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Abstract—In this paper, we propose and analyze SQuARM-
SGD, a communication-efficient algorithm for decentralized
training of large-scale machine learning models over a network.
In SQuARM-SGD, each node performs a fixed number of
local SGD steps using Nesterov’s momentum and then sends
sparsified and quantized updates to its neighbors regulated by a
locally computable triggering criterion. We provide convergence
guarantees of our algorithm for general smooth objectives, which,
to the best of our knowledge, is the first theoretical analysis
for compressed decentralized SGD with momentum updates. We
show that SQuARM-SGD converges at rate O(1/

√

nT ), matching
that of vanilla distributed SGD. We empirically show that
SQuARM-SGD saves significantly in total communicated bits
over state-of-the-art without sacrificing much on accuracy.

A full version of this paper is accessible at: https://arxiv.

org/abs/2005.07041

I. INTRODUCTION

As machine learning gets deployed over edge (wireless)

devices (in contrast to datacenter applications), the problem of

building learning models on local (heterogeneous) data with

communication-efficient training becomes important. These

applications motivate learning when data is collected/available

locally, but devices collectively help build a model through

wireless links with significant communication rate (bandwidth)

constraints1. Several methods have been developed recently

to obtain communication-efficiency in distributed stochastic

gradient descent (SGD). These methods can be broadly divided

into two categories. In the first one, workers compress informa-

tion/gradients before communicating - either with sparsifica-

tion [2]–[6], quantization [7]–[11], or both [12]. Another way

to reduce communication is to skip communication rounds

while performing a certain number of local SGD steps, thus

trading-off computation and communication time [13]–[15].

Since momentum-based methods generally converge faster

and generalize well, they have been adopted ubiquitously for

training large-scale machine learning models [16].

To reduce communication load on the central-coordinator

in the distributed framework, a decentralized setting has been

considered in literature [17], where the central coordinator is

absent, and training is performed collaboratively across work-

ers, which are connected by a (sparse) graph.2 Compressed

communication has been studied recently for decentralized

1This is also motivated by federated learning [1], which is studied mostly
for the client-server model.

2This can also be motivated through learning over local wireless mesh (or
ad hoc) networks.

training as well [18]–[22]. These papers only employ either

quantization or sparsification (without local iterations) in a

decentralized setting; importantly, they do not incorporate

momentum in their theoretical analyses. In this paper, we

propose and analyze SQuARM-SGD,3 an SGD algorithm

for decentralized optimization that incorporates Nesterov’s

momentum and reduced communication, which is achieved

by compression as well as local iterations with event-triggered

communication. To the best of our knowledge, ours is the first

theoretical analysis for a compressed decentralized learning

algorithm incorporating momentum.

For compression, SQuARM-SGD uses both sparsification

and quantization. For event-triggered communication, each

worker first performs a certain number of local SGD iterations

with momentum updates; then in order to further reduce

communication, it only does so if there is a significant change

in the local model parameters (greater than a prescribed

threshold) since its last communication. If there is a significant

model change, the worker communicates a sparsified and

quantized version of (the difference of) its local parame-

ters (model) to its neighbors. Therefore, this combines lazy

updates along with quantization and sparsification to enable

communication-efficient decentralized training.

Our contributions. In this paper, we provide convergence

guarantees of SQuARM-SGD for general smooth objectives.

We show convergence rate of O (1/
√

nT) where n is the

number of worker nodes and T is the number of iterations, thus

matching the convergence rate of vanilla distributed SGD. We

note that compression and event triggered communication do

affect our convergence rate expressions, but they appear only

in the higher order terms; thus, for a large enough T , we can

converge at the same rate as that of distributed vanilla SGD

while enjoying the savings in communication from our method

essentially for free; see Theorem 1 and comments after that for

details. As mentioned earlier, we use Nesterov’s momentum in

SQuARM-SGD and theoretically analyze its convergence rate;

a first theoretical analysis of convergence of such compressed

gradient updates with momentum in the decentralized setting.

In order to achieve this, we had to solve several technical

difficulties; see Section IV in our full paper [23] and also

relationship of our work to literature below, where we also

3Acronym stands for Sparsified and Quantized Action Regulated Mo-
mentum Stochastic Gradient Descent. See Algorithm 1 for a description of
SQuARM-SGD.



compare SQuARM-SGD with CHOCO-SGD [20] – the state-

of-the-art in efficient decentralized training. Our numerical

results for decentralized training of ResNet20 [24] model on

CIFAR-10 [25] dataset shows significant savings in total bits

communicated in SQuARM-SGD compared to CHOCO-SGD

to reach a target accuracy while converging at a similar rate.

For a test accuracy of around 90%, SQuARM-SGD saves total

communicated bits by a factor of 40× compared to CHOCO-

SGD [20] and around 3K× compared to vanilla SGD. We

provide additional experimental results in our full paper [23].

Related work. Communication-efficient decentralized train-

ing has received recent attention; see [18]–[20], [26]–[29]

and references therein. The current state-of-the-art in com-

munication efficient decentralized training is CHOCO-SGD

[20], [21], which considers sparsification or quantization of

the model parameters, without incorporating momentum in

their theoretical analyses.4 Our convergence analyses are very

different and significantly more involved than that of CHOCO-

SGD, as apart from studying local iterations and event-

triggered communication in decentralized SGD, unlike [20],

[21], we provide our analyses using virtual sequences (see

(3) in Section IV), specifically, to handle the use of momen-

tum. The use of local iterations with momentum updates in

decentralized setting is studied in [29], [30], but without any

compression of exchanged information. [31] studied momen-

tum SGD with compressed updates (but no local iterations

or event-triggering) for the distributed setting only, assum-

ing that all workers have access to unbiased gradients. For

distributed setting, [12] considers compressed communication

with local iterations, but without incorporating momentum

updates in theoretical analysis. Extending the analysis to

the decentralized setting (where different workers may have

local data, potentially generated from different distributions)

while incorporating compression, local iterations and event

triggered communication in SQuARM-SGD while analyzing

the resulting algorithm with momentum updates poses several

challenges; see our full paper [23] for a detailed discussion.

The idea of event-triggering has been explored in the control

community [32]–[36] and in the optimization literature [37]–

[39]. These papers focus on continuous-time, deterministic

optimization algorithms for convex problems; in contrast, we

propose event-driven stochastic gradient descent algorithms for

general smooth objectives, e.g., large-scale deep learning. [40]

propose an adaptive scheme to skip gradient computations in a

distributed setting for deterministic gradients; moreover, their

focus is on saving communication rounds, without compressed

communication. In summary, to the best of our knowledge,

ours is the first paper to develop and analyze convergence of

momentum-based decentralized stochastic optimization, using

compressed lazy communication (as described earlier). More-

over, our numerics demonstrate a significant advantage over

the state-of-the-art in terms of communication efficiency.

Paper organization. The problem setup and SQuARM-

4They do report numerics with momentum, and we compare the numerical
performance SQuARM-SGD with it in Section V.

SGD are described in Section II. Section III states our main

convergence result and we provide a proof sketch for it in

Section IV. Section V gives numerical results comparing our

algorithm to the state-of-the-art. Omitted proofs and additional

numerics can be found in our full paper [23].

II. PROBLEM SETUP AND OUR ALGORITHM

We first formalize the decentralized optimization setting that

we work with and set up the notation we follow throughout

the paper. Consider an undirected connected graph G = (V, E)
with V = [n] := {1, 2, . . . , n}, where node i ∈ [n] corresponds

to worker i and we denote the neighbors of node i by Ni :=
{(i, j) : (i, j) ∈ E}. To each node i ∈ [n], we associate

a dataset Di and an objective function fi : R
d → R. We

allow the datasets and objective functions to be different for

each node and assume that for i ∈ [n], the objective function

fi has the form fi(x) = Eξi∼Di
[Fi(x, ξi)] where ξi ∼ Di

denotes a random sample from Di, x denotes the parameter

vector, and Fi(x, ξi) denotes the risk associated with sample

ξi with respect to (w.r.t.) the parameter vector x. Consider

the following empirical risk minimization problem, where f :
R

d → R is called the global objective function:

arg min
x∈Rd

(
f(x) :=

1

n

n∑

i=1

fi(x)
)
, (1)

The nodes in G wish to minimize (1) collaboratively in a

communication-efficient manner.

We now state the notation relevant to describing our algo-

rithm. Let W ∈ R
n×n denote the connectivity matrix of G,

where for every (i, j) ∈ E , the (i, j)’th entry of W denotes

the weight wij on the edge (i, j) – e.g., wij may represent the

strength of the connection on the edge (i, j) – and for other

pairs (i, j) /∈ E , the weight wij is zero. We assume that W is

symmetric and doubly stochastic, which means it has non-zero

entries with each row and column summing up to 1. Consider

the ordered eigenvalues of W , |λ1(W )| ≥ |λ2(W )| ≥ . . . ≥
|λn(W )|. For such a W associated with a connected graph

G, it is known that λ1(W ) = 1 and λi(W ) ∈ (−1, 1) for

all i ∈ {2, . . . , n}. The spectral gap δ ∈ (0, 1] is defined as

δ := 1 − |λ2(W )|. Simple matrices W having δ ∈ (0, 1] are

known to exist for connected graphs [21].

To achieve compression on the communication exchanged

between workers, we use arbitrary compression operators as

defined next.

Definition 1 (Compression, [5]). A (possibly randomized)

function C : Rd → R
d is called a compression operator, if

there exists a positive constant ω ∈ (0, 1], such that for every

x ∈ R
d:

EC [‖x− C(x)‖22] ≤ (1− ω)‖x‖22, (2)

where expectation is taken over the randomness of C. We

assume that C(0) = 0.

We now list some important sparsifiers and quantizers

following the above definition of a compression operator:

(i) Topk and Randk sparsifiers (where only k entries are



selected and the rest are set to zero) with ω = k/d
[5], (ii) Stochastic quantizer Qs from [7]5 with ω =
(1 − βd,s) for βd,s < 1, and (iii) Deterministic quantizer
‖x‖1

d Sign(x) from [10] with ω =
‖x‖2

1

d‖x‖2
2

. For Compk ∈
{Topk, Randk}, the following are compression operators6:

(iv) 1
(1+βk,s)

Qs(Compk) with ω =
(
1− k

d(1+βk,s)

)
for any

βk,s ≥ 0, and (v)
‖Compk(x)‖1Sign(Compk(x))

k with ω =

max
{

1
d ,

k
d

(
‖Compk(x)‖2

1

d‖Compk(x)‖2
2

)}
[12].

A. Our Algorithm: SQuARM-SGD

We propose SQuARM-SGD to minimize (1), which is a

decentralized algorithm that combines compression and Nes-

terov’s momentum, together with event-driven communication

exchange, where compression is achieved by sparsifying and

quantizing the exchanges. Each worker is required to com-

plete a fixed number of local SGD steps with momentum,

and communicate compressed updates to its neighbors when

there is a significant change in its local parameters since the

last communication round. SQuARM-SGD can be seen as a

significant extension of CHOCO-SGD [20], [21], which only

performs compression using sparsification or quantization,

without local iterations, event-triggered communication, or

momentum.

To realize exchange of compressed parameters between

workers, for each node i ∈ [n], all nodes j ∈ Ni maintain

an estimate x̂i of xi. Each node i ∈ [n] has access to

x̂j for all j ∈ Ni. Our algorithm runs for T iterations

and the set of synchronization indices is defined as IT =
{I(1), . . . , I(k), . . .} ⊆ [T ], which are same for all workers and

denote the time steps at which workers are allowed to com-

municate, provided they satisfy a triggering condition7. For

IT , we define its gap as gap(IT ) := maxm{I(m) − I(m−1)}.

We assume that gap(IT ) = H . SQuARM-SGD is described

below in Algorithm 1.

For a given connected graph G with connectivity matrix

W , we first initialize a consensus step-size γ (see Theorem 1

for definition), momentum factor β, learning rate η, triggering

threshold sequence {ct}Tt=0, and momentum vector vi for

each node i initialized to 0. We initialize the copies of all

the nodes x̂i = 0 and allow each node to communicate in

the first synchronization round. At each time step t, each

worker i ∈ [n] samples a stochastic gradient ∇F (x
(t)
i , ξi) and

takes a local SGD step on parameter x
(t)
i using Nesterov’s

momentum to form an intermediate parameter x
(t+1/2)
i (line

3-5). If the next iteration corresponds to a synchronization

index, i.e., (t+1) ∈ IT , then each worker checks the triggering

5Qs : Rd → R
d is a stochastic quantizer, if for every x ∈ R

d, we have (i)
E[Qs(x)] = x and (ii) E[‖x−Qs(x)‖22] ≤ βd,s‖x‖

2
2. Qs from [7] satisfies

this definition with βd,s = min
{

d

s2
,
√
d
s

}

.

6 [12] show that the composition of sparsification and quantization operators
is also a valid compression operator, outperforming its individual components
in terms of communication savings while maintaining similar performance.

7The Zeno phenomenon [32] does not occur in our setup as we have a
discrete sampling period as well as a fixed number of local iterations, giving
a lower bound to the event intervals of at least H times the sampling period.

Algorithm 1 SQuARM-SGD: Sparsified and Quantized Ac-

tion Regulated Momentum SGD

Parameters: G = ([n], E), W

1: Initialize: For every i ∈ [n], set arbitrary x
(0)
i ∈ R

d, x̂
(0)
i := 0,

v
(−1)
i := 0. Fix the momentum coefficient β, consensus step-size

γ, learning rate η, triggering thresholds {ct}
T
t=0, and synchro-

nization set IT .
2: for t = 0 to T − 1 in parallel for all workers i ∈ [n] do

3: Sample ξ
(t)
i , stochastic gradient g

(t)
i := ∇Fi(x

(t)
i , ξ

(t)
i )

4: v
(t)
i = βv

(t−1)
i + g

(t)
i

5: x
(t+ 1

2
)

i := x
(t)
i − η(βv

(t)
i + g

(t)
i )

6: if (t+ 1) ∈ IT then
7: for neighbors j ∈ Ni ∪ i do

8: if ‖x
(t+ 1

2
)

i − x̂
(t)
i ‖22 > ctη

2 then

9: Compute q
(t)
i := C(x

(t+ 1
2
)

i − x̂
(t)
i )

10: Send q
(t)
i and receive q

(t)
j

11: else
12: Send 0 and receive q

(t)
j

13: end if
14: x̂

(t+1)
j := q

(t)
j + x̂

(t)
j

15: end for

16: x
(t+1)
i = x

(t+ 1
2
)

i + γ
∑

j∈Ni

wij(x̂
(t+1)
j − x̂

(t+1)
i )

17: else

18: x̂
(t+1)
i = x̂

(t)
i , x

(t+1)
i = x

(t+ 1
2
)

i for all i ∈ [n]
19: end if
20: end for

condition (line 8). If satisfied, that worker communicates the

compressed change in its copy to all its neighbors Ni (line 9-

10); otherwise, it does not communicate in that round (denoted

by ‘Send 0’ in our algorithm for illustration, line 12). After

receiving the compressed updates of copies from all neighbors,

the node i updates the locally available copies and its own copy

(line 14). With these updated copies, the worker nodes finally

take a consensus (line 16) with appropriate weighting decided

by entries of W . In the case when (t + 1) /∈ IT , the nodes

maintain their copies and move on to next iteration (line 18);

thus no communication takes place.

Memory-efficient version of Algorithm 1: At a first glance,

it may seem that in Algorithm 1, every node has to store

estimates of all its neighbors’ parameters in order to perform

the consensus step, which may be impractical in large-scale

learning. Note that in the consensus step (line 16), nodes only

require the weighted sum of their neighbors’ parameters. So,

it suffices for each node to store only the weighted sum of

all its neighbors’ parameters (in addition to its own local

parameters and its estimate), and thus avoiding the need to

store all neighbor parameters. We provide a memory-efficient

version of SQuARM-SGD in our full paper [23].

Equivalence to error-feedback mechanisms: In Algo-

rithm 1, though nodes do not explicitly perform local error-

compensation (as in [10], [12]), the error-compensation hap-

pens implicitly. To see this, note that nodes maintain copies

of their neighbors’ parameters and update them as x̂
(t+1)
j =

x̂
(t)
j + C(x(t+ 1

2 )
j − x̂

(t)
j ) (line 14) and then take the consensus



step (line 16). Thus, the error gets accumulated into x̂
(t)
j and

is compensated by the term C(x(t+ 1
2 )

j −x̂
(t)
j ) in the next round.

III. MAIN RESULTS

In this section, we state the convergence rate for SQuARM-

SGD for general smooth objectives. We provide our result

under the following assumptions:

(i) Bounded variance: For every i ∈ [n], we have

Eξi‖∇Fi(x, ξi) − ∇fi(x)‖2 ≤ σ2
i , for some finite σi, where

∇Fi(x, ξi) denotes an unbiased stochastic gradient at worker i
with Eξi [∇Fi(x, ξi)] = ∇fi(x). We define σ̄2 := 1

n

∑n
i=1 σ

2
i .

(ii) Bounded second moment: For every i ∈ [n], we have

Eξi‖∇Fi(x, ξi)‖2 ≤ G2, for some finite G. This is a stan-

dard assumption in stochastic optimization with compressed

gradients [5], [12], [20], [31].

(iii) Smoothness of objectives: We assume that each local

objective fi is L-smooth8 for all i ∈ [n].

Theorem 1. Let C be a compression operator with parameter

ω ∈ (0, 1] and let gap(IT ) ≤ H . Consider running SQuARM-

SGD under assumptions (i)-(iii) above with consensus step-size

γ = 2δω
64δ+δ2+16λ2+8δλ2−16δω , (where λ = maxi{1− λi(W )}),

momentum coefficient β ∈ [0, 1), learning rate η = (1−β)
√

n
T

and a threshold function ct ≤ c0
η1−ǫ for all t where ǫ ∈ (0, 1).

If T ≥ 8L2β4n
(1−β)2 , then the averaged iterates x̄(t) := 1

n

∑n
i=0 x

(t)
i

satisfy:

∑T−1
t=0 E‖∇f(x̄(t))‖22

T
= O

(
J2 + σ̄2

√
nT

)

+O
(
c0n

(1+ǫ)/2

δ2T (1+ǫ)/2
+
nH2G2

Tδ4ω2
+

β4σ̄2

T (1− β)2

)
,

where J2 < ∞ is a constant such that E[f(x̄(0))]− f∗ ≤ J2.

We use simplified convergence rate expressions in the above

results, and provide a precise rate expression in full paper [23].

Effects of parameters on convergence: Observe that the

factors H, c0, ω, δ to achieve communication efficiency – H, c0
for the event-triggered communication, ω for compression,

and δ for the connectivity of the underlying graph – do not

affect the dominant term in Theorem 1 and appear only in the

higher order terms. This implies that if we run SQuARM-

SGD for sufficiently long, precisely, for at least T0 :=

C0 × max

{(
c20n

(2+ǫ)

(J2+σ̄2)2δ4

)1/ǫ

, n
(J2+σ̄2)2

(
nG2H2

ω2δ4 + β4σ̄2

(1−β)2

)2
}

iterations for a sufficiently large constant C0, then SQuARM-

SGD converges at a rate of O (1/
√
nT). Note that this is the

convergence rate of distributed vanilla SGD with the same

speed-up w.r.t. the number of nodes n. Thus, we essentially

converge at the same rate as vanilla SGD, while saving

significantly in terms of total communication bits; this can

be seen in our numerical results in Section V as well.

Theoretical justification for communication gain: We claim

that convergence results for SQuARM-SGD show savings in

8fi is L-smooth, if for every x,y ∈ R
d, we have fi(y) ≤ fi(x) +

〈∇fi(x),y − x〉+ L
2
‖y − x‖2.

communication compared to CHOCO-SGD [20], [21]. For the

sake of argument, consider the case when SQuARM only

performs local iterations without threshold based triggering

(i.e., ct = 0, ∀t) and without momentum (β = 0). For

the same compression coefficient ω used for both SQuARM-

SGD and CHOCO-SGD, to transmit the same number of bits

(i.e., having the same number of communication rounds), T
iterations of CHOCO would correspond to T × H iterations

of SQuARM (due to H local SGD steps). Thus for the same

number of bits transmitted, the bound on gradient norm for

CHOCO-SGD is O(1/
√
T + 1/T), whereas for SQuARM-SGD

it is O(1/
√
HT + H/T (1+ǫ)/2) where ǫ ∈ (0, 1). Thus, for the

same number of communication rounds, for a large value

of T , SQuARM-SGD has a better performance compared to

CHOCO-SGD (as the first dominant term is affected by H).

Thus, SQuARM-SGD has a better performance while using

less bits for communication, and this claim is also supported

through our experiments.

Note on Consensus: Theorem 1 states that the average iterate

x̄
(t) converges to a stationary point. For decentralized learning,

it is important to guarantee that the individual node iterates

reach to a consensus. We show such consensus property to

the average iterate in Lemma 1 provided in Section IV.

IV. PROOF OUTLINES

Due to lack of space, below we only provide a proof-sketch

of Theorem 1. We defer the interested reader to the complete

proof in our full paper [23], where we also discuss technical

challenges involved and a comparison to related works.

Proof outline of Theorem 1. Define virtual sequences x̃
(t)
i

for all i ∈ [n] as:

x̃
(t)
i = x

(t)
i − ηβ2

(1− β)
v
(t−1)
i . (3)

Consider the collection of iterates {x(t)
i }T−1

t=0 , i ∈ [n]

generated by Algorithm 1 at time t. Let x(t) = 1
n

∑n
i=1 x

(t)
i .

We first argue that x(t+1) = x
(t+ 1

2 ). This trivially holds when

(t+1) /∈ IT (line 18). For the other case, i.e., (t+1) ∈ IT (line

18), this follows because
∑n

i=1

∑n
j=1 wij(x̂

(t+1)
j − x̂

(t+1)
i ) =

0, as W is doubly stochastic. Thus, using the definition of

x
(t+ 1

2 )
i from line 5, we get

x
(t+1) = x

(t) − η

n

n∑

j=1

(βv
(t)
j +∇Fj(x

(t)
j , ξ

(t)
j )). (4)

Define x̃
(t) = 1

n

∑n
1 x̃

(t)
i . Taking an average of (3) gives

x̃
(t) = x

(t) − ηβ2

(1−β)
1
n

∑n
i=1 v

(t−1)
i . Together with (4), we can

show the following recurrence relation on x̃
(t):

x̃
(t+1) = x̃

(t) − η

(1− β)

1

n

n∑

i=1

∇Fi(x
(t)
i , ξ

(t)
i ). (5)

Evaluating the objective function f at x̃
(t+1) and using (5)

along with some algebraic manipulations, we get:

Z1‖ 1
n

n∑

i=1

∇fi(x
(t)
i )‖2 ≤ f(x̃(t))−f(x̃(t+1))



+
Lη2σ̄2

2n(1− β)2
+

L2η

(1− β)n
(R1(t) +R2(t)) (6)

where Z1 = η
2(1−β) −

Lη2

2(1−β)2 , R1(t) =
∑n

i=1 ‖x
(t)
i − x

(t)‖2,

R2(t) =
∑n

i=1 ‖x(t) − x̃
(t)‖2. Taking expectation and using

Lemma 1 (stated below and proved in our full paper [23]) to

bound E[R2(t)] with η ≤ (1−β)2

2L , we get:

Σ :=
1

T

T−1∑

t=0

E‖ 1
n

n∑

i=1

∇fi(x
(t)
i )‖2 ≤

4(1− β)

η

(E[f(x(0))]−f∗)

T
+
4L2

nT

T−1∑

t=0

E[R1(t)]+Z2 (7)

where Z2 = 2Lησ̄2

n(1−β) + 4L2η2β4σ̄2

n(1−β)4 . Note that (7) bounds

Σ = 1
T

∑T−1
t=0 E‖ 1

n

∑n
i=1 ∇fi(x

(t)
i )‖2, whereas, our goal

is to bound 1
T

∑T−1
t=0 E‖∇f(x(t))‖2. Using L-Lipschitz

gradient property of f gives 1
T

∑T−1
t=0 E‖∇f(x(t))‖2 ≤

2L2

nT

∑T−1
t=0, E[R1(t)] + 2Σ. Substituting the bound on Σ from

(7), we get

1

T

T−1∑

t=0

E‖∇f(x(t))‖2 ≤ 8(1− β)

η

(E[f(x(0))]−f∗)

T

+
10L2

nT

T−1∑

t=0

E[R1(t)] + 2Z2. (8)

Lemma 1. Consider the assumptions of Theorem 1 and

let I(t) ∈ IT be a synchronization index. Let A =
p
2

(
2H2G2

(
1+ β2

(1−β)2

)(
16
ω + 4

p

)
+ 2ωc0

η(1−ǫ)

)
. Then:

∑n
j=1 E‖xI(t) − x

I(t)
j ‖2 ≤ 4nAη2

p2

E[R2(t)] =
∑n

i=1 E‖x(t) − x̃
(t)‖2 ≤ nβ4η2

(1− β)3
∑t−1

τ=0 φ(t, τ)

where φ(t, τ) = βt−τ−1
E

∥∥∥ 1
n

∑n
i=1 ∇Fi(x

(τ)
i , ξ

(τ)
i )

∥∥∥
2

.

Let I(t0) ∈ IT denote the last synchronization index before

time t. The assumption gap(IT ) ≤ H implies t− I(t0) ≤ H .

Using this and assumption (ii), we can bound:

E[R1(t)] =

n∑

j=1

E‖x(t) − x
(t)
j ‖2 ≤ 2E

n∑

j=1

‖xI(t0) − x
I(t0)

j ‖2

+ 4η2H2nG2

(
1 +

β2

(1− β)2

)
(9)

Now use Lemma 1 to get a bound on E[R1(t)] and then

substitute the resulting bound into (8). We then expand on

the value of A from Lemma 1 and set η = (1 − β)
√

n
T

for T ≥ 8L2β4n
(1−β)2 . Using p ≥ δ2ω

644 completes the proof of

Theorem 1.

V. EXPERIMENTS

In this section, we compare SQuARM-SGD against

CHOCO-SGD [20], which is the state-of-the-art in

communication-efficient decentralized training, and also

Fig. 1 Comparison of training loss
against number of epochs for dif-
ferent schemes.

Fig. 2 Comparison of test accuracy
with total number of bits commu-
nicated between nodes.

Fig. 3 Performance comparison for training ResNet-20 model on CIFAR-10
dataset for different algorithms.

against vanilla decentralized SGD [41]. We provide additional

experiments, including comparison of wall clock training

time in our full paper [23].

Setup. We match the setting in CHOCO-SGD and perform

our experiments on the CIFAR-10 [25] dataset to train a

ResNet20 [42] model with n = 8 nodes connected in a ring

topology. The training is done on TitanRTX GPUs. Learning

rate is initialized to 0.1 and follows a schedule consisting of

a warmup period of 5 epochs and has a piecewise decay of 5

at epoch 200 and 300, and we stop training at epoch 400. The

SGD algorithm is implemented with momentum with a factor

of 0.9 and mini-batch size of 256. SQuARM-SGD consists of

H = 5 local iterations and we take top 1% elements of each

tensor and only transmit the sign and norm of the result. The

triggering threshold follows a schedule piecewise constant:

initialized to 2.5 and increases by 1.5 after every 20 epochs

till 350 epochs are complete, while maintaining that ct < 1/η
for all t. We compare performance of SQuARM-SGD against

CHOCO-SGD with Sign, TopK compression (taking top 1%

of elements of the tensor) and decentralized vanilla SGD [17].

Results. We plot global loss function evaluated at average pa-

rameter across nodes in Figure 1, where we observe SQuARM-

SGD converging at a similar rate as CHOCO-SGD and vanilla

decentralized SGD. Figure 2 shows the performance for a

given bit-budget, where we show the Top-1 test accuracy9 as a

function of the total bits communicated. For a test-accuracy of

around 90%, SQuARM-SGD requires about 40× less bits than

CHOCO-SGD with Sign or TopK compression, and around

3K× less bits than vanilla decentralized SGD to achieve the

same Top-1 accuracy.
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