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Abstract

We study stochastic gradient descent (SGD) with

local iterations in the presence of Byzantine

clients, motivated by the federated learning. The

clients, instead of communicating with the server

in every iteration, maintain their local models,

which they update by taking several SGD itera-

tions based on their own datasets and then com-

municate the net update with the server, thereby

achieving communication-efficiency. Further-

more, only a subset of clients communicates with

the server at synchronization times. The Byzan-

tine clients may collude and send arbitrary vectors

to the server to disrupt the learning process. To

combat the adversary, we employ an efficient high-

dimensional robust mean estimation algorithm at

the server to filter-out corrupt vectors; and to an-

alyze the outlier-filtering procedure, we develop

a novel matrix concentration result that may be

of independent interest. We provide convergence

analyses for both strongly-convex and non-convex

smooth objectives in the heterogeneous data set-

ting. We believe that ours is the first Byzantine-

resilient local SGD algorithm and analysis with

non-trivial guarantees. We corroborate our theo-

retical results with preliminary experiments for

neural network training.

1. Introduction

In the federated learning (FL) paradigm (Konecný, 2017;

Konecný et al., 2016; McMahan et al., 2017; Mohri et al.,

2019), several clients (e.g., mobiles devices, organizations,

etc.) collaboratively learn a machine learning model, where

the training process is facilitated by the data held by the par-

ticipating clients (without data centralization) and is coordi-

nated by a central server (e.g., the service provider). Due to

its many advantages over the traditional centralized learning
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(Dean et al., 2012) (e.g., training a machine learning model

without collecting the clients’ data, which, in addition to

reducing the communication load on the network, provides

a basic level of privacy to clients’ data), FL has emerged as

an active area of research recently; see (Kairouz et al., 2019)

for a detailed survey. Stochastic gradient descent (SGD)

has become a de facto standard in optimization for train-

ing machine learning models at such a large scale (Bottou,

2010; Kairouz et al., 2019; McMahan et al., 2017), where

clients iteratively communicate the gradient updates with

the central server, which aggregates the gradients, updates

the learning model, and sends the aggregated gradient back

to the clients. The promise of FL comes with its own set of

challenges (Kairouz et al., 2019): (i) optimizing with hetero-

geneous data at different clients – the local datasets at clients

may be “non-i.i.d.”, i.e., can be thought of as being gener-

ated from different underlying distributions; (ii) slow and

unreliable network connections between server and clients,

so communication in every iteration may not be feasible;

(iii) availability of only a subset of clients for training at a

given time (maybe due to low connectivity, as clients may

be in different geographic locations); and (iv) robustness

against malicious/Byzantine clients who may send incorrect

gradient updates to the server to disrupt the training process.

In this paper, we propose and analyze an SGD algorithm

that simultaneously addresses all these challenges. First we

setup the problem, put our work in context with the related

work, and then summarize our contributions.

We consider an empirical risk minimization problem, where

data is stored at R clients, each having a different dataset

(with no probabilistic assumption on data generation); client

r ∈ [R] has dataset Dr. Let Fr : R
d → R denote the

local loss function associated with the dataset Dr, which

is defined as Fr(x) ! Ei∈U [nr][Fr,i(x)], where nr = |Dr|,

i is uniformly distributed over [nr] ! {1, 2, . . . , nr}, and

Fr,i(x) is the loss associated with the i’th data point at

client r with respect to (w.r.t.) x. Our goal is to solve the

following minimization problem:

argmin
x∈C

(

F (x) !
1

R

R
∑

r=1

Ei∈U [nr][Fr,i(x)]
)

, (1)

where C ⊆ R
d denotes the parameter space that is either

equal to R
d or a compact and convex set.
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In the absence of the above-mentioned FL challenges, we

can minimize (1) using distributed vanilla SGD, where in

any iteration, server broadcasts the current model parame-

ters to all clients, each of them then samples a stochastic

gradient from its local dataset and sends it back to the server,

who aggregates the received gradients and updates the global

model. However, this simple solution does not satisfy the

FL challenges, as every client communicates with the server

(i.e., no sampling of clients) in every SGD iteration (i.e., no

local iterations), and furthermore, this solution breaks down

even with a single malicious client (Blanchard et al., 2017).

Related work. Recent work have proposed variants of the

above-described vanilla SGD that address some of the FL

challenges. The algorithms in (Basu et al., 2019; Haddad-

pour & Mahdavi, 2019; Haddadpour et al., 2019; Karim-

ireddy et al., 2020; Khaled et al., 2020; Li et al., 2020; Sahu

et al., 2020; Yu et al., 2019b) work under different hetero-

geneity assumptions but do not provide any robustness to

malicious clients. On the other hand, (Alistarh et al., 2018;

Blanchard et al., 2017; Chen et al., 2017; Data & Diggavi,

2020b; Su & Xu, 2019; Xie et al., 2019b; Yin et al., 2018;

2019) provide robustness, but with no local iterations or

sampling of clients; furthermore, they assume homogeneous

(either same or i.i.d.) data across all clients. A different line

of work (Chen et al., 2018; Data & Diggavi, 2019; 2020a;

Data et al., 2019; 2021; Ghosh et al., 2019; Li et al., 2019a;

Rajput et al., 2019) provide robustness with heterogeneous

data, but without local iterations or sampling of clients:

Chen et al. (2018), Rajput et al. (2019), Data et al. (2019;

2021) use coding across datasets, which is hard to imple-

ment in FL; Li et al. (2019a) change the objective function

and adds a regularizer term to combat the adversary; Ghosh

et al. (2019) effectively reduce the heterogeneous problem

to a homogeneous problem by clustering, and then learning

happens within each cluster having homogeneous data; and

Data & Diggavi (2020a) studied SGD with heterogeneous

data under the same assumptions as ours, but without local

iterations or client sampling. Incorporating local iterations

with Byzantine adversaries makes it significantly more chal-

lenging as it requires deriving a new matrix concentration

bound (see Theorem 2) and different convergence analyses.

Xie et al. (2019a) also analyzed SGD in the FL setting, but

the approximation error (even in the Byzantine-free setting)

of their solution could be as large as O(D2 +G2), where G
is the gradient bound and D is the diameter of the parameter

space that contains the optimal parameters x∗ and all the

local parameters xt
r ever emerged at any client r ∈ [R] in

any iteration t ∈ [T ]; this, in our opinion, makes their bound

vacuous. In optimization, one would ideally like to have

convergence rates depend on D with a factor that decays

with the number of iterations, e.g., with 1
T or 1√

T
, as also in

Theorem 1. In Section 4, we also empirically demonstrate

the poor learning performance of their algorithm.

Our contributions. In this paper, we tackle heterogeneity

assuming that the gradient dissimilarity among local datasets

is bounded (see (6)), and propose and analyze a Byzantine-

resilient SGD algorithm (Algorithm 1) with local iterations

and client sampling under the bounded variance assumption

for SGD (see (2)). We provide convergence analyses for

strongly-convex and non-convex smooth objectives.

For strongly-convex objectives, our algorithm can find ap-

proximate optimal parameters exponentially (in T
H ) fast, and

for non-convex objectives, it can reach to an approximate

stationary point with a speed of 1
T/H . See Theorem 1 for

convergence results. The approximation error in the opti-

mization solution comprises of two terms, one is because

to the stochasticity in gradients (due to SGD) and is equal

to zero if we work with full-batch gradients, and the other

term arises because of heterogeneity in local datasets. See

a detailed discussion in Section 2.2 on the approximation

error analysis and the convergence rates, and also for the

reason behind obtaining rates that are off by a factor of H
when compared to vanilla SGD – looking ahead, the reason

is working with weak assumptions.

To tackle the malicious behavior of Byzantine clients, we

borrow tools from recent advances in high-dimensional ro-

bust statistics (Diakonikolas & Kane, 2019; Diakonikolas

et al., 2019; Lai et al., 2016; Steinhardt et al., 2018); in par-

ticular, we use the polynomial-time outlier-filtering proce-

dure from (Diakonikolas et al., 2019), which was developed

for robust mean estimation in high dimensions. In order to

use their algorithm (described in Algorithm 2) in our setting

that combines Byzantine resilience with local iterations, we

develop a novel matrix concentration result (see Theorem 2),

which may be of independent interest. As far as we know,

this is the first concentration result for stochastic gradients

with local iterations on heterogeneous data.

We believe that ours is the first work that combines local

iterations with Byzantine-resilience for SGD and achieves

non-trivial results. Not only that, we also analyze our algo-

rithm on heterogeneous data and allow sampling of clients.

Note that the earlier work that provide robustness (without

local iterations or sampling of clients) either assume homo-

geneous data across clients (Alistarh et al., 2018; Blanchard

et al., 2017; Chen et al., 2017; Data & Diggavi, 2020b; Su &

Xu, 2019; Yin et al., 2018; 2019) or require strong assump-

tions, such as the bounded gradient assumption on local

functions (Xie et al., 2019b); more on this on page 3.

Paper organization. We describe our algorithm and state

the convergence results in Section 2. In Section 3, we de-

scribe our main technical tool, a new matrix concentration

result for analyzing the robust accumulated gradient esti-

mation procedure. We provide empirical evaluation of our

method in Section 4. Omitted details/proofs are given in

appendices, provided as part of the supplementary material.
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2. Problem Setup and Our Results

In this section, we state our assumptions, describe the ad-

versary model and our algorithm, and state our convergence

results followed by important remarks about them.

Assumption 1 (Bounded local variances). The stochastic

gradients sampled from any local dataset have uniformly

bounded variance over C for all clients, i.e., there exists a

finite σ, such that for all x ∈ C, r ∈ [R], we have

Ei∈U [nr]‖∇Fr,i(x)−∇Fr(x)‖2 ≤ σ2. (2)

It will be helpful to formally define mini-batch stochastic

gradients, where instead of computing stochastic gradients

based on just one data point, each client samples b ≥ 1
data points (without replacement) from its local dataset and

computes the average of b gradients. For any x ∈ R
d, r ∈

[R], b ∈ [nr], consider the following set

F⊗b
r (x) :=

{
1

b

∑

i∈Hb

∇Fr,i(x) : Hb ∈
(
[nr]

b

)}
. (3)

Note that gr(x) ∈U F⊗b
r (x) is a mini-batch stochastic

gradient with batch size b at client r. It is not hard to see the

following, which hold for all x ∈ C, r ∈ [R]:

E [gr(x)] = ∇Fr(x), (4)

E ‖gr(x)−∇Fr(x)‖2 ≤ σ2/b. (5)

Assumption 2 (Bounded gradient dissimilarity). The differ-

ence of the local gradients ∇Fr(x), r ∈ [R] and the global

gradient ∇F (x) = 1
R

∑R
r=1 ∇Fr(x) is uniformly bounded

over Rd for all clients, i.e., there exists a finite κ, such that

‖∇Fr(x)−∇F (x)‖2 ≤ κ2, ∀x ∈ C, r ∈ [R]. (6)

Assumption 1 has been standard in SGD literature. Assump-

tion 2 has also been used earlier to bound heterogeneity in

datasets; see, for example, (Li et al., 2019b; Yu et al., 2019a),

which study decentralized SGD with momentum (without

adversaries). Note that when clients compute full-batch gra-

dients, we have σ = 0 in Assumption 1; similarly, when all

clients have access to the same dataset as in (Alistarh et al.,

2018; Blanchard et al., 2017), we have κ = 0 in Assump-

tion 2. Note that (6) can be seen as a deterministic condition

on local datasets, under which we derive our results.

A note on Assumption 2. In the presence of Byzantine

adversaries, since we do not know which ǫR clients are

corrupt, we have to make some structural assumption on the

data that can provide relationships among gradients sampled

at different nodes for reliable decoding, and Assumption 2

is a natural way to achieve that. There are many alternatives

to establish this relationship, e.g., by assuming homoge-

neous (same or i.i.d.) data across clients (Alistarh et al.,

2018; Blanchard et al., 2017; Chen et al., 2017; Data &

Diggavi, 2020b; Su & Xu, 2019; Yin et al., 2018; 2019)

or by explicitly introducing redundancy in the system via

coding-theoretic solutions (Chen et al., 2018; Data et al.,

2021; Rajput et al., 2019); however, these approaches fall

short of in the FL setting.

Assuming bounded gradients of local functions (i.e.,

‖∇Fr(x)‖ ≤ G for some finite G) is a common assump-

tion in literature with heterogeneous data; see, for example,

(Li et al., 2020; Yu et al., 2019b, without adversaries) and

(Xie et al., 2019b, with adversaries). Note that under this

assumption, we can trivially bound the heterogeneity among

local datasets by ‖∇Fr(x)−∇Fs(x)‖ ≤ 2G. So, assum-

ing bounded gradients not only simplifies the analysis but

also obscures the effect of heterogeneity on the convergence

bounds, which Assumption 2 clearly brings out.1

Bounds on σ2 and κ2 in the statistical heterogeneous

model. Since all our results (matrix concentration and

convergence) are given in terms of σ and κ, to show the

clear dependence of our results on the dimensionality of

the problem, we bound these quantities in the statistical

heterogeneous data model under different distributional as-

sumptions on local gradients; see Appendix E for more de-

tails, where we prove the following: For the SGD variance

bound, we show that if local gradients have sub-Gaussian

distribution, then σ = O(
√
d log(d)). For the gradient

dissimilarity bound, we show that if either the local gra-

dients have sub-exponential distribution and each worker

has at least n = Ω(d log(nd)) data points or local gradi-

ents have sub-Gaussian distribution and n ∈ N is arbitrary,

then κ ≤ κmean + O(
√

d log(nd)/n), where κmean denotes

the distance of the expected local gradients from the global

gradient. Note that we make distributional assumptions on

data generation only to derive bounds on σ,κ; otherwise, all

our results hold for arbitrary datasets satisfying (5), (6).

Adversary model. Throughout the paper, we assume that ǫ

denotes the fraction of the K communicating clients that are

corrupt, i.e., at most ǫK (out of K) clients that communicate

with the server at synchronization indices may be corrupt,

where K ≤ R is the number of clients chosen at synchro-

nization indices. This translates to, in the worst case, having
ǫK
R fraction (i.e., a total of ǫK) of corrupt nodes in the entire

system, as in the worst-case, all the corrupt nodes can be

selected in a communication round; however, in practice,

due to several constraints, such as the unreliable network

connection (for which the adversary has no control over), we

cannot expect that the server will select all corrupt nodes in

all iterations. The corrupt clients may collude and arbitrarily

1See (Khaled et al., 2020) for a detailed discussion on the inap-
propriateness of making bounded gradient assumption in heteroge-
neous data settings and how it obscures the effect of heterogeneity
on convergence rates (even without robustness).
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Algorithm 1 Byzantine-Resilient SGD with Local Iterations

1: Initialize. Set t := 0, x0
r := 0, ∀r ∈ [R], and x := 0.

Here, x denotes the global model and x
0
r denotes the

local model at client r at time 0. Fix a constant step-size

η and a mini-batch size b.
2: while (t ≤ T ) do

3: Server selects an arbitrary subset K ⊆ [R] of |K| =
K clients and sends x to all clients in K.

4: All clients r ∈ K do in parallel:

5: Set xt
r = x.

6: while (true) do

7: Take a mini-batch stochastic gradient gr(x
t
r) ∈U

F⊗b(xt
r) and update the local model:

x
t+1
r ← x

t
r − ηgr(x

t
r)); t ← (t+ 1).

8: if (t ∈ IT ) then

9: Let x̃
t
r = x

t
r, if client r is honest, otherwise can

be an arbitrary vector in R
d.

10: Send x̃
t
r to the server and break the inner while

loop.

11: end if

12: end while

13: At Server:

14: Receive {x̃r, r ∈ K} from the clients in K.

15: For every r ∈ K, let g̃r,accu := (x̃r − x)/η.

16: Apply the decoding algorithm RAGE (see Algo-

rithm 2) on {g̃r,accu, r ∈ K}. Let

ĝaccu := RAGE(g̃r,accu, r ∈ K).

17: Update the global model x ← ΠC(x−ηĝaccu), where

ΠC denotes the projection operator onto the set C.

18: end while

deviate from their pre-specified programs: at synchroniza-

tion indices, instead of sending the true stochastic gradients

(or local models), corrupt clients may send adversarially

chosen vectors to the server.

2.1. Main Results

Let IT = {t1, t2, . . . , tk, . . .}, with t1 = 0, denote the set

of synchronization indices (where maxi≥1 |ti+1 − ti| = H)

when the server arbitrarily selects a subset of K ≤ R clients

(denoted by K ⊆ [R]) and sends the global model (denoted

by x) to them; each client r ∈ K updates its local model xr

by taking SGD steps based on its local dataset until the next

synchronization time, when all clients in K send their local

models to the server. Note that some of these clients may

be corrupt and may send arbitrary vectors.2 Server employs

2Note that the only disruption that the corrupt clients can cause
in the training process is during the gradient aggregation at syn-
chronization indices by sending adversarially chosen vectors to
the server, and we give unlimited power to the adversary for that.

a decoding RAGE and update the global model x based

on that. We present our Byzantine-resilient SGD algorithm

with local iterations in Algorithm 1.

Our convergence results are for both strongly-convex and

non-convex smooth objectives, and we state them in the

following theorem. Since our main focus in this paper is

on combining Byzantine resilience with local iterations, to

avoid the technical complications arising due to the projec-

tion operator (in line 17), we prove our results assuming

that the parameter space C is equal to R
d. The analysis

involving the projection can be done using the techniques

in (Yin et al., 2018).

Theorem 1 (Mini-Batch Local Stochastic Gradient De-

scent). Let Kt denote the set of K clients that are active

at any given time t ∈ [0 : T ] and ǫ denote the fraction

of corrupt clients in Kt. For a global objective function

F : Rd → R, let Algorithm 1 generate a sequence of iter-

ates {xt
r : t ∈ [0 : T ], r ∈ Kt} when running with a fixed

step-size η = 1
8HL . Fix any constant ǫ′ > 0. If ǫ ≤ 1

3 − ǫ′,

then with probability 1− T
H exp(− ǫ

′2(1−ǫ)K
16 ), the sequence

of average iterates {xt = 1
K

∑
r∈Kt

x
t
r : t ∈ [0 : T ]}

satisfy the following convergence guarantees:

• Strongly-convex: If F is L-smooth for L ≥ 0,3 and

µ-strongly convex for µ > 0,4 we get:

E
∥∥xT − x

∗∥∥2 ≤
(
1− µ

16HL

)T ∥∥x0 − x
∗∥∥2 + 13

µ2
Γ.

• Non-convex: If F is L-smooth for L ≥ 0, we get:

1

T

T∑

t=0

E
∥∥∇F (xt)

∥∥2 ≤
[
E[F (x0)]− E[F (x∗)]

]

T/16HL
+

9

2
Γ.

In both the bounds above, Γ =
(
3Υ 2

H + 11Hσ
2

b +

36Hκ2
)

with Υ 2 = O
(
σ2
0(ǫ+ ǫ′)

)
, where σ2

0 =
25H2

σ
2

bǫ′

(
1 + 3d

2K

)
+28H2κ2, and expectation is taken over

the sampling of mini-batch stochastic gradients.

We prove the strongly-convex part of Theorem 1 in Ap-

pendix B and the non-convex part in Appendix C. In addi-

tion to other complications arising due to handling Byzan-

tine clients together with local iterations, our proof deviates

from the standard proofs for local SGD: We need to show

two recurrences, which arise because at synchronization

indices, server performs decoding to filter-out the corrupt

clients, while at other indices there is no decoding, as there

is no communication. The proof of the first recurrence is

significantly more involved than that of the other one.

Because of this and for the purpose of analysis, we can assume,
without loss of generality, that in between the synchronization
indices, the corrupt clients sample stochastic gradients and update
their local parameters honestly.

3F (y) ≤ F (x)+〈∇F (x),y−x〉+ L
2
‖x−y‖2, ∀x,y ∈ R

d.
4F (y) ≥ F (x)+〈∇F (x),y−x〉+ µ

2
‖x−y‖2, ∀x,y ∈ R

d.
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2.2. Important Remarks About Theorem 1

Failure probability. The failure probability of our algo-

rithm is at most T
H exp(− ǫ

′2(1−ǫ)K
16 ), which though scales

linearly with T , also goes down exponentially with K. As a

result, in settings such as federated learning, where number

of clients could be large (e.g., in tens/hundreds of millions)

and server samples tens of thousands of them, we can get

a very small probability of error, even if run our algorithm

for a long time.5 Note that the error probability is due to

the stochastic sampling of gradients, and if we want a “zero”

probability of error, we can run full-batch GD (yielding an

error of Γ = O(Hκ2)); we analyze that in Appendix D

with a much simplified analysis than that of Theorem 1.

Analysis of the approximation error. In Theorem 1, the

approximation error Γ essentially consists of two types of

error terms: Γ1 = O
(

Hσ
2

bǫ′

(
1 + 3d

2K

)
(ǫ+ ǫ′)

)
and Γ2 =

O(Hκ2), where Γ1 arises due to stochastic sampling of

gradients and Γ2 arises due to dissimilarity in the local

datasets. Observe that Γ1 decreases as we increase the batch

size b of stochastic gradients and becomes zero if we take

full-batch gradients (which implies σ = 0), as is the case

in Theorem 4 in Appendix D. Note that even though the

variance (and gradient dissimilarity) of accumulation of H
gradients blows up by a factor of H2, still both Γ1 and Γ2

have a linear dependence on the number of local iterations

H . Observe that since we are working with heterogeneous

datasets, the presence of gradient dissimilarity bound κ2

(which captures the heterogeneity) in the approximation

error is inevitable, and will always show up when bounding

the deviation of the true “global” gradient from the decoded

one in the presence of Byzantine clients, even when H = 1.

Convergence rates. In the strongly-convex case, Algo-

rithm 1 approximately finds the optimal parameters x
∗

(within Γ error) with
(
1− µ

16HL

)T
speed. Note that(

1− µ
16HL

)T ≤ exp−
µ

16L
T
H , which implies an exponen-

tially fast (in T/H) convergence rate. In the non-convex

case, Algorithm 1 reaches to a stationary point (within Γ er-

ror) with a speed of 1
T/H . Note that the convergence rates of

vanilla SGD (i.e., without local iterations and in Byzantine-

free settings) are exponential (in T ) and 1
T for strongly-

convex and non-convex objectives, respectively; whereas,

our convergence rates are affected by the number of local

iterations H . The reason for this is precisely because we

5As a concrete scenario, say the total number of devices is
R = 10 million and the server selects K = 10, 000 of them.
Then, even if we want robustness against one million malicious
clients, the total probability of failure of our algorithm would
still be less than T

H
e−30, which even if T = 106 and H = 1,

would still be less than 10−7. Note that the bound on probability
of error in Theorem 1 is a worst-case bound, and in practice,
our algorithm succeeds with moderate parameter values; see, for
example, Section 4 for our experimental setup and the results.

need η ≤ 1
8HL to bound the drift in local parameters across

clients; see Lemma 2. Instead, if we had assumed a stronger

bounded gradient assumption (which trivially bound the het-

erogeneity, as explained on page 3), then Lemma 2 would

hold for a constant step-size (e.g., η = 1
2L would suffice),

which would lead to vanilla SGD like convergence rates.

3. Robust Accumulated Gradient Estimation

In this section, first we discuss the inadequacy of traditional

methods (such as coordinate-wise median and trimmed-

mean) for filtering corrupt gradients in our setting, and then

we motivate and describe the robust accumulated gradient

estimation (RAGE) procedure that we use in Algorithm 1

as a subroutine at every synchronization index. Then we

prove our new matrix concentration result that is required

to establish the performance guarantee of RAGE.

Inadequacy of median and trimmed-mean: Coordinate-

wise median (med) and trimmed-mean (trimmean) are the

two widely used robust estimation procedures that are easy

to describe and implement, and they have been employed

earlier for robust gradient aggregation in distributed opti-

mization; see, for example, (Yin et al., 2018; 2019, i.i.d. data

setting) and (Xie et al., 2019a, FL setting). Below we argue

that these methods give poor performance in FL settings

for learning high-dimensional models; we also validate this

claim through experiments in Section 4.

• For the simple task of robust mean estimation with inputs

coming a unit covariance distribution, med and trimmean

have an error that scales with the dimension as
√
d (Di-

akonikolas et al., 2019; Lai et al., 2016); when we apply

these methods in each SGD iteration, this error translates to

a large sub-optimality gap in the convergence rate.

• The adversary may corrupt samples in a way that they pre-

serve the norm of the original uncorrupted samples, but have

different adversarially chosen directions (these are called

directional attacks); since the performance of these methods

are based on the magnitude of the samples, they cannot

distinguish between the corrupt and uncorrupt samples.

• When taking coordinate-wise median, for estimating each

coordinate, we use only a single sample and discard the rest.

This is not a good idea in large-scale settings with non-i.i.d.

data, such as FL, where there are potentially millions of

clients, and if we somehow are able to use samples from all

(or most of the) honest clients, we could get a significant

reduction in variance of stochastic gradients. In med, we do

not take advantage of this variance reduction, which leads

to a performance degradation, which may be detrimental

for performance due to heterogeneity in data. The same rea-

son also applies to the robust gradient aggregation method

(KRUM) adopted in (Blanchard et al., 2017), which also

uses only one of the input gradients and discards the rest,

giving poor performance.
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Robust mean estimation: The above limitations of tradi-

tional methods motivate us to employ modern tools from

high-dimensional robust statistics (Diakonikolas & Kane,

2019; Diakonikolas et al., 2019; Lai et al., 2016). In particu-

lar, we use the polynomial-time outlier-filtering procedure

for high-dimensional robust mean estimation (RME) from

(Diakonikolas et al., 2019) for robust gradient aggregation in

Algorithm 1. For clear exposition of the ideas behind their

algorithm, we use a version of their algorithm as described

in Algorithm 2, which is from (Li, 2019). The crucial obser-

vation in these RME algorithms is that if the empirical mean

of the samples is far from their true mean, then the empirical

covariance matrix has high largest eigenvalue. So, the idea

is to iteratively filter out samples that have large projection

on the principal eigenvector of the empirical covariance

matrix, and keep on doing it until the largest eigenvalue of

the empirical covariance matrix becomes sufficiently small

(line 7). This is done via a soft-removal method, where

we assign weights (confidence score) to the samples and

down-weighting those that have large projection (line 10)

– in each iteration t, at least one sample (whose projection

τ
(t)
i is the maximum) gets 0 weight. In the end, take the

weighted average of the surviving samples.6

The RME algorithms overcome most of the above-

mentioned limitations of traditional methods, except for

that their guarantees are not directly applicable to our set-

ting. This is because the error guarantee of RME algorithms

are given in terms of concentration of the good samples

around their sample mean, which is easy to bound if good

samples come from the same distribution. Note that our

setup significantly deviates from this, where not only the

input samples (which are accumulated gradients) come from

different distributions (as clients have heterogeneous data),

but each of them is also a sum of H stochastic gradients (due

to local iterations). Since local iterations cause local param-

eters to drift from each other, bounding the concentration of

good samples requires bounding this drift.

To this end, we develop a novel matrix concentration in-

equality that first shows an existence of a large subset of un-

corrupted accumulated stochastic gradients and then bounds

their concentration around the sample mean; see (7) in The-

orem 2 below. As far as we know, this is the first matrix

concentration result in an FL setting.

First we setup the notation. Let Algorithm 1 generate a

sequence of iterates {xt
r : t ∈ [0 : T ], r ∈ Kt} when

6Note that the outlier-filtering procedure described in Algo-
rithm 2 is intuitive and easy to understand. There are better algo-
rithms that are also more efficient and can achieve better guaran-
tees; see, for example, (Dong et al., 2019). All these algorithms
require the same bounded matrix concentration assumption that
we show in Theorem 2, thus making them applicable to use as a
subroutine in Algorithm 1 without requiring any modification in
our analysis.

Algorithm 2 Robust Accumulated Gradient Estimation

(RAGE) (Diakonikolas et al., 2019; Li, 2019)

1: Input: K vectors g1, g2, . . . , gK ∈ R
d such

that there is a subset of them S ⊂ [K]
with |S| ≥ 2K

3 having bounded covariance

λmax

(
1
|S|

∑
i∈S (gi − gS) (gi − gS)

T
)
≤ σ2

0 , where

gS = 1
|S|

∑
i∈S gi.

2: For any w ∈ [0, 1]K with ‖w‖1 > 0, define

µ(w) =

K∑

i=1

wi

‖w‖1
gi

Σ(w) =

K∑

i=1

wi

‖w‖1
(gi − µ(w))(gi − µ(w))T

3: Let w(0) = [ 1K , . . . , 1
K ] be a length K vector.

4: Let C ≥ 11 be a universal constant.

5: Let Σ(0) = Σ(w(0)).
6: Let t = 0.

7: while λmax(Σ(w(t))) > Cσ2
0 do

8: Let v(t) be the principal eigenvector of Σ(w(t)).

9: For i ∈ [K], define τ
(t)
i =

〈
v
(t), gi − µ(w(t))

〉2
.

10: For i ∈ [K], compute w
(t+1)
i =

(
1 − τ

(t)
i

τ
(t)
max

)
w

(t)
i ,

where τ
(t)
max = max

i:w
(t)
i

>0
τ
(t)
i .

11: t = t+ 1
12: end while

13: return ĝ =
∑K

i=1
w

(t)
i

‖w(t)‖1
gi.

running with a fixed step-size η ≤ 1
8HL , where Kt denotes

the set of K clients that are active at time t ∈ [0 : T ]. Take

any two consecutive synchronization indices tk, tk+1 ∈ IT .

Note that |tk+1 − tk| ≤ H . For an honest client r ∈ Ktk ,

let g
tk,tk+1
r,accu :=

∑tk+1−1
t=tk

gr(x
t
r) denote the sum of local

mini-batch stochastic gradients sampled by client r between

time tk and tk+1, where gr(x
t
r) ∈U F⊗b

r (xt
r) satisfies (4),

(5). At iteration tk+1, every honest client r ∈ Ktk reports its

local model x
tk+1
r to the server, from which server computes

g
tk,tk+1
r,accu (see line 15 of Algorithm 1), whereas, the corrupt

clients may report arbitrary and adversarially chosen vectors

in R
d. Server does not know the identities of the corrupt

clients, and its goal is to produce an estimate ĝ
tk,tk+1

accu of the

average accumulated gradients from honest clients.

Theorem 2 (Matrix concentration). Suppose an ǫ fraction

of K clients that communicate with the server are corrupt.

In the setting described above, suppose we are given K ≤
R accumulated gradients g̃

tk,tk+1

r,accu , r ∈ Ktk in R
d, where

g̃
tk,tk+1

r,accu = g
tk,tk+1
r,accu if r’th client is honest, otherwise can

be arbitrary. For any ǫ′ > 0, if (ǫ + ǫ′) ≤ 1
3 , then with

probability 1− exp(− ǫ
′2(1−ǫ)K

16 ), there exists a subset S ⊆
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Ktk of uncorrupted gradients of size (1− (ǫ+ ǫ′))K s.t.

λmax

( 1

|S|

∑

i∈S

(gi − gS) (gi − gS)
T
)

≤ 25H2σ2

bǫ′

(
1 +

3d

2K

)
+ 28H2κ2, (7)

where, for i ∈ S, gi = g
tk,tk+1

i,accu , gS = 1
|S|

∑
i∈S g

tk,tk+1

i,accu ,

and λmax denotes the largest eigenvalue.

Theorem 2 establishes the concentration results required for

the RME algorithm (described in Algorithm 2) that we em-

ploy in Algorithm 1. This RME algorithm takes a collection

of vectors as input, out of which an unknown large subset

(at least a 2
3 -fraction) is promised to be well-concentrated

around its sample mean, and outputs an estimate of the

sample mean. The formal guarantee is given as follows:

Theorem 3 (Outlier-filtering algorithm (Diakonikolas et al.,

2019)). Under the same setting and notation of Theorem 2,

we can find an estimate ĝ of gS in polynomial-time with

probability 1, such that ‖ĝ − gS‖ ≤ O
(
σ0

√
ǫ+ ǫ′

)
, where

σ2
0 = 25H2

σ
2

bǫ′

(
1 + 3d

2K

)
+ 28H2κ2.

Note that, instead of the RME algorithm, if we use med or

trimmean, we would get an extra multiplicative factor of√
d in the upper-bound on ‖ĝ − gS‖ above.

3.1. Proof-sketch of Theorem 2 – Matrix Concentration

In order to prove Theorem 2, we use the following result

from (Data & Diggavi, 2020a, Lemma 1):

Lemma 1 ((Data & Diggavi, 2020a, Lemma 1)). Suppose

there are m independent distributions p1, p2, . . . , pm in

R
d such that Ey∼pi

[y] = µi, i ∈ [m] and each pi has

a bounded variance in all directions, i.e., Ey∼pi
[〈y −

µi,v〉2] ≤ σ2
pi
, ∀v ∈ R

d, ‖v‖ = 1. Take any ǫ′ >
0. Then, given m independent samples y1,y2, . . . ,ym,

where yi ∼ pi, with probability 1 − exp(−ǫ′2m/16),
there is a subset S of (1 − ǫ′)m points such that

λmax

(
1
|S|

∑
i∈S (yi − µi) (yi − µi)

T )
≤ 4σ2

pmax

ǫ′

(
1 +

d
(1−ǫ′)m

)
, where σ2

pmax
= maxi∈[m] σ

2
pi

.

Lemma 1 shows that if we have m independent distributions

each having bounded variance, and we take one sample from

each of them, then there exists a large subset of these sam-

ples that has bounded variance as well. The important thing

to note here is that the m samples come from different distri-

butions, which makes it distinct from existing results, such

as (Charikar et al., 2017, Proposition B.1), which shows

concentration of i.i.d. samples.

Now we give a proof-sketch of Theorem 2 with the help of

Lemma 1. A complete proof is provided in Appendix A.

Let tk, tk+1 ∈ IT be any two consecutive synchronization

indices. For i ∈ Ktk corresponding to an honest client, let

Y tk
i , Y tk+1

i , . . . , Y
tk+1−1
i be a sequence of (tk+1 − tk) ≤

H (dependent) random variables, where for any t ∈ [tk :
tk+1 − 1], the random variable Y t

i is distributed as

Y t
i ∼ Unif

(
F⊗b

i

(
x
t
i

(
x
tk
i , Y tk

i , . . . , Y t−1
i

)))
. (8)

Here, Y t
i corresponds to the mini-batch stochastic gradi-

ent sampled from the set F⊗b
i

(
x
t
i

(
x
tk
i , Y tk

i , . . . , Y t−1
i

))
,

which itself depends on the local parameters xtk
i (which is

a deterministic quantity) at the last synchronization index

and the past realizations of Y tk
i , . . . , Y t−1

i . This is because

the evolution of local parameters xt
i depends on x

tk
i and the

choice of gradients in between time indices tk and t − 1.

Now define Yi :=
∑tk+1−1

t=tk
Y t
i . Let pi be the distribution

of Yi, which we will take when using Lemma 1.

It is not hard to show that for any honest client i ∈ Ktk ,

we have E‖Yi − E[Yi]‖2 ≤ H2
σ
2

b . It is also easy to see

that the hypothesis of Lemma 1 is satisfied with µi =

E[Yi],σ
2
pi

= H2
σ
2

b for all honest clients i ∈ Ktk , i.e., we

have Eyi∼pi
[〈yi−E[yi],v〉2] ≤ H2

σ
2

b , ∀v ∈ R
d, ‖v‖ = 1.

We are given K different accumulated gradients (each is a

summation of H gradients), out of which at least (1− ǫ)K
are according to the correct distribution. By considering

only the uncorrupted gradients (i.e., taking m = (1− ǫ)K),

we have from Lemma 1 that there exists a subset S ⊆ Ktk

of size (1 − ǫ′)(1 − ǫ)K ≥ (1 − (ǫ + ǫ′))K ≥ 2K
3 that

satisfies (in the following, ỹi = yi − E[yi])

λmax

( 1

|S|

∑

i∈S

ỹiỹ
T
i

)
≤ σ̂2

0 :=
4H2σ2

bǫ′

(
1 +

3d

2K

)
. (9)

Note that (9) bounds the deviation of the points in S from

their respective means E[yi]. However, in (7), we need to

bound the deviation of the points in S from their sample

mean 1
|S|

∑
i∈S yi. As it turns out, due to heterogeneity

in data and our use of local iterations, this extension is

non-trivial and requires some technical work, given next.

From the alternate definition of the largest eigenvalue of

symmetric matrices A ∈ R
d×d, we have λmax(A) =

sup
v∈Rd,‖v‖=1 v

T
Av. With this, (9) is equivalent to

sup
v∈Rd:‖v‖=1

1

|S|

∑

i∈S

〈yi − E[yi],v〉2 ≤ σ̂2
0 . (10)

Define yS := 1
|S|

∑
i∈S yi to be the sample mean of points

in S. Take an arbitrary unit vector v ∈ R
d. Using some

algebraic manipulations provided in Appendix A, we get

1

|S|

∑

i∈S

〈yi − yS ,v〉2 ≤ 6σ̂2
0+

4

|S|

∑

i∈S

1

|S|

∑

j∈S

∥∥E[yj ]− E[yi]
∥∥2 (11)
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Using the gradient dissimilarity bound and the L-

smoothness of F , we can show that for honest

clients r, s ∈ Ktk , we have ‖E[yr]− E[ys]‖2 ≤
H

∑tk+1−1
t=tk

(
6κ2 + 3L2

E‖xt
r − x

t
s‖2

)
. Using this bound

in (11) together with some algebraic manipulations, we get

1

|S|

∑

i∈S

〈yi − yS ,v〉2 ≤ 6σ̂2
0 + 24H2κ2

+
12HL2

|S|

∑

i∈S

1

|S|

∑

j∈S

tk+1−1∑

t=tk

E‖xt
r − x

t
s‖2 (12)

Now we bound the last term of (12), which is the drift in

local parameters at different clients in between any two

synchronization indices.

Lemma 2. If η ≤ 1
8HL , we have

∑tk+1−1
t=tk

E ‖xt
r − x

t
s‖

2 ≤ 7H3η2
(

σ
2

b + 3κ2
)

.

Substituting this in (12) together with some algebraic ma-

nipulations provided in Appendix A, we get

1

|S|

∑

i∈S

〈yi − yS ,v〉2 ≤ 25H2σ2

bǫ′

(
1 +

3d

2K

)
+ 28H2κ2.

Note that this bound holds for all unit vectors v ∈ R
d. Now

substituting g
tk,tk+1

i,accu = yi, g
tk,tk+1

S,accu = yS and using the

alternate definition of largest eigenvalue proves Theorem 2.

4. Experiments

In this section, we present preliminary numerical results on

a non-convex objective. Additional implementation details

can be found in Appendix F in the supplementary material.

Setup: We train a single layer neural network for image

classification on the MNIST handwritten digit (from 0-9)

dataset. The hidden layer has 25 nodes with ReLU acti-

vation function and the output has softmax function. The

dimension of the model parameter vector is 19, 885.7 All

clients compute stochastic gradients on a batch-size of 128
in each iteration and communicate the local parameter vec-

tors with the server after taking H = 7 local iterations.

For all the defense mechanisms, we start with a step-size

η = 0.08 and decrease its learning rate by a factor of 0.96
when the difference in the corresponding test accuracies in

the last 2 consecutive epochs is less than 0.001.

Heterogeneous datasets: The MNIST dataset has 60, 000
training images (with 6000 images of each label) and

10, 000 test images (each having 28 × 28 = 784 pixels),

7784× 25 = 19, 600 weights between the input and the first
layer, 25 bias terms (one for each node in the hidden layer), 25×
10 = 250 weights between the first layer and the output layer, and
10 bias terms (one for each node in the output layer).

and is distributed among the 200 clients in the following

heterogeneous manner: Each client takes a random permuta-

tion of the probability vector [0.8, 0.1, 0.1, 0, 0, 0, 0, 0, 0, 0].
Suppose it obtains a vector p such that pi = 0.8, pj =
0.1, pk = 0.1 for some distinct i, j, k ∈ [0 : 9] and pl = 0
for the rest of the indices, then it selects uniformly at random

800, 100, 100 training images with label i, j, k, respectively.

Adversarial attacks: We have 12.5% adversarial clients,

i.e., 25 out of 200 clients are corrupt, and the corrupt set

of clients may change in every iteration. We implement

six adversarial attacks: (i) the ‘random gradient attack’,

where local gradients at clients are replaced by indepen-

dent Gaussian random vectors having the same norm8 as

the corresponding gradients; (ii) the ‘reverse average gradi-

ent attack’, where corrupt clients send -ve of their average

local gradients; (iii) the ‘gradient shift attack’, where lo-

cal gradients of corrupt clients are shifted by a scaled (by

factor of 50) Gaussian random vector (same for all); (iv)

the ‘all ones attack’, where gradients of the corrupt clients

are replaced by the all ones vector; (v) the ‘Baruch attack’,

which was designed in (Baruch et al., 2019) specifically

for coordinate-wise trimmed mean (trimmean) (Yin et al.,

2018), Krum (Blanchard et al., 2017), and Bulyan (Mhamdi

et al., 2018) defenses; and (vi) the ‘reverse scaled average

gradient attack’, where corrupt clients compute the -ve of

their average local gradients, scale it by the factor of 50, and

then send it.

Performance: We train our neural network under all

the above-described adversarial attacks, and demonstrate

in Figure 1 the performance of our method (red color)

against four other methods for robust gradient aggregation,

namely, coordinate-wise trimmed-mean (black color) and

coordinate-wise median (green color), which were used in

(Xie et al., 2019a; Yin et al., 2018; 2019), Krum (magenta

color), which was proposed in (Blanchard et al., 2017), and

Bulyan (cyan color), which was proposed in (Mhamdi et al.,

2018). For reference, we also plot (in blue color) the per-

formance of Algorithm 1 with the same setup as above but

without adversaries and with no decoding. For each attack,

we plot two curves, one for training loss vs. number of

epochs and the other for test accuracy vs. number of epochs.

It can be seen from the comparison in Figure 1 that our

method consistently outperforms all these methods in all the

attacks that we have implemented.9 In particular, for attacks

8Note that changing the direction while keeping the norm same
is among the worst attacks as the corrupt gradients cannot be
filtered out just based on their norms.

9We found out that the Bulyan defense mechanism is signif-
icantly slower than all other mechanisms. Due to this, we only
implemented this for the Baruch-attack, which was specifically
designed against Krum/Bulyan algorithms. Since a basic building
block of Bulyan is Krum, and Krum performs the worst among all
the mechanisms that we implemented, we do not expect Bulyan
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