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Where Should Traffic Sensors Be Placed on
Highways?

Sebastian A. Nugroho?, Suyash C. Vishnoi†, Ahmad F. Taha‡,�, Christian G. Claudel†, and Taposh Banerjee‡

Abstract—This paper investigates the practical engineering
problem of traffic sensors placement on stretched highways with
ramps. Since it is virtually impossible to install bulky traffic
sensors on each highway segment, it is crucial to find place-
ments that result in optimized network-wide, traffic observability.
Consequently, this results in accurate traffic density estimates
on segments where sensors are not installed. The substantial
contribution of this paper is the utilization of control-theoretic
observability analysis—jointly with integer programming—to de-
termine traffic sensor locations based on the nonlinear dynamics
and parameters of traffic networks. In particular, the celebrated
asymmetric cell transmission model is used to guide the place-
ment strategy jointly with observability analysis of nonlinear
dynamic systems through Gramians. Thorough numerical case
studies are presented to corroborate the proposed theoretical
methods and various computational research questions are posed
and addressed. The presented approach can also be extended to
other models of traffic dynamics.

Keywords—Traffic sensor placement, highway traffic networks,
asymmetric cell transmission model, robust observer, observabil-
ity Gramian, convex integer programming.

I. MOTIVATION AND PAPER CONTRIBUTIONS

W ITH the development of intelligent transportation sys-
tems technologies, numerous sensing methods for traffic

data collection have become popular [1], [2]. Fixed sensors such
as induction loops and magnetometers allow network operators
to obtain high-quality measurements of vehicle density besides
other information such as vehicle speeds and flow [1]. Sensors,
however, are generally expensive to install and maintain which
makes them infeasible for installation throughout the network
and covering all segments. This poses a problem for traffic
management operations and controls that require knowledge of
the traffic state on all segments. Such operations include traffic
control tasks such as ramp metering [3], [4], and variable speed
limit control [4], [5]. While it may only be feasible to collect
data from a fixed number of segments in the network, it is still
possible to obtain accurate estimates of the state of traffic on
all the segments if the sensors are strategically placed.

The problem of placing traffic sensors on highway networks
has been divided into two main categories in the literature,

?Department of Electrical Engineering and Computer Science, University
of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109 (snugroho@umich.edu).
†Department of Civil, Architectural, and Environmental Engineering, The

University of Texas at Austin, 301 E. Dean Keeton St. Stop C1700, Austin,
TX 78712 (scvishnoi@utexas.edu, christian.claudel@utexas.edu).
‡Department of Electrical and Computer Engineering, The University

of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 (ah-
mad.taha@utsa.edu, taposh.banerjee@utsa.edu).
�Corresponding author.
This work is partially supported by the Valero Energy Corporation and Na-

tional Science Foundation (NSF) under Grants 1636154, 1728629, 1917164,
and 1917056.

one involving estimation and the other involving observability.
Under the former category, the objective is to determine the
optimal placement of sensors that minimizes the estimation
error for unmeasured quantities such as travel time [6]–[8],
OD matrix [9], [10], link flows [11]. Under observability, the
literature is further divided based on the type of observability
that is considered, full or partial observability. A fully ob-
servable system is one in which all the states are observable
given the available measurements from the sensors. Different
observability problems considered in this category are link
flow observability [12]–[16], route flow observability [17], [18]
and OD flow observailibty [19]–[21]. The general idea is to
determine a sensor placement configuration that ensures full
observability of the system. Partial observability implies that
not all states are observable given the set of available sensor
measurements. Under this category, the literature focuses on
determining such sensor locations that maximize the number
of observable states while obeying some budget constraints.
This concept is attractive in cases where the number of sensors
required to achieve full observability is too large. Interested
readers can refer to [2], [16], [22], [23] and references therein
for a detailed literature review of the aforementioned categories
of sensor placement problem. In the current work, we focus on
determining the optimal sensor placement to achieve full ob-
servability of the system while maintaining a balance between
the number of sensors and the degree of observability of the
system. Note that the degree of observability is a quantitative
measure of the quality of state estimates that can be obtained by
using a certain sensor placement configuration and is not related
to the idea of partial observability. Unlike the aforementioned
studies that utilize the relationship between the various flows
in the network such as link and path flows, this study uses a
traffic dynamics model to determine the relationship between
various state variables. Also, the states considered here are
traffic densities instead of flows.

A study that is closer to the work presented in this paper
is [24] which also considers a traffic dynamics model and
applies a control theoretic approach to determine optimal sensor
locations on unconnected highway segments. This approach is
extended to study sensor placement on complex traffic networks
in [25], and then adopted in [26] for studying the observability
of highway traffic with Lagrangian sensors. These studies
linearize the nonlinear traffic dynamics around a steady-state
traffic flow. The major drawback of such approaches is that the
linearized dynamics are valid only around the specific states.
Furthermore, these studies consider the Greenshield’s funda-
mental diagram [27] which is inferior in modeling traffic flows
when compared with the triangular and trapezoidal fundamental
diagrams which are often considered in the implementation
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of the cell transmission model (CTM) [28], [29]. [1] does
deal with optimal sensor placement and density reconstruction
while considering the CTM model but to simplify things it still
linearizes the model and thus has the same drawback as above.

There exist some other papers studying the observability
properties of traffic systems considering a traffic dynamics
model, albeit do not formally study the sensor placement. The
observability properties related to the switching modes model
[30], which is a piecewise-linearized version of the CTM [29]
is studied in [31]. In [32], the authors propose a ramp-metering
controller based on a switching modes scheme and study the
observability properties of the considered freeway system. A
new piecewise affine system model based on CTM is developed
in [33], where its observability is investigated. These studies
however, linearize the traffic dynamics and suffer the same
drawback.

This paper investigates the sensor placement problem for
highway networks with ramps having nonlinear traffic dy-
namics. The traffic model is built using the asymmetric CTM
(ACTM) [28], [34], [35] (a close variant of the CTM) and the tri-
angular fundamental diagram, and thus is also an improvement
over [24]–[26] in terms of modeling traffic dynamics, to remove
the dependence of optimal sensor placements on assumptions
about traffic states. The traffic sensor placement is addressed
via observability analysis based on the nonlinear traffic model,
which is different from the ones used in the aforementioned
papers.

There exist several approaches in the literature to quantify
observability for nonlinear systems. The two most prevalent
approaches include utilizing the concept from differential em-
bedding and Lie derivative [36], [37], while the other is based on
empirical observability Gramian [38]. In the context of sensor
placement for nonlinear systems, four different approaches have
been proposed recently. The first approach leverages empirical
observability Gramian to find the best set of sensors that max-
imizes some metrics on the Gramian matrix—see [39]–[41].
Another approach is proposed in [42] where the observability
Gramian around a certain initial state is constructed through
a moving horizon estimation (MHE) framework. As such, the
sensor selection problem is posed as an integer programming
(IP) problem which objective is maximizing the logarithmic
determinant of the Gramian. The third approach, developed in
[43], introduces a randomized algorithm for dealing with the
sensor placement problem and accordingly, theoretical bounds
for eigenvalue and condition number of observability Gramian
are proposed. The last and most recent approach is established
in [44] where the authors make use of the numerous observer
designs for some classes of nonlinear systems posed as semidef-
inite programs (SDP). The resulting problem, which combines
the sensor selection and observer gain synthesis, is posed as a
nonconvex mixed-integer SDP, which can be cast into a convex
one through some relaxation/reformulation techniques.

Herein, based on the nonlinear traffic model developed using
ACTM, we formulate the sensor placement problem using traf-
fic observability analysis. The resulting problem—categorized
as convex IP—is solved via an integer branch-and-bound (BnB)
algorithm and therefore, optimal traffic sensor locations can be
obtained. Notice that the use of nonlinear traffic model and

observability analysis result in traffic sensor locations that are
valid for various traffic conditions. The novelties made in this
paper are listed as follows:

• We present a discrete-time nonlinear state-space model for
stretched highway networks having multiple on- and off-
ramps based on ACTM. In addition, we analytically com-
pute the corresponding Lipschitz constant for the nonlinear
counterparts. The formulated state-space model along with
Lipschitz constant pave the way for implementing various
control-theoretic approaches to solve control and estimation
problems prevailing in highway traffic networks.

• We leverage the concept of observability for nonlinear sys-
tems to construct the traffic sensor placement problem, which
is equivalent to maximizing the determinant and trace of
observability Gramian matrix given the number of allocated
traffic sensors. To the best of our knowledge, this is the first
attempt to solve traffic sensor placement problem based on
the degree of observability for the nonlinear traffic dynamics.

• We propose a corresponding robust observer framework for
Lipschitz nonlinear discrete-time systems developed using
the concept of L∞ stability for traffic density estimation
purpose. By using the optimal configuration of traffic sensors,
the computation of stabilizing observer gain matrix can be
cast as a SDP and as such, can be solved efficiently.

• We verify the effectiveness of our approach to solve the traf-
fic sensor placement problem through various case studies.
Specifically, we (a) study the performance and computational
efficiency of determinant and trace functions in estimating
the system’s initial state, (b) assess their impact on traffic
density estimation performance under noisy conditions, and
(c) compare their results relative to randomized and uniform
sensor placement strategies.

The remainder of the paper is organized as follows. In
Section II, we provide the mathematical modeling of stretched
highway with ramps using ACTM, which result in a nonlinear
state-space form. Next, Section III discusses our strategy for
addressing traffic sensor placement based on system’s observ-
ability. Section IV develops a simple robust observer design
for traffic density estimation purpose. The proposed approach
is extensively tested in Section V for solving the traffic sensor
placement problem and density estimation via numerous case
studies. Finally, Section VI concludes the paper.
Paper’s Notation: Let N, R, R++, Rn, and Rp×q denote the
set of natural numbers, real numbers, positive real numbers,
and real-valued row vectors with size of n, and p-by-q real
matrices respectively. Sm denotes the set of symmetric matrices
with the dimension of m. Specifically, Sm+ and Sm++ denotes
the set of positive semi-definite and positive definite matrices
respectively. For any vector z ∈ Rn, ‖z‖2 denotes its Euclidean
norm, i.e. ‖z‖2 =

√
z>z, where z> is the transpose of z. The

symbol ⊗ denotes the Kronecker product where det(A) and
trace(A) return the determinant and trace of matrix A. For
simplicity, the notation ’∗’ denotes terms induced by symmetry
in symmetric block matrices. Tab. I provides the nomenclature
utilized in this paper.
Note about Supplemental Document: The appendices of this
paper, containing detailed mathematical derivations and proofs,
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Table I
PAPER NOMENCLATURE: PARAMETER, VARIABLE, AND SET DEFINITIONS.

Notation Description

Ω the set of highway segments on the stretched highway
Ω = {1, 2, . . . , N} , N := |Ω|

ΩI the set of highway segments with on-ramps
ΩI = {1, 2, . . . , NI} , NI := |ΩI |

ΩO the set of highway segments with off-ramps
ΩO = {1, 2, . . . , NO}, NO := |ΩO|

Ω̂ the set of on-ramps, Ω̂ = {1, 2, . . . , NI} , NI = |Ω̂|
Ω̌ the set of off-ramps, Ω̌ = {1, 2, . . . , NO} , NO = |Ω̌|
T duration of each time step

l length of each segment, on-ramp, and off-ramp

ρi[k] traffic density on Segment i ∈ Ω at time kT , k ∈ N
qi[k] traffic flow from Segment i ∈ Ω into the next segment

δi[k], σi[k] demand and supply functions for Segment i ∈ Ω

ρ̂i[k] traffic density on the on-ramp of Segment i ∈ ΩI

ri[k] traffic flow into Segment i ∈ ΩI from the on-ramp

r̂i[k] traffic flow into the on-ramp of Segment i ∈ ΩI

δ̂i[k], σ̂i[k] demand and supply functions for the on-ramp of
Segment i ∈ ΩI

ρ̌i[k] traffic density on the off-ramp of Segment i ∈ ΩO

si[k] traffic flow from Segment i ∈ ΩO into the off-ramp

δ̌i[k], σ̌i[k] demand and supply functions for the off-ramp of
Segment i ∈ ΩO

ši[k] traffic flow from the off-ramp of Segment i ∈ ΩO

fin[k] traffic wanting to enter Segment 1 of the highway

fout[k] traffic that can leave Segment N of the highway

f̂i[k] traffic wanting to enter the on-ramp of Segment i ∈ ΩI

f̌i[k] traffic that can leave the off-ramp of Segment i ∈ ΩO

βi[k] split ratio for the off-ramp of Segment i ∈ ΩO ,
where βi[k] ∈ [0, 1]

ξi[k] occupancy parameter for the on-ramp of Segment i ∈ ΩI

where ξi[k] ∈ [0, wc]

vf free-flow speed

wc congestion wave speed

ρm maximum density

ρc critical density

Figure 1. Triangular fundamental diagram.

are all included in a supplemental document attached with this
manuscript submission.

II. NONLINEAR DISCRETE-TIME MODELING OF TRAFFIC
NETWORKS WITH RAMPS

This section presents the discrete-time modeling of traffic
dynamics on a stretched highway with arbitrary number and

location of ramps. To that end, here we utilize the Lighthill-
Whitman-Richards (LWR) Model [45], [46] for traffic flow. In
this paper, the relationship between traffic density and flux is
given by the triangular-shaped fundamental diagram which has
been extensively used in the literature [28]. It is depicted in Fig.
1 and is constructed as

q (ρ(t, d))=

{
vfρ(t, d), if 0 ≤ ρ(t, d) ≤ ρc
wc (ρm − ρ(t, d)) , if ρc ≤ ρ(t, d) ≤ ρm.

(1)

where t and d denote the time and distance; ρ(t, d) denotes the
traffic density (vehicles/distance) and q(t, d) denotes the traffic
flux (vehicles/time). To represent the traffic dynamics as a series
of difference, state-space equations—a useful bookkeeping for
the ensuing discussions—we discretize the LWR Model with
respect to both space and time (this is also referred to as the
Godunov discretization). This approach allows the highway of
length L to be divided into segments (cells) of equal length l
and the traffic networks model to be represented by discrete-
time equations. These segments form both the highway and the
attached ramps. Throughout the paper, the segments forming
the highway are referred to as mainline segments. We assume
that the highway is split into N mainline segments.

To ensure computational stability, the Courant-Friedrichs-
Lewy condition (CFL) given as vfT l−1 ≤ 1 has to be satisfied.
Since each segment is of the same length l, then we have
ρ(t, d) = ρ(kT, l), where k ∈ N represents the discrete-
time index. For simplicity of notation, from here on ρ(kT, l)
is simply written as ρ[k].

As mentioned earlier, traffic is modeled using the ACTM
which is originally given in [28], [34], [35]. The ACTM is a
variant of the CTM that departs from the CTM in its treatment
of asymmetric merge junctions such as the on-ramp-highway
junctions. Unlike the CTM, it assumes separate allocations
of the available space on the highway for traffic from each
merging branch, which allows for comparatively simple flow
conservation equations at those merges than the original CTM.
A variation to the original ACTM is introduced in the modeling
of the ramps which here are treated as normal segments rather
than point queues as in the original approach. The approach
in this paper is similar to that in [47]. Herein, we define
new functions referred to as the demand function δi[·] and
the supply function σi[·] to simplify the ensuing expressions.
The demand function equals the traffic flux leaving Segment i
through the highway assuming that the next segment has infinite
storage. The supply function equals the traffic flux that can enter
Segment i through the highway assuming that the previous
segment has infinite storage. These functions are constructed
from the triangular FD given in (1). The demand function δi[·],
with and without off-ramp, can be written as

δi[k]=

{
min

(
β̄i[k]vfρi[k], β̄i[k]vfρc,

β̄i[k]
βi[k]

σ̌i[k]
)
, if i ∈ ΩO

min
(
vfρi[k], vfρc

)
, if i ∈ Ω \ ΩO.

(2)

Here σ̌i[k] can be given as

σ̌i[k] = min
(
wc(ρm − ρ̌i[k]), vfρc

)
. (3)

In (2), the split-ratio βi[k] relates the traffic flow from Segment
i into its off-ramp with the traffic flow from Segment i into the
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Figure 2. Consecutive segments of the highway with ramp connections.

next segment such that

si[k] = βi[k](si[k] + qi[k]) =⇒ si[k] =
βi[k]

β̄i[k]
qi[k]. (4)

where we define β̄i[k]
∆
= 1 − βi[k] to simplify the equations.

Since β̄i[k]
βi[k]vfρc > β̄ivfρc, therefore in (2) we can also simply

write σ̌i[k] = wc(ρm − ρ̌i[k]).
Similarly, the supply function σi[k], with and without on-

ramp, can be represented as

σi[k]=

{
min

(
wc(ρm−ρi[k]), vfρc

)
− ri[k], if i ∈ ΩI

min
(
wc(ρm−ρi[k]), vfρc), if i ∈ Ω \ ΩI ,

(5)

where ri[k] is described by the following equation

ri[k] = min
(
vf ρ̂i[k], ξi(ρm − ρi[k]),

ξi
wc
vfρc

)
. (6)

Here vf ρ̂i[k] is the demand of the on-ramp in free-flow, and ξi[k]
wc

is the fraction of the flow that Segment i can receive from its
on-ramp. The upstream and downstream flows for any mainline
Segment i are given as

qi−1[k] = min
(
δi−1[k], σi[k]

)
(7a)

qi[k] = min
(
δi[k], σi+1[k]

)
, (7b)

The discrete-time flow conservation equation for a mainline
segment with both on- and off-ramp can then be written as

ρi[k + 1] = ρi[k] +
T

l

(
qi−1[k] + ri[k]− qi[k]− si[k]

)
(8)

Equations for segments with only one or no ramp can be
written by removing the respective flow terms. The flows and
conservation equations for the ramps can also be written similar
to the mainline segments. The detailed illustration for the above
model is given in Fig. 2.

In the present study, we assume an arbitrary structure of the
highway with respect to the positioning of the ramps on different
mainline segments. In that, we assume that every mainline
segment having no ramps is followed by a segment having
an on-ramp, which is followed by a segment having an off-
ramp, and which is followed by a segment having no ramps and
this structure repeats throughout the highway. Additionally, we
assume that the first and last mainline segments have no ramps.
For example, a highway split into seven segments has an on-
ramp on Segments 2 and 5, an off-ramp on Segments 3 and 6,
and no ramps on Segments 1, 4 and 7. Fig. 3 gives a schematic
representation of the structure of the highway considered in
this paper. Note that this structure of the highway is arbitrarily
chosen for experimentation of the methodology presented in
this work. It is easy to consider a different highway structure
as per an actual site where the method may be used.

In this paper we assume that the upstream demand at Segment
1 and downstream supply at Segment N are known, denoted by

Figure 3. Schematic of the highway structure considered in this study.

δ0[k] = fin[k] and σN+1[k] = fout[k] respectively. Similarly,
we assume that all the on-ramp demands f̂i, i ∈ ΩI and off-
ramp supplies f̌i, i ∈ ΩO are also known. These known demand
and supply values are lumped into the input vector defined as

u[k] = [fin fout . . . f̂j . . . f̌l . . .]
> ∈ R2+NI+NO ,

where j ∈ ΩI and l ∈ ΩO. The state vector can be defined as

x[k] := [ρi[k] . . . ρ̂j [k] . . . ρ̌l[k] . . .]> ∈ RN+NI+NO ,

for which i ∈ Ω, j ∈ ΩI and l ∈ ΩO. Here, k is same as
the time-index of the simulation where each time step is of
duration T . The estimation interval is thus equal to T . The
equations describing state vector evolution can be be divided
into categories:

• i ∈ Ω \ ΩI ∪ ΩO

xi[k + 1] = xi[k] +
T

l

(
min

(
δi−1[k], σi[k]

)
−min

(
δi[k], σi+1[k]

)) (9a)

• i ∈ ΩI , j = N + j̄, j̄ ∈ Ω̂

xi[k + 1] = xi[k] +
T

l

(
min

(
δi−1[k], σi[k]

)
−min

(
δi[k], σi+1[k]

)
+ min

(
vfxj [k], ξi[k](ρm − xi[k]),

ξi[k]

wc
vfρc

)) (9b)

• i ∈ ΩO, j = N +NI + j̄, j̄ ∈ Ω̌

xi[k + 1] = xi[k] +
T

l

(
min

(
δi−1[k], σi[k])

)
− 1

β̄i[k]
min

(
δi[k], σi+1[k]

)) (9c)

• ī ∈ Ω̂, i = N + ī, j ∈ ΩI

xi[k + 1] = xi[k] +
T

l

(
r̂j [k]

−min
(
vfxi[k], ξj [k](ρm − xj [k]),

ξj [k]

wc
vfρc

)) (9d)

• ī ∈ Ω̌, i = N +NI + ī, j ∈ ΩO

xi[k + 1] = xi[k] +
T

l

(βj [k]

β̄j [k]
min

(
δj [k], σj+1[k]

)
− šj [k]

)
(9e)

Proposition 1. The evolution of traffic density described in
(9) can be written in a compact state-space form as follows

x[k + 1] = Ax[k] +Gf(x,u) +Buu[k], (10)

where A ∈ Rn×n for n := N+NI+NO represents the linear
dynamics of the system, Bu ∈ Rn×m for m := 2 +NI +NO
represents the way external inputs affecting the system,
f : Rn × Rm → Rg is a vector valued function representing
nonlinearities in (9), and G ∈ Rn×g is a matrix representing
the distribution of nonlinearities.

The proof and the structures of the matrices and function in (10)
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are all provided in Appendix A of the supplemental document
attached with this manuscript submission. The above result is
important as it allows us to perform optimal sensor placement
for the traffic dynamical system defined by (1)–(8), as well as
to develop a robust state observer. This also allows for other
control-theoretic studies to use this state-space model for other
traffic engineering applications. The next section presents our
strategy to address the optimal sensor placement problem for
the nonlinear traffic dynamical system derived above.

III. OBSERVABILITY-BASED SENSOR PLACEMENT

In this section we discuss our approach for addressing the
traffic sensor placement problem. The traffic dynamics with
measurements can be expressed as

x[k + 1] = Ax[k] +Gf(x,u, k) +Buu[k] (11a)
y[k] = ΓCx[k]. (11b)

In the above model, we introduce y ∈ Rp to represent the vector
of measurements, which corresponds to all of the highway
segments equipped with sensors measuring the density. The
matrixC ∈ Rp×n in (11b) is useful to determine the placement
of traffic sensors, whereas Γ := Diag(γ) with γ ∈ {0, 1}p
represents the selection of sensors—that is, γi = 1 if the i-
th highway segment is measured (this consequently leads to
nonzero row i in C) and γi = 0 otherwise. It is assumed
throughout the paper that every trajectory of (11) lie in the
domain of interest Ω := X × U . In the context of traffic
dynamics, X represents the operating region of the states x.
Since x represents the densities, then X := [0, ρm]n. Likewise,
the set U can be constructed as U := [0, vfρc]

m, which
represents the set of admissible inputs.

Having described system (11) with sensor placement, we now
state the paper’s major computational objective: from a given
possible set of traffic sensors Gγ such that γ ∈ Gγ , find the
best (or optimal) sensor configuration γ∗ such that system (11)
is observable, i.e., the system’s initial state x0 := x[0] can be
uniquely determined from a finite set of measurements. In this
paper, we opt to formulate the traffic sensor placement using the
concept of observability through MHE framework developed in
[42]. The framework utilizes a series of past measurement data
to estimate the initial state at each time window. The reasons of
pursuing this approach are two-fold. First, as argued in [42], this
approach is considerably more scalable than using empirical
observability Gramian and second, we experience numerical
issues in applying the method from [44]. With that in mind,
we consider the first N observation window (or N discrete
measurements) of system (11) expressed in the equation below

h(γ,x0) := ỹ − g (γ,x0) . (12)

In (12), the mapping g : Np × Rn → RNp is given as

g>(γ,x0):=
[
(ΓCx[0])

>
(ΓCx[1])

>
. . . (ΓCx[N − 1])

>
]
.

(13)
Note that g(·) defined above is indeed a function of x0 since
for any k such that 0 < k ≤ N − 1 then we have

x[k] = Akx[0] +

k−1∑
j=0

Ak−1−j (Gf(x,u, j) +Buu[j]) . (14)

Remark 1. The function g(·) in (13) is in fact also dependent
on input vector u, since the k-th state x[k], as it is seen from
(14), relies on Us(k − 1) defined as

Us(k−1) := {u[j]}k−1
j=0 , where u[j] ∈ U , ∀j = 0, . . . , k−1,

i.e., the k-th sequence of control inputs. The reason why g(·)
only takes γ and x0 as arguments is due to the assumption
that Us(i) is known for each time index i, thus the dependence
of g(·) towards input vector u can be ignored for simplicity.

The term ỹ ∈ RNp in (12) denotes the stacked N measure-
ments data constructed as

ỹ> :=
[
ỹ[0]> ỹ[1]> . . . ỹ[N − 1]>

]
.

Obviously, for every initial condition of the system x0 ∈ X ,
it holds that h(γ,x0) = 0 such that ỹ = g (γ,x0). Hence,
for a fixed γ, the mapping g(·) maps the initial state into the
N measurements output. The observability of system (11) with
respect to g(·) is formally defined as follows [48].

Definition 1. The system (11) with a prescribed γ is uniformly
observable in X if, for all admissible inputs u[k] ∈ U , there
exists a finite N > 0 such that the mapping g (γ,x0) defined
in (13) is injective (one-to-one) with respect to x0 ∈ X .

Note that, from Definition 1, if g (γ,x0) is injective with
respect to x0, then x0 can be uniquely determined from the
set of measurements ỹ. A sufficient condition for g(·) to be
injective is that the Jacobian of g(·) around x0, denoted by
Jw(·), is full rank [48]. In fact, it is not difficult to show that,
if system (11) has no nonlinear counterparts, then the Jacobian
matrix Jw(·) reduces to the N -step observability matrix for the
linear dynamics.

In this work, we use the concept of observability Gramian to
quantify the system’s osbervability for a given set of sensors.
The GramianGv (or Gram matrix) for some finite-dimensional
real k vectors vi ∈ Rn where i = 1, 2, . . . , k is constructed as
Gv := V >V where V :=

[
v1 |v2 . . . |vk

]
. The observability

of a discrete-time linear time-invariant system of the form

x[k + 1] = Ax[k], y[k] = Cx[k], (15)

where x is the state and y is the output can be determined from
the associated Gramian. The corresponding N -step observabil-
ity Gramian is given as

Wo := O>NON =

N−1∑
i=0

(Ai)>C>CAi,

where ON denotes theN -step observability matrix. The system
(15) is then observable if and only if Wo is of full rank. Using
the same analogy, the observability Gramian for the nonlinear
system (11) with respect to γ around x0 can be constructed as

Wo(γ,x0) := J>w (γ,x0)Jw(γ,x0), (16)

where Wo(·) ∈ Rn×n and Jw(·) ∈ RNp×n is given as [42]

Jw(γ,x0) :=
[
I ⊗ ΓC

]
×



I
∂x[1]

∂x[0]
...

∂x[N − 1]

∂x[0]


, (17)

where for system (11), by applying chain rule, for 0 < k ≤
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N − 1 the k-th partial derivative can be obtained from

∂x[k]

∂x[0]
=

k−1∏
j=0

A+G
∂f

∂x
(x,u, j),

where the term ∂f
∂x (·) ∈ Rg×n denotes the Jacobian of f(·)

with respect to x evaluated at discrete time j. The explicit form
of this Jacobian matrix is detailed in Appendix B in the sup-
plemental document attached with this manuscript submission.
This requires x[j] and u[j] to be known, which can be obtained
from simulating (11) for up to j-th discrete time. In the context
of sensor placement problem, the objective is to find the best γ
satisfying γ ∈ Gγ which maximizes the observability of system
(11) based on the observability Gramian (16).

There exist some measures that quantify observability based
on Gramian matrix, some of which include the rank, smallest
eigenvalue, condition number, trace, and determinant—see ref-
erence [40]. Each measures has a unique characterization vis-à-
vis observability. The rank of observability Gramian quantifies
the dimension of observable subspace. The smallest eigenvalue
of the Gramian is the worst case metric of observability and
reflects the difficulty of estimating the actual initial state x0

from the given set of measurements ỹ. That is, the estimation
error can be very much sensitive to observation noise when
the smallest eigenvalue of the Gramian matrix is relatively
close to zero [49]. The condition number—which measures
the ratio between the largest and smallest eigenvalues of the
Gramian matrix—on the other hand, accentuates the sensitivity
of observability.

We realize that the Gramian (16) quantifies the observability
on a particular initial state x0. Large condition number (which
implies ill-conditioned Gramian matrix) indicates that small
change in initial state may produce a significant impact on
observability [49]. The trace of observability Gramian measures
the average observability of the system in all directions in state
space. Therefore, a larger value of the trace indicates an increase
in overall observability [41]. Similar to the trace, determinant
of observability Gramian matrix also measures the system’s
observability in every directions in state space. Nonetheless,
as pointed out in [39], determinant has the ability to capture
information from all elements of the Gramian matrix as well
as taking into account information redundancy for the case
when multiple sensors are considered. It is also suggested in
[40] that the determinant is a better measure for quantifying
observability than the trace, since trace tends to overlook (near)
zero eigenvalues.

Based on the above considerations, we settle upon maxi-
mizing the determinant and trace of the observability Gramian
since, despite their differences discussed previously, both met-
rics are popular in sensor placement literature through empirical
observability Gramian; see [39]–[41], as well as their easy
implementation on standard optimization interfaces such as
YALMIP [50] and CVX [51]. The resulting sensor placement
problem is given as follows

(P1) κ = minimize
γ

{
−det (Wo(γ, x̂0)) ,

−trace (Wo(γ, x̂0)) ,
(18a)

subject to γ ∈ Gγ , γ ∈ {0, 1}p. (18b)

Notice that P1 only takes the integer variables γ as the op-
timization variable while x̂0 is fixed. Since the constraint and
objective function are convex, then P1 is categorized as a convex
IP, which can be solved optimally via a BnB algorithm. After
the observability of the system has been determined from the
solutions of P1, then the measurement equation (11b) can be
reformulate into y[k] = C̃x[k] where C̃ ∈ Rn×p̃ is the reduced
state-to-output matrix that corresponds to the nonzero rows of
Γ∗C, where γ∗ is the optimal solution of P1. The traffic density
estimation is then performed based on y[k] ∈ Rp̃.

IV. A ROBUST OBSERVER FOR STATE ESTIMATION

The previous section focuses on determining the traffic sensor
placement based on the observability of the traffic dynamics
through a finite observation window. As such, the obvious
approach for performing traffic density estimation is via MHE.
However, compared to other approaches such as observers
or Kalman filter (KF)-based estimators, MHE for nonlinear
systems is generally computationally more expensive since a
nonlinear least-square problem has to be solved in every discrete
time instance, which make it only suitable for slow dynamical
systems or situations where high-powered computational re-
sources are available. To that end, herein we employ a robust
observer for estimating traffic density, since observer uses a
single gain matrix for all discrete-time instances and only need
to be computed once for a given traffic sensors configuration.

To develop the robust state observer, the nonlinearities in (10)
have to be identified. In fact, we prove that these nonlinearities
satisfy the Lipschitz continuity condition, which for a vector-
valued function is defined as follows.

Definition 2 (Lipschitz Continuity). Let f : Rn ×Rm → Rn.
Then, f is said to be Lipschitz continuous in Ω ⊆ Rn × Rm
if there exists a constant γ ∈ R+ such that

‖f(x,u)− f(x̂,u)‖2 ≤ γ‖x− x̂‖2, (19)

for all x, x̂ ∈ X and u ∈ U .

The next proposition shows that the nonlinear mapping f(·)
in (10) is Lipschitz continuous with Lipschitz constant γl.

Proposition 2. The non-linear function f(·) governing the
traffic dynamics (10) and specified in Appendix A is Lipschitz
continuous in x and u with the Lipschitz constant γl given as

γl = h (vf , ωc, l, N, NI , NO, ξ1, ξ2, . . . , ξNI
,

β1, β2, . . . , βNO
) (20)

where the function h (·) is defined as in (30).

The proof of Proposition 2 is given in Appendix C of the
supplemental document attached with this manuscript submis-
sion. In what follows, we consider the traffic dynamics (11) with
the new measurement matrix C̃ and the addition of unknown
inputs—which may include unmodeled dynamics, disturbance,
process noise, and measurement noise—described as

x[k + 1] = Ax[k] +Gf(x,u) +Buu[k] +Bww[k] (21a)

y[k] = C̃x[k] +Dww[k]. (21b)

In the above model, the disturbance vector w ∈ Rq lumps all
unknown inputs into a single vector with the corresponding
matrices Bw and Dw are of appropriate dimensions. These
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matrices describe how the external disturbances are distributed
in the system, whereBw takes into account any disturbance af-
fecting the system’s dynamics whileDw considers disturbance
affecting the measurements data. Both can be constructed from
observing empirical traffic data. The observer dynamics for (21)
are derived from the classical Luenberger observer given as

x̂[k + 1] = Ax̂[k + 1] +Gf(x̂,u)

+Buu[k] +L(y[k]− ŷ[k])
(22a)

ŷ[k] = C̃x̂[k], (22b)

where x̂[k] is the state estimation vector, ŷ[k] is the measure-
ment estimation vector, and L(y − ŷ) is the Luenberger-type
correction term with L ∈ Rn×p̃. By defining the estimation
error as e[k] := x[k]− x̂[k], then from (21) and (22), the error
dynamics can be shown to be in the following form

e[k + 1] =
(
A−LC̃

)
e[k] +G∆f [k]

+ (Bw −LDw)w[k]
(23a)

z[k] = Ze[k], (23b)

where ∆f [k] := f(x,u)− f(x̂,u) and in particular, z ∈ Rz
is the performance output of the error dynamics with respect to
the user-defined performance matrix Z ∈ Rz×n.

The goal of the observer is to provide asymptotic estimation
error for estimation error dynamics given above. Since the
presence of unknown inputs will not make the estimation error
to be exactly zero, a robustness metric, referred to as and
L∞ stability, is employed. The purpose of this metric is to
provide numerical assurance on the behavior of performance
output z against nonzero, time-varying unknown inputsw. Our
prior work [52] deals with a robust observer design using the
concept of L∞ stability for traffic density estimation purpose
assuming nonlinear continuous-time traffic dynamics model
corresponding with the Greenshield’s model. Furthermore, our
recent work [53] develops a robustL∞ observer for the discrete-
time model corresponding with the ACTM. In the sequel, we
reproduce a simple numerical procedure from [53] to find an
observer gain L that, if successfully solved, renders the estima-
tion error dynamics (23) to beL∞ stable with performance level
µ. Compared with [53], this paper includes the mathematical
proof for the next result.

Proposition 3. Consider the nonlinear dynamics (21) and
observer (22) in which w ∈ L∞ and f : Rn × Rm → Rn is
locally Lipschitz in Ω with Lipschitz constant γl. If there exist
P ∈ Sn++, Y ∈ Rn×p, ε, µ0, µ1, µ2 ∈ R+, and α ∈ R++ such
that the following optimization problem is solved

(P2) minimize
P ,Y ,ε,α,µ0,1,2

µ0µ1 + µ2 (24a)

subject to
(α− 1)P + εγ2

l I ∗ ∗ ∗
O −εI ∗ ∗
O O −αµ0I ∗

PA− Y C PG PBw − Y Dw −P

 � 0

(24b)−P ∗ ∗
O −µ2I ∗
Z O −µ1I

 � 0, (24c)

then the error dynamics given in (23) is L∞ stable with perfor-
mance level µ =

√
µ0µ1 + µ2 for performance output given

as z = Ze and observer gain L computed as L = P−1Y .

The proof of Proposition 3 is provided in Appendix D
of the supplemental document attached with this manuscript
submission. Note that optimization problem described in (24) is
nonconvex due to bilinearity appearing in the form of (α−1)P ,
αµ0, and µ0µ1. To get a convex one, one can simply fix the
values of α and µ0 or µ1, and solve for the other variables
using any SDP solvers. Having described our strategies for
placing traffic sensors and estimating traffic density via a
robust observer framework, we then perform numerical tests
of these strategies through various case studies—presented in
the ensuing sections.

V. CASE STUDY: RESULTS AND ANALYSIS

This section demonstrates the proposed approach for deter-
mining traffic sensors location and estimating traffic density
through L∞ observer. Specifically, in this numerical study we
attempt to answer the following questions:

– Q1: How does the observation window length relate to
traffic observability and initial state estimation?

– Q2: How computationally efficient are the determinant and
trace observability metrics in terms of solving the sensor
placement problem?

– Q3: How do actual and presumed initial states affect the
resulting sensors’ location? Are sensor placements robust
to changes in initial states?

– Q4: How reliable is the state estimation when using sensor
locations obtained from utilizing determinant and trace
observability metrics?

– Q5: How does the theory-driven placement of sensors
compare to randomized and uniform sensor placement
strategies?

All simulations are performed using MATLAB R2019a running
on 64-bit Windows 10 with 3.4GHz IntelR CoreTM i7-6700 CPU
and 16 GB of RAM with YALMIP [50] as the interface to solve
all IP and convex SDP. Throughout the section, all highways are
configured with vf = 28.8889 m/s (65 mph), wc = 6.6667 m/s
(15 mph), ρc = 0.0249 vehicles/m (40 vehicles/mile), ρm =
0.1333 vehicles/m, and l = 400 m. The discrete-time step is
chosen to be T = 1 sec.

A. Observability Analysis for Traffic Sensor Placement

Herein, we perform a numerical analysis on sensor placement
approach through traffic network’s observability discussed in
Section III. The highway, referred to the rest of the section
as Highway A, stretches for approximately 3.2 miles with 13
segments on the mainline, 4 on-ramps, and 4 off-ramps such
that there are 21 segments in total. The objective of traffic
sensor placement problem translates to finding the set of r
highway segments that must be equipped with traffic sensors
such that the entire highway traffic is observable, which is
carried out by solving P1. Realize that P1 is classified as a
convex integer programming (IP) since x̂0, the presumed initial
state, is fixed. P1 is solved using YALMIP’s branch-and-bound
(BnB) algorithm [50] along with MOSEK [54] solver.
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Figure 4. Results on observability analysis for different number of sensor allocations: (a) the relative error ζ, (b) inverse optimal value of P1, denoted by
−κ, and (c) total computational time, which includes the overall time spent for solving P1 and P3.
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Figure 5. Relative error ζ for (a) various presumed initial state x̂0 and (b)
actual initial state x0.

In the first instance of observability analysis, problem P1 is
solved with fixed actual initial state x0 and presumed initial
state x̂0, which are generated randomly in (0, ρm]n. P1 is
then solved with different observation windows N for varying
number of allocated sensors r. In this case, r = dp×rp%ewhere
d·e is the ceiling function, p = n = 21, and rp% represents
the percentage of sensor’s allocation (from 20% to 90%). The
number of allocated sensors is a convex constraint such that,
with respect to (18b), γ ∈ Gγ is equivalent to

∑
i γi = r.

We solve P1 for both observability metrics—the trace and de-
termined metrics discussed in Section III. It is suggested in [40]
to use logarithmic determinant as opposed to pure determinant
to avoid numerical problems. However, since YALMIP does

not have option for realizing logarithmic determinant objective
function particularly for IP, then P1 is solved using geomean
function, which is equivalent to n

√
det(·). The maximum iter-

ation of YALMIP’s BnB algorithm is chosen to be 104. If the
optimality gap is not satisfied with the default tolerance after the
maximum iteration is achieved, the resulting solution is taken
as the final outcome.

In this numerical study, we put our interest on comparing the
relative error ζ, the inverse optimal value of P1, denoted by−κ,
and total computational time ∆t. The relative error ζ represents
the difference between actual initial state x0 and the computed
initial state x̃0, which is obtained from solving the following
nonlinear least-square problem [42]

(P3) minimize
x̃0

‖ỹγ − gγ (x̃0)‖22 (25a)

subject to 0 ≤ x̃0 ≤ 1× ρm. (25b)

In (25a), ỹγ is obtained from simulating the undisturbed traffic
dynamics (11) with a prescribed set of sensors γ from k = 0
to k = N and initial state x0. Likewise, the nonlinear mapping
gγ(·) is constructed as in (13) with the same sensor combi-
nation γ. Problem P3 is solved by using the MATLAB data-
fitting function lsqnonlin, which implements a trust region
reflective algorithm [55]. The optimality tolerance is set to be
10−6 and an initial guess equals to x̂0. After x̃0 is obtained as
the solution of P3, ζ is computed as

ζ :=
‖x̃0 − x0‖2
‖x0‖2

.

Note that ζ appraises the quality of sensor placement, as smaller
ζ suggests that the given sensor configuration is capable to
provide a more accurate estimate of the initial state. Of course,
this is reasonable if P3 returns an optimal solution. Nonetheless,
as P3 is a nonconvex optimization problem, then it is highly
unlikely that optimal solutions can be obtained. To reduce the
chance of variability, the actual x0 and presumed x̂0 initial
states are fixed for this particular test.

The results of this numerical study are depicted in Fig. 4. In
particular, it can be seen from Fig. 4a that larger observation
window yields smaller relative error. Notice that this behavior
is reflected better from the trace but less evident from the
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Table II
SENSOR LOCATIONS FOR TWO DIFFERENT OBSERVATION LENGTHS AND OBSERVABILITY METRICS. THE NOTATION (x) + {y} MEANS THAT THE SET OF
SENSORS {y} IS APPENDED TO THAT OF ROW (x) FROM THE SAME COLUMN. THE ITALICIZED NUMBERS INDICATE SUBOPTIMAL SENSOR LOCATIONS.

r
det trace

N = 100 N = 200 N = 100 N = 200

5 {1, 6, 10, 16, 20} {1, 6, 10, 14, 15} {6, 14, 17, 19, 20} {6, 14, 17, 19, 20}

7 {1 , 6 , 15 , 16 , 17 , 20 , 21} {1 , 6 , 14 , 16 , 17 , 20 , 21} (5) + {16, 21} (5) + {15, 16}

9 (7) + {14 , 19} {1, 14, 15, 16, 17, 18, 19, 20, 21} (7) + {15, 18} (7) + {18, 21}

11 (9) + {10, 18} (9) + {6, 10} (9) + {8, 10} (9) + {8, 10}

13 (11) + {8, 12} (11) + {8, 12} (11) + {11, 13} (11) + {1, 11}

15 (13) + {2, 5} (13) + {2, 5} (13) + {1, 2} (13) + {7, 9}

17 (15) + {7, 11} (15) + {9, 11} (15) + {7, 9} (15) + {2, 13}

19 (17) + {3, 13} (17) + {3, 13} (17) + {3, 12} (17) + {3, 12}

5 7 9 11 13 15 17 19
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Figure 6. Comparison of relative error (a) and the trace of the Gramian (b)
between uniform and different (randomized) sensor costs.

determinant—the variations are presumed to be caused by
suboptimal solutions obtained from solving P3. Fig. 4b also
indicates this behavior: larger observation window yields better
optimal value P1, which in turn implies that the observability
measure is directly proportional with observation window. This
corroborates first principles in control theory; more available
data (i.e., a larger observation window) results in a better system
observability. The corresponding total computational time for
both P1 and P3 are reported in Fig. 4c. It can be observed
that, in this test where YALMIP’s BnB algorithm is utilized,
employing the trace in P1 is more efficient than doing so with
the determinant.

The resulting sensor’s location for observation window N =
100 and N = 200 are shown in Tab. II. For the same number
of sensors and observation windows, the sensor locations for
determinant and trace objective functions are quite distinct.
This observation is expected as both metrics measure different
aspect on observability Gramian. Interestingly, as it is seen
from Tab. II, the results from using trace as observability metric
suggest a modular-like behavior1: the sensor combination from
a particular row covers the ones from its previous rows. This
modularity property is also observed from the determinant
objective function, despite some irregularities for the first three

1A set function f : 2V → R, in which V = {1, 2, . . . , p} for p ∈ N,
is modular if and only if for any S ⊆ V it can be expressed as f(S) =
w(∅) +

∑
s∈S w(s) for some weight function w : V → R [56].

rows, which is caused by suboptimal solutions. This phenomena
is in tandem with the conjecture stated in [42], claiming that the
logarithmic determinant objective function in P1 is submodular.

Next, we asses the variability of sensor placement due to the
differences in actual x0 and presumed x̂0 initial states. The
numerical experiment is carried out as follows. First, we set x0

to be fixed and use different values for x̂0 which are randomly
generated inside (0, ρm]n in such a way that their Euclidean
distances, computed as εd := ‖x̂0 − x0‖2, are unique to each
other. For this scenario, the results are given in Fig. 5a, which
shows the resulting relative error. In another scenario, x̂0 is
fixed while x0 varies—see Fig. 5b for the results. It can be
seen from both figures that, in general, varying x̂0 while fixing
x0 yields higher relative error magnitudes than fixing x̂0 and
varying x0. However, when x0 is fixed, ζ experiences minimal
variations at least for r < 14, whereas more variations occur
on the other scenario. Again, these variations are most likely
attributed to the suboptimal solutions obtained from solving P3
via lsqnonlin. It is also observed that larger distance εd does
not necessarily result in larger relative error ζ, suggesting that
the proposed method is rather resilient towards the values of
actual and presumed initial states.

The corresponding sensor combinations for scenario when
x0 is fixed and x̂0 varies with two different Euclidean distances
are provided in Tab. III. It can be seen that, for the trace, the
sensor combinations are the same, indicating that it is robust to
different actual and presumed initial states. The same pattern is
also observed for the determinant, despite being less apparent.
The first three rows are expected since they are suboptimal,
hence the different sensor combinations. However, when the
solutions are optimal, the resulting sensor combinations are
similar except for r = 15. Similar results are also obtained
for scenario when x0 varies and x̂0 is fixed.

Lastly, in this section we investigate the impact of different
sensor costs towards the quality of sensor’s configuration. To
that end, the following problem is solved

(P4) minimize
γ, t≥0

− trace (Wo(γ, x̂0)) + w × t (26a)

subject to γ ∈ Gγ , γ ∈ {0, 1}p, c>γ ≤ t. (26b)

Realize that P4 is P1 with the addition of sensor costs and only
considers the trace function since YALMIP faces numerical
errors while geomean function is fused with sensor costs.
In this problem, w ∈ R++ is used to determine the priority
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Table III
SENSOR’S LOCATIONS FOR TWO DIFFERENT EUCLIDEAN DISTANCES BETWEEN ACTUAL x0 AND PRESUMED x̂0 INITIAL STATES WHERE x0 IS FIXED

AND x̂0 VARIES. THE NOTATION (x) + {y} MEANS THAT THE SET OF SENSORS {y} IS APPENDED TO THAT OF ROW (x) FROM THE SAME COLUMN. THE
ITALICIZED NUMBERS INDICATE SUBOPTIMAL SENSOR LOCATIONS.

r
det trace

εd = 0.16 εd = 0.40 εd = 0.16 εd = 0.40

5 {1 , 6 , 15 , 17 , 20} {1 , 9 , 15 , 16 , 19} {14, 15, 18, 19, 20} {14, 15, 18, 19, 20}

7 {1 , 5 , 16 , 17 , 18 , 20 , 21} {1 , 8 , 15 , 17 , 18 , 19 , 21} (5) + {16, 17} (5) + {16, 17}

9 {1 , 6 , 11 , 14 , 15 , 16 , 18 , 19 , 20} {1 , 5 , 10 , 14 , 16 , 17 , 18 , 19 , 21} (7) + {3, 21} (7) + {3, 21}

11 (7) + {9, 14, 15, 19} (5) + {5, 14, 17, 18, 20, 21} (9) + {6, 9} (9) + {6, 9}

13 (9) + {3, 9, 17, 21} (5) + {3, 6, 11, 14, 17, 18, 20, 21} (11) + {2, 5} (11) + {2, 5}

15 (11) + {3, 7, 11, 12} (9) + {3, 6, 8, 12, 15, 20} (13) + {1, 8} (13) + {1, 8}

17 (13) + {2, 5, 8, 12} (13) + {2, 5, 8, 12} (15) + {4, 7} (15) + {4, 7}

19 (17) + {4, 10} (17) + {4, 10} (17) + {10, 11} (17) + {10, 11}
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Figure 7. State estimation results via L∞ observer for different allocations
of sensor: (a) the estimation error and (b) the estimation error performance
bounds.

between the two objectives and c ∈ Rp+ represents the costs
for all sensors. Two different values for w are used, where
w ≥ 102 to signify the sensor costs. The sensor costs are
generated randomly such that ci ∈ [0, 1]. The results are
shown in Fig. 6, from which it can be seen that the relative
errors and the degrees of observability for sensor locations
determined by considering sensor costs are considerably worse
than not using sensor costs at all. This happens because P4
has to simultaneously maximizing system’s observability and
minimizing the sensor costs, thereby giving sensor locations
that have lower degree of observability.

B. Traffic Density Estimation with Various Sensor Allocations
This section investigates different traffic sensor placements—

obtained from the previous section—for robust traffic density
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Figure 8. RMSE for optimal and randomized sensor placement for (a)
Highway A and (b) Highway B. The simulations with randomized sensor
placement are performed 10 times and the presented results correspond to the
average values.

estimation purpose. To that end, we implement theL∞ observer
proposed in Section IV and set α = 0.1 and µ1 = 104

to get a convex optimization problem out of P2, in which
SDPNAL+ [57] is used to solve the problem since MOSEK
returns numerical problems. The performance matrix is chosen
to beZ = 0.01I . Herein we simulate Highway A with final time
kf = 2000 and invoke Gaussian noise with covariance matrices
Q = νI and R = νI where ν = 10−3 with corresponding
unknown input matrices Bw =

[
Bu O

]
and Dw =

[
O I

]
,

which simulate process and measurement noise.

In this part of numerical study, we are focused on finding
out whether different observability metrics used to solve P1
have explicit impact on the quality of traffic density estimation,
since according to Tab. II, different observability metrics return
distinctive sensor locations. With that in mind, we compare
the resulting estimation errors e[k], root-mean-square error
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Figure 9. Performance of estimation error with 40% measurements for (a)
Highway A (with determinant observability metric) and (b) Highway B (with
trace observability metric).

(RMSE)—which is computed from

RMSE =

n∑
i=1

√√√√ 1

kf

kf∑
k=0

(ei[k])2,

and estimation error performance bounds µ‖w‖L∞
, which is

obtained from multiplying the worst case disturbance ‖w‖L∞
with performance index µ retrieved from solving P2. The sensor
locations used in this test, for both observability metrics, are
collected from Tab. II that correspond to observation window
N = 200.

The results of this numerical test are illustrated in Fig. 7. It
is indicated from Fig. 7b that, as more sensors are utilized, the
estimation error is decreasing. However, it is of importance to
note that using determinant as the observability metric yields
better state estimation results than doing so with trace, since
the RMSE for determinant is slightly smaller. This showcases
the prominence of determinant as opposed to trace to quantify
observability. Interestingly, the estimation error performance
bounds are increasing as more sensors are utilized with no
noticeable difference for determinant and trace. This suggests
that, regardless of sensor locations, adding sensors increases the
susceptibility of the entire network towards measurement noise.
The trajectories of estimation error for different number of
sensors are given in Fig. 7a, from which it can be observed that
utilizing more sensors yields smaller and faster convergence on
estimation error—notice that this observation is in accordance
with RMSE shown in Fig. 7b. It is also observed from Fig.
7a that, in general, the determinant returns smaller estimation
error compared to the trace. A slight exception occurs when the
sensor allocation is at 30% (also see Fig. 7b). This is suspected
to be caused by suboptimal sensor placement—see Tab. II.

C. Optimal, Randomized, and Uniform Sensor Placement

In the last part of numerical test, we analyze the results
of traffic density estimation with optimal, randomized, and
uniform sensor placement. We consider two highway networks:
the first one is Highway A (detailed in Section V-A) while
the other, referred to as Highway B, consists a larger network
with 40 segments on the mainline, 13 on-ramps, and 13 off-
ramps, giving 66 highway segments in total with length of 9.9
miles. The sensor placement and observer design for Highway
A follow from two previous sections. For Highway B, the sensor
placement is acquired from solving P1 with trace observability
metric since it is much more efficient than the determinant,
especially for larger network. The observation window is again
set to be N = 200 with varying number of sensor allocations.
We set the covariant matrix R for Highway B to be 5× 10−3I
to simulate a higher measurement noise, while the final time is
set to be kf = 3000. The remaining parameters for observer
design are chosen to remain the same as in Highway A.

The first results of this numerical experiment are provided
in Fig. 8. This figure showcases the RMSE of traffic density
estimation with optimal, randomized, and uniform sensor place-
ment for both highways. For the uniform case, the sensors are
firstly placed at odd locations and will begin to be placed at even
locations only when all odd locations are used up. Also note that,
to compensate randomization on sensor placement, the simula-
tions for this case (randomized sensor placement) are performed
10 times for every r and the results are averaged. For Highway
A, the optimal sensor placements return significantly smaller
RMSE than the randomized and uniform ones, regardless of
observability metric being used. For Highway B, the RMSE
for optimal sensor placement with trace is generally smaller
than using randomized or uniform sensor placement. These
results suggest that using optimal sensor placement, regardless
of observability metric, gives better traffic density estimation
than doing so with randomized sensor placement.

The second results of this numerical experiment are illus-
trated in Fig. 9, where the corresponding error performance
norm ‖z[k]‖2 are compared with the estimation error per-
formance bound µ‖w‖L∞

. Notice the larger value of error
performance norm for Highway B due to higher measurement
noise. Specifically for both highways, it can be seen that the
norm of error performance is converging to a value below the
estimation error performance bound within the given simulation
window. These findings are in accordance with the definition
of L∞ stability. The resulting traffic density estimations for
Highway B are depicted in Fig. 10.

VI. CONCLUSIONS, PAPER LIMITATIONS, AND FUTURE
WORK

Given the thorough computational analysis in the previous
section, the following observations are made, thereby answering
the posed research questions in Section V:

– A1: Increasing observation window yields smaller initial
state estimation errors while traffic network’s quantifiable
observability is directly proportional with observation win-
dow. This corroborates control-theoretic first principles.

– A2: Using trace as observability metric allows the sensor
placement problem to be solved more efficiently than doing
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Figure 10. Comparison between real x[k] and estimated x̂[k] traffic densities on (a) mainline segments, (b) on-ramps, and (c) off-ramps for highway B with
40% measurements—sensor locations are obtained form solving P1 with trace observability metric.

so with determinant metric for observability. This is critical
if large-scale networks are considered.

– A3: The resulting sensor placement obtained from solving
P1 is robust towards actual and presumed initial states.
This illustrates that the sensor placement to guarantee a
wide range of initial operating conditions.

– A4: When used to determine optimal sensor locations,
the determinant is better than the trace in term of state
estimation error and hence offers better network-wide ob-
servability. This poses tradeoffs between state estimation
quality and computational tractability for the two metrics;
see A2 above.

– A5: The optimal sensor placement outperforms random-
ized and uniform sensor placement in estimating traffic
density.

The approach in this paper has its own set of limitations. First,
we consider a time-invariant traffic model where in reality,
some parameters are in fact time-varying, which include critical
density, split ratio, free-flow speed, and congestion wave speed.
We also do not consider the capacity drop phenomenon or the
stochasticity of traffic in the model presented in this paper.
Second, the sensor placement strategy does not consider the
effect of measurement noise. To that end, future work will
include solving the traffic sensor placement problem while con-
sidering a time-varying nonlinear traffic model incorporating
capacity drop and stochasticity and taking measurement noise
into account, which is resulting in a robust sensor placement.
Moreover, the submodularity properties of the determinant
and trace—as well as other observability metrics—for sensor
selection purpose will be investigated to assist in solving the
placement problem for large networks. Finally, we point out
that the presented placement approach in the paper can be
extended or utilized to other models in transportation systems
beyond stretched highways, assuming that a nonlinear state-
space representation of the dynamics is possible.
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a APPENDIX A
STATE-SPACE EQUATION PARAMETERS

In this section, we present the method for deriving the state-
space equation (10). For ease of reading, the time parameter is
omitted from the notations for all the discrete time variables.
Also, the state variables are written in terms of the traffic density
variables that they represent. To obtain the equation (10), we use
the analytical expression for the non-linear min(·, ·) function
given as

min(a, b) =
1

2
(a + b − | a − b | ). (27)

By applying (27) to the non-linear state evolution equations (9)
and simplifying, we can break the equations down to linear and
non-linear parts that are lumped into the state-space equation
parameters which are given below:
A ∈ Rn×n, n = N + NI + NO. The elements of A can be
denoted by ai,j where , i, j ∈ [1, n], and are given as follows

• i = 1

a1,1 = 1− T

4l
(vf + wc) , a1,2 =

T

4l

(
wc −

ξ2
2

)
,

a1,N+1 =
T

4l
vf

• i = N

aN,N−1 =
T β̄N−1

8l
vf , aN,N = 1− T

4l
(vf + wc) ,

aN,n = −T β̄N−1

4lβN−1
wc

• i ∈ Ω \ ΩI ∪ ΩO, i 6= {1, N}, j ∈ Ω̂, k ∈ Ω̌

ai,i−1 =
T β̄i−1

8l
vf , ai,i = 1− T

4l
(vf + wc) ,

ai,i+1 =
T

4l

(
wc −

ξi+1

2

)
, ai,N+j =

T

4l
vf ,

ai,N+NI+k = −T β̄i−1

4lβi−1
wc

• i ∈ ΩI , j ∈ Ω̂

ai,i−1 =
T

4l
vf , ai,i = 1− T

4l

(
vf + wc +

ξi
2

)
,

ai,i+1 =
T

4l
wc, ai,N+j =

T

4l
vf

• i ∈ ΩO, j ∈ Ω̌

ai,i−1 =
T

4l
vf , ai,i = 1− T

4l

(
1

2
vf + wc

)
,

ai,i+1 =
T

4lβ̄i
wc, ai,N+NI+j =

T

4lβi
wc

• i = N + ī, ī ∈ Ω̂, j ∈ ΩI

ai,i = 1− T

2l

(
vf +

wc
2

)
, ai,j =

Tξj
4l

• i = N +NI + ī, ī ∈ Ω̌, j ∈ ΩO

ai,i = 1− T

4l
(vf + wc) , ai,j =

Tβj
8l

vf ,

ai,j+1 = −Tβj
4lβ̄j

wc

The remaining elements ofA that are not assigned a value above
are equal to 0.
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f = [f1 f2 . . . fn]
T ∈ Rg where fi, i ∈ [1, n] are column

vectors of different but fixed lengths corresponding to the
different cases of mainline sections and ramps, and g is the
sum of lengths of all the column vectors. The elements of each
column vector fi can be denoted by fj,i where j is in the range
of the length of fi, and are defined as follows:

• i = 1

f1,1 =
1

wcl
| fin − σ1 |, f2,1 =

1

vfwcl
| δ1 − σ2 |,

f3,1 =
1

wcl
| wc (ρm − ρ1)− vfρc |,

f4,1 =
1

vf l
| vfρ1 − vfρc |,

f5,1 =
1

wcl
| wc (ρm − ρ2)− vfρc |,

f6,1 =
1

vfwcl
| vf ρ̂2 −

ξ2
wc

min (wc (ρm − ρ2) , vfρc) |

f7,1 =
T

4l

(
2fin +

(
ξ2

2wc
− 1

)
vfρc +

ξ2
2
ρm

)
• i = N

f1,N =
1

vfwcl
| δN−1 − σN |, f2,N =

1

vf l
| δN − fout |,

f3,N =
1

vfwcl
| β̄N−1 min (vfρN−1, vfρc)

− β̄N−1

βN−1
σ̌N−1 |, f4,N =

1

wcl
| wc (ρm − ρN )− vfρc |,

f5,N =
1

vf l
| vfρN − vfρc |,

f6,N =
1

vf l
| vfρN−1 − vfρc |,

f7,N =
T

4l

(
β̄N−1

2
vfρc +

(
β̄N−1

βN−1
+ 1

)
wcρm

)
• i ∈ Ω \ ΩI ∪ ΩO, i 6= {1, N}

f1,i =
1

vfwcl
| δi−1 − σi |, f2,i =

1

vfwcl
| δi − σi+1 |,

f3,i =
1

vfwcl
| β̄i−1 min(vfρi−1, vfρc)

− β̄i−1

βi−1
wc(ρm − ρ̌i−1) |,

f4,i =
1

wcl
| wc(ρm − ρi)− vfρc |,

f5,i =
1

vf l
| vfρi − vfρc |,

f6,i =
1

wcl
| wc(ρm − ρi+1)− vfρc |,

f7,i =
1

vfwcl
| vf ρ̂i+1

− ξi+1

wc
min(wc(ρm − ρi+1), vfρc) |,

f8,i =
1

vf l
| vfρi−1 − vfρc |,

f9,i =
T

4l

((
β̄i−1

2
+
ξi+1

2wc
− 1

)
vfρc +

(
β̄i−1

βi−1

+
ξi+1

2wc

)
wcρm

)
• i ∈ ΩI

f1,i =
1

vfwcl
| δi−1 − σi |, f2,i =

1

vfwcl
| δi − σi+1 |,

f3,i =
1

vf l
| vfρi−1 − vfρc |,

f4,i =
1

wcl
| wc(ρm − ρi)− vfρc |,

f5,i =
1

vf l
| vfρi − vfρc |,

f6,i =
1

wcl
| wc(ρm − ρi+1)− vfρc |,

f7,i =
1

vfwcl
| vf ρ̂i −

ξi
wc

min(wc(ρm − ρi), vfρc) |,

f8,i =
1

wcl
| wc(ρm − ρi)− vfρc |

f9,i =
Tξi
8l

(
ρm +

vfρc
wc

)
• i ∈ ΩO

f1,i =
1

vfwcl
| δi−1 − σi |, f2,i =

1

vfwcl
| δi − σi+1 |,

f3,i =
1

vf l
| vfρi−1 − vfρc |,

f4,i =
1

wcl
| wc(ρm − ρi)− vfρc |,

f5,i =
1

vfwcl
| min(vfρi, vfρc)−

1

βi
wc(ρm − ρ̌i) |,

f6,i =
1

wcl
| wc(ρm − ρi+1)− vfρc |,

f7,i =
1

vf l
| vfρi − vfρc |,

f8,i =
T

4l

((
3

2
− 1

β̄i

)
vfρc +

(
1− 1

βi
− 1

β̄i

)
wcρm

)
• i = N + ī, ī ∈ Ω̂, j ∈ ΩI

f1,i =
1

wcl
| σ̂j − f̂j |,

f2,i =
1

vfwcl
| vf ρ̂j −

ξj
wc

min(wc(ρm − ρj), vfρc) |,

f3,i =
1

wcl
| wc(ρm − ρ̂j)− vfρc |,

f4,i =
1

wcl
| wc(ρm − ρj)− vfρc |,

f5,i =
T

2l

((
1

2
− ξj

2wc

)
vfρc +

(
1

2
− ξj

2wc

)
wcρm

)
• i = N +NI + ī, ī ∈ Ω̌, j ∈ ΩO

f1,i =
1

vfwcl
| δj − σj+1 |, f2,i =

1

vf l
| δ̌j − f̌j |,

f3,i =
1

vfwcl
| min(vfρj , vfρc)−

1

βj
σ̌j |,

f4,i =
1

wcl
| wc(ρm − ρj+1)− vfρc |,

f5,i =
1

vf l
| vf ρ̌j − vfρc |, f6,i =

1

vf l
| vfρj − vfρc |,
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f7,i =
T

2l

((
βj
4

+
βj
2β̄j
− 1

2

)
vfρc +

(
1

2
+

βj
2β̄j

)
wcρm

)
G ∈ Rn×g is of the form

G1 0 · · · · · · 0

0 G2
. . .

...
...

. . . . . . . . .
...

...
. . . Gn−1 0

0 · · · · · · 0 Gn


, where Gi, i ∈ [1, n]

are row vectors with the same number of columns as the
number of rows in fi. The elements of each row vector Gi can
be denoted by Gi,j , where j is in the range of the length of
Gi, and are defined as follows:

• i = 1

Gi =
Tvfwc

4

[
− 2

vf
2 − 1

vf

1

wc(
1

vf
− ξ2

2vfwc

)
−1

4

Tvfwc

]
• i = N

Gi =
Tvfwc

4

[
−2

2

wc
−1 − 1

vf

1

wc

− β̄N−1

2wc

4

Tvfwc

]
• i ∈ Ω \ ΩI ∪ ΩO, i 6= {1, N}

Gi =
Tvfwc

4

[
−2 2 −1 − 1

vf

1

wc(
1

vf
− ξi+1

2vfwc

)
−1 − β̄i−1

2wc

4

Tvfwc

]
• i ∈ ΩI

Gi =
Tvfwc

4

[
−2 2 − 1

wc
− 1

vf

1

wc

1

vf

−1 − ξi
2vfwc

4

Tvfwc

]
• i ∈ ΩO

Gi =
Tvfwc

4

[
−2

2

β̄i
− 1

wc
− 1

vf
1

1

vf β̄i

1

2wc

4

Tvfwc

]
• i = N + ī, ī ∈ Ω̂, j ∈ ΩI

Gi =
Twc

4

[
−2 2vf −1

ξj
wc

4

Twc

]
• i = N +NI + ī, ī ∈ Ω̌, j ∈ ΩO

Gi =
Tvf

4

[
−2wcβj

β̄j
2 −wcβj −wcβj

vf β̄j
1

−βj
2

T

4vf

]
Bu ∈ Rn×(2+NI+NO). The elements ofBu can be denoted by
Bi,j and are given by the following function

Bi,j =



T

2l
fin, if i = j = 1

−T
2l
fout, if i = N, j = 2

T

2l
f̂k, if i = N + ī, j = 2 + ī, ī ∈ Ω̂, k ∈ ΩI

−T
2l
f̌k, if i = N +NI + ī, j = 2 +NI + ī,

ī ∈ Ω̌, k ∈ ΩI

0, otherwise.

APPENDIX B
CALCULATION OF JACOBIAN MATRIX

To calculate the Jacobian matrix for the non-linear vector
valued function f(x,u) containing | · | and min(·, ·) functions,
we first replace all the min(·, ·) functions by their analytical
form (27) and then calculate the derivative using the definition
of the derivative for | · | function given as

∂ | x |
∂x

=
x

| x |
, x 6= 0 (28)

At x = 0, we simply take the derivative to be 0. The elements
of the Jacobian matrix can be calculated using (28) along with
the chain rule of differentiation. For example, the element f2,i

in fi, i ∈ ΩI , j = N + j̄, j̄ ∈ Ω̂ can be differentiated with
respect to the state variable xi, for δi−1 6= σi, as follows:

∂f1,i

∂xi
=

1

vfwcl
· ∂ | δi−1 − σi |

∂xi

= − 1

vfwcl
· δi−1 − σi
| δi−1 − σi |

· ∂σi
∂xi

,

where
∂σi
∂xi

=
∂min(wc(ρm − xi), vfρc)

∂xi
− ∂ri
∂xi

.

Here, for wc(ρm − xi) 6= vfρc,
∂min(wc(ρm − xi), vfρc)

∂xi

= −wc
2

(
1− wc(ρm − xi)− vfρc
| wc(ρm − xi)− vfρc |

)
,

and for vfxj 6=
ξi
wc

min(wc(ρm − xi), vfρc),

∂ri
∂xi

= − ξi
2wc
· wc

2

(
1− wc(ρm − xi)− vfρc
| wc(ρm − xi)− vfρc |

)
·1 +

vfxj −
ξi
wc

min(wc(ρm − xi), vfρc)

| vfxj −
ξi
wc

min(wc(ρm − xi), vfρc) |

 .

Therefore, the derivative can be written as
∂f1,i

∂xi
=

1

2vf l
· δi−1 − σi
| δi−1 − σi |

(
1− wc(ρm − xi)− vfρc
| wc(ρm − xi)− vfρc |

)
·1− ξi

2wc

1 +
vfxj −

ξi
wc

min(wc(ρm − xi), vfρc)

| vfxj −
ξi
wc

min(wc(ρm − xi), vfρc) |


 .

Note that the above expression is valid when δi−1 6= σi,

wc(ρm−xi) 6= vfρc and vfxj 6=
ξi
wc

min(wc(ρm−xi), vfρc).
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If, on the other hand, wc(ρm − xi) = vfρc, then
∂f1,i

∂xi
=

1

2vf l
· δi−1 − σi
| δi−1 − σi |

·1− ξi
2wc

1 +
vfxj −

ξi
wc

min(wc(ρm − xi), vfρc)

| vfxj −
ξi
wc

min(wc(ρm − xi), vfρc) |


 ,

if vfxj =
ξi
wc

min(wc(ρm − xi), vfρc), then

∂f1,i

∂xi
=

1

2vf l
· δi−1 − σi
| δi−1 − σi |

(
1− ξi

2wc

)
·(

1− wc(ρm − xi)− vfρc
| wc(ρm − xi)− vfρc |

)
.

if both wc(ρm − xi) = vfρc, and vfxj =
ξi
wc

min(wc(ρm −
xi), vfρc), then

∂f1,i

∂xi
=

1

2vf l
· δi−1 − σi
| δi−1 − σi |

(
1− ξi

2wc

)
.

and if δi−1 = σi, then
∂f1,i

∂xi
= 0. Similarly, other elements of

the Jacobian matrix can also be derived.

APPENDIX C
CALCULATION OF LIPSCHITZ CONSTANT

In this section we present the methodology for calculating a
Lipschitz constant γ that satisfies

||f(x, u)− f(x̂, u)||2 ≤ γ||x− x̂||2
To calculate γ, we use the following inequalities related to

the | · | function:

|| a | − | b || ≤ | a− b | (29a)
| a± b | ≤ | a | + | b | (29b)

| a1 | + | a2 | ≤
√

2(a2
1 + a2

2)1/2 =
√

2||a||2 (29c)

By using one or more of these inequalities we can calculate the
Lipschitz constant for each component of the vector function
f(·), and combine them to obtain the final γ.

For example, let us calculate the the Lipschitz constant for
the expression f1,i, i ∈ ΩI , which, for j = N + j̄, j̄ ∈ Ω̂, is
given as

f1,i =
1

vfwcl
| min(vfxi−1, vfρc)−min(wc(ρm − xi), vfρc)

−min
(
vfxj ,

ξi
wc

min(wc(ρm − xi), vfρc)
)
| .

Using (27), (29a), and (29b), and simplifying, we can write
the following inequality for | f1,i − f̂1,i |:

| f1,i − f̂1,i |≤
1

2vfwcl
(2vf | xi−1 − x̂i−1 |

+ 2
(

1− ξi
2wc

)
wc | xi − x̂i | +2vf | xj − x̂j |

+ ξi | xi − x̂i |).

By applying (29c) to combine the terms with the same
coefficients and then adding up all the coefficients, we can write
the above inequality as

| f1,i − f̂1,i |≤
1

l

(√2

wc
+

1

vf

)
||x− x̂||2.

Let us call the coefficient of ||x− x̂||2 in the above equation
as γ1,i. We can obtain the γi corresponding to fi by adding
these coefficient values for all the components of the vector fi.

The values of γi for different cases of mainline sections and
ramps are given below:

• i = 1

1

l

(1 +
√

2

wc
+

1

vf
+

ξ2
vfwc

+ 4
)

• i = N
1

l

(2β̄N−1

wc
+
(

1 + 2
β̄N−1

βN−1

) 1

vf
+ 4
)

• i ∈ Ω \ ΩI ∪ ΩO, i 6= {1, N}
1

l

(1 +
√

2 + 2β̄i−1

wc
+
(

1 +
β̄i−1

βi−1

) 2

vf
+
ξi+1

vfwc
+ 4
)

• i ∈ ΩI

1

l

(2 +
√

2

wc
+

2

vf
+

ξi
vfwc

+ 5
)

• i ∈ ΩO
1

l

(2 + β̄i
wc

+
(
2 +

β̄i
βi

+
1

βi

) 1

vf
+ 4
)

• i = N + ī, ī ∈ Ω̂, j ∈ ΩI
1

l

( 1

wc
+

ξj
vfwc

+ 3
)

• i = N +NI + ī, ī ∈ Ω̌, j ∈ ΩO
1

l

(1 + β̄j
wc

+
(

1 +
β̄j
βj

+
1

βj

) 1

vf
+ 4
)

So, for every fi, i ∈ [1, n], there exists a γi such that| fi− f̂i |≤
γi||x− x̂||2, γi ≥ 0. Since we know that

||f(x, u)− f(x̂, u)||22 =

n∑
i=1

| fi − f̂i |2≤
n∑
i=1

γ2
i ||x− x̂||22

then γ for f(x, u) can be defined using function h(·) which is
given by (30).

h (vf , ωc, l, ξ1, ξ2, . . . , ξNI
, β1, β2, . . . , βNO

)

=
1

l

((1 +
√

2

wc
+

1

vf
+

ξ2
vfwc

+ 4
)2

+
(2β̄N−1

wc
+
(

1 + 2
β̄N−1

βN−1

) 1

vf
+ 4
)2

+
∑

i∈Ω\ΩI∪ΩO,
i 6={1,N}

(1 + 2β̄i−1 +
√

2

wc
+
(

1 +
β̄i−1

βi−1

) 2

vf

+
ξi+1

vfwc
+ 4
)2

+
∑
i∈ΩI

(2 +
√

2

wc
+

2

vf
+

ξi
vfwc

+ 5
)2

+
∑
j∈ΩI

( 1

wc
+

ξj
vfwc

+ 3
)2
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+
∑
i∈ΩO

(2 + β̄i
wc

+
(
2 +

β̄i
βi

+
1

βi

) 1

vf
+ 4
)2

+
∑
j∈ΩO

(1 + β̄j
wc

+
(

1 +
β̄j
βj

+
1

βj

) 1

vf
+ 4
)2
)1/2

(30)

APPENDIX D
PROOF OF THEOREM 3

Let z = Ze be the performance output for estimation error e
andw be an unknown bounded disturbance. Let V (e) = e>Pe
be a Lyapunov function candidate whereP � 0. It can be shown
that—for example, see [58]—the estimation error dynamics
(23) is L∞ stable with performance level µ =

√
µ0µ1 + µ2

if there exist constants µ0, µ1, µ2 ∈ R+ such that

µ0‖w‖22 ≤ V (e) ⇒ ∆V (e) ≤ 0 (31a)

‖z‖22 ≤ µ1V (e) + µ2‖w‖22, (31b)

for all t ≥ 0 where ∆V (e) , V (e[k + 1]) − V (e[k]). First,
realize that (31a) holds if there exists α > 0 such that

V (e[k + 1])− V (e[k]) + α
(
V (e[k])− µ0‖w[k]‖22

)
≤ 0

⇔ e>[k + 1]Pe[k + 1]− (1− α)e>[k]Pe[k]

−αµ0w
>[k]w[k] ≤ 0

⇔ Blkdiag ([(α− 1)P ,O,−αµ0I]) + Ψ>P−1Ψ � 0,
(32)

where matrix Ψ is defined as

Ψ ,
[
PA− PLC PG PBw − PLDw

]
.

Since the nonlinear function f(·) is locally Lipschitz in Ω, then
it holds that

‖∆f [k]‖22 ≤ γ
2
l ‖e[k]‖22 ⇔ Blkdiag

([
−γ2

l I, I,O
])
� 0. (33)

By applying the S-procedure to (32) from (33) for ε ≥ 0, we
get

Blkdiag
([

(α− 1)P + εγ2
l I,−εI,−αµ0I

])
+ Ψ>P−1Ψ � 0,

which, thanks to the Schur Complement, is equivalent to[
Blkdiag

([
(α− 1)P + εγ2

l I,−εI,−αµ0I
])

∗
Ψ −P

]
� 0.

Notice that the above is equivalent to (24b) provided that Y ,
PL. Next, substituting z = Ze to (31b) yields

‖Ze‖22 − µ1V (e)− µ2‖w‖22 ≤ 0

⇔ e>Z>Ze− µ1e
>Pe− µ2w

>w ≤ 0

⇔ Blkdiag
([
−µ1P +Z>Z,−µ2I

])
� 0.

By employing congruence transformation (provided that µ1 >
0) and applying the Schur Complement, it is not difficult
to show that the above is equivalent to (24c). Finally, the
objective function (24a) tries to minimize the performance
index, which dictates how much the disturbance w will impact
the performance vector z. This implies that if optimization
problem (24) is solved, then the estimation error dynamics given
in (23) is L∞ stable with performance level µ =

√
µ0µ1 + µ2

and observer gain given as L = P−1Y , thus completing the
proof. �
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