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Abstract

Variational autoencoders optimize an objec-
tive that combines a reconstruction loss (the
distortion) and a KL term (the rate). The
rate is an upper bound on the mutual informa-
tion, which is often interpreted as a regularizer
that controls the degree of compression. We
here examine whether inclusion of the rate
also acts as an inductive bias that improves
generalization. We perform rate-distortion
analyses that control the strength of the rate
term, the network capacity, and the difficulty
of the generalization problem. Decreasing the
strength of the rate paradoxically improves
generalization in most settings, and reduc-
ing the mutual information typically leads to
underfitting. Moreover, we show that gener-
alization continues to improve even after the
mutual information saturates, indicating that
the gap on the bound (i.e. the KL divergence
relative to the inference marginal) affects gen-
eralization. This suggests that the standard
Gaussian prior is not an inductive bias that
typically aids generalization, prompting work
to understand what choices of priors improve
generalization in VAEs.

1 Introduction

Variational autoencoders (VAEs) learn representa-
tions in an unsupervised manner by training an en-
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coder, which maps high-dimensional data to a lower-
dimensional latent code, along with a decoder, which
parameterizes a manifold that is embedded in the data
space (Kingma and Welling, 2013; Rezende et al., 2014).
Much of the work on VAEs has been predicated on the
observation that distances on the learned manifold can
reflect semantically meaningful factors of variation in
the data. This is commonly illustrated by visualizing
interpolations in the latent space, or more generally,
interpolations along geodesics (Chen et al., 2019).

The ability of VAEs to interpolate is often attributed
to the variational objective (Ghosh et al., 2019). VAEs
maximize a lower bound on the log-marginal likelihood,
which comprises a reconstruction loss and a Kullback-
Leibler (KL) divergence between the encoder and the
prior (called the rate). Minimizing the reconstruction
loss in isolation is equivalent to training a determin-
istic autoencoder. For this reason, the rate is often
interpreted as a regularizer that induces a smoother rep-
resentation (Chen et al., 2016; Berthelot et al., 2018).

In this paper, we ask the question of whether the in-
clusion of the rate term also improves generalization.
That is, does this penalty reduce the reconstruction
loss for inputs that were unseen during training? A
known property of VAEs is that the optimal decoder
will memorize training data in the limit of infinite ca-
pacity (Alemi et al., 2018; Shu et al., 2018), as will a
deterministic autoencoder (Radhakrishnan et al., 2019).
At the same time, there is empirical evidence that
VAEs can underfit the training data, and that reduc-
ing the strength of the rate term can mitigate under-
fitting (Hoffman et al., 2017). Therefore, we might
hypothesize that VAEs behave like any other model
in machine learning; high-capacity VAEs will overfit
the training data, but we can improve generalization
by adjusting the strength of the KL term to balance
overfitting and underfitting.
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To test this hypothesis, we performed experiments that
systematically vary the strength of the rate term and
the network capacity. In these experiments, we deliber-
ately focus on comparatively simple network architec-
tures in the form of linear and convolutional layers with
standard spherical Gaussian priors. These architectures
remain widely used in work on VAEs, particularly work
that focuses on disentangled representations, and sys-
tematically investigating these cases provides us with
results that can form a basis for understanding the
wide variety of more sophisticated architectures that
exist in the literature.

The primary aim of our experiments is to carefully con-
trol the difficulty of the generalization problem. Our
goal in doing so is to disambiguate between apparent
generalization that can be achieved by simply recon-
structing the most similar memorized training examples
and generalization that requires reconstruction of ex-
amples that differ substantially from those seen in the
training set. To achieve this goal, we have created
a dataset of J-shaped tetrominoes that vary in color,
size, position, and orientation. This dataset gave us a
sufficient variation of both the amount of training data
and the density of data in the latent space, as well as
sufficient sensitivity of reconstruction loss to variation
in these factors, in order to evaluate out-of-domain
generalization to unseen combinations of factors.

The surprising outcome of our experiments is that the
rate term does not, in general, improve generalization
in terms of the reconstruction loss. We find that VAEs
memorize training data in practice, even for simple 3-
layer fully-connected architectures. However, contrary
to intuition, reducing the strength of the rate term im-
proves generalization under most conditions, including
in out-of-domain generalization tasks. The only case
where an optimum level of rate-regularization emerges
is when low-capacity VAEs are trained on data that are
sparse in the latent space. We show that these results
hold for both MLP and CNN-based architectures, as
well as a variety of datasets.

These results suggest that we need to more carefully
quantify the effect of each term in the VAE objective
on the generalization properties of the learned represen-
tation. To this end, we decompose the KL divergence
between the encoder and the prior into its constituent
terms: the mutual information (MI) between data and
the latent code and the KL divergence between the
inference marginal and the prior. We find that the MI
term saturates as we reduce the strength of the rate
term, which indicates that it is in fact the KL between
the inference marginal and prior that drives improve-
ments in generalization in high-capacity models. This
suggests that the standard spherical Gaussian prior in
VAE:s is not an inductive bias that aids generalization

in most cases, and that more flexible learned priors
may be beneficial in this context.

2 Variational Autoencoders

VAEs jointly train a generative model py(x,z) and
an inference model gy(x,z). The generative model
comprises a prior p(z), typically a spherical Gaussian,
and a likelihood py(x | z) that is parameterized by a
neural network known as the decoder. The inference
model is defined in terms of a variational distribution
gs(z | ), parameterized by an encoder network, and a
data distribution g(x), which is typically an empirical
distribution ¢(x) = & >, 6z, (x) over training data
{x1,...,xn}. The two models are optimized by maxi-
mizing a variational objective (Higgins et al., 2017)
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The multiplier £, which in a standard VAE is set to 1,
controls the relative strength of the reconstruction loss
and the KL loss. We will throughout this paper refer
to these two terms L3 = —D — 3R as the distortion D
and the rate R. The distortion defines a reconstruction
loss, whereas the rate constrains the encoder distri-
bution g4(z|x) to be similar to the prior p(z). As
B approaches 0, the VAE objective becomes similar
to that of a deterministic autoencoder; in absence of
the rate term, the distortion is minimized when the
encoding is a delta-peak at the maximum-likelihood
value argmax,logp(x | z). For this reason, a stan-
dard interpretation is that the rate serves to induce a
smoother representation and ensures that samples from
the generative model are representative of the data.

While there is evidence that the rate term indeed in-
duces a smoother representation (Shamir et al., 2010),
it is not clear whether this smoothness mitigates over-
fitting, or indeed to what extent VAEs are prone to
overfitting in the first place. Several researchers (Bous-
quet et al., 2017; Rezende and Viola, 2018; Alemi et al.,
2018; Shu et al., 2018) have pointed out that an infinite-
capacity optimal decoder will memorize training data,
which suggests that high-capacity VAEs will overfit. On
the other hand, there is also evidence of underfitting;
setting 8 < 1 can improve the quality of reconstruc-
tions in VAEs for images (Hoffman et al., 2017; Engel
et al., 2017), natural language (Wen et al., 2017), and
recommender systems (Liang et al., 2018).

More broadly, precisely what constitutes generalization
and overfitting in this model class is open to interpre-
tation. If we view the VAE objective primarily as a
means of training a generative model, then it makes
sense to evaluate model performance in terms of the
log marginal likelihood log pg(x). This view is coherent
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for the standard VAE objective (8 = 1), which defines
a lower bound

L(0,¢) = Eq(a) [logpo(x) — KL(gs(2 | 2) || po(2] @))]
< Eq(m) [logpg (a:)] .

The KL term indirectly regularizes the generative model
when the encoder capacity is constrained (Shu et al.,
2018). Note however that Lz is not a lower bound
on logpp(x) when 8 < 1. This means that it does
not make sense to evaluate generalization in terms of
log pg(x) when § — 0, or in deterministic autoencoders
that do not define a generative model to begin with.

In this paper, we view the VAE primarily as a model
for learning representations in an unsupervised manner.
In this view, generation is more ancillary; The encoder
and decoder serve to define a lossy compressor and de-
compressor, or equivalently to define a low-dimensional
manifold that is embedded in the data space. Our
hope is that the learned latent representation reflects
semantically meaningful factors of variation in the data,
whilst discarding nuisance variables.

The view of VAEs as lossy compressors can be formal-
ized by interpreting the objective Lz as a special case
of information-bottleneck (IB) objectives (Tishby et al.,
2000; Alemi et al., 2017, 2018). This interpretation
relies on the the observation that the decoder py(x | 2)
defines a lower bound on the MI in the inference model
gs(z, ) in terms of a distortion D and entropy H

H - D < I,[z; 2], (2)
D = -Ey, (a2 [logpg(:n | z)], (3)
H = —Ey()[logg(z)]. (4)

Similarly, the rate R is an upper bound on this same
mutual information R > I,[x; 2],

R=Ey, (. [KL(gs(2| 2) || p(2))] (5)
= Iy[®; 2] + KL(g4(2) || p(2))-

Here the term KL(gs(2) || p(2)) is sometimes called
“the marginal KL” in the literature (Rezende and Viola,
2018). The naming of the rate and distortion terms orig-
inates from rate-distortion theory (Cover and Thomas,
2012), which seeks to minimize I,[x; z] subject to the
constraint D < D*. The connection to VAEs now
arises from the observation that Lz is a Lagrangian
relaxation of the rate-distortion objective

Ls=-D-BR (6)

The appeal of this view is that it suggests an inter-
pretation of the distortion D as an empirical risk and
of I,[x; z] as a regularizer (Shamir et al., 2010). This
leads to the hypothesis that VAEs may exhibit a classic

bias-variance trade-off: In the limit 8 — 0, we may
expect low distortion on the training set but poor gen-
eralization to the test set, whereas increasing § may
mitigate this form of overfitting.

At the same time, the rate-distortion view of VAEs
gives rise to some peculiarities. Standard IB meth-
ods use a regressor or classifier pg(y|x) to define a
lower bound H — D < I;[y; 2] on the MI between the
code z and a target variable y (Tishby et al., 2000).
The objective is to maximize I,[y; 2], which serves to
learn a representation z which is predictive of y, whilst
minimizing I,[x; z], which serves to compress x by
discarding information irrelevant to y. However, this
interpretation does not translate to the special case of
VAEs, where = y. Here any compression will neces-
sarily increase the distortion since D > H — I [x; z].

In our experiments, we will explicitly investigate to
what extent 8 controls a trade-off between overfitting
and underfitting. To do so, we will compute RD curves
that track the rate and distortion under varying (.
While RD curves have been used to evaluate model
performance on the training set (Alemi et al., 2018;
Rezende and Viola, 2018), we are not aware of work
that explicitly probes generalization to a test set.

To see how overfitting and underfitting may manifest in
this analysis, we can consider the hypothetical case of
infinite-capacity encoders and decoders. For such net-
works, both bounds will be tight at the optimum and
Ls = (1—p)1,[x; z] — H. Maximizing £z with respect
to ¢ will lead to an autodecoding limit when 8 > 1,
which minimizes Iy[x; z], and an autoencoding limit
when 8 < 1, which maximizes I,[x; z] (Alemi et al.,
2018). One hypothesis is that we will observe poor
generalization to the test set in either limit, since max-
imizing I,[x; z] could lead to overfitting whereas min-
imizing I [x; z] could lead to underfitting. Moreover,
an infinite-capacity generator will fully memorize the
training data, which could lead to poor generalization
performance in terms of the log marginal likelihood.

In practice, it may well be that the decoder py(x|z)
can be approximated as an infinite-capacity model. We
present empirical evidence of this phenomenon in Ap-
pendix ?? that is consistent with recent analyses (Bous-
quet et al., 2017; Rezende and Viola, 2018; Alemi et al.,
2018; Shu et al., 2018). However, it is typically not
the case that the prior p(z) has a high capacity. In
fact, a standard spherical Gaussian prior effectively
has 0 capacity, since its mean and variance define an
affine transformation that can be trivially absorbed
into the first linear layer of any encoder and decoder.
This means that the upper bound will be loose and
that the rate R may in practice represent a trade-off
between I,[x; z] and KL(g4(2) || p(2)), at least when
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Figure 1: We simulate 164k tetrominoes that vary in position, orientation, size, and color.

the encoder capacity is limited. We present evidence
of this trade-off in Section 4.5.

3 Related Work

Generalization in VAEs. Recent work that evalu-
ates generalization in VAEs has primarily considered
this problem from the perspective of VAEs as genera-
tive models. Shu et al. (2018) consider whether con-
straining encoder capacity can serve to mitigate data
memorization, whereas Zhao et al. (2018) ask whether
VAESs can generate examples that deviate from training
data. Kumar and Poole (2020) derive a deterministic
approximation to the S-VAE objective and show that
B-VAE regularizes the generative by imposing a con-
straint on the Jacobian of the encoder. Whereas Kumar
and Poole (2020) evaluate generalization in terms of
FID scores (Heusel et al., 2017), we here focus on RD
curves. Huang et al. (2020) also discuss evaluating deep
generative models based on RD curves. They show
that this type of analysis can be used to uncover some
of the known properties of VAEs such as the “holes
problem” (Rezende and Viola, 2018) by tracking the
change in the curve for different sizes of latent space.
In our work, we focus on the change of the RD curve
as the generalization problem becomes more difficult.

Generalization and regularization in determin-
istic autoencoders. Zhang et al. (2019) and Rad-
hakrishnan et al. (2019) study generalization in deter-
ministic autoencoders, showing that these models can
memorize training data if they are over-parameterized.
We overall observed a similar behaviour in our exper-
iments. However, for our experiments, we did not
consider architectures as deep as the ones in Zhang
et al. (2019) and Radhakrishnan et al. (2019). Ghosh
et al. (2019) show that combining deterministic autoen-
coders with regularizers other than the rate can lead
to competitive generative performance.

Generalization of disentangled representations.
Our work is indirectly related to research on disentan-
gled representations, in the sense that some of this
work is motivated by the desire to learn representa-
tions that can generalize to unseen combinations of
factors (Narayanaswamy et al., 2017; Kim and Mnih,
2018; Esmaeili et al., 2019; Chen et al., 2018; Locatello
et al., 2019). There has been some work to quantify the

effect of disentangling on generalization (Eastwood and
Williams, 2018; Esmaeili et al., 2019; Locatello et al.,
2019), but the extent of this effect remains poorly
understood. In this paper, we explicitly design our
experiments to test generalization to data with unseen
combinations of factors, but we are not interested in
disentanglement per se.

4 Experiments

To quantify the effect of rate-regularization on gen-
eralization, we designed a series of experiments that
systematically control three factors in addition to the
B-coeflicient: the amount of training data, the density
of training data relative to the true factors of variation,
and the depth of the encoder and decoder networks.
To establish baseline results, we begin with experi-
ments that vary all three factors in fully-connected
architectures on a simulated dataset of Tetrominoes.
We additionally consider convolutional architectures,
as well as other simulated and non-simulated datasets.

4.1 Tetrominoes Dataset

When evaluating generalization we have two primary
requirements for a dataset. The first is that failures
in generalization should be easy to detect. A good
way to ensure this is to employ data for which we
can achieve high-quality reconstructions for training
examples, which makes it easier to identify degradations
for test examples. The second requirement is that we
need to be able to disambiguate effects that arise from a
lack of data from those that arise from the difficulty of
the generalization problem. When a dataset comprises
a small number of examples, this may not suffice to
train an encoder and decoder network. Conversely,
even when employing a large training set, a network
may not generalize when there are a large number of
generative factors.

To satisfy both requirements, we begin with experi-
ments on simulated data. This ensures that we can
explicitly control the density of data in the space of
generative factors, and that we can easily detect degra-
dations in reconstruction quality. We initially consid-
ered the dSprites dataset (Matthey et al., 2017), which
contains 3 shapes at 6 scales, 40 orientations, and 322
positions. Unfortunately, shapes in this dataset are
close to convex. Varying either the shape or the rota-
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“Hard”

(test data far from training data)

“Easy”

(test data close to training data)

Default (300/300) Checkerboard (300/300)

Large training data

Small training data

Figure 2: We define 4 train/test splits, which vary
in the amount of training data and the typical dis-
tance between test data and their nearest neighbors
in the training set. Here we show 600 samples with 2
generative factors for visualization.

tion results in small deviations in pixel space, which in
practice makes it difficult to evaluate whether a model
memorizes the training data.

To overcome this limitation, we created the Tetromi-
noes dataset. This dataset comprises 163,840 proce-
durally generated 32x32 color images of a J-shaped
tetromino, which is concave and lacks rotational sym-
metry. We generate images based on five i.i.d. contin-
uous generative factors, which are sampled uniformly
at random: rotation (sampled from the [0.0, 360.0]
range), color (hue, sampled from [0.0, 0.875] range),
scale (sampled from [2.0, 5.0] range), and horizontal
and vertical position (sampled from an adaptive range
to ensure no shape is placed out of bounds). To ensure
uniformity of the data in the latent space, we generate
a stratified sample; we divide each feature range into
bins and sample uniformly within bins. Examples from
the dataset are shown in Figure 1.

4.2 Train/Test Splits

In our experiments, we compare 4 different train/test
splits that are designed to vary two components: (1)
the amount of training data, (2) the typical distance
between training and test examples.

1. 50/50 random split (Default). The base case in our
analysis (Figure 2, 15* from left) is a 82k/82k random
train/test split of the full dataset. This case is designed

to define an “easy” generalization problem, where simi-
lar training examples will exist for most examples in
the test set.

2. Large data, (Checkerboard) split. We create a
82k/82k split in which a 5-dimensional “checkerboard”
mask partitions the training and test set (Figure 2, 279
from left). This split has the same amount of training
data as the base case, as well as the same (uniform)
marginal distribution for each of the feature values.
This design ensures that for any given test example,
there are 5 training examples that differ in one fea-
ture (e.g. color) but are similar in all other features
(e.g. position, size, and rotation). This defines an out-
of-domain generalization task, whilst at the same time
ensuring that the model does not need to extrapolate
to unseen feature values.

3. Small data, constant density (CD). We create
train/test splits for datasets of {8k, 16k, 25k, 33k,
41k, 49k, 57k, 65k} examples by constraining the range
of feature values (Figure 2, 2" from right), ensuring
that the density in the feature space remains constant
as we reduce the amount of data.

4. Small data, constant volume (CV). Finally, we create
train/test splits by selecting {8k, 16k, 25k, 33k, 41k,
49k, 57k, 65k} training examples at random without
replacement (Figure 2, 1%° from right). This reduces
the amount of training data whilst keeping the volume
fixed, which increases the typical distance between
training and test examples.

4.3 Network Architectures and Training

We use ReLU activations for both fully-connected and
convolutional networks with a Bernoulli likelihood in
the decoder!. We use a 10-dimensional latent space
and assume a spherical Gaussian prior. All models
are trained for 257k iterations with Adam using a
batch size of 128, with 5 random restarts. For MLP
architectures, we keep the number of hidden units fixed
to 512 across layers. For the CNN architectures, we
use 64 channels with kernel size 4 and stride 2 across
layers. See Appendix ?7 for further details.

4.4 Results

Fully-Connected Architectures on Dense and
Sparse Data. We begin with a comparison between
1-layer and 3-layer fully-connected architectures on a
dense CV (82k/82k) split and a sparser CV (16k,/147k)
split. Based on existing work (Radhakrishnan et al.,
2019), our hypothesis in this experiment is that the 3-

'The Bernoulli likelihood is a very common choice in
the VAE literature even for input domain of [0,1]. For a
more detailed discussion, see Appendix 77
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Figure 3: Training and test RD curves evaluated on the CV(82k/82k) split (Top) and CV(16k/147k) split
(bottom), for a 1-layer and a 3-layer architecture. Each dot constitutes a 8 value (white stars indicate the f=1),
averaged over 5 restarts. Images show reconstructions of a test example.

layer architecture will be more prone to overfitting the
training data (particularly in the sparser case), and our
goal is to establish to what extent rate-regularization
affects the degree of overfitting.

Figure 3 shows RD curves on the training and test set.
We report the mean across 5 restarts, with bars indi-
cating the standard deviation, for 12 3 values?. White
stars mark the position of the standard VAE (8=1)
on the RD plane. Diagonal lines show iso-contours
of the evidence lower bound Lg—; = —D — R. Above
each panel, we show reconstructions for a test-set exam-
ple that is difficult to reconstruct, in the sense that it
falls into the 90" percentile in terms of the fo-distance
between its nearest neighbor in the training set.

For the dense CV (82k/82k) split (top), we observe
no evidence of memorization. Moreover, increasing
model capacity uniformly improves generalization, in
the sense that it decreases both the rate and the dis-
tortion, shifting the curve to the bottom left.

For the sparse CV (16k/147k) split (bottom), we see

28 € {0.001, 0.005, 0.01, 0.1, 0.3, 0.5, 0.7, 0.9, 1., 2., 3.,
5.}

a different pattern. In the 1-layer model, we observe
a trend that appears consistent with a classic bias-
variance trade-off. The distortion on the training set
decreases monotonically as we reduce (3, whereas the
distortion on the test set initially decreases, achieves
a minimum, and somewhat increases afterwards. This
suggests that 8 may control a trade-off between overfit-
ting and underfitting, although there is no indication of
data memorization. When we perform early stopping
(see Appendix ?7), the RD curve once again becomes
monotonic, which is consistent with this interpretation
in terms of overfitting.

In the 3-layer architecture, we observe a qualitatively
different trend. Here we see evidence of data mem-
orization; some reconstructions resemble memorized
neighbors in the training set. However, counterintu-
itively, no memorization is apparent at smaller 5 values.
When looking at the iso-contours, we observe that the
test-set lower bound Lg=1 < logpy(x) achieves a maxi-
mum at 8 = 0.1. Additional analysis (see Appendix ?7?)
shows that this maximum also corresponds to the max-
imum of the log marginal likelihood log pg(x). In short,
high-capacity networks are capable of memorizing the
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Figure 4: Test-set RD curves for constant volume (top) and constant density splits (bottom) with varying training
set sizes. White stars indicate the RD value for a standard VAE (8=1).

training data, as expected. However, paradoxically,
this memorization occurs when S is large, where we
would expect underfitting based on the 1-layer results,
and the generalization gap, in terms of both D and
log pg (), is smallest at 8 = 0.1.

Role of the Training Set Size. The qualitative
discrepancy between training and test set RD curves
in Figure 3 has to our knowledge not previously been
reported. One possible reason for this is that this behav-
ior would not have been apparent in other experiments;
there is virtually no generalization gap in the dense
CV (82k/82k) split. The differences between 1-layer
and 3-layer architectures become visible in the sparse
CV (16k/147k) split. Whereas the dense CV (82k/82k)
split is representative of typically simulated datasets
in terms of the number of examples and density in the
latent space, the CV (16k/147k) split has a training set

1 Layer 3 Layers

m— CV (82k/82k)

150 A - —s CV (16k/147k)

== Checkerboard

Q
100 A i .
) L—n—‘m
50 . Y Ab—aA .|
0 50 100 O 50 100
R R
Figure 5: RD Curves for the CV(82k/82k),

CV(16k/147k), and Checkerboard Splits.

that is tiny by deep learning standards. Therefore, we
need to verify that the observed effects are not simply
attributable to the size of the training set.

To disambiguate between effects that arise from the size
of the data and effects that arise due to the density of
the data, we compare CV and CD splits with training
set sizes Nirain = {8k, 16k, 32k, 56k}. Since CD splits
have a fixed density rather than a fixed volume, the
examples in the test set will be closer to their nearest
neighbors in the training set, resulting in an easier
generalization problem.

Figure 4 shows the test-set RD curves for this exper-
iment. In the CV splits, the qualitative discrepancy
between 1-layer and 3-layer networks becomes more
pronounced as we decrease the size of the training set.
However, in the CD splits, discrepancies are much less
pronounced. RD curves for 3-layer networks are virtu-

1 Layer 3 Layers
150 - . e
s CNN

9 100 4 .
° N
LA N
50 T T T T
0 50 100 0 50 100
R R

Figure 6: RD Curves for the CV(16k/147k) for MLP
and CNN Architectures.
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Figure 7: RD curves shown on various datasets trained with 1 and 3 layers.

ally indistinguishable. RD curves for 1-layer networks
still exhibit a minimum, but there is a much weaker
dependence on the training set size. Moreover, general-
ization performance marginally improves as we decrease
the size of the training set. This may be attributable to
the manner in which we construct the splits. Because
we simulate data using a 5-dimensional hypercube of
generative factors, limiting the volume has the effect
of decreasing the surface to volume ratio, which would
mildly reduce the typical distance between training and
test set examples.

In-Sample and Out-of-Sample Generalization.
A possible takeaway from the results in Figure 4 is that
the amount of training data itself does not strongly af-
fect generalization performance, but that the similarity
between test and training set examples does. To further
test this hypothesis, we compare the CV (82k/82k) and
CV (16k/147k) splits to the Checkerboard (82k/82k)
split, which allows us to evaluate out-of-sample gener-
alization to unseen combinations of factors. RD curves
in Figure 5 show similar generalization performance for
the Checkerboard and CV (16k/147k) splits. This is
consistent with the fact that these splits have a similar
distribution over pixel-distances between test set and
nearest training set examples (Figure ?7).

Convolutional architectures. A deliberate limita-
tion of our experiments is that we have considered
fully-connected networks, which are an extremely sim-
ple architecture. There are of course many other en-
coder and decoder architectures for VAEs (Kingma
et al., 2016; Gulrajani et al., 2017; Van den Oord et al.,
2016). In Figure 6, we compare RD curves for MLPs
with those for 1-layer and 3-layer CNNs (see Table 77
for details). We observe a monotonic curve for 3-layer
CNNs and only a small degree of non-monotonicity in
the 1-layer CNN. Since most architectures will have a
higher capacity than a 3-layer MLP or CNN, we can
interpret the results for 3-layer networks as the most
representative of other architectures.

Additional Datasets. Our analysis thus far shows
that the generalization gap grows when we increase

the difficulty of a generalization problem, which is ex-
pected. The unexpected result is that, depending on
model capacity, we either observe U-shaped RD curves
that are consistent with a bias-variance trade-off, or
L-shaped curves in which generalization improves as
we reduce 8. To test whether both phenomena also
occur in other datasets, we perform experiments on the
Fashion-MNIST (Xiao et al., 2017), SmalINORB (Le-
Cun et al., 2004), MNIST (LeCun et al., 1998), and
3dShapes (Burgess and Kim, 2018) datasets.

We show the full results of this analysis for a range of
CV splits in Appendix ??. In Figure 7 we compare
1-layer and 3-layer networks for a single split with a
small training set for each dataset. We see that the RD
curves for the 1-layer network exhibits a local minimum
in most datasets. Curves for the 3-layer network are
generally closer to monotonic, although a more subtle
local minimum is visible in certain cases. The one
exception is the 3dShapes dataset, where the 3-layer
network exhibits a more pronounced local minimum
than the 1-layer network.

4.5 Is the Rate a Regularizer?

Our experiments suggest that the rate is not an induc-
tive bias that typically reduces the reconstruction loss
in high-capacity models. One possible explanation for
these findings is that we should consider both terms in
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Figure 8: I,(z, z) and KL(q4(2)||p(2)) vs 5 for 5-VAE
Trained on CV(16k,/147k).
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the rate R = I[x; z] + KL(gs(2) || p(2)) when evaluat-
ing the effect of rate-regularization. The term I,[x; z]
admits a clear interpretation as a regularizer (Shamir
et al., 2010). However, KL(g4(2) || p(2)) is not so much
a regularizer as a constraint that the aggregate poste-
rior ¢4(z) should resemble the prior p(z), which may
require a less smooth encoder and decoder when learn-
ing a mapping from a multimodal data distribution
to a unimodal prior. While we have primarily con-
cerned ourselves with continuous factors for a single
Tetramino shape, it is of course common to fit VAEs to
multimodal data, particularly when the data contains
distinct classes. A unimodal prior forces the VAE to
learn a decoder that “partitions” the contiguous latent
space into regions associated with each class, which
will give rise to sharp gradients near class boundaries.

To understand how each of these two terms contributes
to the rate, we compute estimates of I,(x;z) and
KL(gy(2) || p(2)) by approximating g,(z) with a Monte
Carlo estimate over batches of size 512 (see Esmaeili
et al. (2019)). Figure 8 shows both estimates as a
function of 3 for the CV (16k/147k) split. As expected,
I,(x; z) decreases when 8 > 1 but saturates to its
maximum log Nipain when 5 < 1. Conversely, the term
KL(g¢(2) || p(z)) is small when 5 > 1 but increases
when S < 1. Based on the fact that the generaliza-
tion gap in terms of both the reconstruction loss and
log pgx is minimum at 8 = 0.1, it appears that the
KL(gs(2) || p(2)) term can have a significant effect on
generalization performance. Additional experiments
where we train VAEs with either the marginal KL or
the MI term removed from the loss function confirm this
effect of the marginal KL term on the generalization
performance of VAEs (see Appendix ?7).

Our reading of these results is that it is reasonable
to interpret the rate as an approximation of the MI
when [ is large. However, our experiments suggest that
VAEs typically underfit in this regime, and therefore
do not benefit from this form of regularization. When
B is small, the MI saturates and we can approximate
the rate as R = log Niyain + KL(gg(2) || p(2)). In this
regime, we should not interpret the rate as a regularizer,
but as a constraint on the learned representation, and
there can be a trade-off between this constraint and
the reconstruction accuracy.

5 Discussion

In this empirical study, we trained over 6000 VAE
instances to evaluate how rate-regularization in the
VAE objective affects generalization to unseen exam-
ples. Our results demonstrate that high-capacity VAEs
can and do overfit the training data. However, para-
doxically, memorization effects can be mitigated by

decreasing 3. These effects are more pronounced when
test-set examples differ substantially from their nearest
neighbors in the training set. For real-world datasets,
this is likely to be the norm rather than the exception;
few datasets have a small number of generative factors.

Based on these results, we argue that we should give
the role of priors as inductive biases in VAEs more
serious consideration. The KL relative to a standard
Gaussian prior does not improve generalization perfor-
mance in the majority of cases. With the benefit of
hindsight, this is unsurprising; When we use a VAE to
model a fundamentally multimodal data distribution,
then mapping this data onto a contiguous unimodal
Gaussian prior may not yield a smooth encoder, se-
mantically meaningful distances in the latent space,
or indeed a representation that generalizes to unseen
data. This motivates future work to determine to what
extent other priors, including priors that attempt to
induce structured or disentangled representations, can
aid generalization performance.

While these experiments are comprehensive, we have
explicitly constrained ourselves to comparatively simple
architectures and datasets. These architectures are not
representative of the state of the art (Vahdat and Kautz;
Maalge et al., 2019; Razavi et al., 2019; Gulrajani et al.,
2017; Van den Oord et al., 2016), particularly when
we are primarily interested in generation. It remains
an open question to what extent rate-regularization
affects generalization in much higher-capacity archi-
tectures that are trained on larger datasets of natural
images. Moreover, there are other factors that could
potentially impact our results which we do not study
here, including but not limited to: dimensionality of
the latent space, the choice of prior, and the choice of
training method. We leave the investigation of these
factors in RD analysis to future work.
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