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Abstract
In this paper, we propose conjugate energy-based
models (CEBMs), a new class of energy-based
models that define a joint density over data and
latent variables. The joint density of a CEBM
decomposes into an intractable distribution over
data and a tractable posterior over latent vari-
ables. CEBMs have similar use cases as varia-
tional autoencoders, in the sense that they learn
an unsupervised mapping from data to latent vari-
ables. However, these models omit a generator
network, which allows them to learn more flexi-
ble notions of similarity between data points. Our
experiments demonstrate that conjugate EBMs
achieve competitive results in terms of image mod-
elling, predictive power of latent space, and out-
of-domain detection on a variety of datasets.

1. Introduction
Deep generative models approximate a data distribution
by combining a prior over latent variables with a neural
generator, which maps latent variables to points on a data
manifold. It is common to evaluate these models in terms
of their ability to generate realistic examples, or their es-
timated densities for unseen data. However, an arguably
more important use case for these models is unsupervised
representation learning. If a generator can faithfully repre-
sent the data in terms of a lower-dimensional set of latent
variables, then we hope that these variables will encode a
set of semantically meaningful factors of variation that will
be relevant to a broad range of downstream tasks.

Guiding a model towards a semantically meaningful rep-
resentation requires some form of inductive bias. A large
body of work on variational autoencoders (VAEs, (Kingma
& Welling, 2013; Rezende et al., 2014)) has explored the
use of priors as inductive biases. Relatively mild biases in

*Equal contribution 1Khoury College of Computer Sciences,
Northeastern University, Boston, MA, USA 2Oracle Labs, MA,
USA 3Computer Science department, Boston College, MA, USA.
Correspondence to: Hao Wu <wu.hao10@northeastern.edu>,
Babak Esmaeili <esmaeili.b@northeastern.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

the form of conditional independence are common in the
literature on disentangled representations (Higgins et al.,
2016; Kim & Mnih, 2018; Chen et al., 2018; Esmaeili et al.,
2019). More generally, recent work has shown that defining
priors that reflect the structure of the underlying data will
lead to representations that are easier to interpret and gener-
alize better. Examples include priors that represent objects
in an image (Eslami et al., 2016; Lin et al., 2020b; Engelcke
et al., 2019; Crawford & Pineau, 2019b), or moving objects
in video (Crawford & Pineau, 2019a; Kosiorek et al., 2018;
Wu et al., 2020; Lin et al., 2020a).

Despite steady progress, work on disentangled represen-
tations and structured VAEs still predominantly considers
synthetic data. VAEs employ a neural generator that is opti-
mized to reconstruct examples in the training set. For com-
plex natural scenes, learning a generator that can produce
pixel-perfect reconstructions poses fundamental challenges,
given the combinatorial explosion of possible inputs. This is
not only a problem for generation, but also from the perspec-
tive of the learned representation; a VAE must encode all
factors of variation that give rise to large deviations in pixel
space, regardless of whether these factors are semantically
meaningful (e.g. presence and locations of objects) or not
(e.g. shadows of objects in the background of the image).

The motivating question that we consider in this paper is
whether it is possible to train latent-variable models without
minimizing pixel-level discrepancies between an image and
its reconstruction. Instead, we would like to design an objec-
tive that minimizes the discrepancy between the encoding of
an image and the latent variables, which will in general be in
a lower-dimensional space compared to the input. Our hope
is that doing so will allow a model to learn more abstract
representations, in the sense that it becomes easier to discard
factors of variation that give rise to variation in pixel space,
but should be considered noise.

In this paper, we consider energy-based models (EBMs)
with latent variables as a particular instantiation of this gen-
eral idea. EBMs with latent variables are by no means new;
they have a long history in the context of restricted Boltz-
mann machines (RBMs) and related models (Smolensky,
1986; Hinton, 2002; Welling et al., 2004). Our motivation
in the present work is to design a class of EBMs that retain
the desirable features of VAEs, but employ a discriminative
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Figure 1. Comparison between a VAE and a CEBM. A variational autoencoder with a Gaussian or Bernoulli likelihood has an energy that
can be expressed in terms of a Bregman divergence in the data space DA∗(x, µθ(z)) between an image x and the reconstruction from
the generator network µθ(z). The energy function in a CEBM can be expressed in terms of a Bregman divergence in the latent space
DB∗(η(z), µ̃θ(x)) between a vector of natural parameters η(z) and the output of an encoder network µ̃θ(x). See main text for details.

energy function to model data at an intermediate level of
representation that does not necessarily encode all features
of an image at the pixel level.

Concretely, we propose conjugate EBMs (CEBMs), a new
family of energy-based latent-variable models in which the
energy function defines a neural exponential family. While
the normalizer of CEBMs is intractable, we can nonetheless
compute the posterior in closed form when we pair the
likelihood with an appropriate conjugate bias term. As
a result, the neural sufficient statistics in a CEBM fully
determine both the marginal likelihood and the encoder,
thereby side-stepping the need for a generator (Figure 1).

Our contributions can be summarized as follows:

1. We propose CEBMs, a class of energy-based models
for unsupervised representation learning. The den-
sity of a CEBM factorizes into a tractable posterior
and an energy-based marginal over data. This means
that CEBMs can be trained using existing methods for
EBMs, whilst inference is tractable at test time.

2. Unlike VAEs, CEBMs model data not at the pixel level,
but at the level of the latent representation. We interpret
the energy function of CEBMs in terms of a Bregman
divergence in the latent space, and show that the density
of a VAE can similarly be expressed in terms of a
Bregman divergence in the data space.

3. We show that two of the most common inductive biases
in VAEs can be incorporated in CEBMs: a spherical
Gaussian and a mixture of Gaussians.

4. We evaluate how well CEBMs learned representations
agree with class labels (which are not used during train-
ing). We show that neighbors are more likely to belong
to the same class, which translates to increased perfor-
mance in downstream classification tasks. Moreover,
CEBMs perform competitively in out-of-domain de-
tection. We do also note limitations; in particular we
observe that CEBMs suffer from posterior collapse.

2. Background
2.1. Energy-Based Models

An EBM (LeCun et al., 2006) defines a probability density
for x ∈ RD via the Gibbs-Boltzmann distribution

pθ(x) =
exp {−Eθ(x)}

Zθ
, Zθ =

∫
dx exp{−Eθ(x)}.

The function Eθ : RD −→ R is called the energy function
which maps each configuration to a scalar value, the energy
of the configuration. This type of model is widely used in
statistical physics, for example in Ising models. The dis-
tribution can only be evaluated up to an unknown constant
of proportionality, since computing the normalizing con-
stant Zθ (also known as the partition function) requires an
intractable integral with respect to all possible inputs x.

Our goal is to learn a model pθ(x) that is close to the true
data distribution pdata(x). A common strategy is to minimize
the Kullback-Leibler divergence between the data distribu-
tion and the model, which is equivalent to maximizing the
expected log-likelihood

L(θ) = Epdata(x)[log pθ(x)], (1)
= Epdata(x)[−Eθ(x)]− logZθ.

The key difficulty when performing maximum likelihood
estimation is that computing the gradient of logZθ is in-
tractable. This gradient can be expressed as an expectation
with respect to pθ(x),

∇ logZθ = Epθ(x′) [−∇θEθ(x
′)] , (2)

which means that the gradient of L(θ) has the form:

∇θL(θ) = −Epdata(x)[∇θEθ(x)] + Epθ(x′)[∇θEθ(x
′)].

This corresponds to maximizing the probability of samples
x ∼ pdata(x) from the data distribution and minimizing the
probability of samples x′ ∼ pθ(x′) from the learned model.
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Contrastive divergence methods (Hinton, 2002) compute
a Monte Carlo estimate of this gradient, which requires
a method for approximate inference to generate samples
x′ ∼ pθ(x

′). A common method for generating samples
from EBMs is Stochastic Gradient Langevin Dynamics
(SGLD, (Welling & Teh, 2011)), which initializes a sample
x′0 ∼ p0(x

′) and performs a sequence of gradient updates
with additional injected noise ε,

x′i+1 = x′i −
α

2

∂Eθ(x
′)

∂x′
+ ε , ε ∼ N(0, α). (3)

SGLD is motivated as a discretization of a stochastic dif-
ferential equation whose stationary distribution is equal to
the target distribution. It is correct in the limit i→∞ and
α→ 0, but in practice will have a bias.

The initialization x′0 is crucial because it determines the
number of steps needed to converge to a high-quality sam-
ple. For this reason, EBMs are commonly trained using
persistent contrastive divergence (PCD, (Du & Mordatch,
2019; Tieleman, 2008)), which initializes some samples
from a replay buffer B of previously generated samples (Ni-
jkamp et al., 2019a; Du & Mordatch, 2019; Xie et al., 2016).

2.2. Energy-Based Latent-Variable Models

Energy-based latent-variable models are a subclass of EBMs
where the the energy function defines joint density on ob-
served data x ∈ RD and latent variable z ∈ RK ,

pθ(x, z) =
exp {−Eθ(x, z)}

Zθ
. (4)

Some of the most well-known examples of this fam-
ily of models include restricted Boltzmann machines
(RBMs, (Smolensky, 1986; Hinton, 2002)), deep belief
nets (DBNs, (Hinton et al., 2006)), and deep Boltzmann
machines (DBMs, (Salakhutdinov & Hinton, 2009)).

Similar to standard EBMs, energy-based latent-variable
models can also be trained using contrastive divergence
methods, where the gradient of L(θ) can be expressed as:

−Epdata(x)pθ(z|x)[∇θEθ(x, z)] + Epθ(x′,z′)[∇θEθ(x
′, z′)].

Estimating this gradient has the additional problem of re-
quiring samples from the posterior pθ(z|x) which is also
intractable in general.

2.3. Conjugate Exponential Families

An exponential family is a set of distributions whose proba-
bility density can be expressed in the form

p(x | η) = h(x) exp
{
〈t(x), η〉 −A(η)

}
, (5)

where h : X → R+ is a base measure, η ∈ H ⊆ RK is a
vector of natural parameters, t : X → RK is a vector of

sufficient statistics, and A : H → R is the log normalizer
(or cumulant function),

A(η) = logZ(η) =

∫
dx h(x) exp

{
〈t(x), η〉

}
. (6)

If a likelihood belongs to an exponential family, then there
exists a conjugate prior that is itself an exponential family

p(η | λ, ν) = exp
{
〈η, λ〉 −A(η)ν −B(λ, ν)

}
. (7)

The convenient property of conjugate exponential families
is that both the marginal likelihood p(x | λ, ν) and the
posterior p(η | x, λ, ν) are tractable. If we define

λ̃(x) = λ+ t(x), ν̃ = ν + 1, (8)

then the posterior and marginal likelihood are

p(η | x, λ, ν) = p(η | λ̃(x), ν̃),
p(x | λ, ν) = h(x) exp

{
B(λ̃(x), ν̃)−B(λ, ν)

}
.

(9)

2.4. Legendre Duality in Exponential Families

Two convex functions A : H → R+ and A∗ :M→ R+ on
spacesH ⊆ RK andM⊆ RK are conjugate duals when

A∗(µ) := sup
η∈H

{
〈µ, η〉 −A(η)

}
. (10)

When A is a function of Legendre type (see Rockafellar
(1970) for details), the gradients of these functions define
a bijection between conjugate spaces by mapping points to
their corresponding suprema

η(µ) = ∇A∗(µ), µ(η) = ∇A(η), (11)

such that we can express A∗(µ) at the supremum as

A∗(µ) = 〈µ, η(µ)〉 −A(η(µ)) (12)

The log normalizer A(η) of an exponential family is of Leg-
endre type when the family is regular and minimal (H is an
open set and sufficient statistics t(x) are linearly indepen-
dent; see Wainwright & Jordan (2008) for details). We refer
toM as the mean parameter space, since we can express
any µ ∈M as the expected value of the sufficient statistics

µ(η) = Ep(x|η)[t(x)]. (13)

2.5. Bregman Divergences and Exponential Families

A Bregman divergence for a function F :M→ R that is
continuously-differentiable and strictly convex on a closed
setM has the form

DF (µ
′, µ) = F (µ′)− F (µ)− 〈µ′ − µ,∇F (µ)〉. (14)
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Well-known special cases of Bregman divergences include
the squared distance (F (µ) = 〈µ, µ〉) and the Kullback-
Leiber (KL) divergence (F (µ) =

∑
k µk log µk).

Any Bregman divergence can be associated with an expo-
nential family and vice versa, where F (µ) = A∗(µ) is the
conjugate dual of A(η) (see Banerjee et al. (2005)). To see
this, we re-express the log density of a (regular and minimal)
exponential family using the substitution µ = ∇A(η)1,

log p(x | η) = 〈t(x), η〉 −A(η),
=
(
〈µ, η〉 −A(η)

)
+ 〈t(x)−µ, η〉,

= A∗(µ) + 〈t(x)−µ,∇A∗(µ)〉,
= −DA∗(t(x), µ) +A∗(t(x)).

(15)

In other words, the log density of an exponential family
can be expressed in terms of a bias term A∗(t(x))2, and a
notion of agreement in the form of a Bregman divergence
DA∗(t(x), µ) between the sufficient statistics t(x) and the
mean parameters µ. We will make use of this property of
exponential families to provide an interpretation of both
CEBMs and VAEs in terms of Bregman divergences.

3. Conjugate Energy-Based Models
We are interested in learning a probabilistic model that de-
fines a joint density pθ,λ(x, z) over high-dimensional data
x ∈ RD and a lower-dimensional set of latent variables
z ∈ RK . The intuition that guides our work is that we
would like to measure agreement between latent variables
and data at a high level of representation, rather than at the
level of individual pixels, where it may be more difficult to
distinguish informative features from noise. To this end, we
will explore energy-based models as an alternative to VAEs.

Concretely, we propose to consider models of the form

pθ,λ(x, z) =
1

Zθ,λ
exp

{
− Eθ,λ(x, z)

}
, (16)

where the energy function takes a form that is inspired by
exponential family distributions

Eθ,λ(x, z) = −〈tθ(x), η(z)〉+ Eλ(z). (17)

In this energy function, θ are the weights of a network
tθ : RD → RH , which plays the role of an encoder by map-
ping high-dimensional data to a lower-dimensional vector
of neural sufficient statistics. The function η : RK → RH
maps latent variables to a vector of natural parameters in the
same space as the neural sufficient statistics. The function
Eλ : RK → R serves as an inductive bias, with hyperpa-
rameters λ, that plays a role analogous to the prior.

1We here omit the base measure h(x) for notational simplicity.
2Or A∗(t(x)) + log h(x) when we include h(x) the density.

We will consider a bias Eλ(z) in form of a tractable expo-
nential family with sufficient statistics η(z)

Eλ(z) = − log pλ(z) = −〈η(z), λ〉+B(λ). (18)

We can then express the energy function as

Eθ,λ(x, z) = −〈λ+ tθ(x), η(z)〉+B(λ). (19)

This form of the energy function has a convenient property:
It corresponds to a model pθ,λ(x, z) in which the posterior
pθ,λ(z | x) is tractable. To see this, we make a substitution
λ̃θ(x) = λ + tθ(x) analogous to the one in Equation 8,
which allows us to express the energy as

Eθ,λ(x, z)=−〈η(z), λ̃θ(x)〉+B(λ̃θ(x))+Eθ,λ(x), (20)

Eθ,λ(x) = −B(λ̃θ(x)) +B(λ). (21)

We see that we can factorize the corresponding density

pθ,λ(x, z) = pθ,λ(x) pθ,λ(z | x), (22)

which yields a posterior and marginal that are analogous the
distributions in Equation 9

pθ,λ(z | x) = p(z | λ̃θ(x)), (23)

pθ,λ(x) =
1

Zθ,λ
exp

{
− Eθ,λ(x)},

=
1

Zθ,λ
exp

{
B
(
λ̃θ(x)

)
−B

(
λ
)}
.

(24)

In other words, the joint density of this model factorizes
into a tractable posterior pθ,λ(z | x) and an intractable
energy-based marginal likelihood pθ,λ(x). This posterior
is conjugate, in the sense that it is in the same exponential
family as the bias. For this reason, we refer to this class of
models as conjugate energy-based models (CEBMs).

4. Relationship to VAEs
CEBMs differ from VAEs in that they lack a generator
network. Instead, the density is fully specified by the en-
coder network tθ(x), which defines a notion of agreement
〈λ̃θ(x), η(z)〉 between data and latent variables in the latent
space. As with other exponential families, we can make
this notion of agreement explicit by expressing the conju-
gate posterior in terms of a Bregman divergence using the
decomposition in Equation 15

Eθ,λ(x, z) = DB∗(η(z), µ̃θ(x))

−B∗(η(z)) + Eθ,λ(x).
(25)

Here B∗(µ) is the conjugate dual of the the log normalizer
B(λ), and we use µ̃θ(x) = µ(λ̃θ(x)) as a shorthand for
the mean-space posterior parameters. We see that maxi-
mizing the density corresponds to minimizing a Bregman
divergence in the space of sufficient statistics of the bias.
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In Figure 1, we compare CEBMs to VAE in terms of the
energy function for the log density of the generative model.
In making this comparison, we have to keep in mind that
these models are trained using different methods, and that
VAEs have a tractable density pθ(x, z). That said, the ob-
jectives in both models maximize the marginal likelihood,
so we believe that it is instructive to write down the corre-
sponding Bregman divergence in the VAE likelihood. This
likelihood is typically a Gaussian with known variance, or
a Bernoulli distribution (when modeling binarized images).
Both distributions have sufficient statistics t(x) = x. Once
again omitting the base measure h(x) for expediency, we
can express the log density of a VAE as an energy

Eθ,λ(x, z) = − log pθ(x|z)− log pλ(z),

= −〈x, ηθ(z)〉+A(ηθ(z))− log pλ(z).

= DA∗(x, µθ(z))−A∗(x)− log pλ(z)

(26)

Here A∗(x) is the conjugate dual of the log normalizer
A(η), and we use ηθ(z) and µθ(z) to refer to the output
of the generator network in the natural-parameter and the
mean-parameter space respectively. To reduce clutter and
accommodate the case where a base measure h(x) is needed
(e.g. that of a Gaussian likelihood with known variance), we
will introduce the additional shorthands

E(x) = −A(x)−log h(x), Eλ(z) = − log pλ(z). (27)

We then see that the energy function of a VAE has the form

Eθ,λ(x, z) = DA∗(x, µθ(z)) + E(x) + Eλ(z). (28)

Like that of a CEBM, the energy function of a VAE contains
a Bregman divergence, as well as two terms that depend only
on x and z. However, whereas the Bregman divergence in
CEBM is defined in the mean-parameter space of the latent
variables, that of a VAE is computed in the data space.

5. Inductive Biases
CEBMs have a property that is somewhat counter-intuitive.
While the posterior pθ,λ(z | x) in this class of models is
tractable, the prior is in general not tractable. In particular,
although the bias −Eλ(z) is the logarithm of a tractable
exponential family, it is not the case that pθ,λ(z) = pλ(z).
Rather the prior pθ,λ(z) has the form,

pθ,λ(z) =
exp{−Eλ(z)}

Zθ,λ

∫
dx exp{〈tθ(x), η(z)〉}.

In other words, Eλ(z) defines an inductive bias, but this
bias is different from the tractable prior in a VAE3, in the

3The bias in a VAE contains the log prior log pλ(z) and the
log normalizer A(ηθ(z)) of the likelihood. In a CEBM, by con-
trast, we omit the term Aθ(η(z)) = log

∫
dx exp{〈tθ(x), η(z)〉},

which is intractable, and hereby implicitly absorb it into its prior.

sense that it imposes only a soft constraint on the geometry
of the latent space.

In principle, the bias in a CEBM can take the form of any
exponential family distribution. Since products of exponen-
tial families are also in the exponential family, this covers a
broad range of possible biases. For purposes of evaluation
in this paper, we will constrain ourselves to two cases:

1. Spherical Gaussian. As a bias that is analogous to
the standard prior in VAEs, we consider a spherical Gaus-
sian with fixed hyperparameters (µ, σ) = (0, 1) for each
dimension of z ∈ RK ,

Eλ(z) = −
∑
k

(
〈η(zk), λ〉 −B(λ)

)
.

Each term has sufficient statistics η(zk) = (zk, z
2
k), natural

parameters λ, and log normalizer B(λ) as

λ =

(
µ

σ2
,− 1

2σ2

)
=

(
0,−1

2

)
,

B(λ) = − λ21
4λ2
− 1

2
log(−2λ2).

The marginal likelihood of the CEBM is then

pθ,λ(x) =
1

Zθ,λ
exp

{∑
k

(
B(λ̃θ,k(x))−B(λ)

)}
,

where λ̃θ,k(x) = λ + tθ,k(x) and tθ,k(x) is the sufficient
statistics that corresponds to zk.

2. Mixture of Gaussians. In our experiments, we will
consider datasets that are normally used for classification.
These datasets, by design, exhibit multimodal structure that
we would like to see reflected in the learned representa-
tion.In order to design a model that is amenable to uncov-
ering this structure, we will extend the energy function in
Equation 17 to contain a mixture component y

Eθ,λ(x, y, z) = −〈tθ(x), η(y, z)〉+ Eλ(y, z).

As an inductive bias, we will consider a bias in the form of
a mixture of L Gaussians,

Eλ(y, z) = −
∑
k,l

I[y = l]
(
〈η(zk), λl,k〉 −B(λl,k)

)
.

Here z ∈ RK is a vector of features and y ∈ {1, . . . , L}
is a categorical assignment variable. The bias for each
component l is a spherical Gaussian with hyperparame-
ters λl,k for each dimension k. Again, using the notation
λ̃θ,l,k = λl,k + tθ,k(x) to refer to the posterior parameters,
then we obtain an energy

Eθ,λ(x, y, z) = −
∑
k,l

I[y = l]
(
〈η(zk), λ̃θ,l,k〉 −B(λl,k)

)
.
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We can then define a joint probability over data x and the
assignment y in terms the log normalizer B(·),

pθ,λ(x, y) =

1

Zθ,λ
exp

{∑
k,l

I[y = l]
(
B(λ̃θ,l,k)−B(λl,k)

)}
,

which then allows us to compute the marginal pθ,λ(x) by
summing over y. We optimize this marginal with respect
hyperaparameters λl,k as well as the weights θ.

6. Related Work
Energy-Based Latent-Variable Models. The idea of us-
ing EBMs to jointly model data and latent variables has
a long history in the machine learning literature. Exam-
ples of this class of models include restricted Boltzmann
machines (RBMs, (Smolensky, 1986; Hinton, 2002)), deep
belief nets (DBNs, (Hinton et al., 2006)), and deep Boltz-
mann machines (DBMs, (Salakhutdinov & Hinton, 2009)).
The idea of extending RBMs in exponential families and
exploiting conjugacy to yield a tractable posterior is also not
new and has been explored in Exponential Family Harmo-
niums (EFHs; (Welling et al., 2004)). These models differ
from CEBMs in that the they employ a bilinear interaction
term x>Wz, which ensures that both the likelihood p(x | z)
and p(z | x) are tractable. In CEBMs, the corresponding
term tθ(x)

>z is nonlinear, which means that the posterior
is tractable, but the likelihood is not. We provide a more
detailed discussion regarding the connection of our work to
this class of models in Appendix A.

EBMs for Image Modelling. Recent work has shown
that EBMs with convolutional energy functions can accu-
rately model distributions over images (Xie et al., 2016;
Nijkamp et al., 2019a;b; Du & Mordatch, 2019; Xie et al.,
2021a). This line of work typically focuses on generation
and not on unsupervised representation learning as we do
here. A line of work, which is similar to ours in spirit,
employs EBMs as priors on the latent space of deep gener-
ative models (Pang et al., 2020; Aneja et al., 2020). These
approaches, unlike our work, require a generator.

Interpretation of other models as EBMs. Grathwohl
et al. (2019); Liu & Abbeel (2020); Xie et al. (2016) have
proposed to interpret a classifier as an EBM that defines a
joint energy function on the data and labels. CEBMs with
a discrete bias can interpreted as the unsupervised variant
of this model class. Che et al. (2020) interpret a GAN as an
EBM defined by both the generator and discriminator.

Training EBMs. A commonly used training method is
PCD (Tieleman, 2008), where the MCMC is initialized
from a replay buffer that stores the previously generated
samples (Du & Mordatch, 2019), or from a generator (Xie

et al., 2018; 2020; 2021a). Nijkamp et al. (2019a;b) com-
prehensively investigate the convergence of PCD based on
a variety of factors such as MCMC initialization, network
architecture, and the optimizer. They find that the difference
between the energy of the data and model samples is a good
diagnostic of training stability. Many of these findings were
helpful during the training and evaluation in our work.

There is a large literature on alternative training methods.
Gao et al. (2020) propose to use the noise contrastive esti-
mation (NCE, (Gutmann & Hyvärinen, 2010)), where they
pretrain a flow-based noise model and then train the EBM
to discriminate between the real data examples and the ones
generated from the noise model. Another popular approach
is the score matching (SM, Vértes et al. (2016); Hyvärinen
& Dayan (2005); Vincent (2011); Song et al. (2020); Bao
et al. (2020)), which learns EBMs by matching the gradient
of the log probability density of the model distribution to
that of the data distribution. Bao et al. (2020) propose a
bi-level version of this method where it is also applicable to
latent-variable models. To sidestep the need or MCMC sam-
pling, Han et al. (2019; 2020); Xie et al. (2021b) jointly train
an EBM with a VAE in an adversarial manner; Grathwohl
et al. (2021) learn a generator by entropy regularization.
We refer the readers to Song & Kingma (2021) for a more
comprehensive discussion on training methods for EBMs.

7. Experiments
Our experiments evaluate to what extent CEBMs can learn
representations that encode meaningful factors of variation,
whilst discarding details about the input that we would con-
sider noise. This question is difficult to answer in generality,
and in some sense not well-posed; whether a factor of vari-
ation should be considered signal or noise can depend on
context. For this reason, our experiments primarily focus on
the extent to which representations in CEBMs can recover
the multimodal structure in datasets that are normally used
for classification. While class labels are an imperfect proxy,
in the sense that they do not reflect all factors of variation
that we may want to encode in a representation, they provide
a means of quantifying differences between representations
that were learned in an unsupervised manner.

We begin with a qualitative evaluation by visualizing sam-
ples and latent representation. We then demonstrate that
learned representations align with class structure, in the
sense that nearest neighbors in the latent space are more
likely to belong to the same class (section 7.2). Next,
we evaluate performance on out-of-distribution detection
(OOD) tasks which, although not our primary focus in this
paper, are a common use case for EBMs (Section 7.3). We
then quantify the extent to which the learned representations
can improve performance in downstream task, we measure
few-label classification accuracy for representations that
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Figure 2. Samples generated from a CEBM trained on MNIST, Fashion-MNIST, SVHN and CIFAR-10.
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Figure 3. (Left) Samples from CIFAR-10 along with the top 2-nearest-neighbors in pixel space, the latent space of a VAE, and the latent
space of a CEBM. (Right) Confusion matrices of 1-nearest-neighbor classification on CIFAR-10 based on L2 distance in the latent space.
On average, CEBM representations more closely align with class labels compared to VAE.

were pre-trained without supervision (Section 7.4). Finally,
we perform a more in-depth study of the latent space where
we investigate to what extend the aggregate posterior distri-
bution is close to the inductive bias as well how vulnerable
CEBMs are to posterior collapse (Section 7.5).

7.1. Network Architectures and Training

Architectures & Optimization. The CEBMs in our ex-
periments employ an encoder network tθ(x) in the form
of 4-layer CNN (as proposed by Nijkamp et al. (2019a)),
followed by an MLP output layer. We choose the dimension
of latent variables to be 128. We found that the optimization
becomes difficult with smaller dimensions. We train our
models using 60 SGLD steps, 90k gradient steps, batch size
128, Adam optimizer with learning rate 1e-4. For training
stability, we L2 regularize energy magnitudes (proposed
by Du & Mordatch (2019)). See Appendix C for details.

Hyperparameter Sensitivity. As observed in previous
work (Du & Mordatch, 2019; Grathwohl et al., 2019), train-
ing EBMs is challenging and often requires a thorough
hyperparameters search. We found that the choices of acti-
vation function, learning rate, number of SGLD steps, and
regularization will all affect training stability. Models reg-
ularly diverge during training, and it is difficult to perform
diagnostics given that log pθ,λ(x) cannot be computed. As
suggested by (Nijkamp et al., 2019a), we found checking
the difference in energy between data and model samples

can help to verify training stability. In general we also ob-
served a trade-off between sample quality and the predictive
power of latent variables in our experiments. We leave in-
vestigation of the source of this trade-off to future work, but
we suspect that this is because SGLD has more difficulty
converging when the latent space is more disjoint.

7.2. Samples and Latent Space
We begin with a qualitative evaluation by visualizing sam-
ples from the model. While generation is not our intended
use case in this paper, such samples do serve as a diagnostic
that allows us to visually inspect what characteristics of the
input data are captured by the learned representation.

Figure 2 shows samples from CEBMs trained on MNIST,
Fashion-MNIST, SVHN, and CIFAR-10. We initialize the
samples with uniform noise and run 500 SGLD steps. We
observe that the distribution over images is diverse and
captures the main characteristics of the dataset. Sample
quality is roughly on par with samples from other EBMs
(Nijkamp et al., 2019a), although it is possible to generate
samples with higher visual quality using class-conditional
EBMs (Du & Mordatch, 2019; Grathwohl et al., 2019; Liu
& Abbeel, 2020) (which assume access to labels).

To assess to whether the representation in CEBMs aligns
with classes in each dataset, we look at the agreement be-
tween the label of an input and that of its nearest neighbor in
the latent space. The latent representations are inferred by
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Table 1. AUROC scores in OOD Detection. We use log pθ(x) and ‖∇x log pθ(x)‖ as score functions.The left block shows results of
the models trained on F-MNIST and tested on MNIST, E-MNIST, Constant (C); The right block shows results of the models trained on
CIFAR-10 and tested on SVHN, Texture and Constant (C).

Fashion-MNIST CIFAR-10
log pθ(x) ‖∇x log pθ(x)‖ log pθ(x) ‖∇x log pθ(x)‖

MNIST E-MNIST C MNIST E-MNIST C SVHN Texture C SVHN Texture C

VAE .50 .39 .09 .61 .57 .01 .42 .58 .41 .38 .51 .37
IGEBM .35 .36 .90 .78 .82 .96 .45 .31 .64 .33 .17 .62
CEBM .37 .34 .90 .82 .89 .98 .47 .32 .66 .31 .17 .54
GMM-CEBM .56 .56 .92 .56 .80 .95 .55 .30 .62 .40 .23 .62

Table 2. Average classification accuracy on the test set. We train a variety of deep generative models on MNIST, Fashion-MNIST,
CIFAR-10, and SVHN in an unsupervised way. Then we use the learned latent representations to train logistic classifiers with 1, 10, 100
training examples per class, and the full training set. We train each classifier 10 times on randomly drawn training examples.

MNIST Fashion-MNIST CIFAR-10 SVHN
Models 1 10 100 full 1 10 100 full 1 10 100 full 1 10 100 full

VAE 42 85 92 95 41 63 72 81 16 22 31 38 13 13 16 36
GMM-VAE 53 86 93 97 49 68 79 84 19 23 33 39 13 14 23 56
BIGAN 33 67 85 91 46 65 75 81 18 30 43 52 11 20 42 56

IGEBM 63 89 95 97 50 70 79 83 16 26 33 42 10 16 35 49
CEBM 67 89 95 97 52 70 77 83 19 30 42 53 12 25 48 70
GMM-CEBM 67 91 97 98 52 70 80 85 16 29 42 52 10 17 39 60

computing the mean of the posterior pθ,λ(z|x). In Figure 3,
we show samples from CIFAR-10, along with the images
that correspond to the nearest neighbors in pixel space, the
latent space of a VAE, and the latent space of a CEBM. The
distance in pixel space is a poor measure of similarity in
this dataset, whereas proximity in the latent space is more
likely to agree with class labels in both VAEs and CEBMs.
We additionally show visualization of the latent space with
UMAP (McInnes et al., 2018) in Figure 5.

In Figure 3 (right), we quantify this agreement by computing
the fraction of neighbors in each class conditioned on the
class of the original image. We see a stronger alignment
between classes and the latent representation in CEBMs,
which is reflected in higher numbers on the diagonal of
the matrix. On average, a fraction of 0.38 of the nearest
neighbors are in the same class in the VAE, whereas 0.45
of the neighbors are in the same class in the CEBM. This
suggest that the representation in CEBMs should lead to
higher performance in downstream classification tasks. We
will evaluate this performance in Section 7.4.

7.3. Out-of-Distribution Detection
EBMs have formed the basis for encouraging results in out-
of-distribution (OOD) detection (Du & Mordatch, 2019;
Grathwohl et al., 2019). While not our focus in this paper,
OOD detection is a benchmark that helps evaluate whether a

learned model accurately characterizes the data distribution.
In Table 1, we report results in terms of two metrics. The
first is the area under the receiver-operator curve (AUROC)
when thresholding the log marginal log pθ,λ(x). The second
is the gradient-based score function proposed by Grathwohl
et al. (2019). We observe that in most cases, CEBM yields
a similar score to the VAE and IGEBM baselines.

7.4. Few-label Classification
To evaluate performance in settings where few labels are
available, we use pre-trained representations (which were
learned without supervision) to train logistic classifiers with
1, 10, 100 training examples per class, as well as the full
training set. We evaluate classification performance for a
spherical Gaussian bias (CEBM) and the mixture of Gaus-
sians bias (GMM-CEBM). We compare our models against
the IGEBM (Du & Mordatch, 2019) 4, a standard VAE
with the spherical Gaussian prior, GMM-VAE (Tomczak &
Welling, 2018) where the prior is a mixture of Gaussians
(GMM), and BIGAN (Donahue et al., 2016).

We report the classification accuracy on the test set in Ta-
ble 2. CEBMs overall achieve a higher accuracy compared
to VAEs in particular for CIFAR-10 and SVHN where the

4Since the IGEBM does not explicitly have latent representa-
tions, we extract features from the last layer of the energy function.



Conjugate Energy-Based Models

Table 3. KL divergence between aggregate posterior and prior and
the mutual information between data and latent variables.

VAE CEBM GMM-CEBM
KL MI KL MI KL MI

MNIST 11.5 9.1 0.9 0.3 18.7 4.7
FMNIST 3.5 9.0 0.6 0.4 8.1 3.9
CIFAR10 21.5 9.2 0.1 0.2 4.5 2.7
SVHN 8.6 10.1 0.1 0.1 5.6 2.2

pixel distance is not good measure for similarity. More-
over, we observe that CEBMs outperform the IGEBM. This
suggests that the inductive biases in CEBMs can lead to
increased performance in downstream tasks. The perfor-
mance between BIGANs and CEBMs is not as distinguish-
able which we suspect is due the fact BIGANs, just like
CEBMs, do not define a likelihood that measure similarity
at the pixel level. We also observe that the CEBM with the
GMM inductive bias does not always outperform the one
with the Gaussian inductive bias, which we suspect is due
to GMM-CEBM having more difficulty to converge.

7.5. Limitations: Posterior Collapse
While our experiments demonstrate that CEBMs are able
to reasonably approximate the data distribution and learn
latent representations that are in closer agreement with class
labels, they do not evaluate the learned notation of posterior
uncertainty, and more generally the role of inductive bias.
In this subsection, we ask the following two questions: (1)
Does the aggregate posterior distribution of the training data
live close to the inductive bias pλ(z)? (2) What is the mutual
information between latent variables and the training data?

To evaluate whether encoded examples are distributed ac-
cording to the bias pλ(z), we compute the divergence
KL (p̃θ,λ(z) || pλ(z)) between the bias and the aggregate
posterior, which is a mixture over training data

p̂θ,λ(z) =
1

N

∑
n

pθ,λ(z|xn), xn ∼ pdata(x).

There are two reasons to consider this distribution, rather
than the marginal pθ λ(z) of the CEBM. The first is com-
putational expedience; it is easier to approximate p̂θ,λ(z)
than it is to approximate pθ,λ(z), since the latter requires
samples x ∼ pθ,λ(x) from the marginal of the CEBM. The
second reason is that p̂θ,λ(z) reflects the distribution over
features that we might use in a downstream task.

We approximate p̂θ,λ(z) with a Monte Carlo estimate over
batches of size 1k (see Esmaeili et al. (2019)), which we use
to estimate both the KL and the mutual information (see Ta-
ble 3). Because the marginal KL in CEBMs is significantly
lower compared to VAEs across datasets, we conclude that

CEBMs indeed attempted to place the aggregate posterior
distribution close to the inductive bias.

Our evaluation of the mutual information proved more sur-
prising: CEBMs learn a representation that has a very low
mutual information between x and z. The reason for this
is that the posterior parameters λ̃θ(x) = λ + tθ(x) are
dominated by the parameters of the bias λ, which means
that model essentially ignores the sufficient statistics tθ(x),
which tend to have a small magnitude relative to λ. This
phenomenon could be interpreted as an instance of posterior
collapse (Alemi et al., 2017), which has been observed in a
variety of contexts when training variational autoencoders
by maximizing the marginal likelihood, which in itself is
not an objective that guarantees a high mutual information.

8. Discussion
In this paper, we introduced CEBMs, a class of latent-
variable models that factorize into an energy-based distribu-
tion over data and a tractable posterior over latent variables.
CEBMs can be trained using standard methods for EBMs
and in this sense have a small “edit distance” relative to
existing approaches, whilst also providing a mechanism for
incorporating inductive biases for latent variables.

Our experimental results are encouraging but also raise
questions. We observe a closer agreement between the un-
supervised representation and class labels than in VAEs,
which translates into improvemed performance in down-
stream classification tasks. At the same time, we observe
that CEBMs do not learn a meaningful notion of uncer-
tainty; the CEBM posterior is typically dominated by the
inductive bias, which means that there is a very low mutual
information between data and latent variables.

This work opens up a number of lines of future research.
First and foremost, this work raises the question what ob-
jectives would be most suitable for learning energy-based
latent-variable models in a manner maximizes agreement
with respect to both the data distribution and the inductive
bias terms, whilst also ensuring a sufficiently high mutual in-
formation between data and latent variables. More generally,
we see opportunities to develop CEBMs with structured bias
terms as an alternative to models based on VAEs in settings
where we are hoping to reason about structured representa-
tions with little or no supervision.
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