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Abstract—This paper studies a distributed optimization
problem in the federated learning (FL) framework under
differential privacy constraints, whereby a set of clients
having local samples are connected to an untrusted server,
who wants to learn a global model while preserving the
privacy of clients’ local datasets. We propose a new client
sampling called self-sampling that reflects the random
availability of clients in the learning process in FL. We
analyze the differential privacy of the SGD with client
self-sampling by composing amplification by sub-sampling
along with amplification by shuffling. Furthermore, we
analyze the convergence of the proposed SGD algorithm
showing that we can get a reasonable learning performance
while preserving the privacy of clients’ data even with client
self-sampling.

I. INTRODUCTION

In this paper we consider a federated learning (FL)
framework [2]-[4], where the data is generated across
multiple clients. The server wants to learn a machine
learning model that minimizes a convex objective function
using the local datasets, without collecting the data
at the central server due to privacy considerations. In
order to generate a learning model, the commonly used
mechanism is Stochastic Gradient Descent (SGD) [5]. FL
introduces several unique challenges to this traditional
model that cause tension with the objective: (i) We need
to provide privacy guarantees on the local datasets at each
client against any adversary that can observe the global
model; (ii) work with a dynamic client population in
each round of communication between the server and the
clients. This happens due to scale (e.g., tens of millions of
devices) and only a small fraction of clients are sampled
at each iteration depending on their availability.

Since we need to give privacy to the local data
residing at the clients, the traditional framework to give
guarantees is through the notion of local differential
privacy (e.g., see [6]-[9]), where the server is itself
untrusted. The challenge is that the traditional privacy
approach to the learning problem uses local differential
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privacy (LDP) [6]-[8], [10], [11], which is known to
give poor learning performance [7], [11], [12]. In recent
works, a new privacy framework using anonymization
has been proposed in the so-called shuffling model [13]-
[21]. This model enables significantly better privacy-
utility performance by amplifying privacy through this
anonymization. Another mechanism to amplify privacy is
through randomized sub-sampling [11], [22], [23]. This
naturally arises in the considered SGD framework, since
clients do mini-batch stochastic sampling of local data to
compute gradients, and also there is sampling of clients
themselves in each iteration, as in the FL framework
[2]-[4]. There are several works that studied federated
learning under privacy constraints (e.g., [24]-[29] and
references therein). These works consider client sampling
techniques, such as choosing uniformly at random a fixed
number of clients at each iteration [25]. Choosing a fixed
number of clients at each iteration requires a selection
by the shuffler.

In this paper, we extend our work in [25] to explore a
distributed self-sampling approach initiated by the clients
that does not need a selection by the shuffler. Self-
sampling is desirable from a system-level perspective
where coordination is not needed in order to randomly
sub-sample which clients will participate in each iteration
of SGD. At each iteration of the training process, clients
independently toss a biased coin. If the biased coin of a
client turns a head, that client participates in the current
iteration and share its model privately with the untrusted
server. One of the main challenges in our self-sampling
scheme is that the number of participated clients at each
iteration is unknown a priori as it is random varying
from iteration to iteration. We analyze the privacy of
our self-sampling scheme by composing amplification
by sub-sampling along with amplification by shuffling.
Furthermore, we analyze the convergence rate of the SGD
with client self-sampling and shuffling.

In [29], the authors have proposed a novel sampling
scheme called random check-in, in which each client



independently chooses which time slot to participate in
the training process. However, their sampling scheme is
different from ours in the following sense: (i) We consider
multiple data samples at each client, whereas, in their
work they assume that each client has a single sample.
This provides an additional layer of sampling the local
datasets at clients that amplifies the central privacy of the
SGD. Furthermore, this creates non-uniform sampling of
data points, because clients either do not participate or
they participate with a mini-batch gradient of a certain
size. (ii) Our self-sampling scheme allows flexibility to
the clients to participate in more than one iteration. In
contrast, in [29] each client participates only in one time
slot of the training process. These differences also lead
to distinct technical approaches to proving privacy and
the trade-offs.

II. PRELIMINARIES AND PROBLEM FORMULATION

Preliminaries: We formally define local differential
privacy (LDP) and (central) differential privacy (DP).

Definition 1 (Local Differential Privacy - LDP [11]). For
€0 > 0, a randomized mechanism R : X — Y is said to
be €p-local differentially private (in short, €3-LDP), if for
every pair of inputs x, 2’ € X and S C Y, we have
Pr[R(z) € S] < exp(eo) Pr[R(z') € S]. (1)
Here, €y captures the privacy level, lower the e,
higher the privacy. Let D = {d;,...,d,,} denote a
dataset comprising n points from &. We say that two
datasets D = {dy,...,d,} and D' = {d},...,d,} are
neighboring if they differ in one data point.

Definition 2 (Central Differential Privacy - DP [30], [31]).
For ¢, > 0, a randomized mechanism M : & — Y
is said to be (e, 0)-differentially private (in short, (¢, d)-
DP), if for all neighboring datasets D,D’ € &™ and
every subset £ C ), we have

Pr[M (D) € €] < exp(e) Pr[M (D) € ] +6. (2)

Typically, we are interested in a strong privacy regime
in which ¢ is small and § < 1/n.

Problem Formulation: We consider a federated learn-
ing (FL) framework [2]-[4] as depicted in Figure 1,
where there are m clients, and client ¢ has a local dataset
D; = {di1,...,d;} consisting of r data points drawn
from a universe &. Let D = |J;-; D; denote the entire
dataset and n = mr denote the total number of data
points in the system. The clients are connected to an

* 0" = arg min F(0,D)
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Fig. 1: We have m clients, each having a dataset D; of
r samples. The clients are connected to a central server,
who wants to learn a global model 6* that minimizes (3).

untrusted server in order to solve the following empirical
risk minimization (ERM) problem

; BRI o
min (F(&D) = ;M&m) : 3)

Here, C C R? is a closed convex set and F;(6,D;) =
1 Z;Zl f(0,d;;) is a local loss function dependent on
the local dataset D; at client ¢ evaluated at the model
parameters 6 € C.

Solving the ERM problem (3) in the FL framework
introduces several unique challenges, such as the locally
residing data {D;} at all clients need to be kept private
and only a small fraction of clients participate in each
round of communication. Our goal is to solve (3) while
preserving privacy on the training dataset D and dealing
with a dynamic client population in each iteration.

Our Algorithm: In order to solve (3) in the presence
of the above-mentioned challenges in the FL setting,
we propose distributed self-sampling SGD (dss-SGD),
a differentially-private SGD algorithm that works with
private updates and dynamic client population. The
procedure is described in Algorithm 1.

In any time slot ¢ € [T] of dss-SGD, each client
independently and identically tosses a biased coin with
probability g. If the biased coin of the i’th client returns
a head (one), then the ith client participates in the current
time slot and share its model privately with the untrusted
server with the help of the trusted shuffler. Otherwise,
the ¢’th client does not participate in the current time
slot. Let U; denote the set of participating clients at
time ¢ € [T']. Each client ¢ € U; computes the gradient
Vo, f (68;;d;j;,) for a randomly chosen sample d;;, from
its local dataset D;. The 7’th client clips the £,,-norm of the
gradient Vg, f (6;; d;;,) and applies the LDP-compression
mechanism R, where R, : B — {0,1}" is an eo-LDP
mechanism when inputs come from an £,,-norm ball. After



that, each client ¢ sends the private gradient R, (g (dij,))
to the secure shuffler that sends a random permutation
of the received gradients to the server. Finally, the server
takes the average of the received gradients and updates
the global model.

Our dss-SGD is different from the CLDP-SGD algo-
rithm proposed in [25] in the client sampling scheme.
In [25], a fixed number of clients are chosen uniformly at
random in each iteration that requires a selection by the
shuffler. While, in dss-SGD, each individual client decides
to participate in each iteration depending on independent
randomness generated at the client-side. Hence, the
proposed self-sampling does not need the coordination
with the shuffler that reflects the random availability of
the clients in practical FL. This modification in the client
sampling raises challenges in analyzing the central privacy
of the algorithm as well as analyzing the convergence
of the SGD, since the number of clients participating at
each iteration is random.

IIT. MAIN RESULTS

In this section, we state the privacy guarantees, the com-
munication cost per client, and the privacy-convergence
trade-off for the dss-SGD Algorithm. Observe that the
probability that an arbitrary data point d;; € D is chosen
at time ¢ € [T is given by ¢ = Z. Furthermore, in any
time slot ¢ € [T, since clients participate independently
with probability ¢, the number of clients participating in
any time slot ¢ € [T is a binomial random variable K,
with mean E [K;] = gm. Note that K; = |Uy|.

Let By, (L) be the ¢, norm ball with radius L, i.e.,

1
By(L) 2 {xeR! (S, k) "<\ our dss-

SGD algorithm and the result of Theorem 1 (stated below)
are given for a general local randomizer R, that satisfies
the following conditions: (i) The randomized mechanism
R, is an €p-LDP mechanism. (ii) R, is unbiased, i.e.,
E[R, (x)|x] = x for all x € B, (L). (iii) The output
of R, can be represented using b € N* bits. (iv) R,
has a bounded variance: supycp (1) E[R, (x) — x||3 <

cL? max{d*~#,d}, where c is a constant.

In [25], we proposed unbiased ep-LDP mechanisms
R, for several values of the norm p € [1, oo] that require
b = O (log(d)) bits of communication and satisfy the
above conditions.

Theorem 1. Let the set C be convex with diameter D!
and the function f(6;.) : C — R be convex and L-
Lipschitz continuous with respect to the {4-norm, which

'Diameter of a bounded set C C R? is defined as Supg yec llz—yl-

Algorithm 1 Agy: dss-SGD

1: Initialize: 6, € C

2: for t € [T] do

3: Start with an empty set of client i = ¢.
4 for clients i € [m] do

5: if a ¢-biased coin returns head then
6: Update U, < U J{i}
7. u.a.r
8
9

Ji = 1Ir].
g (dij;) < Vo, f (0 dsj,)
g (dij;

o, (d;;. ) <
gt( Ul) . 1)%}

10: q: (dljz) — Ry (gt (dljz))

11: Client ¢ sends q; (d;j,) to the shuffler.
12: The shuffler randomly shuffles the elements in
{a¢(dij,) : € U;} and sends them to the server.

13 g < \u% > icu, 9t (dij,)

14: 01 < [Ic (0r — n:8;), where []. denotes the
projection operator onto the set C.

15: Output: The model 6.

is the dual of the {,-norm®. Let 6* = arg mingec F (0)
denote the minimizer of the problem (3). Let n = mr
denote the total number of data points in the dataset D.
For participation probability 0 < q < 1, let ¢ = L. If we
run Algorithm Agss for T iterations, then we have

1) Privacy: For €y = min {(9(1), o ( %{%) }
where &' > 0 is an arbitrary, Aqgss is (€,8)-DP, where

GZOGMﬂ%MﬂWWMUM»

n

§ =28 +Te cam,

where ¢ € (0,1) is a constant.

2) Communication: Our algorithm Agss requires q X b
bits of communication in expectation® per client per
iteration, where expectation is taken with respect to
the sampling of clients.

3) Convergence: If we run Agss with learning
rate schedule 71, = GL\/Z’ where G? =

. 2
L2 max{dl_%, 1} (1 + % (Zgﬂ) ), then

LDlog(T)
—

2For any data point d € &, the function f : C — R is L-Lipschitz
continuous w.r.t. £g-norm if for every 61,02 € C, we have |f(01;d) —
f(02;d)| < L||01 — 02]|g.

3A client communicates in an iteration only when its g-biased coin
returns a head in that iteration.
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efo —1

11 d 0 +1 /
max{d? " »,1} ; (e T ) +e ¢ qm) , (4
qn

where ¢ = 4 if p € {1,000} and ¢ = 14 otherwise.
A proof of Theorem 1 is presented in Section IV.

Remark 1 (Impact of self-sampling of clients). In our
algorithm dss-SGD, the number of clients participating
in any time slot ¢ € [T is a binomial random variable
K, = |U;|. The impact of such client sampling appears in
the privacy parameter § that has an additive term Te—cam,
This term does not appear if we choose uniformly at
random a fixed number of clients at each time slot
(See [25, Theorem 1]). However, in cross-device federated
learning [4], the number of participating clients at each
time slot is typically in thousands, i.e., gm is equal to
a few thousands. Thus, the terms Te—¢'am « 1/n and
e=c'am are negligible.

Remark 2 (Optimality of dss-SGD for ¢s-norm case).

Suppose that our target is to achieve € =
d < 1/n. Substituting ¢y = e\/

O(1) and

T Toa 24T/ o8 (2/57) "
T = n/q, and p = 2 in (4), we recover the optimal
excess risk of central differential privacy presented in [32],
except an additive term Te=<a™ in §.

IV. PROOF OF THEOREM 1

Privacy: Hereafter, we denote R, by R, for simplicity,
which is an €p-LDP mechanism. This implies that the
mechanism Ag,s guarantees local differential privacy ¢
for each sample d;; per iteration. Thus, it remains to
analyze the central DP guarantee of the mechanism A ;44
in each iteration and also for the entire execution.

Fix a time slot ¢t € [T]. Let M, (6;, D) denote the
private mechanism at time ¢ that takes the dataset D and
an auxiliary input 6; and generates the parameter ;1
as an output. Let K; = |U;| denote the random variable
corresponding to the number of participating clients at
the t’th time slot. Thus, the mechanism M; on input
dataset D = U;il D, when K; > 0 can be defined as:

M (04;D) =Hg, o sampii,‘iq (Gi,--,Gm), (O

where G; = samp{ (R(x},),...,R(z}.)) and x!; =
Vo, f(0s;dij),Vi € [m], j € [r]. Here, sampjid | denotes
the sampling operation for choosing each of the m
elements independently with probability g, sampff‘1
denotes the sampling operation for choosing uniformly
at random a single element from a set of r elements,
and H g, denotes the shuffling operation on K elements,
which outputs a random permutation of the K; input
elements. For convenience, in the rest of the proof,

we suppress the auxiliary input 6; and simply denote
My (0¢; D) by My(D). We can do this because 6; only
affects the gradients, and the analysis in this part is for
an arbitrary set of gradients.

In the following lemma, we state the privacy guarantee
of the mechanism M, for each t € [T].

Lemma 1. Fix an arbitrary iteration t € [T']. Let g = L.
Suppose R is an €p-LDP mechanism with ¢g = O(1).
Then, for any 6 > 0, the mechanism M, is (€,0)-DP,

where €¢ = O <60\/ qlogél/g)) and 6 = b + e~ 1" for

some constant ¢’ € (0,1).

We provide a proof sketch of Lemma 1 in Section IV-A,
while the detailed proof is presented in Appendix A in
the full version [1]. Note that the Algorithm Ay, is
a sequence of T' adaptive mechanisms My,..., Mrp,
where M, for each t € [T satisfies the privacy
guarantee stated in Lemma 1. Now, we invoke the strong
composition theorem [31, Theorem 3.20] to obtain the
privacy guarantee of the algorithm A4, and conclude
that for any &', > 0, Ayss is (¢, 6)-DP for

€=+/2Tlog (1/8')e + Te (e° — 1),
§ =gl + 08 + Te c1m

where € is from Lemma 1. Note that when € =

Oy O (VTTog1/3)e).

When ¢y = O(1), it follows from Lemma 1 that this

.. _ . . . nlog(1/6’)
condition on € is satisfied when ¢y = O (, / Tlos(L/3) log(l/S))'

Together, these conditions imply that when ¢y =

min{0(1),(9( %)} then (by substituting
the bound on € = O 60\/@

@) (\/YWE) above),

we get ¢ = O <60\/<7T10g(1/6) log(1/6")

, we have ¢ =

from Lemma 1

into the bound on ¢ =

. By setting

n

T s nlog(1/4")
0= 27, we get ¢g = mln{(’)(l),@ (‘/W)}’
¢ = (9(60\/ qT‘(’g(qT/‘s'”"g“/“’)), and § — 20/ +

Te‘“’qm, where ¢’ > 0 is an arbitrary constant.

Communication: Suppose that the randomized mech-
anism R is €y-LDP having output alphabet ) =
{1,2,...,B = 2°}. Therefore, the expected number of
bits per client in Algorithm A4, is given by g x b bits
per iteration, where expectation is taken over the client
sampling.

Convergence: Note that the number of clients par-
ticipating |U4;| at any time slot ¢ € [T] is a binomial




random variable K;. At iteration ¢ € [T] of Algo-
rithm 1 when K; > 0, the server averages the K
received compressed and privatized gradients and obtains
8 = % Yicu, 9¢(dij,). Now we show that the average
gradient g, is unbiased:

Claim 1. We have E[g,] = VF'(6;), where expectation is
taken with respect to the random participation of clients,
the sampling of data points, and the randomness of the
mechanism R,,.

We prove Claim 1 in [1, Appendix B-A]. Now we
show that g, has bounded second moment.

Lemma 2. For any d € S, if the function f (0;.):C —
R is convex and L-Lipschitz continuous w.r.t. the {,-norm,
which is the dual of the {y-norm, then we have

E w o |83 < L2 max{d" 5,1}
q'vpy

l/{tha,mpmY
2cd (e +1\° ,
<1+C<e ki ) >+ecqm, ©)
qn \ e —1

Ji€lr],i€lts
where ¢ € (0,1) is a constant, and ¢ =4 if p € {1,00}
and c = 14 if p € (1,00). Note that § = Lmr = qm.

The proof of Lemma 2 is presented in [1, Ap-
pendix B-B]. Although the number of participating clients
K, at each iteration ¢ € [T] is varying from iteration
to iteration, Lemma 2 shows that for ¢g = O(1), the
second moment of the descent direction g, decreases

with order O( d€2G>, where ¢gm = E[K;]. Now, we
0

can use standaer SGD convergence results for convex
functions. In particular, we use the result from [33], which
is stated in Lemma 5 in [1, Appendix B-C]. Using that
result (and ignoring the exponentially small term e~cam)y,
we have that the output 87 of Algorithm 1 satisfies

LDlog(T) max{d?#,1}
VT

<1+,/2_Cd (e%“))), ™)
qn \ e —1

2
where we used the inequality \/1 + Qq%i (eeo-i-l)

E[F (67)] — F(6") < O (

IN

e0—1

2cd [ eO+1 : cd [ e0+41
(1""/«77 (eg071)>. Note that if /5 (e‘oq)
O(1), then we recover the convergence rate of vanilla
SGD without privacy. So, the interesting case is when

,/;—Z(Zgﬂ) > Q(1), which gives E[F (67)] —

11
* LDlog(T)max{d2 7,1 cd [ e©
Fo) < O B(T) ma } w(ﬂj})).

This completes the proof of Theorem 1.

IA

A. Proof-Sketch of Lemma 1

In Lemma 1, we are amplifying the privacy by
using the subsampling as well as shuffling ideas. Con-
sider two neighboring datasets D = J;*, D;, D' =
DU (Ui~, D;) that are different only in the first data
point at the first client dy;. The first step in the proof is
to show that for arbitrary 5> 0,

Pr[M; (D) € S] = > Pr[K; =k (14 E(k))
k=1

x Pr[M; (D) € S|K; = k] + 40, (8)

where € (k) = O | eg4/log (1/5) /k ). The main idea

of the proof of (8) is to split the probability distribution
of the output of the mechanism M, into a summation
of three conditional probabilities depending on the
event whether the first client is available or not and
whether the first client chooses the first data point or
not. We use bipartite graphs to get relations between
these events, where each vertex corresponds to one of
the possible outputs of the sampling procedure, and
each edge connects two neighboring vertices. See [1,
Appendix A] for more details. Observe that ¢ (k) is
a decreasing function of k. Let p, = Pr[K;=k]
and pur = Pr[M;(D’) € S|K; =k]. Thus, for any
¢ € (0,1), we can bound the first term on the RHS
of (8) as follows.

m
Zpkeln(1+%g(k))ﬂk < 96E(1)
k=1

> m

k<(l—e)gm
k>(14€)gm

(14€)gm

D>

k=(1—¢)qm

©))

Pr k-

Since K; is a binomial random variable, we use the
Chernoff bound to bound the first term of (9) by e—¢'am
(by setting ¢ = 0.5), for some constant ¢/ € (0,1).
Furthermore, the second term in (9) can be bounded by

e Pr[M; (D) € S|, where € = O (em/glog(l/g)).

Subtituting in (8), we get the following
Pr[M, (D) € 8] < ¢ Pr[M, (D') € 8] + goe 1™,
which completes the proof of Lemma 1.
A detailed proof can be found in [1, Appendix A].
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