SPARK and FLAME from novel scenes. Through the synergistic

combination of the introduced components, we achieve real-

time retrieval and training of both frameworks. Finally we

validate our methods on a suite of simulated and real robot ex-

periments with the Fetch robot, an 8 degree-of-freedom (DOF)

manipulator. Compared to prior work, our methods exhibit

significantly better performance over diverse environments

and tasks with relatively few examples. The datasets and the

implementation of SPARK and FLAME are open-sourced 1.

II. PROBLEM STATEMENT

Consider a robot in a workspace W . A robot configuration

x is a point in the configuration space (C-space), x ∈ C.

1https://github.com/KavrakiLab/pyre

https://github.com/KavrakiLab/pyre
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Obstacles in workspace induce C-space obstacles where the

robot is in collision. We are interested in finding a collision-

free path (p), from start to goal as efficiently as possible.

Sampling-based planners are widely used for motion plan-

ning [1], [9]. These planners randomly sample to explore

the C-space. However, the performance of sampling-based

planners is degraded when “challenging regions” exist in the

C-space [2]. These regions, introduced by W and the robot

geometry, create difficult-to-explore areas in the C-space due

to their “low visibility” relative to the entire C-space. It is

understood [10], [11] that sampling in such regions can signifi-

cantly improve performance. Thus, the problem we consider is

to generate a biased sampler P (x|W) which produces samples

in “challenging regions.”. In other words, we want to learn

a mapping from W to samples in “challenging regions.”

III. RELATED WORK

One way to bias sampling is with rejection sampling,

which draws uniform samples but only accepts them if

a geometric test is passed, e.g., bridge sampling [2] or

Gaussian sampling [12]. However, rejection sampling is

inefficient, possibly drawing many samples before a valid

one is found. Some approaches attempt to directly sample

the “challenging regions,” such as medial axis sampling [13]

or free-space dilation [14], but these distributions become

difficult to compute as the state space increases in dimension.

Rather than using fixed distributions, many methods [15],

[16] adapt sampling online based on collision information,

such as utility-guided sampling [17], toggle-PRM [18] or

hybrid-PRM [19]. However, these methods do not transfer

knowledge between planning queries. Our methods bias based

on prior motion plans, and thus is complementary to adaptive

sampling methods.

Another category of techniques improves planning by

learning problem invariants. Examples include using

sparse roadmaps [3], informed lazy evaluations [20], path

databases [21]–[23], or biased distributions [24]. However,

these methods do not use workspace information. Thus,

changes in the environment force these methods to repair

now invalidated information, reducing performance.

On the other hand, many methods do use workspace

features to guide sampling—typically, exact [25], [26] or

inexact [27] workspace decompositions are used. For example,

the authors of [28] use balls to decompose the workspace.

However, to generate samples in “challenging regions,” these

approaches require a mapping from workspace to C-space,

reliant on the robot’s inverse kinematics. Thus, these methods

are typically limited to free-flying or low-dimensional robots,

as manipulator kinematics can become complex. The proposed

methods also use workspace decompositions (both an exact

and inexact one), but instead learn the inverse mapping from

workspace to C-space.

Many recent techniques use deep learning to learn the

mapping from workspace to C-space, such as using neural

networks to bias sampling [4], [6], [29], [30] or to guide

planners [31]–[33]). However, due to the inherent discontinu-

ity of motion planning [34], [35], this mapping is generally

discontinuous, limiting the applicability of these methods [5],

[7], [36]. That is, small changes in the workspace result in

substantial (possibly discontinuous) changes in C-space. Thus,

these approaches usually apply only to manipulators with low

workspace variance [4], [29]–[31].

On the other hand, a category of methods that addresses

the discontinuity problem, are mixture model methods and

similarity-based methods. Mixture model methods [7], [37]

learn different functions for different discontinuous regions

but are limited by the fixed number of mixtures. Similarity-

based methods [5], [38], [39], which are most similar to ours,

are usually non-parametric techniques that retrieve relevant in-

formation (e.g., “challenging regions” representations) based

on workspace similarity. Retrieval is by design discontinuity-

sensitive since multiple different “challenging regions” can

be retrieved for similar workspaces. However, [38] is limited

to free flying robots [39] addresses trajectory optimization-

based problems rather than sampling and [5] is limited to 2D

planar environments with circular objects. Our work shares

the retrieval idea with these methods but applies to general

3D workspaces with realistic robots.

IV. METHODOLOGY

We introduce two experience-based planning frameworks

for arbitrary 3D environments and manipulators, SPARK and

FLAME. SPARK requires an exact representation of the environ-

ment’s geometry, while FLAME only uses sensor information

represented as an octomap [8].

Consider the Fetch robot reaching into a deep shelf, as

shown in Fig. 1. The arrangement of the workspace obstacles

constricts the manipulator’s movement, making the motion

planning problem challenging. Both frameworks decompose

the workspace into local primitives to capture local workspace

features that create “challenging regions” in C-space, e.g., the

shelf’s sides that create a narrow region for reaching. Our

frameworks learn by using a criticality test, which associates

“critical” configurations from every successful motion plan

to relevant local primitives in the current workspace. For

example, the criticality test should capture that configurations

of the Fetch’s arm deep in the shelf, should be associated with

the sides of the shelf. These configurations are used to create

a local sampler—a biased sampling distribution focused on

“challenging regions” created by the associated local primitive.

During learning, these primitive-sampler pairs are stored in a

spatial database (Alg. 1). When inferring for a new problem,

relevant local primitive-sampler pairs are retrieved from the

database; local samplers are then combined into a global

biased sampler (Alg. 2).

A. Overall Framework

Both SPARK and FLAME define their own decomposition of

the workspace into local primitives, a criticality test for these

primitives, and a metric to compare local primitives. The

database that stores local primitives, their associated local

samplers, and the synthesis of the global sampler is the same

in SPARK and FLAME.
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Algorithm 1: Learning

Input : Workspace W , Path p, Database B
Output : Database B

1 Decompose W to L ← {ℓ1, . . . , ℓN}
2 foreach ℓj ∈ L do

3 CRITICAL ← ∅
4 foreach x ∈ p do

5 if ISCRITICAL(x, ℓi) then

6 CRITICAL ← CRITICAL ∪ x

7 Generate Pj (x | ℓj) from CRITICAL

8 Add 〈ℓj , Pj (x | ℓj)〉 in B
9 return B

1) Local Primitives: Local primitives are workspace

features that come from any valid decomposition of the

workspace. Each local primitive attempts to capture the

workspace features that create “challenging regions” in the

C-space. The definition of local primitives is a key component

of the algorithm. The local primitives for SPARK and FLAME

are given in their respective sections, and are shown in

Fig. 2 and Fig. 3. We denote local primitives with ℓ. From a

given workspace W , N local primitives are created from a

workspace decomposition such that
⋃N

i=1 ℓi ⊆ W (line 1 in

Alg. 1, line 1 in Alg. 2).

2) Local Samplers: Each local primitive ℓi is associated

with a local sampler, which should produce samples in the

“challenging regions” created by the associated local primitive.

A local sampler Pi (x | ℓi) is a generative distribution over

a set of Mi “critical” configurations Xi = {xi1, . . . , xiMi
}

gathered from past experience. Due to the potential complexity

of this distribution and its natural multi-modality, we represent

the local sampler as a Gaussian mixture model (GMM),

similar to [24]. Contrary to [24], we do not use expectation

maximization to calculate the parameters of the GMM. Instead,

we place one mixture for each configuration xij in the local

sampler Pi with a fixed covariance σ (line 7 in Alg. 1):

Pi (x | ℓi) =
1

Mi

Mi
∑

j=1

N (xij , σ).

We choose uniforms weights—all mixtures are equiprobable.

3) Criticality Test: In 3D local primitives may or may not

create “challenging regions,” and finding if a configuration

belongs to such a region is not straightforward. The authors

of [40] chose regions with maximum path density while [41]

and [6] identified “challenging regions” using graph prop-

erties of a roadmap. However in our setting only finding

these regions is not enough, since they must also correspond

to a local primitive. To overcome this problem, and depart

from earlier work, we introduce a criticality test (ISCRITICAL,

line 4 in Alg. 1), which associates key configurations from

solution paths to relevant local primitives. The intuition is

that a configuration in a critical region will be close to a

C-space obstacle, which often means that some part of the

robot will be close to a workspace obstacle. Both SPARK

and FLAME define their own criticality test, which enables

learning incrementally without a priori knowledge.

Algorithm 2: Inference

Input : Query Workspace W , Database B
Output : Sampler P (x | W)

1 Decompose W to L ← {ℓ1, . . . , ℓN}
2 foreach ℓj ∈ L do

3 Retrieve all {Pi (x | ℓi) | d(ℓi, ℓj) ≤ dradius}
4 Synthesize P (x | W) from all Pi (x | ℓi)
5 return P (x | W)

4) Distance Function: Given a new motion planning

problem, the workspace is decomposed into a set of local

primitives. Based on a distance metric over local primitives

d(ℓi, ℓj), we search for similar local primitives in the existing

database d(ℓi, ℓj) ≤ dradius and retrieve their associated local

samplers (line 3 in Alg. 2). Both SPARK and FLAME define

a distance metric over their local primitives.

Quick retrieval of relevant local primitives is essential to our

method. We use GNAT [42], a data structure with logarithmic

scaling for nearest-neighbor retrieval in high-dimensional

metric spaces. GNAT also enables fast rejection of queries that

do not exist within the database, which is useful as many local

primitives are irrelevant e.g., outside the reachable workspace.

5) Global Sampling: Given a set of K retrieved local

samplers, they are combined in a composite GMM (line 4 in

Alg. 2):

P (x | W) ≈
1

K

K
∑

i=1

P (x | ℓ) =
1

K

K
∑

i=1

1

Mi

Mi
∑

j=1

N (xij , σ).

To avoid redundancy as local samplers may be the same, a

local sampler is used only if its unique. To retain probabilistic

completeness, there is a chance λ > 0 to sample uniformly

rather than from the GMM. If no local samplers are retrieved

the biased sampler defaults to uniform sampling, i.e., λ = 1.

B. SPARK

1) Local Primitives: In SPARK, local primitives are defined

as pairs of box obstacles ωa and ωb, which have the following

parameters:

ℓi = {ωa
i , ω

b
i } = {T a

i , s
a
i , T

b
i , s

b
i},

where T, s respectively denote the pose and size—a 3D vector

for the scale of each dimension—of each box, for a total of

10 parameters per box. Non-box objects are approximated

by bounding boxes. Boxes that are too far from each other

(see Sec. IV-B.3) are not considered valid local primitives.

An example of pairs of local primitives can be seen in Fig. 2.

Intuitively, pairs of objects create “challenging regions”

in the configuration space, as they constrict space in the

workspace. Note that one or many (e.g., 3) objects per local

primitive are also viable options. However, single objects

are less discriminative than two and thus recall extraneous

information. In a similar vein, considering many objects

combinatorially increases the number of primitives in a scene.

As we show in Sec. V, using pairs of objects provides good

results in our tested scenarios.
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Fig. 2. An example of SPARK, our experience-based planning framework that decomposes the workspace into pairs of known obstacles. a) The global
workspace, composed of a set of boxes and cylinders. b) Three local primitives (different pairs are shown with blue, magenta, pink color) from the SPARK

decomposition. Note that the bottom of the shelf is shared between two primitives. c) A set of superimposed samples drawn from the local samplers.

2) Criticality Test: To check if a configuration is associated

with a local primitive, we find the minimum distance between

the robot at that configuration with the pair of obstacles. For

every shape in the robot’s geometry, the distance to both

objects in the local primitive is measured with the Gilbert-

Johnson-Keerthi (GJK) algorithm [43]. If the minimum

distance is smaller than a threshold dclust, that configuration

is related to that local primitive.

3) Distance: To measure the distance between poses in

SE(), we use [44]:

dSE() (Ti, Tj) = wT ‖ti − tj‖+ (1− wT )
(

1− 〈qi, qj〉
2
)

,

where t, q respectively denote translation and orientation (a

quaternion) of a pose T , wT is a chosen weight, ‖·‖ is the

Euclidean norm and 〈·, ·〉 is the inner product. To measure

distance between boxes, we use a sum of metrics:

dω(ωi, ωj) = wsdSE() (Ti, Tj) + (1− ws) ‖si − sj‖ ,

where ws is a chosen weight. Local primitives for SPARK

are all the pairs of boxes dω(ωi, ωj) with distance less than

dpairs. To compare local primitives, we use a metric that is

the minimum distance between the boxes in each primitive:

d(ℓi, ℓj) = min

{

dω(ω
a
i , ω

a
j ) + dω(ω

b
i , ω

b
j)

dω(ω
a
i , ω

b
j) + dω(ω

b
i , ω

a
j )

C. FLAME

1) Local Primitives: In FLAME, local primitives are defined

as “local” occupancy grids, or octoboxes, which are obtained

from a global octree. An octree is a hierarchical volumetric

tree that efficiently encodes obstacles in the workspace. At

each level, the octree contains voxels—descending a level

of the tree, these voxels are split in half along each of its

axes, each giving 8 subvoxels. A voxel contains occupancy

information at its resolution; a voxel is either occupied or

free. Voxels at higher levels can compact information from

lower levels—if all subvoxels are either occupied or free, then

the tree does not need to descend further. FLAME is useful

for application on real robots as octrees [8] are a common

approach used to represent sensor data.

We define octoboxes as occupancy grids that correspond

to intermediate nodes of an octree. Here, octoboxes contain

the voxels of the two lowest levels of the octree, that is, 64

voxels as a 4× 4× 4 3D occupancy grid.

To decompose the workspace, an octree is built relative

to the robot base frame that captures the occupancy of the

workspace. Non-empty octoboxes are quickly generated by

traversing the octree at a specific depth. We also consider

the pose T of the center of the octobox relative to the robot

base frame. An example is shown in Fig. 3. Local primitives

in FLAME are ℓi = {Ti, bi}, where T is the pose of the

octobox and b is a 64-bit occupancy grid vector, where each

bit corresponds to an occupied (1) or free (0) voxel.

2) Criticality Test: A configuration xi is associated with

a local primitive if the robot’s geometry at configuration xi

intersects the bounding box of the given octobox. Note that a

configuration may be associated with many local primitives.

3) Distance: To compare two octoboxes, we simply check

if the two octoboxes are the same. It may seem overly

pessimistic to look for precise octobox matches, but our

empirical results show that this simple metric yields good

results. One possible explanation is, since the criticality test

assigns a configuration to many different local primitives, only

one primitive needs to be recovered to recall the relevant

configuration. The distance metric is:

d(ℓi, ℓj) =

{

0 bi = bj , Ti = Tj

∞ otherwise

V. EXPERIMENTS

We evaluate the performance of SPARK and FLAME in the

following varied and realistic scenarios using a Fetch (8-DOF)

robot manipulator. We believe both frameworks can also be

used with mobile/flying robots, but focus on manipulators

since we consider them more challenging for learning methods.

The “Small Shelf” environment (Fig. 4a) with 3 cylindrical

objects, the “Large Shelf” environment with 7-9 cylindrical

objects (Fig. 6a), the “Real Shelf” (Fig. 1) with 3 box objects

and the ”Box Table” with mutliple random objects (Fig. 5a). In

each environment, we vary both the pose of “small” objects

(cylinders, boxes) and more importantly the pose of “big”

objects(shelves, box, table) relative to the robot. The ”big”

objects variations of ”Small shelf” are shown in Fig. 4a) and

described in Fig. 1a), Fig. 5a), and Fig. 6a) for the other

scenarios. See the attached video for more details.

We consider these variations of environments highly chal-

lenging for learning-based motion planning frameworks for

two reasons. First, the underlying motion planning problem

is hard since it exhibits many “challenging regions.” Second,
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Fig. 3. An example of FLAME, our experience-based planning framework that uses a decomposition of an octomap [8] workspace gathered from sensing
data. a) The global workspace as an octomap. b) Three local primitives (highlighted in color) from the FLAME decomposition. Local primitives are 4× 4× 4

occupancy grids derived from the global octomap. c) A set of superimposed samples drawn from the local samplers.

TABLE I

SPARK AND FLAME HYPERPARAMETERS

Parameter Symbol Value

Sampling Variance σ 0.2

Sampling Bias λ 0.5

Retrieval Radius dradius 0.1

SPARK Clustering Distance dclust 0.15

SPARK Pair Distance dpairs 0.2

SPARK Pose Weight wT 0.75

SPARK Size Weight ws 0.5

even small changes in the relative position of the objects

can cause discontinuous changes in the configuration space

obstacles, making it hard to learn functions that map from

workspace to C-space [7], [35]. For example, a small change

in the relative angle of the shelf to the robot might require a

solution that goes on the left side of the robot, versus the right

side. Such diversity is realistic, as mobile manipulators can

approach objects from many different angles and positions.

We test two tasks: a “pick” and a “place” task. In the

“pick” task, the Fetch plans between its stow position and

the farthest object on the shelf. In the “place” task in the

“Large Shelf” environment, the Fetch starts rigidly grasping

the object farthest back on the top or bottom shelf and places

the object in the back of the middle shelf. In the “place” task

in the “Box Table” environment, the Fetch starts grasping the

cube inside the box and place randomly on the table.

We implemented our framework using the Open Motion

Planning Library (OMPL) [45] and Robowflex [46]. Note

that SPARK and FLAME both generate sampling distributions

and must be used by a sampling-based planner. For all

experiments and frameworks, RRT-Connect [47] is used with

default settings unless noted otherwise. All the experiments

were run on an Intel® i7-6700 with four 4.00GHZ cores and

32 GB of memory. The hyperparameters for SPARK (7) and

FLAME (3) are given in Table I and were the same for all

experiments. These are reasonable defaults for our methods,

found heuristically. The methods performance was empirically

observed to be robust over a wide range of values.

A. Generalization

Fig. 4b presents timing results for a “pick” task in “Small

Shelf” over three types of variation, XY , XY Z, and XY ZΘ
as shown in Fig. 4a. We compare against RRT-Connect,

an experience-based approach that uses a path database

(THUNDER) [3], and a conditional variational autoencoder

framework (CVAE) [4]. THUNDER stores previous paths as a

sparse roadmap—new problems are solved by searching the

roadmap for a valid path; if no path is found (possibly due to

changes in the environment), a planner is used to repair the

roadmap or find a new path from scratch. The OMPL version

of THUNDER was used within Robowflex.

CVAE learns a mapping from workspace to “interesting

samples” in C-space. To infer new samples the latent space of

the CVAE can be sampled and decoded into C-space, providing

promising samples to a sampling-based planner (here, RRT-

Connect is used). We use the provided implementation of

CVAE [4]. We test two variants of CVAE: “CVAE w/o Task”,

which has the same input as SPARK albeit with a fixed number

of obstacles, and “CVAE”, which includes the start and goal

as recommended in [4]. The latent space dimension was

increased as proposed by [6] for our high DOF problems.

The same training data (500 paths) were given to CVAE as

SPARK which is approximately 5000 training samples.

All methods show marked improvement when the variance

is low. However, only SPARK, FLAME, and CVAE retain

performance as the axes of variation increases (Fig. 4b).

As environment variance grows, THUNDER’s sparse roadmap

becomes less informative and falls back to planning from

scratch. Similarly, the performance of “CVAE w/o Task” de-

grades as diversity increases (possibly due to discontinuities).

CVAE greatly benefits from the addition of the start and goal,

indicating it is highly informative for this task. Increasing the

size of training examples did not improve the performance

of CVAE Finally, note that SPARK and FLAME have lower

variance in solution time, showing both become more effective

at solving the “harder” problems in the test set.

B. Convergence and Scalability

Fig. 4c, Fig. 5b and Fig. 6b present convergence results for

SPARK and FLAME for the “pick” task in the “Small Shelf”

and the place task for “Large Shelf,”“Box table” environments.

SPARK and FLAME both achieve significant improvement

in average performance given only a few examples and

quickly converge (≈ 300 for “Small Shelf,” “ Box Table”

and ≈ 600 for “Large Shelf”). SPARK has better asymptotic

performance (especially in ”Box Table”) than FLAME. This

is expected, as FLAME uses the less informative but more

general decomposition. Fig. 5c shows the database retrieval

time versus the size of the dataset using naı̈ve linear search

and GNAT-based search. The number of local primitives for
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Fig. 4. a) The “Small Shelf” environment with a “pick” task. As shown, in this experiment, the orientation of the shelf relative to the robot varies up to
±90

◦, in its X- and Y-coordinates by ±10cm, and by ±25cm in it Z-coordinate. b) Average planning time (including retrieval) versus the axes of variances.
500 training and 100 test environments were sampled for each, with a timeout of 60 seconds. c) Average planning time (including retrieval) versus the size
of the dataset, tested on 100 sampled environments with a timeout of 60 seconds.

Fig. 5. a) The “Box Table” environment with a ”place” task. The table and
box vary relative to the robot in angular placement ±30

◦ and position of X-
and Y-coordinates by ±10cm. b) Plot of average planning time (including
retrieval) versus the size of the dataset, tested on 100 sampled environments
with a timeout of 120 seconds. c) Mean local primitive retrieval time versus
the size of the dataset.

Fig. 6. a) The “Large Shelf” environment with a ”pick” and ”place” task.
Three stacked shelves are generated similar to the “Small Shelf” environment
(Fig. 4a). The stacked shelves vary relative to the robot in angular placement
±90

◦ and position of X- and Y-coordinates by ±10cm. b) Plot of average
planning time (including retrieval) versus the size of the dataset, tested on
200 sampled environments with a timeout of 300 seconds.

1000 training examples is ≈ 12, 000 for SPARK and ≈ 17, 000
for FLAME. GNAT scales much better than naive linear search.

Although the retrieval overhead is negligible, we expect that

it would affect performance if the database grows too large.

C. Transfer

Fig. 6 presents transfer learning results for SPARK and

FLAME on a “place” task in the “Large Shelf” environment.

Here, we show how SPARK and FLAME can learn from

examples in one task and apply their experience to a different,

harder task. In Fig. 6, a baseline of SPARK and FLAME trained

and tested both on “place” tasks (labeled as SPARK and

FLAME) is compared to SPARK and FLAME trained on “pick”

tasks and tested on the “place” task (labeled as SPARK (TX)

and FLAME (TX)). Note that the “place” task changes the

robot’s geometry by attaching an object in the end-effector’s

grasp, making the planning problem harder. Even when using

experience gathered on a different, easier motion planning

problem both SPARK and FLAME demonstrate significant

performance gains, successfully transferring their experience.

We hypothesize that FLAME shows better performance in

transfer learning as it uses an approximate decomposition,

and thus can find more relevant experience than SPARK.

D. Real Robot

Fig. 1 shows timing results for SPARK and FLAME applied

to a real robot system. To increase the statistical significance

of our results, we use 6-fold cross-validation. Additionally,

we carefully tuned the range of RRT-Connect to obtain the

best results possible for all methods (range = 2 was used).

A VICON camera system was used to gather object poses

for SPARK. The Fetch’s depth camera was used to build

an octomap [8] for FLAME. Note that FLAME can retrieve

relevant experiences even from partial/noisy octomaps which

is often the case for real systems. Both demonstrate significant

improvement even with few given examples.

VI. DISCUSSION

We presented two experience-based planning frameworks

for arbitrary manipulators in 3D environments, instantiated

in SPARK and FLAME. SPARK uses an exact decomposition

of the workspace into pairs of obstacles and achieves the

best performance when this information is available. FLAME

uses an approximate decomposition from a volumetric octree

generated from sensor data and is comparable in performance

with SPARK. We demonstrated that, with only few examples,

both approaches confer significant improvement on planning

time on a Fetch robot (8 DOF), on challenging manipulation

tasks in environments that substantially vary, outperforming

other learning-based approaches. One limitation of our meth-

ods is that due to the conservatism of the metrics, it is hard to

generalize to environments that are far outside of the training

distribution. For example, the “Large Shelf” and “Real Shelf”

share no local primitives (due to the height of the shelves)

and thus do not transfer from one to the other. To address

these issues, in the future, we will investigate learning local

primitive representations, metrics, and criticality tests.
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