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1 Introduction

In the coupled atmosphere-fire model WRF-SFIRE [6, 5|, the weather model runs at 300-1km
horizontal resolution, while the fire model runs at the resolution of 30m or finer. The wind has
a fundamental effect on fire behavior and the topography details have a strong effect on the
wind, but WRF does not see the topography on the fire grid scale. We want to downscale the
wind from WREF to account for the fine-scale terrain. For this purpose, we fit the wind from
WRF with a divergence-free flow over the detailed terrain. Such methods, called mass-consistent
approximations, were originally proposed on regular grids |9, 10] for urban and complex terrain
modeling, with terrain and surface features modeled by excluding entire grid cells from the
domain. For fire applications, WindNinja [11] uses finite elements on a terrain-following grid.
The resulting equations are generally solved by iterative methods such as SOR, which converge
slowly, so use of GPUs is of interest [2]. A multigrid method with a terrain-following grid by
a change of coordinates was proposed in [13].

The method proposed here is to be used in every time step of WRF-SFIRE in the place of
interpolation to the fire model grid. Therefore, it needs to have the potential to (1) scale to
hundreds or thousands of processors using WRF parallel infrastructure [12]; (2) scale to domains
size at least 100km by 100km horizontally, with 3000 x 3000 x 15 grid cells and more; (3)
have reasonable memory requirements per grid point; (4) not add to the cost of the time step
significantly when started from the solution in the previous time step; and, (5) adapt to the
problem automatically, with minimum or no parameters to be set by the user.

2 Finite element formulation

Given vector field ug on domain Q C R?, subset I' C 09, and d x d symmetric positive definite
coefficient matrix A = A (x), we want to find the closest divergence-free vector field u by solving
the problem

1
min2/(u—u0)‘A(u—u0)daz subject to divu =0in Qandu-n=0on I, (1)

u
Q

where I' is the bottom of the domain (the surface), and A (x) is a 3 x 3 diagonal matrix with
penalty constants a?,a3,a3 on the diagonal. Enforcing the constraints in (1) by a Lagrange
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multiplier A\, we obtain the solution (u, \) as a stationary point of the Lagrangean

E(u,/\):;Q/A(u—uo)~(u—uo)da:—&—ﬂ//\divudw—F/)\n-uds. (2)

Eliminating w from the stationarity conditions 0L(u, A)/OA = 0 and 0L(u, A)/0u = 0 by
w=uy+ A grad \ (3)
leads to the generalized Poisson equation for Lagrange multiplier A,
—divA~lgrad A =divugon 2, A=00n9Q\T, n-A'gradd=-n-uyonl. (4)

Multiplication of (4) by a test function u, =0 on 90 \ T', and integration by parts yields the
variational form to find A such that A =0 on 0Q \ I" and

/ A~ lgrad \ - grad pda = — / grad p - updx (5)
Q Q

for all p such that p = 0on 9Q\I'. The solution is then recovered from (3). We proceed formally
and avoid the language of functional spaces; the theory will be presented elsewhere.

The variational problem (5) is discretized by standard isoparametric 8-node hexahedral finite
elements, e.g., [4]. The integral on the left-hand side of (5) is evaluated by tensor-product Gauss
quadrature with two nodes in each dimension, while for the right-hand side, one-node quadrature
at the center of the element is sufficient. The same code for the derivatives of a finite element
function is used to evaluate grad A in (3) at the center of each element.

The unknown A is represented by its values at element vertices, and the wind vector is represented
naturally by its values at element centers. No numerical differentiation of A from its nodal values,
computation of the divergence of the initial wind field wg, or explicit implementation of the
boundary condition on grad A in (4) is needed. These are all taken care of by the finite elements
naturally.

3 Multigrid iterations

The finite element method for (5) results in a system of linear equations Ku = f. The values
of the solution are defined on a grid, which we will call a fine grid. One cycle of the multigrid
method consists of several iterations of a basic iterative method, such as Gauss-Seidel, called
a smoother, followed by a coarse-grid correction. A prolongation matrix P is constructed to
interpolate values from a coarse grid, in the simplest case consisting of every other node, to the
fine grid. For a given approximate solution u after the smoothing, we seek an improved solution
in the form u 4 Pu, variationally, by solving

P'K (u+ Pu.)=P'f (6)
for u,, and obtain the coarse-grid correction procedure as

fo=P" (f — Ku) form the coarse right-hand side

K.=P'KP form the coarse stiffness matrix
Koue = fe solve the coarse-grid problem (7)

U u + Pu, insert the coarse-grid correction
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The coarse grid correction is followed by several more smoothing steps, which completes the
multigrid cycle.

In the simplest case, P is a linear interpolation and the coarse stiffness matrix K, is the stiffness
matrix for a coarse finite element discretization on a grid with each coarse-grid element taking
the place of a 2 x 2 x 2 agglomeration of fine-grid elements. That makes it possible to apply
the same method to the coarse-grid problem (7) recursively. This process creates a hierarchy of
coarser grids. Eventually, the coarsest grid problem is solved by a direct method, or one can just
do some more iterations on it.

Multigrid methods gain their efficiency from the fact that simple iterative methods like Gauss-
Seidel change the values of the solution at a node from differences of the values between this and
neighboring nodes. When the error values at neighboring nodes become close, the error can be
well approximated in the range of the prolongation P and the coarse-grid correction can find u,
such that u + Pu. is a much better approximation of the solution. For analysis of variational
multigrid methods and further references, see [1, 7).

Multigrid methods are very efficient. For simple elliptic problems, such as the Poisson equation on
a regular grid, convergence rates of about 0.1 (reduction of the error by a factor of 10) at the cost
of 4 to 5 Gauss-Seidel sweeps on the finest grid are expected [3]. However, the convergence rates
get worse on more realistic grids, and adaptations are needed. We choose as the smoother vertical
sweeps of Gauss-Seidel from the bottom up to the top, with red-black ordering horizontally into
4 groups. For the base method, we use 2 x2 X 2 coarsening and construct P so that the vertices of
every 2 X 2 x 2 agglomeration of elements interpolate to the fine-grid nodes in the agglomeration,
with the same weights as the trilinear interpolation on a regular grid. The interpolation is still
trilinear on a stretched grid, but only approximately trilinear on a deformed terrain-following
grid.

The base method works as expected as long as some grid layers are not tightly coupled. If
they are, we mitigate the slower convergence by semicoarsening [8]: After smoothing, the error
is smoother in the tightly coupled direction(s), which indicates that we should not coarsen the
other direction(s). When the grid is stretched vertically away from the ground, the nodes are
relatively closer and thus tightly coupled in the horizontal direction. Similarly, when the penalty
coefficient a3 in the vertical direction is larger than a; and as in the horizontal directions, the
neighboring nodes in the vertical direction are tightly coupled numerically. The algorithm to
decide on coarsening we use is: Suppose that the penalty coefficients are a; = a2 = 1 and a3z > 1,
and at the bottom of the grid, the grid spacing is hy = ho (horizontal) and hgs (vertical). If
hs/(hiag) > 1/3, coarsen in the horizontal directions by 2, otherwise do not coarsen. Then,
replace hy and hg by their new values, corsened (multiplied by 2) or not, and for every horizontal
layer from the ground up, if hs/(hias)] < 3, coarsen about that layer vertically, otherwise do
not coarsen. This algorithm retains the coarse grids as logically cartesian, which is important
for computational efficiency and keeping the code simple, and it controls the convergence rate
to remain up to about 0.28 with four smoothing steps per cycle.

4 Conclusion

We have presented a simple and efficient finite element formulation of mass-consistent approx-
imation, and a multigrid iterative method with adaptive semicoarsening, which maintains the
convergence of iteration over a range of grids and penalty coefficients. A prototype code is
available at: https://github.com/openwfm/wrf-fire-matlab/tree/femwind/femwind
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