
Differentially Private Federated Learning with

Shuffling and Client Self-Sampling

Antonious M. Girgis, Deepesh Data, and Suhas Diggavi

Email: amgirgis@g.ucla.edu, deepesh.data@gmail.com, suhas@ee.ucla.edu.

Abstract—This paper studies a distributed optimization
problem in the federated learning (FL) framework under
differential privacy constraints, whereby a set of clients
having local samples are connected to an untrusted server,
who wants to learn a global model while preserving the
privacy of clients’ local datasets. We propose a new client
sampling called self-sampling that reflects the random
availability of clients in the learning process in FL. We
analyze the differential privacy of the SGD with client
self-sampling by composing amplification by sub-sampling
along with amplification by shuffling. Furthermore, we
analyze the convergence of the proposed SGD algorithm
showing that we can get a reasonable learning performance
while preserving the privacy of clients’ data even with client
self-sampling.

I. INTRODUCTION

In this paper we consider a federated learning (FL)

framework [2]–[4], where the data is generated across

multiple clients. The server wants to learn a machine

learning model that minimizes a convex objective function

using the local datasets, without collecting the data

at the central server due to privacy considerations. In

order to generate a learning model, the commonly used

mechanism is Stochastic Gradient Descent (SGD) [5]. FL

introduces several unique challenges to this traditional

model that cause tension with the objective: (i) We need

to provide privacy guarantees on the local datasets at each

client against any adversary that can observe the global

model; (ii) work with a dynamic client population in

each round of communication between the server and the

clients. This happens due to scale (e.g., tens of millions of

devices) and only a small fraction of clients are sampled

at each iteration depending on their availability.

Since we need to give privacy to the local data

residing at the clients, the traditional framework to give

guarantees is through the notion of local differential

privacy (e.g., see [6]–[9]), where the server is itself

untrusted. The challenge is that the traditional privacy

approach to the learning problem uses local differential
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privacy (LDP) [6]–[8], [10], [11], which is known to

give poor learning performance [7], [11], [12]. In recent

works, a new privacy framework using anonymization

has been proposed in the so-called shuffling model [13]–

[21]. This model enables significantly better privacy-

utility performance by amplifying privacy through this

anonymization. Another mechanism to amplify privacy is

through randomized sub-sampling [11], [22], [23]. This

naturally arises in the considered SGD framework, since

clients do mini-batch stochastic sampling of local data to

compute gradients, and also there is sampling of clients

themselves in each iteration, as in the FL framework

[2]–[4]. There are several works that studied federated

learning under privacy constraints (e.g., [24]–[29] and

references therein). These works consider client sampling

techniques, such as choosing uniformly at random a fixed

number of clients at each iteration [25]. Choosing a fixed

number of clients at each iteration requires a selection

by the shuffler.

In this paper, we extend our work in [25] to explore a

distributed self-sampling approach initiated by the clients

that does not need a selection by the shuffler. Self-

sampling is desirable from a system-level perspective

where coordination is not needed in order to randomly

sub-sample which clients will participate in each iteration

of SGD. At each iteration of the training process, clients

independently toss a biased coin. If the biased coin of a

client turns a head, that client participates in the current

iteration and share its model privately with the untrusted

server. One of the main challenges in our self-sampling

scheme is that the number of participated clients at each

iteration is unknown a priori as it is random varying

from iteration to iteration. We analyze the privacy of

our self-sampling scheme by composing amplification

by sub-sampling along with amplification by shuffling.

Furthermore, we analyze the convergence rate of the SGD

with client self-sampling and shuffling.

In [29], the authors have proposed a novel sampling

scheme called random check-in, in which each client





that, each client i sends the private gradient Rp (gt (diji))
to the secure shuffler that sends a random permutation
of the received gradients to the server. Finally, the server
takes the average of the received gradients and updates
the global model.

Our dss-SGD is different from the CLDP-SGD algo-
rithm proposed in [25] in the client sampling scheme.
In [25], a fixed number of clients are chosen uniformly at
random in each iteration that requires a selection by the
shuffler. While, in dss-SGD, each individual client decides
to participate in each iteration depending on independent
randomness generated at the client-side. Hence, the
proposed self-sampling does not need the coordination
with the shuffler that reflects the random availability of
the clients in practical FL. This modification in the client
sampling raises challenges in analyzing the central privacy
of the algorithm as well as analyzing the convergence
of the SGD, since the number of clients participating at
each iteration is random.

III. MAIN RESULTS

In this section, we state the privacy guarantees, the com-
munication cost per client, and the privacy-convergence
trade-off for the dss-SGD Algorithm. Observe that the
probability that an arbitrary data point dij ∈ D is chosen
at time t ∈ [T ] is given by q̄ = q

r . Furthermore, in any
time slot t ∈ [T ], since clients participate independently
with probability q, the number of clients participating in
any time slot t ∈ [T ] is a binomial random variable Kt

with mean E [Kt] = qm. Note that Kt = |Ut|.
Let Bp (L) be the ℓp norm ball with radius L, i.e.,

Bp (L) ,

{

x ∈ R
d
(

∑d
i=1 |xi|p

)1/p

≤ L

}

. Our dss-

SGD algorithm and the result of Theorem 1 (stated below)
are given for a general local randomizer Rp that satisfies
the following conditions: (i) The randomized mechanism
Rp is an ǫ0-LDP mechanism. (ii) Rp is unbiased, i.e.,
E [Rp (x) |x] = x for all x ∈ Bp (L). (iii) The output
of Rp can be represented using b ∈ N

+ bits. (iv) Rp

has a bounded variance: sup
x∈Bp(L) E‖Rp (x)− x‖22 ≤

cL2 max{d2− 2

p , d}, where c is a constant.
In [25], we proposed unbiased ǫ0-LDP mechanisms

Rp for several values of the norm p ∈ [1,∞] that require
b = O (log (d)) bits of communication and satisfy the
above conditions.

Theorem 1. Let the set C be convex with diameter D1

and the function f (θ; .) : C → R be convex and L-

Lipschitz continuous with respect to the ℓg-norm, which

1Diameter of a bounded set C ⊂ R
d is defined as sup

x,y∈C ‖x−y‖.

Algorithm 1 Adss: dss-SGD

1: Initialize: θ0 ∈ C
2: for t ∈ [T ] do

3: Start with an empty set of client Ut = φ.
4: for clients i ∈ [m] do

5: if a q-biased coin returns head then

6: Update Ut ← Ut
⋃{i}

7: ji
u.a.r←−− [r].

8: gt (diji)← ∇θtf (θt; diji)

9: g̃t (diji)←
gt(diji)

max

{

1,
‖gt(diji)‖p

C

}

10: qt (diji)← Rp (g̃t (diji))
11: Client i sends qt (diji) to the shuffler.

12: The shuffler randomly shuffles the elements in
{qt(diji) : i ∈ Ut} and sends them to the server.

13: gt ← 1
|Ut|

∑

i∈Ut
qt (diji)

14: θt+1 ←
∏

C (θt − ηtgt), where
∏

C denotes the
projection operator onto the set C.

15: Output: The model θT .

is the dual of the ℓp-norm2. Let θ∗ = argminθ∈C F (θ)
denote the minimizer of the problem (3). Let n = mr
denote the total number of data points in the dataset D.

For participation probability 0 < q ≤ 1, let q̄ = q
r . If we

run Algorithm Adss for T iterations, then we have

1) Privacy: For ǫ0 = min
{

O(1),O
(
√

n log(1/δ′)
q̄T log(q̄T/δ′)

)}

,

where δ′ > 0 is an arbitrary, Adss is (ǫ, δ)-DP, where

ǫ = O
(

ǫ0

√

q̄T log (q̄T/δ′) log (1/δ′)

n

)

,

δ = 2δ′ + Te−c′qm,

where c′ ∈ (0, 1) is a constant.

2) Communication: Our algorithm Adss requires q × b
bits of communication in expectation3 per client per

iteration, where expectation is taken with respect to

the sampling of clients.

3) Convergence: If we run Adss with learning

rate schedule ηt = D
G
√
t
, where G2 =

L2 max{d1− 2

p , 1}
(

1 + cd
q̄n

(

eǫ0+1
eǫ0−1

)2
)

, then

E [F (θT )]− F (θ∗) ≤ O
(

LD log(T )√
T

2For any data point d ∈ S, the function f : C → R is L-Lipschitz
continuous w.r.t. ℓg-norm if for every θ1, θ2 ∈ C, we have |f(θ1; d)−
f(θ2; d)| ≤ L‖θ1 − θ2‖g .

3A client communicates in an iteration only when its q-biased coin
returns a head in that iteration.
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max{d 1

2
− 1

p , 1}
√

cd

q̄n

(

eǫ0 + 1

eǫ0 − 1

)

+ e−c′qm

)

, (4)

where c = 4 if p ∈ {1,∞} and c = 14 otherwise.

A proof of Theorem 1 is presented in Section IV.

Remark 1 (Impact of self-sampling of clients). In our
algorithm dss-SGD, the number of clients participating
in any time slot t ∈ [T ] is a binomial random variable
Kt = |Ut|. The impact of such client sampling appears in
the privacy parameter δ that has an additive term Te−c′qm.
This term does not appear if we choose uniformly at
random a fixed number of clients at each time slot
(See [25, Theorem 1]). However, in cross-device federated
learning [4], the number of participating clients at each
time slot is typically in thousands, i.e., qm is equal to
a few thousands. Thus, the terms Te−c′qm ≪ 1/n and
e−c′qm are negligible.

Remark 2 (Optimality of dss-SGD for ℓ2-norm case).
Suppose that our target is to achieve ǫ = O(1) and
δ ≪ 1/n. Substituting ǫ0 = ǫ

√

n
qT log(2qT/δ′) log(2/δ′) ,

T = n/q̄, and p = 2 in (4), we recover the optimal
excess risk of central differential privacy presented in [32],
except an additive term Te−c′qm in δ.

IV. PROOF OF THEOREM 1

Privacy: Hereafter, we denote Rp by R, for simplicity,
which is an ǫ0-LDP mechanism. This implies that the
mechanism Adss guarantees local differential privacy ǫ0
for each sample dij per iteration. Thus, it remains to
analyze the central DP guarantee of the mechanism Adss

in each iteration and also for the entire execution.
Fix a time slot t ∈ [T ]. Let Mt (θt,D) denote the

private mechanism at time t that takes the dataset D and
an auxiliary input θt and generates the parameter θt+1

as an output. Let Kt = |Ut| denote the random variable
corresponding to the number of participating clients at
the t’th time slot. Thus, the mechanism Mt on input
dataset D =

⋃m
i=1Di when Kt > 0 can be defined as:

Mt(θt;D) = HKt
◦ sampiid

m,q (G1, . . . ,Gm) , (5)

where Gi = sampfix
r,1 (R(xt

i1), . . . ,R(xt
ir)) and x

t
ij =

∇θtf(θt; dij), ∀i ∈ [m], j ∈ [r]. Here, sampiid
m,q denotes

the sampling operation for choosing each of the m
elements independently with probability q, sampfix

r,1

denotes the sampling operation for choosing uniformly
at random a single element from a set of r elements,
and HKt

denotes the shuffling operation on Kt elements,
which outputs a random permutation of the Kt input
elements. For convenience, in the rest of the proof,

we suppress the auxiliary input θt and simply denote
Mt(θt;D) by Mt(D). We can do this because θt only
affects the gradients, and the analysis in this part is for
an arbitrary set of gradients.

In the following lemma, we state the privacy guarantee
of the mechanism Mt for each t ∈ [T ].

Lemma 1. Fix an arbitrary iteration t ∈ [T ]. Let q = q
r .

Suppose R is an ǫ0-LDP mechanism with ǫ0 = O(1).
Then, for any δ̃ > 0, the mechanism Mt is

(

ǫ, δ
)

-DP,

where ǫ = O
(

ǫ0

√

q log(1/δ̃)
n

)

and δ = qδ̃ + e−c′qm for

some constant c′ ∈ (0, 1).

We provide a proof sketch of Lemma 1 in Section IV-A,
while the detailed proof is presented in Appendix A in
the full version [1]. Note that the Algorithm Adss is
a sequence of T adaptive mechanisms M1, . . . ,MT ,
where Mt for each t ∈ [T ] satisfies the privacy
guarantee stated in Lemma 1. Now, we invoke the strong
composition theorem [31, Theorem 3.20] to obtain the
privacy guarantee of the algorithm Adss and conclude
that for any δ′, δ̃ > 0, Adss is (ǫ, δ)-DP for

ǫ =
√

2T log (1/δ′)ǫ+ Tǫ
(

eǫ − 1
)

,

δ = q̄T δ̃ + δ′ + Te−c′qm,

where ǫ is from Lemma 1. Note that when ǫ =

O
(

√

log(1/δ′)
T

)

, we have ǫ = O
(

√

T log(1/δ′)ǫ
)

.

When ǫ0 = O(1), it follows from Lemma 1 that this

condition on ǫ is satisfied when ǫ0 = O
(√

n log(1/δ′)

q̄T log(1/δ̃)

)

.
Together, these conditions imply that when ǫ0 =

min
{

O(1),O
(√

n log(1/δ′)

q̄T log(1/δ̃)

)}

, then (by substituting

the bound on ǫ = O
(

ǫ0

√

q̄ log(1/δ̃)
n

)

from Lemma 1

into the bound on ǫ = O
(

√

T log(1/δ′)ǫ
)

above),

we get ǫ = O
(

ǫ0

√

q̄T log(1/δ̃) log(1/δ′)
n

)

. By setting

δ̃ = δ′

q̄T , we get ǫ0 = min
{

O(1),O
(
√

n log(1/δ′)
q̄T log(q̄T/δ′)

)}

,

ǫ = O
(

ǫ0

√

q̄T log(q̄T/δ′) log(1/δ′)
n

)

, and δ = 2δ′ +

Te−c′qm, where δ′ > 0 is an arbitrary constant.
Communication: Suppose that the randomized mech-

anism R is ǫ0-LDP having output alphabet Y =
{1, 2, . . . , B = 2b}. Therefore, the expected number of
bits per client in Algorithm Adss is given by q × b bits
per iteration, where expectation is taken over the client
sampling.

Convergence: Note that the number of clients par-
ticipating |Ut| at any time slot t ∈ [T ] is a binomial
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random variable Kt. At iteration t ∈ [T ] of Algo-
rithm 1 when Kt > 0, the server averages the Kt

received compressed and privatized gradients and obtains
gt =

1
Kt

∑

i∈Ut
qt(diji). Now we show that the average

gradient gt is unbiased:

Claim 1. We have E[gt] = ∇F (θt), where expectation is
taken with respect to the random participation of clients,
the sampling of data points, and the randomness of the
mechanism Rp.

We prove Claim 1 in [1, Appendix B-A]. Now we
show that gt has bounded second moment.

Lemma 2. For any d ∈ S, if the function f (θ; .) : C →
R is convex and L-Lipschitz continuous w.r.t. the ℓg-norm,

which is the dual of the ℓp-norm, then we have

EUt∼sampiid
m,q,Rp,

ji∈[r],i∈Ut

‖gt‖22 ≤ L2 max{d1− 2

p , 1}
(

1 +
2cd

q̄n

(

eǫ0 + 1

eǫ0 − 1

)2
)

+ e−c′qm, (6)

where c′ ∈ (0, 1) is a constant, and c = 4 if p ∈ {1,∞}
and c = 14 if p ∈ (1,∞). Note that q̄ = q

rmr = qm.

The proof of Lemma 2 is presented in [1, Ap-
pendix B-B]. Although the number of participating clients
Kt at each iteration t ∈ [T ] is varying from iteration
to iteration, Lemma 2 shows that for ǫ0 = O(1), the
second moment of the descent direction gt decreases

with order O
(

d
qmǫ2

0

)

, where qm = E [Kt]. Now, we
can use standard SGD convergence results for convex
functions. In particular, we use the result from [33], which
is stated in Lemma 5 in [1, Appendix B-C]. Using that
result (and ignoring the exponentially small term e−c′q̄m),
we have that the output θT of Algorithm 1 satisfies

E [F (θT )]− F (θ∗) ≤ O
(

LD log(T )max{d 1

2
− 1

p , 1}√
T

(

1 +

√

2cd

q̄n

(

eǫ0 + 1

eǫ0 − 1

)

))

, (7)

where we used the inequality

√

1 + 2cd
q̄n

(

eǫ0+1
eǫ0−1

)2

≤
(

1 +
√

2cd
q̄n

(

eǫ0+1
eǫ0−1

))

. Note that if
√

cd
q̄n

(

eǫ0+1
eǫ0−1

)

≤
O(1), then we recover the convergence rate of vanilla
SGD without privacy. So, the interesting case is when
√

cd
q̄n

(

eǫ0+1
eǫ0−1

)

≥ Ω(1), which gives E [F (θT )] −

F (θ∗) ≤ O
(

LD log(T )max{d
1

2
− 1

p ,1}√
T

√

cd
q̄n

(

eǫ0+1
eǫ0−1

)

)

.

This completes the proof of Theorem 1.

A. Proof-Sketch of Lemma 1

In Lemma 1, we are amplifying the privacy by
using the subsampling as well as shuffling ideas. Con-
sider two neighboring datasets D =

⋃m
i=1Di, D′ =

D′
1

⋃

(
⋃m

i=2Di) that are different only in the first data
point at the first client d11. The first step in the proof is
to show that for arbitrary δ̃ > 0,

Pr [Mt (D) ∈ S] =
m
∑

k=1

Pr [Kt = k] eln(1+
k

mr
ǫ̃(k))

× Pr [Mt (D′) ∈ S|Kt = k] + qδ̃, (8)

where ǫ̃ (k) = O
(

ǫ0

√

log
(

1/δ̃
)

/k

)

. The main idea

of the proof of (8) is to split the probability distribution
of the output of the mechanism Mt into a summation
of three conditional probabilities depending on the
event whether the first client is available or not and
whether the first client chooses the first data point or
not. We use bipartite graphs to get relations between
these events, where each vertex corresponds to one of
the possible outputs of the sampling procedure, and
each edge connects two neighboring vertices. See [1,
Appendix A] for more details. Observe that ǫ̃ (k) is
a decreasing function of k. Let pk = Pr [Kt = k]
and µk = Pr [Mt (D′) ∈ S|Kt = k]. Thus, for any
ε ∈ (0, 1), we can bound the first term on the RHS
of (8) as follows.

m
∑

k=1

pke
ln(1+ k

mr
ǫ̃(k))µk ≤ 2eǫ̃(1)

∑

k<(1−ε)qm
k>(1+ε)qm

pk

+

(1+ε)qm
∑

k=(1−ε)qm

pkµk.

(9)

Since Kt is a binomial random variable, we use the
Chernoff bound to bound the first term of (9) by e−c′qm

(by setting ε = 0.5), for some constant c′ ∈ (0, 1).
Furthermore, the second term in (9) can be bounded by

eǫ Pr [Mt (D′) ∈ S], where ǫ = O
(

ǫ0

√

q̄
n log(1/δ̃)

)

.

Subtituting in (8), we get the following

Pr [Mt (D) ∈ S] ≤ eǫ Pr [Mt (D′) ∈ S] + q̄δ̃e−c′qm,

which completes the proof of Lemma 1.
A detailed proof can be found in [1, Appendix A].
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