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Abstract 24 

Phenological transitions determine the timing of changes in land surface properties and the 25 

seasonality of exchanges of biosphere-atmosphere energy, water, and carbon. Accurate 26 

mechanistic modeling of phenological processes is therefore critical to understand and correctly 27 

predict terrestrial ecosystem feedbacks with changing atmospheric and climate conditions. 28 

However, the phenological components in the land model of the US Department of Energy’s 29 

(DOE) Energy Exascale Earth System Model (ELM of E3SM) were previously unable to 30 

accurately capture the observed phenological responses to environmental conditions in a well-31 

studied boreal peatland forest. In this research, we introduced new seasonal-deciduous 32 

phenology schemes into version 1.0 of ELM and evaluated their performance against the 33 

PhenoCam observations at the Spruce and Peatland Responses Under Changing Environments 34 

(SPRUCE) experiment in northern Minnesota from 2015 to 2018. We found that phenology 35 

simulated by the revised ELM (i.e., earlier spring onsets and stronger warming responses of 36 

spring onsets and autumn senescence) was closer to observations than simulations from the 37 

original algorithms for both the deciduous conifer (Larix laricina) and mixed shrub layers. 38 

Moreover, the revised ELM generally produced higher carbon and water fluxes (e.g., 39 

photosynthesis and evapotranspiration) during the growing season and stronger flux responses to 40 

warming than the default ELM. A parameter sensitivity analysis further indicated the significant 41 

contribution of phenology parameters to uncertainty in key carbon and water cycle variables, 42 

underscoring the importance of precise phenology parameterization. This phenological modeling 43 

effort demonstrates the potential to enhance the E3SM representation of land-climate interactions 44 

at broader spatiotemporal scales, especially under anticipated elevated CO2 and warming 45 

conditions. 46 
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1 Introduction 48 

Phenological events such as leaf unfolding and flowering are sensitive to variations in weather 49 

and climate (Körner and Basler, 2010a). Multiple lines of observations have documented an 50 

earlier spring leaf-out, later autumn senescence, and longer growing season in response to 51 

warming, especially for terrestrial ecosystems over the northern mid-high latitudes (Körner and 52 

Basler, 2010b; Menzel and Fabian, 1999; Piao et al., 2019a; Richardson et al., 2018b). 53 

Phenology regulates plant feedbacks to the climate system via the timing changes of land surface 54 

biophysical and biogeochemical fluxes and properties (Richardson et al., 2013; Schwartz, 1992; 55 

Li et al., 2016). For example, the leaf emergence in spring increases transpiration and latent heat 56 

flux but decreases the Bowen ratio (Richardson et al., 2013); earlier spring leaf-out increased 57 

annual gross primary production (GPP) by about 10 g C/m2 in a temperate deciduous forest 58 

(Richardson et al., 2013); and an extension of just 1 day in growing season length may increase 59 

the annual GPP of northern terrestrial ecosystems by ~0.5% (Piao et al., 2007; White et al., 60 

2009).  61 

Spring onset of seasonal deciduous ecosystems is mainly driven by temperature through 62 

underlying physiological processes (Sarvas, 1974). Based on this, the thermal time model was 63 

proposed as early as the eighteenth century to predict spring onset as the date when the 64 

accumulated growing-degree-day exceeds a threshold (Reaumur, 1735). Later, manipulative 65 

experiments revealed that plants need to be exposed to low chilling temperatures to break 66 

dormancy before responding to the rising spring temperature (Hannerz et al., 2003; Hänninen 67 

et al., 2019; Sarvas, 1972). Chilling models have since been proposed to predict the spring 68 
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phenology based on a balance between winter chilling requirement and accumulated spring 69 

temperature forcing (Cannell and Smith, 1983; Landsberg, 1974; Sarvas, 1972). These models 70 

characterize nonlinear responses of spring phenology to temperature (Cesaraccio et al., 2004), 71 

and have been widely applied from local to global scales to examine the phenological effects of 72 

climate change (Chuine et al., 2016; Meng et al., 2020a; Meng et al., 2020b). More recent 73 

models for spring phenology have emerged by integrating the influences of winter chilling, 74 

spring thermal forcing, photoperiod (i.e., daylength), and their interactions (Caffarra et al., 2011; 75 

Liang, 2019), albeit resulting in greater model complexity and increased model parameters 76 

(Chuine and Régnière, 2017; Hänninen et al., 2019). 77 

In contrast, autumn senescence such as leaf coloration, reduced functionality of photosynthesis 78 

and transpiration, and leaf fall has drawn less attention until recently (Keskitalo et al., 2005; 79 

Richardson et al., 2012). Autumn senescence was found to be likely modulated by the decrease 80 

in photoperiod and temperature (Fracheboud et al., 2009; Richardson et al., 2018b). Based on the 81 

process of cold-degree-day (CDD) accumulation, several leaf senescence models were developed 82 

(Dufrêne et al., 2005; Jeong and Medvigy, 2014); the impacts of daylength decrease on the 83 

effectiveness of CDD accumulation were later introduced to improve the senescence modeling 84 

(Delpierre et al., 2009); and the impact of timing of spring phenology on the autumn senescence 85 

process by influencing the requirement of CDD accumulation was also proposed (Keenan and 86 

Richardson, 2015). A recent study examining multiple leaf senescence assumptions reported that 87 

models considering the interactions between photoperiod and temperature outperformed those 88 

solely based on temperature or photoperiod thresholds (Liu et al., 2020), although further 89 

mechanistic understanding of leaf senescence is needed. 90 
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Despite the progress in phenological modeling, the advancement of phenology scheme remains 91 

limited in many state-of-the-art land surface models, such as the land model of the US 92 

Department of Energy’s (DOE) Energy Exascale Earth System Model (ELM of E3SM). 93 

Consistent with Community Land Model (CLM) version 4.5, ELM v1.0 includes three distinct 94 

phenology types that are represented by separate algorithms: an evergreen type, for which some 95 

fraction of annual leaf growth persists for longer than one year; a seasonal-deciduous type with 96 

distinct growing and dormant seasons once per year; and a stress-deciduous type with the 97 

potential for multiple growing seasons per year (Lawrence et al., 2011). For the seasonal-98 

deciduous model, two processes determine the length of the growing season: spring onset and 99 

autumn senescence. Spring onset is merely triggered by the growing-degree-day accumulation of 100 

soil temperature, and autumn senescence is set as a constant date at any given location according 101 

to a fixed daylength threshold (Oleson, 2013). Although this scheme captures the dominant 102 

drivers of seasonal phenology, the ELM phenological simulations were demonstrated to be 103 

biased against observational phenology changes and failed to capture interannual variation of 104 

phenology (Chen et al., 2016). For example, degraded land model performance was noticed 105 

when using the prognostic phenology instead of prescribed, satellite-derived phenology 106 

(Lawrence et al., 2011); substantial biases in the intra-annual variation of the fraction of 107 

absorbed photosynthetically active radiation were found to be partially caused by phenology 108 

errors (Wang et al., 2013). Such uncertainties associated with phenology modeling are not 109 

unique for ELM but are typical for most current-generation land surface models. One study 110 

systematically evaluated 14 land surface models participating in the North American Carbon 111 

Program Site Synthesis and revealed a model bias of about two weeks in the representation of the 112 

growing season length and a poor reproduction of the observed inter-annual phenology 113 
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variability (Richardson et al., 2012). Another more recent multi–land surface model 114 

intercomparison study (including CLM 4.5 and 5.0) showed an 18-day delay for the start of the 115 

season and a 2-week advancement for the end of the season compared with satellite observations 116 

(Peano et al., 2020). Limited efforts, however, have been spent improving the spring onset 117 

models using satellite or in situ observations (Chen et al., 2016; Dahlin et al., 2015), and even 118 

fewer have been focused on improving the autumn senescence process.  119 

The Spruce and Peatland Responses Under Changing Environments (SPRUCE) whole-120 

ecosystem warming experiment in a southern boreal peatland forest provides a unique 121 

opportunity to confront the seasonal-deciduous phenology schemes of ELMs at the site level in 122 

response to altered environmental conditions. Results from this experiment revealed that 123 

warming treatments of up to +9°C caused a linearly advanced spring green-up (1.97 days/°C for 124 

Larix laricina and 1.99 days/°C for the mixed shrub layer) and delayed autumn green-down 125 

(1.34 days/°C for Larix laricina and 4.98 days/°C for the mixed shrub layer) (Richardson et al., 126 

2018b). These SPRUCE phenological changes have been monitored automatically every half 127 

hour by cameras of the PhenoCam network, which use digital photography with high quality and 128 

a standardized approach to track phenology evolutions and facilitate model development 129 

(Seyednasrollah et al., 2019). In this study, we first incorporated improved spring onset and 130 

autumn senescence models into the ELM as the seasonal-deciduous phenology schemes, in 131 

which the spring onset depends on both winter chilling and spring thermal forcing processes 132 

whereas the timing of autumn senescence relies on the co-limitation of daylength and 133 

temperature. The modified ELM was then calibrated and evaluated against the SPRUCE 134 

PhenoCam observations for the period beginning in autumn 2015 through 2018. We also 135 

simulated and examined possible phenological feedbacks to major carbon and hydrological 136 



 

 7 

variables under various warming and CO2 levels using the default and updated ELM. The 137 

sensitivity of model outputs to the new phenology parameters was further analyzed. The 138 

following questions were addressed in this research: (1) How different are the default and 139 

phenology-modified ELM versions regarding the prediction of phenology patterns and 140 

phenological responses to warming? (2) To what extent are the ELM-simulated exchanges of 141 

land-atmosphere carbon and water fluxes affected by the new phenological algorithms? (3) How 142 

sensitive are the carbon and water cycle outputs of the updated ELM to uncertainty in major 143 

phenology parameters across vegetation types? 144 

2 Materials and Methods 145 

2.1 Experimental site 146 

The SPRUCE experiment is a large-scale ecological manipulation that evaluates the combined 147 

response of a southern boreal peatland to multiple levels of whole-ecosystem warming up to 148 

+9°C at both ambient CO2 (aCO2) and elevated CO2 (eCO2) concentrations (Hanson et al., 2017). 149 

This field experiment was designed to investigate how underlying mechanistic processes respond 150 

to altered climate conditions, and how the interaction between those processes scale to 151 

ecosystem-level responses. SPRUCE consists of large open-top enclosures and is located within 152 

a Picea-Larix—Sphagnum spp. bog (S1 bog) at the USDA Forest Service Marcell Experimental 153 

Forest in northern Minnesota (47° 30.476′N; 93° 27.162′W; 418 m above mean sea level) (Kolka 154 

et al., 2011). Situated at the southern extent of the spatially expansive boreal peatland forests, 155 

this ecosystem is considered to be near its tipping point with respect to environmental change 156 

(Hanson et al., 2020).  157 
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The bog surface has a hummock/hollow microtopography, where the tops of hummocks are 158 

typically 10–30 cm higher than the bottoms of hollows (Shi et al., 2015). There are distinct 159 

hydrologic dynamics and vegetation communities between the raised hummock and sunken 160 

hollow microtopography characteristic of peatland bogs. The hummock/hollow microtopography 161 

allows a greater aerobic rooting profile for shrubs and trees during the wet spring but limits water 162 

availability to roots during summer drying periods. At SPRUCE, the primary vegetation types 163 

include Picea mariana (black spruce) and Larix laricina (larch) trees with a mixed deciduous 164 

and semi-evergreen Ericaceous shrub layer. The types of mixed shrub layer at SPRUCE mainly 165 

include Rhododendron groenlandicum (Oeder) Kron and Judd (Labrador tea) and 166 

Chamaedaphne calyculata (L.) Moench. (leatherleaf). The ground layer vegetation beneath the 167 

shrubs within the S1 bog also comprises a bryophyte layer dominated by Sphagnum spp. Air and 168 

soil warming at five target levels (+0°C, +2.25°C, +4.5°C, +6.75°C, and +9°C) was conducted 169 

across different enclosures under aCO2 or eCO2 (800 to 900 ppm) conditions. The whole-170 

ecosystem warming began in August 2015, and eCO2 treatments began in June 2016. 171 

2.2 Phenological and environmental measurements 172 

PhenoCams (i.e., high-resolution digital cameras) record seasonal variation in vegetation 173 

“greenness” (i.e., a proxy for vegetation phenology and associated physiological activity) in each 174 

SPRUCE enclosure (Richardson et al., 2018a). These cameras were installed at a height of 6 m 175 

on the south wall of each enclosure and took images automatically every half hour. A reliable 176 

metric of vegetation greenness, green chromatic coordinate (GCC), was derived from each image 177 

for three vegetation types: Picea mariana, Larix laricina, and the mixed shrub layer (Richardson 178 

et al., 2007; Sonnentag et al., 2012). GCC increases during spring, reaches its maximum in 179 

summer, and decreases during autumn. The estimated transition dates of “greenness rising” in 180 



 

 9 

spring and “greenness falling” in autumn were derived when the 3-day smoothed GCC crosses its 181 

25% seasonal amplitude threshold for each vegetation type from each enclosure every year 182 

(Schädel et al., 2019). In this study, phenological transition dates of Larix laricina and the mixed 183 

shrub layer from 2015 to 2018 were used to improve the seasonal-deciduous phenological 184 

models in the ELM.  185 

Related environmental observations from the SPRUCE experiment have been detailed by 186 

Hanson et al. (2017). Briefly, the half-hour air temperature was observed at the center of each 187 

plot at 0.5, 1, 2, and 4 m above the surface of the peat. Half-hour belowground soil temperatures 188 

were measured at three locations (central, middle, and edge) across each plot at the following 189 

depths: 0, −0.05, −0.1, −0.2, −0.3, −0.4, −0.5, −1, and −2 m, where 0 m is the peatland hollow 190 

height (low points in an undulating surface). In this study, we used spatially averaged soil 191 

temperatures simulated at −0.05 m (which is the third soil layer in the ELM) and the observed 2 192 

m air temperature within each enclosure to stimulate phenology in the default and revised ELM 193 

as described in the next section. 194 

2.3 Default phenological schemes in the ELM 195 

The default seasonal-deciduous phenology schemes in the ELM, which include spring onset and 196 

autumn senescence models, were adapted from the phenology algorithms designed for temperate 197 

deciduous broadleaf forest (Thornton et al., 2002; White et al., 1997). The spring onset occurs 198 

when the growing-degree-day accumulation (𝐺𝐷𝐷𝑠𝑢𝑚) of the third-layer soil temperature (𝑇𝑠,3, 199 

in kelvin) initiated at the winter solstice exceeds a threshold 𝐺𝐷𝐷𝑠𝑢𝑚_𝑐𝑟𝑖𝑡. 𝐺𝐷𝐷𝑠𝑢𝑚_𝑐𝑟𝑖𝑡 is 200 

determined by the annual average 2 m air temperature in the preceding year (𝑇2𝑚,𝑎𝑛𝑛𝑎𝑣𝑔
, in 201 

kelvin). 202 
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 𝐺𝐷𝐷𝑠𝑢𝑚 = ∑(𝑇𝑠,3 − 𝑇𝐾𝐹𝑅𝑍) , (1) 203 

 𝐺𝐷𝐷𝑠𝑢𝑚_𝑐𝑟𝑖𝑡 = exp (4.8 + 0.13 × (𝑇2𝑚,𝑎𝑛𝑛𝑎𝑣𝑔
− 𝑇𝐾𝐹𝑅𝑍)) , (2) 204 

where 𝑇𝐾𝐹𝑅𝑍 is the freezing point of water (273.15 K). 205 

Because plants across regions require different degrees of warming (i.e., 𝐺𝐷𝐷𝑠𝑢𝑚_𝑐𝑟𝑖𝑡 here) to 206 

initiate growth, Eq. (2) of 𝐺𝐷𝐷𝑠𝑢𝑚_𝑐𝑟𝑖𝑡 was calculated as a function of mean annual temperature 207 

in the preceding year to accommodate spatial phenology simulation at a broader scale (White 208 

et al., 1997). However, this calculation may cause incorrect responses of spring phenology to 209 

warming (see Section 4). 210 

The autumn senescence is simulated to occur when the daylength is shorter than 39,300 s (about 211 

10.9 h). Because daylength is calculated as a function of latitude and day of the year (Forsythe et 212 

al., 1995), the default autumn senescence date is temporally invariant for any given location.  213 

2.4 Revised phenological models 214 

Different spring and autumn phenology models in previous studies have been widely 215 

intercompared and evaluated (Cannell and Smith, 1983; Delpierre et al., 2009; Landsberg, 1974; 216 

Migliavacca et al., 2008; Murray et al., 1989; Sarvas, 1972). For application to the ELM, the 217 

alternating model for spring onset (Murray et al., 1989) and the CDD model proposed by 218 

Delpierre et al. (2009) (hereafter termed “DM”) for autumn senescence were selected because of 219 

their mechanistic assumption, performance, and simplicity.  220 

For the alternating model, the spring onset is simulated through winter chilling and spring 221 

thermal forcing processes. The state of chilling (Sc) or forcing (Sf) is the time integral from t0 222 
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(i.e., winter solstice here) of the rate of chilling (Rc) or forcing (Rf). Rf is the relative daily 223 

temperature above the base temperature (𝑇base), and Rc is 1 if the daily mean temperature 𝑇(𝑡) is 224 

below 𝑇base and is otherwise 0.  225 

 𝑅𝑓(𝑡) = {
𝑇(𝑡) − 𝑇base 𝑇(𝑡) > 𝑇base

0 𝑇(𝑡) ≤ 𝑇base
 , (3) 226 

 𝑆𝑓(𝑡) = ∑ 𝑅𝑓(𝑇(𝑡))𝑡0
 , (4) 227 

 𝑅𝑐(𝑡) =  {
1 𝑇(𝑡) < 𝑇base
0 𝑇(𝑡) ≥ 𝑇base

 , (5) 228 

 𝑆𝑐(𝑡) = ∑ 𝑅𝑐(𝑇(𝑡))𝑡0
 . (6) 229 

Spring leaf-out occurs when 230 

  𝑆𝑓(𝑡) ≥ 𝑎 + 𝑏 ∗ exp (𝑐 ∗ 𝑆𝑐(𝑡)) , (7) 231 

where c < 0. a, b, 𝑐, and 𝑇base are parameters to be calibrated.  232 

For the DM, the progress of the leaf senescence is represented through a CDD sum and a 233 

photoperiod decrease process. The coloring state (𝑆𝑠𝑒𝑛) is the time integral at the rate of 𝑅𝑠𝑒𝑛 234 

starting when daily daylength 𝑃(𝑡) is shorter than a photoperiod threshold 𝑃𝑠𝑡𝑎𝑟𝑡, which varies 235 

with latitudes. 𝑅𝑠𝑒𝑛 is a function of temperature and photoperiod and only accumulates when the 236 

daily mean temperature 𝑇(𝑡) is below the base temperature 𝑇b. The function of 𝑅𝑠𝑒𝑛 means a 237 

stronger CDD sum effect under short photoperiod conditions relative to 𝑃𝑠𝑡𝑎𝑟𝑡. 238 

 𝐼𝑓 𝑃(𝑡) < 𝑃𝑠𝑡𝑎𝑟𝑡    𝑖𝑓 {
𝑇(𝑡) < 𝑇b 𝑅𝑠𝑒𝑛(𝑡) = (𝑇b − 𝑇(𝑡)) ∗ (1 −

𝑃(𝑡)

𝑃𝑠𝑡𝑎𝑟𝑡
)

 𝑇(𝑡) > 𝑇b 𝑅𝑠𝑒𝑛(𝑡) = 0
 , (8) 239 



 

 12 

 𝑆𝑠𝑒𝑛(𝑡) = ∑ 𝑅𝑠𝑒𝑛(𝑡) . (9) 240 

Autumn senescence is simulated to occur when 𝑆𝑠𝑒𝑛(𝑡) ≥ 𝑌𝑐𝑟𝑖𝑡. 𝑌𝑐𝑟𝑖𝑡, 𝑃𝑠𝑡𝑎𝑟𝑡, and 𝑇b are 241 

parameters to be calibrated. 242 

The spring alternating model and autumn DM were first calibrated using the PhenoCam 243 

observations from 2016 to 2017 and 2015 to 2017, respectively, across all enclosures and were 244 

then evaluated using the PhenoCam data during 2018 (Table S1, S2). The model calibration was 245 

performed based on the minimum root mean square error (RMSE) between simulated phenology 246 

and observations (20 enclosure-years of data for spring onset and 30 enclosure-years of data for 247 

autumn senescence). Independent model calibration and evaluation were separately conducted 248 

for Larix laricina trees and the mixed shrub layer. 249 

2.5 Phenology comparison between PhenoCam and the ELM 250 

Because the phenological transition dates from PhenoCam and the ELM are defined differently, 251 

we adjusted the PhenoCam observations to make them directly comparable with the ELM 252 

phenology outputs. In the ELM, the spring onset is the timing when leaf area index (LAI) starts 253 

to increase from 0, and the autumn senescence is the timing when LAI begins to decrease from 254 

its maximum value. Within a fixed 30-day period after spring onset, the ELM LAI increases to 255 

its maximum value and stays the same until the autumn senescence occurs; within a fixed 15-day 256 

period after the start of autumn senescence, the ELM LAI then decreases to 0. In contrast, the 257 

spring green-up and autumn green-down dates from PhenoCam represent the timings 258 

corresponding to 25% seasonal amplitude of greenness. Therefore, we adjusted the PhenoCam 259 

observations by subtracting 7.5 days (25% × 30 days) from spring green-up dates and by 260 

subtracting 11.25 days ((1%–25%) × 15 days) from autumn green-down dates, and we performed 261 
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the ELM evaluation and calibration processes using the updated observational timings. This 262 

adjustment is valid based on abundant previous studies showing that the temporal development 263 

of plant LAI was synchronous with PhenoCam GCC, especially for deciduous forests, and they 264 

both represent canopy development (Liu et al., 2015; Cremonese et al., 2017; Peichl et al., 2015). 265 

2.6 ELM-SPRUCE 266 

In this study, we used the SPRUCE version of the ELM, which was developed mainly for the 267 

ELM improvements and simulations at SPRUCE. New functions in this ELM version include 268 

revised hydrological parameters, representation of hummock and hollow microtopography and 269 

lateral flows, the inclusion of more mechanistic CH4 processes, and Sphagnum dynamics 270 

(Hanson et al., 2020; Ricciuto et al., 2020; Shi et al., 2015). However, until this study, the 271 

representation of seasonal deciduous phenology was unchanged from CLM4.5 (Oleson, 2013). 272 

For the ELM, one land grid comprises five primary units—glacier, lake, wetland, urban, and 273 

vegetation—at different fractional coverages. Within each grid cell, the vegetated portion is 274 

further divided into patches of plant functional types (PFTs), with each possessing unique 275 

vegetation properties but sharing the same environmental forcings and soil conditions (Oleson, 276 

2013). Thus, the ELM produces both grid- and PFT-level outputs, with the latter having 277 

connected carbon, water, and energy summaries across different PFTs. At SPRUCE, four PFTs 278 

coexisted within one ELM grid cell (i.e., enclosure here)—boreal needleleaf evergreen tree, 279 

boreal needleleaf deciduous tree, boreal broadleaf shrub, and moss (Sphagnum). We only 280 

focused on two PFTs that have seasonal-deciduous characteristics in the ELM: Larix laricina 281 

trees (boreal needleleaf deciduous tree) and mixed shrub layer (boreal broadleaf shrub). Also, we 282 

examined the phenology-relevant changes at the PFT and grid-cell levels for each enclosure from 283 

the original and improved ELMs. 284 
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We performed the ELM simulations using the default and revised phenological algorithms 285 

(hereafter referred to as “ELM_Default” and “ELM_New,” respectively). ELM_New includes 286 

the alternating model for spring onset and DM for autumn senescence introduced in Section 2.4. 287 

We conducted ELM simulations for three phases: accelerated decomposition spin-up, final spin-288 

up, and transient. Each spin-up generated an equilibrium state to estimate the relative content of 289 

carbon, nitrogen, and phosphorus in different vegetation and soil pools. For the first part of the 290 

transient phase, we conducted a run from 1850 to 2010 driven by the SPRUCE-observed cycling 291 

of meteorology variables for 2011 to 2018 and the historical changes of other environmental 292 

forcings at the ambient enclosures (e.g., atmospheric CO2 concentrations, nitrogen deposition). 293 

Then, for the 2011 to 2018 period, we ran 10 ELM simulations (2 CO2 concentrations × 5 294 

warming levels) using the SPRUCE-manipulated temperatures and CO2 concentrations that were 295 

observed in the enclosures; other forcings were kept the same with transient for each ELM 296 

version. We systematically intercompared the PFT-level model outputs from ELM_Default and 297 

ELM_New in terms of spring onset, autumn senescence, and major carbon and water fluxes (i.e., 298 

total LAI (TLAI), GPP, canopy transpiration (QVEGT), and canopy evaporation (QVEGE)) 299 

across different warming and CO2 levels during 2016 to 2018 at monthly, seasonal, and annual 300 

scales. We also examined main carbon and water variables at the grid-cell level for the hummock 301 

and hollow surfaces. 302 

2.7 Sensitivity analysis 303 

Quantifying parameter uncertainty could reveal the impact of certain parameters on key carbon 304 

and water variables. We thus used a global sensitivity analysis (GSA) to examine the parameter 305 

uncertainty in ELM_New, including phenology- and non-phenology-related parameters, on 306 

carbon and water variables. GSA, also called “variance-based decomposition”, attributes 307 
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variations in predictions to specific model parameters and their interactions given ranges of 308 

possible values for the parameters. Following Sargsyan et al. (2014) and Ricciuto et al. (2018), 309 

we used Polynomial Chaos surrogate models via a Bayesian compressive sensing approach to 310 

conducting the GSA. A surrogate model is a functional representation of a model quantity of 311 

interest (QoI) that is constructed from an ensemble of simulations from ELM_New and allows 312 

for further exploration of responses over the complex multi-dimensional parameter space. In this 313 

case, we performed a total of 10 QoIs representing 5 model output variables averaged over the 314 

2011 to 2018 period for each of the two deciduous PFTs: GPP, net primary productivity (NPP), 315 

QVEGT, total vegetation carbon (TOTVEGC), and TLAI. For this GSA, we only considered the 316 

ambient case with no experimental temperature or CO2 treatments. Bayesian compressive 317 

sensing allows the construction of surrogates using a limited number of simulations, leading to 318 

computational cost reduction in studies that otherwise require an infeasible number of ELM 319 

simulations, such as GSA or model tuning. We employed the Uncertainty Quantification Toolkit 320 

for the Bayesian compressive sensing surrogate construction and GSA (Debusschere et al., 321 

2015), available at https://github.com/sandialabs/UQTk.  322 

We used 2,000 ELM_New simulations to construct the surrogate model and conducted the GSA. 323 

Although we only analyzed QoIs from the deciduous PFTs, we also varied the Sphagnum and 324 

Picea PFT parameters to access potential interactions with these types. Therefore, 44 model 325 

parameters (some of them PFT-specific), including plant trait and soil parameters detailed in Shi 326 

et al. (2020) and 7 new phenology parameters, were varied as uniform random variables over 327 

their respective reasonable ranges (Table S3). Main effect indices were calculated for each 328 

parameter, accounting for individual fractional contributions toward the overall QoI variance. 329 

These sensitivity indices do not provide information about whether a parameter has a positive or 330 
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negative effect on a QoI. Therefore, using the same 2,000 model samples, we also derived the 331 

linear correlation coefficient between each parameter and each QoI to further understand the 332 

impacts of individual parameters.  333 

3 Results 334 

3.1 Phenological evaluations and improvements  335 

Compared with ELM_Default, ELM_New—which includes phenology parameters calibrated 336 

against the PhenoCam observations—showed substantial improvement in predicting phenology 337 

and the temperature responses of phenology for both Larix laricina and the shrub layer. For the 338 

simulated spring onset, ELM_New showed a higher correlation (r) with PhenoCam observations 339 

(e.g., 0.34 of Larix laricina and 0.50 of the shrub layer) compared with that from ELM_Default 340 

(corresponding to 0.18 and 0.41) based on the independent model evaluation in 2018 (Table S2). 341 

The RMSE of spring onset between ELM_Default simulations and PhenoCam observations for 342 

Larix laricina was 26 days, which decreased to 8 days when using ELM_New (Table S2). 343 

However, for the shrub layer, the RMSE between simulated and observed spring onset was lower 344 

for ELM_Default (3.4 days) than for ELM_New (7.4 days), likely because of the unusual 345 

weather conditions in 2018. The spring frost in early April 2018 and the following abrupt 346 

increase in temperature triggered spring onset to occur later than normal but quickly across all 347 

enclosures (standard deviation of spring onset across all enclosures was 3.8 days in 2018 348 

compared with 6.8 days in 2016 and 2017, Fig. S1). This appears to be an abnormal phenological 349 

response to various warming levels across enclosures, coincidently better simulated by 350 

ELM_Default than ELM_New. 351 
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For the simulated spring onset during 2016 to 2018, ELM_Default (day of the year: 137 ± 4) was 352 

biased late for both Larix laricina (36 days) and the shrub layer (9 days) (Fig. 1a). In contrast, 353 

the spring onset simulated by ELM_New (day of the year: 106 ± 9 for Larix laricina and 130 ± 7 354 

for the shrub layer) was only 5 and 2 days later than the PhenoCam observations (left subfigures 355 

in Fig. 1a). In terms of the temperature responses of spring onset, ELM_New (−1.2 days/°C for 356 

Larix laricina and −1.0 days/°C for the shrub, P < 0.1) well captured the observed advancement 357 

of spring onset responding to warming (−1.0 days/°C and −1.5 days/°C, P < 0.1), whereas 358 

ELM_Default failed to capture phenology trends associated with warming (P > 0.1) (right 359 

subfigures in Fig. 1a), consistent with previous studies (Chen et al., 2016). 360 

 361 
Fig. 1. Observed and simulated responses of spring onset (a) and autumn senescence (b) to 362 
warming at SPRUCE. Linear regression lines are shown as dashed lines. The mean phenology 363 
across all warming and CO2 levels and slopes of phenology against warming levels are shown in 364 
the subfigures. The error bars in the subfigures represent the standard deviations of phenology 365 
across all warming levels. Significance P < 0.1 from two-tailed Student’s t test. Spring onset was 366 
during 2016 to 2018, and autumn senescence was during 2015 to 2018. 367 
 368 
ELM_Default simulated the same autumn senescence across the two vegetation types (day of 369 

year: 287 ± 0), with 6 days later for Larix laricina but 8 days earlier for the shrub layer than the 370 

PhenoCam, and produced no phenological responses to warming during 2015 to 2018 (Fig. 1b). 371 

In contrast, ELM_New (day of year: 284 ± 10 for Larix laricina and 298 ± 15 for the shrub 372 
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layer) simulated autumn senescence only 3 days later than that of PhenoCam (day of year: 281 ± 373 

8 and 295 ± 15) for both Larix laricina and the shrub layer. More notably, ELM_New (1.72 374 

days/°C for Larix laricina and 1.74 days/°C for the shrub layer, P < 0.1) captured comparable 375 

delay trends under warming with the PhenoCam (1.88 days/°C and 4.16 days/°C, P < 0.1), albeit 376 

with underestimated magnitude for the shrub layer.  377 

3.2 Phenological effects on PFT-level carbon and water fluxes  378 

Mean seasonal cycles of carbon and water fluxes from both ELM_Default and ELM_New were 379 

similar in general—TLAI, GPP, and QVEGT peaked during summer, whereas canopy 380 

evaporation (QVEGE) showed two peaks in May and October (Figs. S2, S3). Both versions also 381 

simulated similar responses of carbon and water fluxes to temperatures and CO2—TLAI, GPP, 382 

QVEGE, and QVEGT showed higher values at warmer levels, and all but QVEGT showed 383 

higher values at eCO2 than aCO2 conditions (Fig. S2). However, for Larix laricina, ELM_New 384 

simulated significantly higher annual TLAI, GPP, QVEGE, and QVEGT than those of 385 

ELM_Default (P < 0.1, Fig. S4a). Such high fluxes occurred mainly during the growing season 386 

(i.e., positive difference, represented by green, Fig. 2a), indicating an increase in ecosystem 387 

productivity and water fluxes through the extended period of active carbon uptake induced by the 388 

early onset of spring. The magnitude of differences between ELM_Default and ELM_New in 389 

TLAI (ΔTLAI), GPP (ΔGPP), QVEGE (ΔQVEGE), and QVEGT (ΔQVEGT) was the largest 390 

during spring transition periods, especially at higher warming levels and eCO2 conditions (Fig. 391 

2a). ΔTLAI was significant during most of the growing season, whereas ΔGPP, ΔQVEGE, and 392 

ΔQVEGT were evident only during spring transition periods and a few other months at the 393 

highest warming levels (P < 0.1, Fig. 2a). The largest phenology scheme–induced differences 394 

occurred in May at the 9°C warming and eCO2 conditions—5.27 for ΔTLAI (P < 0.1), 200.7 395 
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gC/m2/month for ΔGPP (P < 0.1), 9.5 mm/month for ΔQVEGE, and 35.5 mm/month for 396 

ΔQVEGT (P < 0.1) (Fig. 2a). ELM_New simulated lower TLAI, GPP, and QVEGT in October 397 

and lower QVEGE in November and December than those of ELM_Default at relatively low 398 

warming levels (i.e., negative difference, represented by brown, Figs. 2a and S4a), indicating an 399 

early reduction of land flux caused by earlier autumn senescence from ELM_New. 400 

 401 
Fig. 2. Multi-year mean differences in simulated monthly TLAI, GPP, QVEGE, and 402 
QVEGT between ELM_New and ELM_Default for Larix laricina (a) and the shrub layer 403 
(b) during 2016 to 2018. Green represents higher values by ELM_New, brown represents lower 404 
values by ELM_New, and gray represents no differences between ELM_New and ELM_Default. 405 
Two pixels are in each grid; left and right pixels represent values under eCO2 and aCO2 406 
conditions, respectively. Stars indicate significant differences between ELM_New and 407 
ELM_Default based on a two-tailed Student’s t test (P < 0.1).  408 
 409 
For the shrub layer, the higher TLAI, GPP, and QVEGT simulated by ELM_New occurred only 410 

during the spring and autumn transition periods, and the higher QVEGE occurred during the 411 

transition periods and non-growing season under 2.25°C or higher warming levels (Fig. 2b). This 412 
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indicates the extended growing season of the shrub layer only extended the length of the active 413 

land flux period but did not change the magnitude of growing-season land flux, which is 414 

different from that of Larix laricina. In contrast, within the 0°C warming enclosures, the above 415 

variables were lower from ELM_New during the growing season. This corresponds to the 416 

phenological changes in Fig. 1 (see Section 4). Such increased TLAI, GPP, QVEGE, and 417 

QVEGT by ELM_New were more significant at the warmer enclosures (P < 0.1). The largest 418 

ΔTLAI (3.1) occurred in November, whereas the largest ΔGPP (157.2 gC/m2/month), ΔQVEGE 419 

(3.1 mm/month), and ΔQVEGT (30.3 mm/month) occurred in May at the 9°C warming level (P 420 

< 0.1). The magnitudes of change in TLAI, GPP, QVEGE, and QVEGT were smaller for the 421 

shrub layer than those for Larix laricina.  422 

ELM_New also simulated closer seasonality of TLAI and GPP to the seasonality of GCC 423 

compared with ELM_Default (normalized value, Figs. S5, S6). For example, in spring 2017, the 424 

timing of the increase in TLAI and GPP for Larix laricina simulated by ELM_New was 425 

concurrent with the timing of the increase in GCC, whereas that by ELM_Default was much later 426 

(Fig. S5).  427 

3.3 Temperature responses of carbon and water fluxes at the PFT level 428 

The enhanced phenological responses to warming strengthened the responses of carbon and 429 

water fluxes to warming simulated by ELM_New. Although both model versions generally 430 

produced stronger responses under the eCO2 than the aCO2, ELM_New simulated overall 431 

stronger responses of annual TLAI, GPP, QVEGE, and QVEGT to warming than those by 432 

ELM_Default (Fig. 3). For Larix laricina at the eCO2, the temperature responses of TLAI and 433 

GPP by ELM_New were 4.5 and 17 times stronger, respectively, than by ELM_Default, though 434 
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the GPP response by ELM_New at the aCO2 was weaker (Fig. 3a). The responses of QVEGE 435 

and QVEGT to warming were strengthened approximately 2 and 1.5 times, respectively, by 436 

ELM_New compared with ELM_Default. For the shrub layer, the temperature responses of 437 

carbon and water fluxes showed similar patterns to those of Larix laricina but with weaker 438 

magnitudes except for GPP (Fig. 3b). Such enhanced responses of TLAI and GPP to warming by 439 

ELM_New are also shown in Figs. S5 and S6; the time series of TLAI and GPP by ELM_New 440 

were more dispersed across warming levels during the spring and autumn transition periods, 441 

which better matched GCC. 442 

 443 

Fig. 3. Temperature responses of annual TLAI, GPP, QVEGE, and QVEGT simulated by 444 
ELM_Default and ELM_New for Larix laricina (a) and the shrub layer (b). We used annual 445 
average TLAI (m2/m2) and GPP (gC/m2/year), and annual sum QVEGE (mm/year) and QVEGT 446 
(mm/year). The temperature responses were calculated as the slope of the linear regression 447 
between annual TLAI, GPP, QVEGE, and QVEGT and warming levels. Stars indicate 448 
significance from linear regression (P < 0.1). Results for each season are shown in Figs. S7 449 
and S8. 450 
 451 
The temperature responses of the selected land surface variables displayed distinct patterns 452 

across seasons (Figs. S7, S8, no value in winter). During the spring and autumn, ELM_Default 453 

simulated small responses of TLAI and GPP to warming, but ELM_New simulated prominent 454 
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responses for both Larix laricina (Fig. S7) and the shrub layer (Fig. S8). The differences in the 455 

annual response of QVEGE and QVEGT simulated by ELM_Default and ELM_New (Fig. 3) 456 

primarily came from spring, where, for example, ELM_New (−0.93 mm/season/°C) simulated 457 

383% higher QVEGE than that of ELM_Default (−0.24 mm/season/°C) at eCO2 for Larix 458 

laricina (Fig. S7). In summer, the temperature responses of the selected land surface variables 459 

were very similar.  460 

The magnitudes of ΔTLAI and ΔGPP between ELM_New and ELM_Default were well 461 

correlated with the difference magnitudes in phenology (Fig. S9). The ΔTLAI and ΔGPP in May 462 

were positively correlated with the differences in spring onset between ELM_New and 463 

ELM_Default for the shrub layer (P < 0.01, Fig. S9b). However, for Larix laricina, only ΔTLAI 464 

at the eCO2 showed a positive correlation (P = 0.02, Fig. S9a). Likewise, the difference 465 

magnitude in autumn senescence was positively correlated with the magnitude of ΔTLAI and 466 

ΔGPP in October (Fig. S9c, d). This corresponds to Figs. 1 and 2; the earlier autumn senescence 467 

at low warming levels by ELM_New led to reduced magnitudes in TLAI and GPP in autumn. 468 

However, the later senescence at high warming levels by ELM_New caused increased 469 

magnitudes in TLAI, GPP, QVEGE, and QVEGT. The responses of TLAI and GPP to changes 470 

in phenology were more prominent in eCO2 than in aCO2 and for Larix laricina than the shrub 471 

layer (higher slopes). Interestingly, for the shrub layer, the responses of TLAI and GPP to 472 

changes in spring onset were much stronger than their responses to changes in autumn 473 

senescence, but opposite for Larix laricina. The enhanced temperature responses of spring onset 474 

and autumn senescence (Fig. 1) also contributed to the larger temperature responses in TLAI, 475 

GPP, QVEGE, and QVEGT by ELM_New (Fig. 3). 476 
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3.4 Phenological feedbacks to carbon and water fluxes at the grid-cell level 477 

Grid average carbon and water fluxes showed distinct changes simulated by ELM_Default and 478 

ELM_New (Fig. 4). Such grid-cell–level patterns reflect the combined responses of all PFTs—479 

Larix laricina trees (boreal needleleaf deciduous tree), mixed shrub layer (boreal broadleaf 480 

shrub), Picea mariana (boreal needleleaf evergreen tree), and Sphagnum (moss)—among which 481 

the phenology schemes of the former two were revised and the latter two remained the same in 482 

ELM_New compared to ELM_Default. ELM_New simulated higher magnitudes of seasonal and 483 

annual grid-cell NPP, ecosystem respiration (ER), GPP, TLAI, and ecosystem evapotranspiration 484 

(ET) than ELM_Default for both hummock and hollow (Fig. 4). The ELM_New net ecosystem 485 

production (NEP) was also higher than that of ELM_Default during spring (e.g., 245% higher at 486 

aCO2) and autumn but lower during winter and summer (e.g., 47% lower at aCO2) for hummock. 487 

Runoff, water table depth (ZWT), and volumetric soil water (H2OSOI) showed various degrees 488 

of decrease simulated by ELM_New for both hummock and hollow, and the magnitude of 489 

decrease was larger for hummock than hollow. The relative changes in ZWT and H2OSOI were 490 

opposite—ELM_New simulated higher H2OSOI but lower ZWT in winter and summer, and 491 

reversed patterns for spring and autumn.  492 
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 493 
Fig. 4. Relative changes in mean and temperature responses in carbon and water fluxes of 494 
hummock (a) and hollow (b) simulated by ELM_New compared with ELM_Default. 495 
Relative changes = (ELM_New − ELM_Default) / ELM_Default × 100%. Mean carbon and 496 
water fluxes represent the average values across all warming levels, and temperature responses 497 
represent the changes in carbon and water fluxes per degree warming. Green represents a higher 498 
value or stronger response simulated by ELM_New, and brown represents lower values or 499 
weaker response by ELM_New. For each variable, each of the three rows within each grid 500 
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represents the mean under eCO2 and aCO2 condition, eCO2 condition, and aCO2 condition across 501 
all warming levels during 2016 to 2018.  502 
 503 
 504 
In terms of the responses of carbon and water fluxes to warming (i.e., changes in carbon and 505 

water fluxes per degree warming), TLAI showed the largest changes for both hummock and 506 

hollow compared with other variables, indicating evident impacts of phenology on TLAI at the 507 

grid-cell level. The temperature response of NEP decreased, whereas those for ER, runoff, ET, 508 

and ZWT generally increased for the hummock and hollow simulated by ELM_New. The 509 

temperature responses of NPP and GPP showed similar seasonal changes—the responses were 510 

stronger in winter and summer but weaker in spring and autumn. The seasonal changes in runoff, 511 

ZWT, and H2OSOI were opposite for hummock and hollow, with larger changing magnitudes 512 

for hollow. These findings indicate significant interactions among individual PFTs within a grid, 513 

as well as prominent phenological impacts of the deciduous PFTs on carbon and water fluxes at 514 

the grid-cell level. 515 

3.5 Sensitivity analysis of ELM_New parameters 516 

To assess the impact of phenology uncertainty on ELM simulations of carbon and water cycling, 517 

we conducted a GSA of 10 model outputs to 44 parameters in ELM_New (Fig. 5). Out of the 44 518 

total parameters (Table S3), only 12 parameters, including 3 phenology parameters, were 519 

responsible for more than 1% of the uncertainty (i.e., sensitivity > 1%, shown in Fig. 5) for at 520 

least one of the examined carbon and water variables. For Larix laricina, the responses were 521 

dominated by the Larix fraction of leaf nitrogen in RuBisCO (flnr_Larix), the Larix-specific leaf 522 

area at the top of the canopy (slatop_Larix), the Larix fine root to leaf allocation ratio 523 

(froot_leaf_Larix), the phen_tbfall (Tbase in equation 3), and phen_c (c in equation 7) 524 

parameters. The leaf and fine root parameters were responsible for the majority of output 525 
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variance, whereas the phenology parameters contributed more than 20% of the variance for 526 

QVEGT and TLAI. In particular, the base temperature for the autumn phenology parameter 527 

(phen_tbfall) was sensitive, indicating the importance of quantifying the temperature effects on 528 

senescence accurately. Higher base temperatures were associated with smaller values of all 529 

carbon and water variables, reflecting the control of that parameter over growing season length 530 

(higher base temperature means earlier senescence given the same meteorological conditions).  531 

 532 

Fig. 5. Sensitivity of major carbon and water variables to model parameters for Larix 533 
laricina and the shrub layer. The height of each bar represents the percentage of the uncertainty 534 
of the examined carbon and water variables caused by a particular parameter. We only show 12 535 
out of 44 parameters (represented by colors) that have sensitivity indices large than 1%. Within 536 
each stacked bar, if the sensitivity is greater than 5%, a + or − symbol is included to show 537 
whether positive perturbations of that parameter result in a positive or negative deviation on the 538 
QoI. GPP is gC/m2/year; NPP is gC/m2/year; QVEGT is mm/year; TOTVEGC is gC/m2; and 539 
TLAI is m2/m2. 540 
  541 
For the shrub layer, the responses were found to be dominated by the shrub flnr (flnr_Shrub), the 542 

shrub stem to leaf allocation ratio (stem_leaf_Shrub), the shrub fine root to leaf allocation 543 
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(froot_leaf_Shrub), the shrub Ball-Berry stomatal conductance slope term (mbbopt_Shrub), and 544 

the phen_tbfall and phen_c parameters. Perhaps unsurprisingly, parameters associated with the 545 

Picea and Sphagnum were not identified as sensitive for the carbon and water variables of 546 

deciduous conifer and shrub, indicating that belowground competition for water and nutrients in 547 

the ELM among PFTs was not strongly affecting these QoIs. Overall, the two phenology 548 

parameters (phen_tbfall and phen_c) contributed about 10% of the QoI variance. For both PFTs, 549 

the high sensitivity of the phen_c parameter indicates the importance of representing and 550 

accurately parameterizing chilling processes in the phenology sub-model.  551 

4 Discussion 552 

With the improved phenology processes incorporated, ELM_New demonstrated several 553 

advantages over ELM_Default. ELM_Default without a chilling process showed little response 554 

of spring onset to warming, whereas ELM_New with a chilling process showed strong 555 

temperature sensitivity, which better matched the observations. This might be different from the 556 

common understanding that a chilling requirement mediates the temperature sensitivity of spring 557 

phenology (Chuine et al., 2016) because the spring onset simulated by ELM_Default occurs 558 

when the accumulated temperature reaches a threshold, which is determined by the annual 559 

average temperature in the previous year (Eq. 2). Such an algorithm was originally developed to 560 

consider spatial heterogeneity of thermal requirement but may lead to a higher threshold of 561 

thermal requirement at warmer enclosures in this study. Consequently, even though growing-562 

degree-day accumulated faster at warmer enclosures, the net result was a similar spring onset 563 

across different temperature treatments; this was also discussed in Chen et al. (2016) from a 564 

temporal perspective of climate warming. In contrast, the earlier spring onset in warmer 565 
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enclosures was better reproduced by ELM_New because of the improved mechanistic processes 566 

represented by the accumulation of both winter chilling and spring thermal forcing (Eqs. 3–7).  567 

In terms of the autumn senescence, ELM_Default is solely based on a daylength threshold, 568 

which is partially supported by much evidence that photoperiod is the dominant cue for growth 569 

cessation in temperate and boreal trees (Keller et al., 2011; Way and Montgomery, 2015). 570 

However, such simplification could cause obvious biases in simulations of phenology and 571 

phenological response to warming (Delpierre et al., 2009), requiring more realistic and process-572 

based improvement. In this study, ELM_New brought ELM_Default one step further toward this 573 

improvement by considering the temperature regulation for autumn senescence. Such 574 

temperature control was shown to be important at SPRUCE across different treatment levels 575 

(Fig. 1) and was also confirmed by recent studies indicating that warming could significantly 576 

delay the autumn senescence (Heide, 2011; Richardson et al., 2018b). Overall, ELM_New 577 

showed earlier spring onset across all warming levels and earlier autumn senescence only at 578 

lower warming levels but later autumn senescence at higher warming levels compared with 579 

ELM_Default. Such changes caused by phenological model selection may have divergent effects 580 

on carbon and water cycles at different warming levels as shown by this study (e.g., Figs. 2 and 581 

S4) and previous ones (e.g., Kim et al., 2018; Piao et al., 2019b).  582 

Our modeling results demonstrated significant phenological impacts on multiple processes 583 

within the ELM. The most direct and considerable phenological effects identified to occur were 584 

for LAI in terms of the seasonality and magnitude during the growing season. Such altered LAI 585 

further induced a series of changes in the ELM vegetation-soil system, including enhanced 586 

photosynthesis and water fluxes (Figs. 2 and S4), largely consistent with observational responses 587 

of carbon and water cycles to phenology across different scales (Piao et al., 2007; Zeng et al., 588 
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2017). Because the rate of soil carbon decomposition increases concurrently with warming, such 589 

increased vegetation activities may not necessarily lead to a strengthened net land carbon sink 590 

(Piao et al., 2019b). In this study, for example, the increase in ecosystem respiration exceeded 591 

that of photosynthetic carbon gain and caused the NEP decrease in both winter and summer 592 

seasons for the hummock (Fig. 4). In agreement with previous empirical findings (Kim et al., 593 

2018; Lian et al., 2020; Zeng et al., 2018), our results also showed notable influences of plant 594 

phenological shifts on the water cycle, such as increased ET, lower soil moisture, and modified 595 

runoff and ZWT during the growing season, especially under the eCO2 conditions (Fig. 4). 596 

Compared with ELM_Default, ELM_New produced enhanced photosynthesis, increased ET, and 597 

lower soil moisture for plants only at higher warming levels, but such effects reversed at lower 598 

warming levels because of earlier autumn senescence. At the grid-cell level, simulated carbon 599 

and water fluxes were mainly affected by the two modified PFTs (Larix laricina and the shrub 600 

layer), but also by the other two unmodified ones, Picea mariana and Sphagnum. Within an 601 

ELM grid-cell, different PFTs receive identical environmental forcings and share the same soil 602 

conditions. Therefore, the modifications in phenology of Larix laricina and the shrub layer could 603 

alter the belowground soil characteristics, which further induced the carbon and water flux 604 

changes of Picea mariana and Sphagnum (results not shown). When applying ELM_New onto 605 

the studies of land-atmosphere feedbacks under future climate change, the phenological 606 

influences by other environmental factors ought to be considered. For example, if droughts 607 

become more pervasive or less water is available in late summer, the growing season length may 608 

be reduced (because of earlier leaf senescence) instead of being lengthened, likely leading to a 609 

decline in growing-season carbon fixation and ET (Lian et al., 2020).  610 
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The ELM phenology scheme will continue to be developed, including representation of 611 

phenology responses to extreme events such as spring frost and droughts and optimization of 612 

more phenological parameters over various vegetation types. For example, the unusually warm 613 

March followed by severe spring frost in the extreme cold April in 2016 at SPRUCE caused 614 

earlier spring onset and severe tissue mortality of Larix laricina in the warmest enclosures 615 

(Richardson et al., 2018b). Such processes are completely lacking but urgently needed in most 616 

land surface models, including the ELM, and are increasingly critical as extreme events become 617 

more frequent and intense. Proper simulation of the impacts from extreme events on phenology 618 

changes could be achieved by, for example, adding additional physiological limitations (e.g., 619 

hydraulic dynamics, freezing tolerance, impacts on foliar morphology) to current phenological 620 

algorithms (Jensen et al. 2020). Moreover, the evergreen phenology scheme in the ELM, which 621 

is currently active during the whole year, needs to be updated in the future. A recent study 622 

revealed clear seasonal changes in the color and photosynthetic activity of evergreen conifer 623 

forest using the PhenoCam observation of Picea mariana (Seyednasrollah et al., 2020). Based on 624 

these new findings, adding spring and autumn phenological transitions to a certain percentage of 625 

evergreen conifer canopy could improve the ELM evergreen phenology scheme. 626 

ELM_New and associated site-level parameters could be upscaled onto broad scales through 627 

linking the SPRUCE observations with other observational data sets and satellite images. 628 

Regional phenological data from observational networks, such as the Pan European Phenology 629 

Observation and USA National Phenology Network, could be examined in the future to verify 630 

ELM_New and improve its capability in simulating phenology across various climate and 631 

vegetation zones (Meng et al., 2021). Different upscaling strategies and methods, such as 632 

merging local phenology observations with high-resolution satellite products (e.g., NASA’s 633 
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MSLSP30NA Land Surface Phenology product derived from Harmonized Landsat Sentinel-2 634 

data), may provide new insight into the modeling of large-scale phenology responses to a 635 

changing climate (Pope et al., 2013; Bolton et al., 2020). Caution should be taken for the 636 

upscaling process, especially for the SPRUCE shrub types. The mixed shrub layer at SPRUCE 637 

mainly includes Rhododendron groenlandicum (Oeder) Kron and Judd (Labrador tea) and 638 

Chamaedaphne calyculata (L.) Moench. (leatherleaf); the latter (occurring in cool temperate and 639 

subarctic regions from North America to Finland and Japan) is more representative than the 640 

former (occurring only in North America) for the shrubs in northern high latitudes. However, 641 

current PhenoCam signals for deciduous shrubs are merely a mix of these two types, thus 642 

limiting the clean upscaling for individual shrub species. 643 

Sensitivity analysis in this study showed that parameter uncertainty of the phenology model 644 

significantly drove the prediction uncertainty of carbon and water cycles; this suggests that 645 

further regional-scale observations across vegetation types and model developments remain 646 

necessary to reduce uncertainties regarding chilling effects on spring phenology and autumn 647 

temperature constraints on fall senescence. The extending time series of phenology and 648 

environment observations at SPRUCE that cover a wider range of conditions over time will be 649 

helpful to further reduce the model uncertainties. Future model evaluation and development 650 

processes may be also guided by more comprehensive uncertainty quantification studies, 651 

including examining the sensitivities of simulated carbon, water, and nutrient cycling to 652 

phenological responses under extreme events, such as spring frosts and freezes, droughts, and 653 

wildfires.  654 
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5 Conclusions 655 

Using the latest experimental observations from SPRUCE, this study evaluated and improved 656 

seasonal-deciduous phenology components of ELM and investigated possible phenological 657 

feedbacks to major carbon and water fluxes. Selected mechanism-based phenology models of 658 

spring onset and autumn senescence were introduced, in which the timing of spring onset 659 

depends on both winter chilling and spring thermal forcing processes, whereas the timing of 660 

autumn senescence relies on the co-limitation of daylength and temperature. In contrast to the 661 

default ELM, the revised model better captured the PhenoCam observations (i.e., distinct 662 

seasonal phenology of Larix laricina and the shrub layer and linearly extended growing season 663 

length in response to warming). In addition, the improved ELM produced intensified carbon and 664 

water fluxes associated with a longer growing season and stronger temperature response of 665 

vegetation, especially under eCO2 and warmer conditions. A model sensitivity analysis further 666 

indicated that phenology parameters contributed significantly to simulated carbon and water 667 

cycle variations over interannual timescales. This practice of model-experimental coupling 668 

highlights the importance of phenological processes in affecting complex terrestrial-climate 669 

interactions, and it facilitates the uncertainty reduction of E3SM in predicting Earth dynamics at 670 

broad spatiotemporal scales.   671 
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 856 

Fig. S1. 2 m air temperature and spring onset dates in 2018 in comparison to in 2016 and 857 
2017. Air temperature shown here is 3-day averaged temperature at 2 m on central tower at plot 858 
06 (0 ºC warming and aCO2), spatially averaged from two replicates. Red line represents mean 859 
air temperature during 2016 and 2017. Blue line represents air temperature during 2018. Vertical 860 
lines and shadow represent the mean and standard deviation of spring onset dates across all 861 
enclosures, respectively. 862 
  863 
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 864 

Fig. S2. Predicted monthly TLAI, GPP, QVEGE, and QVEGT by ELM_Default and 865 
ELM_New for Larix laricina (a) and the shrub layer (b). The value is the inter-annual mean 866 
during 2016 to 2018. Four pixels are within each grid. The left and right columns represent value 867 
at eCO2 and aCO2 chambers, respectively, and the top and bottom rows represent values 868 
predicted by ELM_Default and ELM_New, respectively.  869 
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 870 

Fig. S3. Predicted seasonal TLAI, GPP, QVEGE, and QVEGT by ELM_Default and 871 
ELM_New for Larix laricina (a) and the shrub layer (b). The value is the inter-annual mean 872 
during 2016 to 2018. Four pixels are within each grid. The left and right columns represent value 873 
at eCO2 and aCO2 chambers, respectively, and the top and bottom rows represent value predicted 874 
by ELM_Default and ELM_New, respectively.  875 
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 876 

Fig. S4. Changes in predicted seasonal TLAI, GPP, QVEGE, and QVEGT by 877 
ELM_Default and ELM_New for Larix laricina (a) and the shrub layer (b). The value is the 878 
inter-annual mean during 2016 to 2018. Green represents higher values by ELM_New, brown 879 
represents lower values by ELM_New, and gray represents no differences between ELM_New 880 
and ELM_Default. Four pixels are within each grid. The left and right columns represent value at 881 
eCO2 and aCO2 chambers, respectively. Stars indicate significant differences between 882 
ELM_New and ELM_Default based on a two-tailed Student’s t test (P < 0.1). 883 
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 884 

Fig. S5. TLAI, GPP, and GCC of Larix laricina during 2016 to 2018 at aCO2 across five 885 
warming levels. The y-axis is the normalized value of each variable. The shadow of GCC 886 
represents the range of GCC at 0°C and 9°C warming chambers. Normalization is conducted for 887 
each variable across all warming levels during 2016 to 2018, and separately for ELM_Default 888 
and ELM_New.  889 
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 890 

Fig. S6. TLAI, GPP, and GCC of the shrub layer during 2016 to 2018 at aCO2 across five 891 
warming levels. The y-axis is the normalized value of each variable. The shadow of GCC 892 
represents the range of GCC at 0°C and 9°C warming chambers. Normalization is conducted for 893 
each variable across all warming levels during 2016 to 2018, and separately for ELM_Default 894 
and ELM_New.  895 
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 896 

Fig. S7. Temperature responses of carbon and water fluxes of Larix laricina to warming 897 
and elevated CO2 predicted by ELM_Default and ELM_New for spring (a), summer (b), 898 
and autumn (c). There is no value in winter. The temperature responses are calculated as the 899 
slope of linear regression between carbon/water variables and warming levels. Significance is 900 
shown (P < 0.1). TLAI is m2/m2; GPP is gC/m2/month; QVEGE is mm/month; and QVEGT is 901 
mm/month.  902 
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 903 

Fig. S8. Temperature responses of carbon and water fluxes of shrub layer to warming and 904 
elevated CO2 predicted by ELM_Default and ELM_New for spring (a), summer (b), and 905 
autumn (c). There is no value in winter. The temperature responses are calculated as the slope of 906 
linear regression between carbon/water variables and warming levels. Significance is shown 907 
(P < 0.1). TLAI is m2/m2; GPP is gC/m2/month; QVEGE is mm/month; and QVEGT is 908 
mm/month.  909 
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 910 

Fig. S9. The relationship between differences in TLAI and GPP and differences in spring 911 
green-up (a, b) and autumn green-down (c, d) simulated by ELM_Default and ELM_New. 912 
The linear regression lines, slopes, and P values are shown in each figure. The ΔTLAI, ΔGPP, 913 
and ΔAutumn green-down are calculated by subtracting ELM_Default from ELM_New. ΔSpring 914 
green-up is calculated by subtracting ELM_New from ELM_Default. a, b: ΔTLAI and ΔGPP are 915 
in May; c, d: ΔTLAI and ΔGPP are in October.  916 
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Table S1. Statistics in model calibration.  917 

 Spring onset model Autumn senescence model Statistic 

Vegetation 

type 
a b c Tbase (F) Pstart (s) Ycrit Tb (F) LL AIC AICc 

Larix 

laricina 
9 2,112 −0.04 279.50 46,800 1,750 294.5 71.93 157.86 164.4 

Shrub layer 33 1,388 −0.02 279.05 54,600 1,600 290.15 90.46 194.92 201.5 

LL: log likelihood, AIC: Akaike information criterion  918 
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Table S2. Statistics in model evaluation during 2018. There is no correlation in autumn green-919 

down between ELM_Default and PhenoCam observation, due to the unchanged in autumn 920 

green-down across warming levels by ELM_Default.  921 

Model Vegetation type 
Spring onset model Autumn senescence model 

RMSE Correlation RMSE Correlation 

ELM_Default 
Larix laricina 26.3 0.18 9.1 — 

Shrub layer 3.4 0.41 7.6 — 

ELM_New 
Larix laricina 8.2 0.34 11.9 −0.22 

Shrub layer 7.4 0.50 13.4 0.21 

  922 



 

 51 

Table S3. Parameters and ranges used in the GSA. 923 

Parameter Description Min Max 

flnr1 Rubisco-N fraction of leaf N 0.05 0.30 

croot_stem1 Coarse root to stem allocation ratio 0.05 0.8 

stem_leaf1 Stem to leaf allocation ratio 0.3 2.2 

leaf_long1 Leaf longevity (yr) 0.75 2.0 

slatop1 Specific leaf area at canopy top (m2 gC-1) 0.004 0.04 

leafcn1 Leaf C to N ratio 20 75 

froot_leaf1 Fine root to leaf allocation ratio 0.15 2.0 

mp1 Ball-Berry stomatal conductance slope 4.5 12 

r_mort Vegetation mortality 0.005 0.1 

decomp_depth_efolding Depth-dependence e-folding depth for decomposition (m) 0.2 0.7 

qdrai,0 Maximum subsurface drainage rate (kg m-2 s-1) 0 1e-3 

Q10_mr Temperature sensitivity of maintenance respiration 1.2 3.0 

br_mr Base rate for maintenance respiration (gC gN m2 s-1) 1e-6 5e-6 

crit_onset_gdd Critical growing degree days for leaf onset 20 500 

lw_top_ann Live wood turnover proportion (yr-1) 0.2 0.85 

gr_perc Growth respiration fraction 0.12 0.4 

rdrai,0 Coefficient for surface water runoff (kg m-4 s-1) 1e-9 1e-6 

phen_a A parameter for spring onset process 1.0 30.0 

phen_b A parameter for spring onset process 1,000 2,500 

phen_c A parameter for spring onset process −0.06 −0.01 

phen_tbspring Base temperature for spring onset process 269.15 282.15 

phen_tbfall Base temperature for autumn senescence process 272.15 308.15 

phen_ycrit Threshold to trigger autumn senescence 1,000 2,000 

phen_pstart Photoperiod threshold for autumn senescence process 12.0 16.5 
1PFT-specifc parameters 924 
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Table S2. Statistics in model evaluation during 2018. There is no correlation in autumn green-3 

down between ELM_Default and PhenoCam observation, due to the unchanged in autumn 4 

green-down across warming levels by ELM_Default.  5 
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 1 
Fig. 1. Observed and simulated responses of spring onset (a) and autumn senescence (b) to 2 
warming at SPRUCE. Linear regression lines are shown as dashed lines. The mean phenology 3 
across all warming and CO2 levels and slopes of phenology against warming levels are shown in 4 
the subfigures. The error bars in the subfigures represent the standard deviations of phenology 5 
across all warming levels. Significance P < 0.1 from two-tailed Student’s t test. Spring onset was 6 
during 2016 to 2018, and autumn senescence was during 2015 to 2018. 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 

Main and supplementary figures Click here to access/download;Figure;Figures.docx

https://www.editorialmanager.com/agrformet/download.aspx?id=469789&guid=e49c157f-1d99-4ec1-8045-1b511834aab8&scheme=1
https://www.editorialmanager.com/agrformet/download.aspx?id=469789&guid=e49c157f-1d99-4ec1-8045-1b511834aab8&scheme=1


 

 2 

 15 
Fig. 2. Multi-year mean differences in simulated monthly TLAI, GPP, QVEGE, and 16 
QVEGT between ELM_New and ELM_Default for Larix laricina (a) and the shrub layer 17 
(b) during 2016 to 2018. Green represents higher values by ELM_New, brown represents lower 18 
values by ELM_New, and gray represents no differences between ELM_New and ELM_Default. 19 
Two pixels are in each grid; left and right pixels represent values under eCO2 and aCO2 20 
conditions, respectively. Stars indicate significant differences between ELM_New and 21 
ELM_Default based on a two-tailed Student’s t test (P < 0.1).  22 
 23 
 24 
 25 
 26 
 27 
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 28 

Fig. 3. Temperature responses of annual TLAI, GPP, QVEGE, and QVEGT simulated by 29 
ELM_Default and ELM_New for Larix laricina (a) and the shrub layer (b). We used annual 30 
average TLAI (m2/m2) and GPP (gC/m2/year), and annual sum QVEGE (mm/year) and QVEGT 31 
(mm/year). The temperature responses were calculated as the slope of the linear regression 32 
between annual TLAI, GPP, QVEGE, and QVEGT and warming levels. Stars indicate 33 
significance from linear regression (P < 0.1). Results for each season are shown in Figs. S7 34 
and S8. 35 
 36 
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 37 
Fig. 4. Relative changes in mean and temperature responses in carbon and water fluxes of 38 
hummock (a) and hollow (b) simulated by ELM_New compared with ELM_Default. 39 
Relative changes = (ELM_New − ELM_Default) / ELM_Default × 100%. Mean carbon and 40 
water fluxes represent the average values across all warming levels, and temperature responses 41 
represent the changes in carbon and water fluxes per degree warming. Green represents a higher 42 
value or stronger response simulated by ELM_New, and brown represents lower values or 43 
weaker response by ELM_New. For each variable, each of the three rows within each grid 44 



 

 5 

represents the mean under eCO2 and aCO2 condition, eCO2 condition, and aCO2 condition across 45 
all warming levels during 2016 to 2018.  46 
 47 
 48 
  49 

 50 

Fig. 5. Sensitivity of major carbon and water variables to model parameters for Larix 51 
laricina and the shrub layer. The height of each bar represents the percentage of the uncertainty 52 
of the examined carbon and water variables caused by a particular parameter. We only show 12 53 
out of 44 parameters (represented by colors) that have sensitivity indices large than 1%. Within 54 
each stacked bar, if the sensitivity is greater than 5%, a + or − symbol is included to show 55 
whether positive perturbations of that parameter result in a positive or negative deviation on the 56 
QoI. GPP is gC/m2/year; NPP is gC/m2/year; QVEGT is mm/year; TOTVEGC is gC/m2; and 57 
TLAI is m2/m2. 58 
  59 
  60 
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 61 

Fig. S1. 2 m air temperature and spring onset dates in 2018 in comparison to in 2016 and 62 
2017. Air temperature shown here is 3-day averaged temperature at 2 m on central tower at plot 63 
06 (0 ºC warming and aCO2), spatially averaged from two replicates. Red line represents mean 64 
air temperature during 2016 and 2017. Blue line represents air temperature during 2018. Vertical 65 
lines and shadow represent the mean and standard deviation of spring onset dates across all 66 
enclosures, respectively. 67 
  68 
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 69 

Fig. S2. Predicted monthly TLAI, GPP, QVEGE, and QVEGT by ELM_Default and 70 
ELM_New for Larix laricina (a) and the shrub layer (b). The value is the inter-annual mean 71 
during 2016 to 2018. Four pixels are within each grid. The left and right columns represent value 72 
at eCO2 and aCO2 chambers, respectively, and the top and bottom rows represent values 73 
predicted by ELM_Default and ELM_New, respectively.  74 



 

 8 

 75 

Fig. S3. Predicted seasonal TLAI, GPP, QVEGE, and QVEGT by ELM_Default and 76 
ELM_New for Larix laricina (a) and the shrub layer (b). The value is the inter-annual mean 77 
during 2016 to 2018. Four pixels are within each grid. The left and right columns represent value 78 
at eCO2 and aCO2 chambers, respectively, and the top and bottom rows represent value predicted 79 
by ELM_Default and ELM_New, respectively.  80 
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 81 

Fig. S4. Changes in predicted seasonal TLAI, GPP, QVEGE, and QVEGT by 82 
ELM_Default and ELM_New for Larix laricina (a) and the shrub layer (b). The value is the 83 
inter-annual mean during 2016 to 2018. Green represents higher values by ELM_New, brown 84 
represents lower values by ELM_New, and gray represents no differences between ELM_New 85 
and ELM_Default. Four pixels are within each grid. The left and right columns represent value at 86 
eCO2 and aCO2 chambers, respectively. Stars indicate significant differences between 87 
ELM_New and ELM_Default based on a two-tailed Student’s t test (P < 0.1). 88 
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 89 

Fig. S5. TLAI, GPP, and GCC of Larix laricina during 2016 to 2018 at aCO2 across five 90 
warming levels. The y-axis is the normalized value of each variable. The shadow of GCC 91 
represents the range of GCC at 0°C and 9°C warming chambers. Normalization is conducted for 92 
each variable across all warming levels during 2016 to 2018, and separately for ELM_Default 93 
and ELM_New.  94 
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 95 

Fig. S6. TLAI, GPP, and GCC of the shrub layer during 2016 to 2018 at aCO2 across five 96 
warming levels. The y-axis is the normalized value of each variable. The shadow of GCC 97 
represents the range of GCC at 0°C and 9°C warming chambers. Normalization is conducted for 98 
each variable across all warming levels during 2016 to 2018, and separately for ELM_Default 99 
and ELM_New.  100 
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 101 

Fig. S7. Temperature responses of carbon and water fluxes of Larix laricina to warming 102 
and elevated CO2 predicted by ELM_Default and ELM_New for spring (a), summer (b), 103 
and autumn (c). There is no value in winter. The temperature responses are calculated as the 104 
slope of linear regression between carbon/water variables and warming levels. Significance is 105 
shown (P < 0.1). TLAI is m2/m2; GPP is gC/m2/month; QVEGE is mm/month; and QVEGT is 106 
mm/month.  107 
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 108 

Fig. S8. Temperature responses of carbon and water fluxes of shrub layer to warming and 109 
elevated CO2 predicted by ELM_Default and ELM_New for spring (a), summer (b), and 110 
autumn (c). There is no value in winter. The temperature responses are calculated as the slope of 111 
linear regression between carbon/water variables and warming levels. Significance is shown 112 
(P < 0.1). TLAI is m2/m2; GPP is gC/m2/month; QVEGE is mm/month; and QVEGT is 113 
mm/month.  114 
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 115 

Fig. S9. The relationship between differences in TLAI and GPP and differences in spring 116 
green-up (a, b) and autumn green-down (c, d) simulated by ELM_Default and ELM_New. 117 
The linear regression lines, slopes, and P values are shown in each figure. The ΔTLAI, ΔGPP, 118 
and ΔAutumn green-down are calculated by subtracting ELM_Default from ELM_New. ΔSpring 119 
green-up is calculated by subtracting ELM_New from ELM_Default. a, b: ΔTLAI and ΔGPP are 120 
in May; c, d: ΔTLAI and ΔGPP are in October. 121 




