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Abstract

We study active learning of homogeneous s-sparse halfspaces in Rd under the
setting where the unlabeled data distribution is isotropic log-concave and each
label is flipped with probability at most ⌘ for a parameter ⌘ 2

⇥
0, 1

2

�
, known as

the bounded noise. Even in the presence of mild label noise, i.e. ⌘ is a small
constant, this is a challenging problem and only recently have label complexity
bounds of the form Õ

�
s · polylog

�
d,

1
✏

��
been established in [Zhang 2018] for

computationally efficient algorithms. In contrast, under high levels of label noise,
the label complexity bounds achieved by computationally efficient algorithms are
much worse: the best known result [Awasthi et al. 2016] provides a computationally
efficient algorithm with label complexity Õ

�
( s ln d

✏ )2
poly(1/(1�2⌘))�

, which is label-
efficient only when the noise rate ⌘ is a fixed constant. In this work, we substantially
improve on it by designing a polynomial time algorithm for active learning of s-
sparse halfspaces, with a label complexity of Õ

�
s

(1�2⌘)4 polylog
�
d,

1
✏

� �
. This

is the first efficient algorithm with label complexity polynomial in 1
1�2⌘ in this

setting, which is label-efficient even for ⌘ arbitrarily close to 1
2 . Our active learning

algorithm and its theoretical guarantees also immediately translate to new state-of-
the-art label and sample complexity results for full-dimensional active and passive
halfspace learning under arbitrary bounded noise.

1 Introduction

In machine learning and statistics, linear classifiers (i.e. halfspaces) are arguably one of the most
important models as witnessed by a long-standing research effort dedicated to establishing computa-
tionally efficient and provable algorithms for halfspace learning [66, 81, 23]. In practical applications,
however, data are often corrupted by various types of noise [74, 14], are expensive to annotate [22, 27],
and are of high or even infinite dimensions [13, 17]. These characteristics rooted in contemporary
machine learning problems pose new challenges to the design and analysis of learning algorithms
for halfspaces. As a result, there has been extensive study of noise-tolerant, label-efficient, and
attribute-efficient algorithms in the last few decades.

Noise-tolerant learning. In the noiseless setting where there is a halfspace that has zero error
rate with respect to the data distribution, it is well known that by simply finding a halfspace that
fits all the training examples using linear programming, one is guaranteed vanishing generalization
error [82]. In the presence of data corrpution, the success of efficient learning of halfspaces crucially
depends on the underlying noise model. For instance, [14] proposed a polynomial time algorithm
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that provably learns halfspaces when the labels are corrupted by random classification noise, that is,
each label is flipped independently with a fixed probability ⌘ 2

⇥
0, 1

2

�
. The bounded noise model,

also known as Massart noise [74, 75, 59], is a significant generalization of the random classification
noise model, in that the adversary is allowed to flip the label of each example x with a different
probability ⌘(x), with the only constraint ⌘(x)  ⌘ for a certain parameter ⌘ 2

⇥
0, 1

2

�
. Due to its

highly asymmetric nature, it remains elusive to develop computationally efficient algorithms that are
robust to bounded noise. As a matter of fact, the well-known averaging scheme [47] and one-shot
convex loss minimization are both unable to guarantee excess error arbitrarily close to zero even
with infinite supply of training examples [3, 4, 29]. Therefore, a large body of recent works are
devoted to designing more sophisticated algorithms to tolerate bounded noise, see, for example,
[3, 4, 91, 86, 88, 29, 31].

Label-efficient learning. Motivated by many practical applications in which there are massive
amounts of unlabeled data that are expensive to annotate, active learning was proposed as a paradigm
to mitigate labeling costs [22, 26]. In contrast to traditional supervised learning (also known as
passive learning) where the learner is presented with a set of labeled training examples, in active
learning, the learner starts with a set of unlabeled examples, and is allowed to make label queries
during the learning process [22, 25]. By adaptively querying examples whose labels are potentially
most informative, a classifier of desired accuracy can be actively learned while requiring substantially
less label feedback than that of passive learning under broad classes of data distributions [41, 10].

Attribute-efficient learning. With the unprecedented growth of high-dimensional data generated in
biology, economics, climatology, and other fields of science and engineering, it has become ubiquitous
to leverage extra properties of the data into algorithmic design for more sample-efficient learning [54].
On the computational side, the goal of attribute-efficient learning is to find a sparse model that
identifies most useful features for prediction [34]. On the statistical side, the focus is on answering
when and how learning of a sparse model will lead to improved performance guarantee on sample
complexity, generalization error, or mistake bound. These problems have been investigated for a long
term, and the sparsity assumption proves to be useful for achieving non-trivial guarantees [13, 77, 20].
The idea of attribute-efficient learning was also explored in a variety of other settings, including
online classification [54], learning decision lists [67, 68, 52, 55], and learning parities and DNFs [35].

In this work, we consider computationally efficient learning of halfspaces in all three aspects above.
Specifically, we study active learning of sparse halfspaces under the more-realistic bounded noise
model, for which there are a few recent works that are immediately related to ours but under different
degrees of noise tolerance and distributional assumptions. In the membership query model [1],
where the learner is allowed to synthesize intances for label queries, [19] proposed an algorithm
that tolerates bounded noise with near-optimal Õ

�
d

(1�2⌘)2 ln
1
✏

�
label complexity. In the more

realistic PAC active learning model [50, 6], where the learner is only allowed to query the label of
the examples drawn from the unlabeled data distribution, less progress is made towards optimal
performance guarantee. Under the assumption that the unlabeled data distribution is uniform over the
unit sphere, [86] proposed a Perceptron-based active learning algorithm that tolerates any noise rate of
⌘ 2

⇥
0, 1

2

�
, with label complexity of Õ

�
d

(1�2⌘)2 ln
1
✏

�
. Unfortunately, it is challenging to generalize

their analysis beyond the uniform distribution, as their argument heavily relies on its symmetry.
Under the broader isotropic log-concave distribution over the unlabeled data, the state-of-the-art
results provide much worse label complexity bounds for the bounded noise model. Specifically, [3]
showed that1 by sequentially minimizing a series of localized hinge losses, an algorithm can tolerate
bounded noise up to a constant noise rate ⌘ ⇡ 2 ⇥ 10�6. Furthermore, [4] combined polynomial
regression [45] and margin-based sampling [7] to develop algorithms that tolerate ⌘-bounded noise
for any ⌘ 2

⇥
0, 1

2

�
. However, their label complexity scales as Õ

�
d
2poly(1/(1�2⌘)) · ln 1

✏

�
, which is

exponential in 1
1�2⌘ and is polynomial in d only when ⌘ is away from 1

2 by a constant. This naturally
raises our first question: can we design a computationally efficient algorithm for active learning of
halfspaces, such that for any ⌘ 2

⇥
0, 1

2

�
, it has a poly

⇣
d, ln 1

✏ ,
1

1�2⌘

⌘
label complexity under the

more general isotropic log-concave distributions?

1[3] phrased all the results with respect to the uniform distribution of the unlabeled data. However, their
analysis can be straightforwardly extended to isotropic log-concave distributions, and was spelled out in [88].
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Table 1: A comparison of our result to prior state-of-the-art works on efficient active learning of sparse
halfspaces with ⌘-bounded noise, where the unlabeled data distribution is isotropic log-concave.

Work Tolerates any ⌘ 2
⇥
0, 1

2

�
? Label complexity

[88] 7 Õ
�
s · polylog

�
d,

1
✏

��
for small enough ⌘

[4] 3 Õ
�
( s ln d

✏ )2
poly(1/(1�2⌘))�

This work 3 Õ

⇣
s

(1�2⌘)4 polylog
�
d,

1
✏

�⌘

Compared to the rich literature of active learning of general non-sparse halfspaces, there are relatively
few works on active learning of halfspaces that both exploit the sparsity of the target halfspace and
are tolerant to bounded noise. Under the assumption that the Bayes classifier is an s-sparse halfspace
(where s ⌧ d), a few active learning algorithms have been developed. In the membership query
model, a composition of the support recovery algorithm developed in [42] with the full-dimensional
active learning algorithm [19] yields a procedure that can tolerate ⌘-bounded noise with information-
theoretic optimal Õ

⇣
s

(1�2⌘)2 (ln d+ ln 1
✏ )
⌘

label complexity. Under the PAC active learning model
where the unlabeled data distribution is isotropic log-concave, [4] presented an efficient algorithm that
has a label complexity of Õ

�
( s ln d

✏ )2
poly(1/(1�2⌘))�

. Under the additional assumption that ⌘ is smaller
than a numerical constant substantially bounded away from 1

2 , [88] gave an algorithm that has label
complexity of Õ

�
s · polylog

�
d,

1
✏

��
. Neither of these two works obtained a label complexity bound

that is polynomial in 1
1�2⌘ (specifically, the latter work has no guarantees when ⌘ is greater than a

constant, say 1/4). This raises our second question: if the Bayes classifier is an s-sparse halfspace,
can we design an efficient halfspace learning algorithm which not only works for any bounded noise
rate ⌘ 2

⇥
0, 1

2

�
, but also enjoys a label complexity of poly

⇣
s, ln d, ln 1

✏ ,
1

1�2⌘

⌘
?

1.1 Summary of our contributions

In this work, we answer both of the above questions in the affirmative. Specifically, we focus
on the setting where the unlabeled data are drawn from an isotropic log-concave distribution,
and the label noise satisfies the ⌘-bounded noise condition for any ⌘ 2 [0, 1

2 ). We develop an
attribute-efficient learning algorithm that runs in polynomial time, and achieves a label complexity
of Õ

⇣
s

(1�2⌘)4 · polylog
�
d,

1
✏

�⌘
provided that the underlying Bayes classifier is an s-sparse half-

space. Our results therefore substantially improve upon the state-of-the-art label complexity of
Õ
�
( s ln d

✏ )2
poly(1/(1�2⌘))�

in the same setting [4]. Even in the non-sparse setting (by letting s = d),

our label complexity bound Õ

⇣
d

(1�2⌘)4 · ln 1
✏

⌘
is the first one of order poly

⇣
d, ln 1

✏ ,
1

(1�2⌘)

⌘
. Prior

to this work, the best label complexity is Õ
�
d
2poly(1/(1�2⌘)) · ln 1

✏

�
[4]. We summarize and compare

our results in active learning to the state of the art in Tables 1 and 2, in the sparse and non-sparse
setting, respectively.

As a side result of our main discoveries, our algorithm also achieves a state-of-the-art sample
complexity of Õ

⇣
d

(1�2⌘)3

⇣
1

(1�2⌘)3 + 1
✏

⌘⌘
for passive learning of d-dimensional halfspaces under

the same assumptions of noise and data distribution. In an independent and concurrent work [31], an
efficient (passive) halfspace learning algorithm that tolerates ⌘-bounded noise has been developed,
under a broader family of unlabeled data distributions. Specializing their result to the setting when
the unlabeled distribution is isotropic log-concave, their algorithm has a higher sample complexity
of O

⇣
d9

✏4(1�2⌘)10

⌘
. We discuss the implications of our work on passive learning in Section 4.1, and

additional related works in Appendix A.

1.2 An overview of our techniques

We discuss the main techniques we developed in this paper below.
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Table 2: A comparison of our result to prior state-of-the-art works on active learning of non-sparse
halfspaces with ⌘-bounded noise, where the unlabeled data distribution is isotropic log-concave.

Work Tolerates any ⌘ 2
⇥
0, 1

2

�
? Label complexity

[3] 7 Õ
�
d ln 1

✏

�
for small enough ⌘

[4] 3 Õ
�
d
2poly(1/(1�2⌘)) · ln 1

✏

�

This work 3 Õ

⇣
d

(1�2⌘)4 · ln 1
✏

⌘

1) Active learning via regret minimization. We approach the active halfspace learning problem
from a novel online learning perspective. Consider v 2 Rd, a vector that has angle at most ✓ with the
underlying Bayes optimal halfspace u; our goal is to refine v to v

0, such that v0 has angle at most ✓/2
with u. To this end, we design an online linear optimization problem and apply online mirror descent
with a sequence of linear loss functions {w 7! hgt, wi}Tt=1 to refine the initial iterate w1 = v. By
standard results, e.g. [62, Theorem 6.8], we are guaranteed that after T iterations,

TX

t=1

hwt, gti �
TX

t=1

hu, gti 
DR(u, v)

↵
+ ↵

TX

t=1

kgtk2q,

where R(·) is a 1-strongly convex regularizer with respect to certain `p-norm, DR is its induced
Bregman divergence, q is the conjugate exponent of p, and ↵ is the step size. Our key idea is to
construct an appropriate gradient gt (which depends on the random draw of the data), such that
(a) hwt, gti is small; and (b) E [hu,�gti | wt] � fu,b(wt) for some function fu,b(w) that measures
the distance between the input vector wt and u. We then show that the average of all fu,b(wt) is
small, provided that the `q-norm of gt’s are upper bounded by some constant. With a (nonstandard)
online-to-batch conversion [18], we obtain a classifier v0 from the iterates {wt}Tt=1, such that v0 and
u has angle at most ✓/2. We carefully choose (p, q) and a sampling scheme such that both attribute
efficiency and convergence are guaranteed. See Theorem 4 for a more precise statement.

2) A new update rule that tolerates bounded noise. As discussed above, a key step in the above
regret minimization argument is to define the gradient gt such that E [hu,�gti | wt] � fu,b(wt). For
each iterate wt, we choose to sample labeled example (xt, yt) from the data distribution D conditioned
on the band

n
x :

���
D

wt
kwtk

, x

E���  b

o
, similar to [27]. Based on labeled example (xt, yt), a natural

choice is gt = �1(ŷt 6= yt)ytxt, i.e. the negative Perceptron update, where ŷt = sign (hwt, xti).
Unfortunately, due to the asymmetry of the unlabeled data distribution2, it does not have the property
we desire (in fact, the induced fu,b(wt) can be negative with such choice of gt). To cope with this
challenge, we propose a novel setting of gt that takes into account the bounded noise rate ⌘:

gt = �1(ŷt 6= yt)ytxt � ⌘ŷtxt =

✓
�1

2
yt +

✓
1

2
� ⌘

◆
ŷt

◆
xt.

Observe that the above choice of gt is more aggressive than the Perceptron update, in that when
⌘ > 0, even if the current prediction ŷt matches the label returned by the oracle, we still update the
model. In the extreme case that ⌘ = 0, we recover the Perceptron update. We show that, this new
setting of gt, in conjunction with the aforementioned adaptive sampling scheme, yields a function
fu,b(w) that possesses desirable properties. We refer the reader to Lemma 6 for a precise statement.

3) Averaging-based initialization that exploits sparsity. The above arguments suffice to establish
a local convergence guarantee, i.e. given a vector ṽ0 with ✓(ṽ0, u)  ⇡

32 , one can repeatedly run a
sequence of online mirror descent updates and online-to-batch conversions, such that for each k � 0,
we obtain a vector ṽk such that ✓(ṽk, u)  ⇡

32·2k . It remains to answer the question of how to obtain
such ṽ0 using active learning in an attribute-efficient manner. To this end, we design an initialization
procedure that finds such ṽ0 with Õ

⇣
s

(1�2⌘)4 · polylog (d)
⌘

labeled examples. It consists of two
stages. The first stage performs the well known averaging scheme [47], in combination with a novel

2 [86] extensively utilizes the symmetry of the uniform unlabeled distribution to guarantee that the expectation
is positive if the angle between wt and u is large; we cannot use this as we are dealing with a more general
family of log-concave unlabeled distribution, which can be highly asymmetric.
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hard-thresholding step [15]. This stage gives a unit vector w] such that
⌦
w

]
, u
↵
� ⌦(1�2⌘) with high

probability, using Õ

⇣
s ln d

(1�2⌘)2

⌘
labeled examples. The second stage performs online mirror descent

update with adaptive sampling as before, but with the important constraint that
⌦
wt, w

]
↵
� ⌦(1�2⌘)

for all iterates wt. Through a more careful analysis using the function fu,b discussed above (that
accounts for the case where input wt can have a large obtuse angle with u), we obtain a vector ṽ0 that
has the desired angle upper bound, with the aforementioned label complexity. We refer the reader to
Lemma 14 and Theorem 3 for more details.

2 Preliminaries

Active learning in the PAC model. We consider active halfspace learning in the agnostic PAC
learning model [50, 6]. In this setting, there is an instance space X = Rd where all examples’
features take value from, and a label space Y = {�1, 1} where all examples’ labels take value from.
The data distribution D is a joint probability distribution over X ⇥Y . We denote by DX the marginal
distribution of D on X , and by DY |X=x the conditional distribution of Y given X = x. We will also
refer to DX as unlabeled data distribution. Throughout the learning process, the active learner is
given access to two oracles: EX, an unlabeled example oracle that returns x randomly drawn from
DX , and O, a labeling oracle takes x as input and returns a label y ⇠ DY |X=x.

A classifier is a mapping from X to Y . We consider halfspace classifiers of the form hw : x 7!
sign (w · x) where sign (z) = +1 if z � 0 and equals �1 otherwise. The vector w 2 Rd is the
parameter of hw, which has unit `2-norm. For a given classifier hw, we measure its performance by
err(hw, D) := P(x,y)⇠D (hw(x) 6= y), i.e. the probability that a random example gets misclassified.

We are interested in developing active halfspace learning algorithms that achieve the agnostic
PAC guarantee. Specifically, we would like to design an algorithm A, such that it receives as
inputs excess error parameter ✏ 2 (0, 1) and failure probability parameter � 2 (0, 1), and with
probability 1� �, after making a number of queries to EX and O, A returns a halfspace hw such that
err(hw, D)�minw0 err(hw0 , D)  ✏. In addition, we would like our active learner to make as few
label queries as possible. We denote by nA(✏, �) the number of label queries of A given parameters ✏
and �; this is also called the label complexity of A.

We will focus on sampling unlabeled examples from DX conditioned on a subset B of Rd; this can
be done by rejection sampling, where we repeatedly call EX until we see an unlabeled example x

falling in B. Given a unit vector ŵ and b > 0, define Bŵ,b =
�
x 2 Rd : |ŵ · x|  b

 
. Denote by

DX|ŵ,b (resp. Dŵ,b) the distribution of DX (resp. D) conditioned on the event that x 2 Bŵ,b.

Vectors. Let w be a vector in Rd. The `0-“norm” kwk0 counts its number of nonzero elements,
and w 2 Rd is said to be s-sparse if kwk0  s. Given s 2 {1, . . . , d}, the hard thresholding
operation Hs(w) zeroes out all but s largest (in magnitude) entries of w. For a scalar � � 1,
denote by kwk� the `�-norm of the vector w. If not explicitly mentioned, k · k denotes the `2-norm.
We denote by ŵ = w

kwk
as the `2-normalization of w 2 Rd. For two vectors w1, w2, we write

✓(w1, w2) = arccos (ŵ1 · ŵ2) as the angle between them.

Convexity. Given a convex and differentiable function f , its induced Bregman divergence is given by
Df (w,w0)

def
= f(w)� f(w0)� hrf(w0), w � w

0i. Note that by the convexity of f , Df (w,w0) � 0
for all w and w

0. A function f is said to be �-strongly convex with respect to the norm k · k� , if
Df (w,w0) � �

2 kw � w
0k2� holds for all w and w

0 in its domain. In our algorithm, we will use

the following convex function: �v(w)
def
= 1

2(p�1)kw � vk2p, where v is a reference vector in Rd.

Throughout the paper, we reserve p for a specific value p = ln(8d)
ln(8d)�1 , and reserve q = ln(8d) (note

that p�1+ q
�1 = 1). As p 2 (1, 2], �v is 1-strongly convex with respect to k · kp [69, Lemma 17]. In

addition, r�v is a one-to-one mapping from Rd to Rd, and hence has an inverse, denoted asr��1
v .

Distributional assumptions. Without distributional assumptions, it is known that agnostically
learning halfspaces is computationally hard [36, 40]. We make the following two assumptions.
Assumption 1. The data distribution D satisfies the ⌘-bounded noise condition with respect to
an s-sparse unit vector u 2 Rd, where the noise rate ⌘ 2 [0, 1/2). Namely, for all x 2 X ,
P(y 6= sign (u · x) |X = x)  ⌘.
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Assumption 2. The unlabeled data distribution DX is isotropic log-concave over Rd, i.e. DX has a
probability density function f over Rd such that ln f(x) is concave, and Ex⇠DX

⇥
xx

>
⇤
= Id⇥d.

Assumption 1 implies that the Bayes optimal classifier with respect to the distribution D is hu. As a
consequence, the optimal halfspace is hu, namely err(hu, D) = minw0 err(hw, D). Assumption 2
has appeared in many prior works [51, 9, 5, 88]. [9] showed the following important lemma.
Lemma 1. Suppose that Assumption 2 is satisfied. There exist absolute constants c1 and c2, such
that for any two vectors v1 and v2,

c1Px⇠DX (sign (v1 · x) 6= sign (v2 · x))  ✓(v1, v2)  c2Px⇠DX (sign (v1 · x) 6= sign (v2 · x)).

3 Main algorithm

We present Algorithm 1, our noise-tolerant attribute-efficient active learning algorithm, in this section.
It consists of two stages: an initialization stage INITIALIZE (line 2) and an iterative refinement stage
(lines 3 to 5). In the initialization stage, we aim to find a vector ṽ0 such that ✓(ṽ0, u)  ⇡

32 ; in the
iterative refinement stage, we aim to bring our iterate ṽk closer to u after each phase k. Specifically,
suppose that ✓(ṽk�1, u)  ⇡

32·2k�1 at the beginning of iteration k, then after the execution of line 5,
we aim to obtain a new iterate ṽk such that ✓(ṽk, u)  ⇡

32·2k with high probability. The iterative
refinement stage ends when k reaches k0, in which case we are guaranteed that ũ = ṽk0 is such
that ✓(ũ, u)  ⇡

32·2k0
 c1✏, where c1 is the constant defined in Lemma 1. From Lemma 1,

we have that Px⇠DX (hũ(x) 6= hu(x))  ✏. Consequently, by triangle inequality, we have that
err(hũ, D)� err(hu, D)  Px⇠DX (hũ(x) 6= hu(x))  ✏.

Algorithm 1 Main algorithm
Input: Target error ✏, failure probability �, bounded noise level ⌘, sparsity s.
Output: Halfspace ũ in Rd such that err(hũ, D)� err(hu, D)  ✏.

1: Let k0 = dlog 1
c1✏
e be the total number of iterations, where c1 is defined in Lemma 1 .

2: Let ṽ0  INITIALIZE( �2 , ⌘, s). // See Algorithm 3.
3: for phases k = 1, 2, . . . , k0 do
4: vk�1  Hs(ṽk�1).
5: ṽk  REFINE(vk�1,

�
2k(k+1) , ⌘, s, ↵k, bk,Kk, Rk, Tk), where the step size ↵k =

⇥̃
�
(1� 2⌘)2�k

�
, bandwidth bk = ⇥

�
(1� 2⌘)2�k

�
, constraint set

Kk =
�
w 2 Rd : kw � vk�1k2  ⇡ · 2�k�3

, kwk2  1
 
,

regularizer Rk(w) = �vk�1(w), number of iterations Tk = O

⇣
s

(1�2⌘)2

�
ln d·k22k

�(1�2⌘)

�3⌘.
6: return ũ ṽk0 .

Algorithm 2 REFINE

Input: Initial halfspace w1, failure probability �
0, bounded noise level ⌘, sparsity s, learning rate ↵,

bandwidth b, convex constraint set K, regularization function R(w), number of iterations T .
Output: Refined halfspace w̃.

1: for t = 1, 2, . . . , T do
2: Sample xt from DX|ŵt,b, the conditional distribution of DX on Bŵt,b and query O for its

label yt (recall that ŵt is the `2-normalization of wt).
3: Update: wt+1  argminw2K DR

�
w,rR�1 (rR(wt)� ↵gt)

�
, where the gradient gt =�

� 1
2yt +

�
1
2 � ⌘

�
ŷt

�
xt, and ŷt = sign (wt · xt).

4: w̄  1
T

PT
t=1 ŵt.

5: return w̃  w̄
kw̄k

.

The refinement procedure. We first describe our refinement procedure, namely Algorithm 2, in
detail. When used by Algorithm 1, it requires that the input w1 has angle ✓ 2 [0, ⇡

32 ] with u, and aims
to find a new w̃ such that it has angle ✓/2 with u. It performs iterative update on wt’s (lines 1 to 3) in
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Algorithm 3 INITIALIZE

Input: Failure probability �
0, bounded noise parameter ⌘, sparsity parameter s.

Output: Halfspace ṽ0 such that ✓(ṽ0, u)  ⇡
32 .

1: (x1, y1), . . . , (xm, ym) draw m examples iid from DX , and query O for their labels, where
m = 81 · 251 · s ln 8d

�0
(1�2⌘)2 .

2: Compute wavg = 1
m

Pm
i=1 xiyi.

3: Let w] = Hs̃(wavg)
kHs̃(wavg)k

, where s̃ = 81·238

(1�2⌘)2 s.

4: Find a point w1 in the set K =
n
w : kwk2  1, kwk1 

p
s,
⌦
w,w

]
↵
� (1�2⌘)

9·219

o
.

5: return ṽ0  REFINE(w1,
�0

2 , ⌘, s, ↵, b,K, R, T ), where step size ↵ = ⇥̃
�
(1� 2⌘)2

�
, band-

width b = ⇥
�
(1� 2⌘)2

�
, constraint set K, regularizer R(w) = �w1(w), and number of

iterations T = O

✓
s

(1�2⌘)4

⇣
ln d

�0(1�2⌘)

⌘3
◆

.

the following manner. Given the current iterate wt, it defines a (time-varying) sampling region Bŵt,b,
samples an example xt from DX conditioned on Bŵt,b, and queries its label yt. This time-varying
sampling strategy has appeared in many prior works on active learning of halfspaces, such as [27, 86].

Then, given the example (xt, yt), it performs an online mirror descent update (line 3) with regularizer
R(w), along with a carefully designed update vector �↵gt. The gradient vector

gt =

✓
�1

2
yt +

✓
1

2
� ⌘

◆
ŷt

◆
xt =

⇢
�⌘ytxt, yt = ŷt,

�(1� ⌘)ytxt, yt 6= ŷt,

is a carefully-scaled version of �ytxt. Observe that if ⌘ = 0, i.e. the noise-free setting, our algorithm
sets gt = �1(ŷt 6= yt)ytxt, which is the gradient widely used in online classification algorithms,
such as Perceptron [66], Winnow [54] and p-norm algorithms [39, 38]. As we shall see, this modified
update is vital to the bounded noise tolerance property (Lemma 6). Observe that Algorithm 2 is
computationally efficient, as each step of online mirror descent update only requires solving a convex
optimization problem; specifically, K is a convex set, and DR(·, ·) is convex in its first argument.

In the calls of Algorithm 2 in Algorithm 1, the constraint set Kk is different from the one in [88],
where an additional `1-norm constraint is used and is crucial for near-optimal dependence on the
sparsity and dimension. Here the `1-norm constraint is not vital. In fact, when invoking Algorithm 2,
we use regularizer R(w) of form �v(w) =

1
2(p�1)kw � vk2p for p = ln(8d)

ln(8d)�1 , which is well known
to induce attribute efficiency [39, 38]. See Appendix D for a formal treatment.

After obtaining the iterates {wt}Tt=1, we tailor online-to-batch conversion [18] to our problem: we
take an average over the `2-normalized wt’s, and further normalize it to obtain our refined estimate w̃.

The initialization procedure. Our initialization procedure, Algorithm 3, aims to produce a vector
ṽ0 such that ✓(ṽ0, u)  ⇡

32 . It consists of two stages. At its first stage, it generates a very coarse
estimate of u, namely w

], as follows: first, we take the average of xiyi’s to obtain wavg (line 2); next,
it performs hard-thresholding and normalization on wavg (line 3), with parameter s̃ = O

�
s

(1�2⌘)2

�
.

As we will see, with m = O
�
s̃ ln d

�
label queries, w], the output unit vector of the first stage, is

such that
⌦
w

]
, u
↵
� ⌦(1� 2⌘). At its second stage, it uses REFINE (Algorithm 2) to obtain a better

estimate, with a constraint set K that incorporates the knowledge obtained at the first stage: for all
w in K, w satisfies

⌦
w,w

]
↵
� ⌦(1 � 2⌘). Note that u 2 K. Technically speaking, this additional

linear constraint ensures that for all w in K, ✓(w, u)  ⇡ � ⌦(1� 2⌘), which gets around technical
challenges when dealing with iterates wt that are nearly opposite to u. See Lemma 20 in Appendix E
for more details.

We remark that it may be possible to prove a refined bound on ✓(wavg, u) smaller than, say, ⇡
4 , as

existing lower bounds on ✓(wavg, u), e.g. Theorem 2 of [3], do not rule out such possibility. This
could lead to a more sample-efficient initialization procedure that avoids using the above REFINE
procedure with the specialized setting of constraint set K. If this were the case, combining this
with the guarantees of REFINE (Theorem 4 below) would imply an active learning algorithm with
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information-theoretic near-optimal label complexity of Õ( s
(1�2⌘)2 polylog

�
d,

1
✏

�
) in this setting. We

leave this as an interesting open problem.

4 Performance guarantees

We now provide formal performance guarantees of Algorithm 1, showing that: 1) it is able to achieve
any target excess error rate ✏ 2 (0, 1); 2) it tolerates any bounded noise rate ⌘ 2 [0, 1/2); and
3) its label complexity has near-optimal dependence on the sparsity and data dimension, and has
substantially improved dependence on the noise rate.
Theorem 2 (Main result). Suppose Algorithm 1 is run under a distribution D such that Assumptions
1 and 2 are satisfied. Then with probability 1� �, it returns a halfspace ũ such that err(hũ, D)�
err(hu, D)  ✏. Moreover, our algorithm tolerates any noise rate ⌘ 2 [0, 1/2), and asks for a total
of Õ

�
s

(1�2⌘)4 polylog
�
d,

1
✏ ,

1
�

� �
labels.

The proof of this theorem consists of two parts: first, we show that with high probability, our
initialization procedure returns a vector ṽ0 that is close to u, in the sense that kṽ0k = 1 and
✓(ṽ0, u)  ⇡

32 (Theorem 3); Second, we show that given such ṽ0, with high probability, our refinement
procedure (lines 3 to 5) will finally return a vector ṽk0 that has the target error rate ✏ (Theorem 4).
We defer the full proof of Theorem 2 to Appendix B. In Appendix 4.1, we discuss an extension of
the theorem that establishes an upper bound on the number of unlabeled examples it encounters, and
discuss its implication to supervised learning.

Initialization step. We first characterize the guarantees of INITIALIZE in the following theorem.
Theorem 3 (Initialization). Suppose Algorithm 3 is run under a distribution D such that Assumptions
1 and 2 are satisfied, with noise rate ⌘ 2 [0, 1/2), sparsity parameter s, and failure probability �

0.
Then with probability 1 � �

0, it returns a unit vector ṽ0, such that ✓(ṽ0, u)  ⇡
32 . In addition, the

total number of label queries it makes is O
�

s
(1�2⌘)4

�
ln d

�0(1�2⌘)

�3�.

We prove the theorem in two steps: first, we show that lines 2 and 3 of Algorithm 3 returns a unit
vector w] that has a positive inner product with u, specifically, ⌦(1 � 2⌘). This gives a halfspace
constraint on u, formally

⌦
w

]
, u
↵
� ⌦(1� 2⌘). Next, we show that applying Algorithm 2 with the

feasible set K that incorporates the halfspace constraint, and an appropriate choice of b, gives a unit
vector ṽ0 such that ✓(ṽ0, u)  ⇡

32 . We defer the full proof of the theorem to Appendix E.

Refinement step. Theorem 4 below shows that after hard thresholding and one step of REFINE
(line 5), Algorithm 1 halves the angle upper bound between the current predictor ṽk and u. Therefore,
by induction, repeatedly applying Algorithm 2 ensures ✓(ṽk0 , u) = O(✏) with high probability.
Theorem 4 (Refinement). Suppose we are given a unit vector ṽ such that ✓(ṽ, u)  ✓ 2 [0, ⇡

32 ].

Define v
def
= Hs(ṽ). Suppose Algorithm 2 is run with initial halfspace v, confidence �

0, bounded
noise rate ⌘, sparsity s, bandwidth b = ⇥((1� 2⌘)✓), step size ↵ = ⇥̃ ((1� 2⌘)✓), constraint set
K = {w : kw � vk2  2✓, kwk2  1}, regularization function R(w) = �v, number of iterations
T = O

�
s

(1�2⌘)2

�
ln d

�0✓(1�2⌘)

�3�. Then with probability 1� �
0, it outputs ṽ0 such that ✓(ṽ0, u)  ✓

2 ;

moreover, the total number of label queries it makes is O
�

s
(1�2⌘)2

�
ln d

�0✓(1�2⌘)

�3�.

The intuition behind the theorem is as follows: we define a function fu,b(w) that measures the
closeness between unit vector w and the underlying optimal classifier u. As Algorithm 2 performs
online mirror descent on the linear losses {w 7! hgt, wi}Tt=1, it achieves a regret guarantee, which
implies an upper bound on the average value of {fu,b(wt)}Tt=1. As fu,b(w) measures the closeness
between w and u, we can conclude that there is a overwhelming portion of {wt}Tt=1 that has a small
angle with u. Consequently, by averaging and normalization, it can be argued that the resulting unit
vector ṽ0 = w̃ is such that ✓(ṽ0, u)  ✓

2 . We defer the full proof of the theorem to Appendix D.

4.1 Implication for supervised learning

In this section, we briefly outline the implication of our results to supervised learning (i.e. passive
learning). As our algorithms acquire examples in a streaming fashion, it can be readily seen that,
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a variant of Algorithm 1 can be viewed as a supervised learning algorithm: each time Algorithm 1
draws unlabeled example from DX , the variant immediately queries O for its label. Consequently,
the number of examples it encounters equals the total number of labeled examples it consumes, which
corresponds to its sample complexity.

We now show that Algorithm 1 uses at most Õ

⇣
s

(1�2⌘)3

⇣
1

(1�2⌘)3 + 1
✏

⌘
· polylog (d)

⌘
unla-

beled examples; therefore, its induced supervised learning algorithm has a sample complexity
of Õ

⇣
s

(1�2⌘)3

⇣
1

(1�2⌘)3 + 1
✏

⌘
· polylog (d)

⌘
. Without the sparsity assumption (i.e. setting s = d),

this yields a sample complexity of Õ
⇣

d
(1�2⌘)3

⇣
1

(1�2⌘)3 + 1
✏

⌘⌘
.

Theorem 5. Suppose that Assumptions 1 and 2 are satisfied. With probability 1 � �, Algorithm 1
makes at most Õ

⇣
s

(1�2⌘)3

⇣
1

(1�2⌘)3 + 1
✏

⌘
· polylog (d)

⌘
queries to the unlabeled example genera-

tion oracle EX.

The proof of Theorem 5 can be found in Appendix C.

5 Conclusion and discussion

In this work we substantially improve on the state-of-the-art results on efficient active learning of
sparse halfspaces under bounded noise. Furthermore, our proposed framework of online mirror
descent with the margin-based analysis could have other applications in the design of learning
algorithms. Our algorithm has a near-optimal label complexity of Õ

⇣
s

(1�2⌘)2 polylog
�
d,

1
✏

�⌘
in the

local convergence phase, while having a suboptimal label complexity of Õ
⇣

s
(1�2⌘)4 polylog (d)

⌘

in the initialization phase. It is still an open question whether we can obtain an efficient algorithm
that achieves the information-theoretically optimal label complexity of Õ

⇣
s

(1�2⌘)2 polylog
�
d,

1
✏

�⌘
,

possibly via suitable modifications of our initialization procedure. It would be promising to extend
our results beyond isotropic log-concave distributions [11], and would be interesting to investigate
whether our algorithmic insights can find applications for learning halfspaces under the Tsybakov
noise model [79] and the malicious noise model [80, 48].

Broader Impact

This paper investigates a fundamental problem in machine learning and statistics. The theory and
algorithms presented in this paper are expected to benefit many broad fields in science and engineering,
such as learning theory, robust statistics, optimization, and applications in biology, climatology, and
seismology, to name a few. Our research belongs to the general paradigm of interactive learning, in
which the learning agent need to design adaptive sampling schemes to maximize data efficiency. We
are well aware that one needs to be careful in designing such sampling schemes, to avoid unintended
harms such as discrimination.
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