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Abstract

Much of the existing linguistic data in many
languages of the world is locked away in
non-digitized books and documents. Opti-
cal character recognition (OCR) can be used
to produce digitized text, and previous work
has demonstrated the utility of neural post-
correction methods that improve the results
of general-purpose OCR systems on recogni-
tion of less-well-resourced languages. How-
ever, these methods rely on manually cu-
rated post-correction data, which are rela-
tively scarce compared to the non-annotated
raw images that need to be digitized. In
this paper, we present a semi-supervised
learning method that makes it possible to
utilize these raw images to improve perfor-
mance, specifically through the use of self-
training, a technique where a model is iter-
atively trained on its own outputs. In addi-
tion, to enforce consistency in the recognized
vocabulary, we introduce a lexically-aware
decoding method that augments the neural
post-correction model with a count-based
language model constructed from the rec-
ognized texts, implemented using weighted
finite-state automata (WFSA) for efficient
and effective decoding. Results on four en-
dangered languages demonstrate the utility
of the proposed method, with relative error
reductions of 15-29%, where we find the
combination of self-training and lexically-
aware decoding essential for achieving con-
sistent improvements.1

1 Introduction

There is a vast amount of textual data available in
printed form (Dong and Smith, 2018). In this paper,
we address the task of digitizing printed materials
that contain text in endangered languages, i.e., lan-
guages that are in danger of becoming extinct due

1Data and code are available at https://shrutirij.
github.io/ocr-el/.

[Image] ⏐⏐↓
[First pass OCR]

ITä, g’il_mēsē $wilg_
laē år_ēdvēs gālay

Wä, g·îlᵋmēsē ᵋwīlg·
laē ăxᵋēdxēs g̣āʟ̣ay

⏐⏐↓
[Post-corrected]

ITä, g’il_mēsē $wilg_
laē år_ēdvēs gālay

Wä, g·îlᵋmēsē ᵋwīlg·
laē ăxᵋēdxēs g̣āʟ̣ay

Figure 1: OCR post-correction on a scanned docu-
ment that contains text in the endangered language
Kwak’wala. The goal of post-correction is to fix the
recognition errors made by the first pass OCR system.

to the dwindling numbers of native speakers and
younger generations shifting to other languages.
Printed materials in endangered languages come
from various sources, including cultural and educa-
tional texts and linguistic documentation.

Extracting text data from these documents is
valuable for a multitude of reasons. Automatic dig-
itization can aid language documentation, preserva-
tion, and accessibility efforts by archiving the texts
and making them searchable for language learners
and speakers. Further, most endangered languages
are under-represented in natural language process-
ing technologies, primarily because there is little to
no data available for training and evaluation (Joshi
et al., 2020). This challenge can be mitigated by
converting printed materials in these languages to
a machine-readable format.

Optical character recognition (OCR) systems
can be used to produce digitized text, and recent
work (Rijhwani et al., 2020) has demonstrated that
post-correction improves the performance of exist-
ing general-purpose OCR systems on endangered
languages (an example is in Figure 1). Most state-
of-the-art OCR post-correction methods use neural

https://shrutirij.github.io/ocr-el/
https://shrutirij.github.io/ocr-el/


sequence-to-sequence models and rely on consid-
erable resources such as a large number of manual
transcriptions (Schnober et al., 2016; Rigaud et al.,
2019) or substantial textual data to train a language
model (Dong and Smith, 2018). To adapt these
methods for the less-well-resourced endangered
languages setting, Rijhwani et al. (2020) add trans-
lations and structural biases to the model.

However, even with such methods targeted
to low-resource learning, post-correction perfor-
mance is still dependant on manually curated data,
which are minimally available for most endangered
languages. On the other hand, unannotated raw
images that need to be digitized are relatively less
scarce; for many endangered languages, hundreds
of printed pages exist, with only a small subset
manually transcribed. In this paper, we propose
a semi-supervised learning method for OCR post-
correction that efficiently utilizes these unannotated
pages to improve performance.

The method has two key components. We
first present a self-training method for OCR post-
correction (Section 4) to create pseudo-training
data. A baseline post-correction model is used to
correct the initial OCR output on the unannotated
pages, and the generated “post-corrected” text is
then used as pseudo-training data to improve the
post-correction model. The self-training process is
repeated to iteratively obtain better predictions on
the unannotated pages.

While self-training is a straightforward way to
use the unannotated data, incorrect predictions in
the pseudo-training data may introduce noise into
the model (Zhu and Goldberg, 2009). To counter-
balance the influence of this noise, we propose
lexically-aware decoding (Section 5), an infer-
ence strategy that encourages the model to gen-
erate predictions that contain “known” words. We
use the pseudo-training data to train a count-based
language model, represented with a weighted finite-
state automaton (WFSA). Our proposed decoding
method jointly uses an LSTM decoder and the
WFSA to make OCR post-correction predictions.

The intuition behind the joint decoding strategy
is simple. As the model iteratively improves with
self-training, the quality of the pseudo-training data
is also likely to improve and contain an increasing
number of correctly predicted words, resulting in a
better count-based language model. Consequently,
joint decoding reinforces the prediction of more
accurate words and mitigates the noise introduced

by incorrect words in the pseudo-training data.
We conduct experiments on four endangered lan-

guages: Ainu, Griko, Kwak’wala, and Yakkha. Our
proposed method reduces the character and word er-
ror rates by 15%–29% over a state-of-the-art OCR
post-correction method for endangered languages.
We find that the combination of self-training and
lexically-aware decoding is essential for achieving
consistent improvements in performance.

2 Problem Formulation

Optical Character Recognition The OCR task
involves generating a transcription of the text con-
tained in an image. In this paper, we use existing
OCR tools (detailed in Section 6.4) to obtain a first
pass transcription for the images in our dataset.
The first pass transcription is a text sequence of N
characters, denoted as x = [x1, . . . , xN ].

OCR Post-Correction Even state-of-the-art
OCR models are susceptible to making recognition
errors (Dong and Smith, 2018). Errors are
particularly frequent in the case of endangered
languages because most off-the-shelf OCR tools do
not directly support these languages and training
a high-performance OCR system is challenging
given the small amount of data that is typically
available (Rijhwani et al., 2020). We use OCR
post-correction to correct these errors and improve
the quality of the transcription.

The post-correction model takes the first pass
transcription x as input and generates the corrected
transcription, a sequence of T characters denoted
as y = [y1, . . . , yT ]:

y = argmax
y′

pcorr(y
′|x)

3 Base Model

As the base post-correction model, we use the
model from Rijhwani et al. (2020): a sequence-to-
sequence model that uses an attention-based LSTM
encoder-decoder (Bahdanau et al., 2015), with
adaptations for low-resource OCR post-correction.
We briefly describe the method here but refer read-
ers to the original paper for details.

The OCR post-correction model takes the first
pass transcription x as input, with the aim of pre-
dicting an error-free transcription y. First, each
character in the input sequence x is mapped to
a vector representation using character embed-
dings. This forms a sequence of vectors, x =



[x1, . . . ,xN ]. The encoder is a character-level
bidirectional LSTM (Hochreiter and Schmidhuber,
1997), which transforms x into a sequence of hid-
den state vectors h = [h1, . . . ,hN ].2

The model’s decoding process uses an attention
mechanism to provide context from the encoder
hidden states. At each decoding timestep t, the
attention layer uses h to produce the context vector
ct. The LSTM decoder, given ct, computes the
output state st and subsequently the probability
distribution yt for generating the next character of
the target sequence y:

p (yt) = softmax (Wst + b) (1)

Rijhwani et al. (2020) adapt the encoder-decoder
model above for low-resource post-correction by
adding pretraining and three structural biases:

• Diagonal attention loss: OCR post-correction is
a monotonic sequence-to-sequence task. Hence,
the attention weights are expected to be higher
closer to the diagonal – adding attention elements
off the diagonal to the training loss encourages
monotonic attention (Cohn et al., 2016).

• Copy mechanism: The copy mechanism en-
ables the model to choose between generating
a character based on the decoder state (Equa-
tion 1) or copying a character directly from the
input sequence x by sampling from the attention
distribution (Gu et al., 2016; See et al., 2017).

• Coverage: The coverage vector keeps track of
attention weights from previous timesteps. It is
used as additional information when computing
ct and is added to the training loss to discourage
the model from repeatedly attending to the same
character (Mi et al., 2016; Tu et al., 2016).

The model is trained in a supervised manner
with a small number of manual transcriptions: the
training data includes pairs of first pass OCR text
with its corresponding error-free transcription. The
post-correction training loss function (denoted
as L) is a combination of cross-entropy loss along
with the diagonal attention loss and the coverage
loss from the structural biases. Inference with a
trained model is performed using beam search.

2Rijhwani et al. (2020) incorporate translations into the
model with a multi-source encoder. We omit this from our for-
mulation, considering applicability to texts without available
translations. However, adding an encoder into our framework
remains straightforward and can be used if translations exist.

In the following sections, we use the method
described above as a base model for our proposed
semi-supervised learning technique for OCR post-
correction. Given the minimal manually tran-
scribed data we have in endangered languages, our
approach aims to efficiently use the relatively larger
number of pages without gold transcriptions to im-
prove performance. To this end, we introduce two
methodological improvements: (1) self-training
and (2) lexically-aware decoding.

4 Self-Training

Self-training is a semi-supervised learning method,
where a trained model is used to make predictions
on unlabeled data, and the model is then retrained
on its own predictions (Zhu and Goldberg, 2009).

Consider that we have a set of images with man-
ually created transcriptions and a set of images
without gold transcriptions. We can obtain a first
pass transcription for the text contained in the im-
ages (both sets) with existing OCR tools.

More formally, we have a gold-transcribed
dataset D = {⟨x(i),y(i)⟩}di=1, where x(i) is the
first pass transcription and y(i) is the error-free
manual transcription of the ith training instance.3

We also have a dataset for which only the first pass
OCR is available (i.e., no manual transcriptions),
U = {x(j)}uj=1. For most cases in the endangered
languages setting, the set without gold transcrip-
tions is much larger, that is, u ≫ d.

Since self-training requires a baseline model to
get an initial set of predictions on U , we first train
the base model described in Section 3. Let the
trained base model be fθ. Next, we use the pre-
dictions on U from fθ to self-train the model. We
follow the self-training strategy recommended in
He et al. (2020), which involves two steps: “pseudo-
training” and “fine-tuning”. We describe each step
of the self-training procedure in detail below:

1. Apply the initial OCR post-correction model fθ
(trained on D) to each instance in the set U to
obtain predictions using beam search inference.

For an instance x, let the prediction be fθ(x).

2. Create a pseudo-annotated dataset with the
predictions from step 1. Let this be S =
{⟨x, fθ(x)⟩ | x ∈ U}.

3. Train the model fθ on pseudo-training sets U
and S (“pseudo-train”).
3In our dataset, the source and target data instances are

either at the line-level or the sentence-level (see Section 6.1).



In this step, we first pseudo-train the encoder
and the decoder components, and then pseudo-
train the end-to-end post-correction model. The
pseudo-training procedure is as follows:

a) Train the encoder with a character-level lan-
guage modeling (LM) objective on U .

As discussed in Section 3, the encoder com-
ponent of the model is an LSTM that operates
at the character-level. We pseudo-train this
LSTM with a language model objective on
each text sequence x ∈ U .

That is, at each timestep t, the LSTM is trained
to predict the next character in the input se-
quence. Given a sequence of characters x =
[x1, . . . , xN ], the training objective maximizes∏︁N

t=1 P (xt | x1, . . . , xt−1).

This is the standard LM objective function and
has been proven helpful for pretraining LSTMs
to improve hidden representations (Dai and Le,
2015; Ramachandran et al., 2017).

b) Train the decoder LSTM with the LM objective
described above, using the baseline model’s
predictions {fθ(x) | x ∈ U}.

c) Train the sequence-to-sequence model on the
pseudo-annotated dataset S with the post-
correction loss function L from Section 3.

4. Given the pseudo-trained model fθ, fine-tune
the model on the gold-transcribed dataset D,
with the loss function L.

5. Repeat step 1 to step 4 until convergence or for
the maximum iterations permitted.

As indicated above, self-training is a straightfor-
ward semi-supervised technique to leverage docu-
ments without gold transcriptions to improve OCR
post-correction performance. We note that some
self-training methods (Yarowsky, 1995; Lee et al.,
2013; Zoph et al., 2020, inter alia) replace steps
4 and 5 with a single step that trains fθ on S ∪D.
However, this led to slightly worse performance
in our preliminary experiments. We also observed
that pseudo-training the LSTMs with an LM ob-
jective (steps 3(a) and 3(b) above) is necessary
for good performance and that applying the self-
training steps on fθ from the previous iteration led
to better results than re-initializing the model.4

4In preliminary experiments, we also tried using S ∪ D
in step 3(c). However, the post-correction performance was

Further, as recommended in He et al. (2020) to
improve self-training for neural sequence genera-
tion, we add a dropout layer into the base model
at the encoder and decoder hidden states during
pseudo-training and fine-tuning (steps 3 and 4).

5 Lexically-Aware Decoding

Although self-training is a simple approach that
leads to improvements in post-correction perfor-
mance without additional manual annotation, incor-
rect predictions in the pseudo-annotated data may
introduce noise into the model, potentially reinforc-
ing the errors in the next self-training iteration (Zhu
and Goldberg, 2009). Such noise is more likely to
occur in the endangered languages setting, where
the base model is trained on minimal data and, thus,
sometimes generates erroneous predictions.

While some self-training methods use confi-
dence scores to remove noisy predictions (such
as Yarowsky (1995)), these are typically designed
for classification tasks. Designing such heuristics
is challenging for OCR post-correction because
the predictions are generated at the character-level;
specific characters may be incorrect, but discard-
ing the entire predicted sequence (i.e., the line
or sentence) is inefficient, particularly in a low-
resource scenario. To mitigate these issues, we pro-
pose lexically-aware decoding, an inference strat-
egy based on our observations of the challenges
associated with the OCR post-correction task.

More specifically, our preliminary experiments
with self-training indicated that the errors made
by the model are typically inconsistent. For a
particular word, some instances may be correctly
predicted by the model. For the instances of the
word that are incorrect, we observe that they are
likely to be erroneous in different ways, i.e., differ-
ent subsets of characters in the word are incorrectly
predicted. This is expected since the same word
can appear in varied contexts, or the first pass OCR
for the word can differ. Our empirical observa-
tions on the pseudo-annotated dataset S showed
that, since the errors are inconsistent, the correct
form of the word is more frequent than incor-
rect forms. Lexically-aware decoding is designed
to influence the OCR post-correction model to gen-
erate words that frequently occur in the set S, in
the expectation that these are correct word forms.

We first describe the construction of a model
that accounts for word frequency in the predictions

approximately the same as using only the set S.



along with a character n-gram model to enable
the prediction of unseen words. Then, we present
a joint decoding method that uses the frequency-
based models in combination with the LSTM de-
coder for improved OCR post-correction.

5.1 Count-Based Language Model
From the self-training method in Section 4, we
have a pseudo-annotated dataset S = {⟨x, fθ(x)⟩ |
x ∈ U}, where fθ(x) is the model’s prediction
for input sequence x. We train a count-based
word-level unigram language model (LM) on
{fθ(x) | x ∈ U}. The LM is built by comput-
ing frequency-based probabilities for each word
found in the predictions. However, we have to
reserve some probability mass to account for un-
known words (words unseen in the predictions).

We use modified Kneser-Ney smoothing to de-
rive the unknown word (“<unk>") probability.
Since we use a unigram LM, the smoothing pro-
cess is similar to absolute discounting. However,
we use the discount values based on the modified
Kneser-Ney method, which are derived from word
counts in the dataset, as opposed to using a fixed
discount value (Chen and Goodman, 1999). We
denote the probability from the smoothed LM for a
known word w as pword(w) and the unknown word
probability as pword(<unk>).

A count-based unigram LM is a simple model
but is suitable given our empirical observations on
word-level errors (described earlier in this section)
because (1) it explicitly models word frequency, (2)
it is straightforward to update as the pseudo anno-
tated dataset improves over self-training iterations,
and (3) it can be expressed as a weighted finite-state
automaton which, as we discuss next, has several
properties useful for our decoding method.

5.2 Weighted Finite State Automaton
A weighted finite-state automaton (WFSA) is a set
of states and transitions between the states. Each
transition accepts a particular symbol as input and
has a weight associated with it. The symbols come
from a finite alphabet Σ. A sequence of consecutive
transitions is referred to as a “path", and the label of
a path is the concatenation of all symbols consumed
by its constituent transitions. The WFSA has a start
state and a set of final states. A successful path is
a path from the start state to a final state, and a
sequence of symbols is “accepted" by the WFSA
if there exists a successful path that consumes this
sequence (Mohri et al., 2002).

Since we are focused on decoding and only need
the best scoring path for any given sequence (i.e.,
Viterbi search), we consider the weights over the
tropical semiring. That is, the weight of a path is
the sum of its transition weights, and the score of a
sequence of symbols is the minimum weight of all
the successful paths that accept that sequence.

Decoding with the post-correction model is at
the character-level (Equation 1), so in order to lever-
age word frequency in the decoding process, we
convert the count-based word-level LM described
in Section 5.1 to a WFSA representation that con-
sumes and scores sequences at the character-level.

The WFSA is constructed to accept the words
known to the LM by consuming each character in
the word (in sequence) as input. The score of the
path that accepts a known word w is the negative
log of its probability from the LM: − log pword(w).
A simple example is shown in Figure 2(a).

The WFSA, as described above, can only accept
a single word. However, the input and correspond-
ing predictions of the post-correction model are
sequences of words, typically lines or sentences.
To enable the WFSA to accept such sequences, we
add transitions that accept a set B of word bound-
ary symbols (whitespace, punctuation, and end-of-
sequence) from the states at the end of the known
words (e.g., states 1 and 2 in Figure 2(a)) back to
the start state. Once in the start state, the model can
begin consuming characters from the next word.

Further, we modify the WFSA such that the start
state is also the only final (accepting) state since
the predicted sequence is considered complete only
when the model predicts an end-of-sequence sym-
bol after the last character.

Character LM for Unknown Words To enable
the prediction of words unknown to the count-
based LM, we include an unknown word state in
the WFSA as shown in Figure 2(a). We add an
ϵ-transition (a transition that consumes no input),
with an associated cost − log pword(<unk>) (i.e.,
the probability mass reserved for unknown words
in Section 5.1) to enter the unknown word state
from the start state. The model remains in the un-
known state until a word boundary symbol from
the set B is consumed to return to the start state.

The unknown word state is designed to accept
any combination of the symbols in Σ, thereby per-
mitting the prediction of words unseen by the word-
level LM. To score each character consumed at the
unknown word state, we use a character-level n-



(a) Original WFSA (b) Minimized WFSA for Known Words
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Figure 2: The (a) WFSA and (b) minimized WFSA we construct, for a hypothetical language model with a two
word vocabulary: P (dog) = 0.75; P (door) = 0.2; P (<unk>) = 0.05. The transition weights are negative log
probabilities. In (b), for simplicity, we show only the known word states after determinization and minimization.

gram language model.5 We denote the probabili-
ties from this character n-gram LM as pchar. The
probability distribution is estimated with modified
Kneser-Ney smoothing on character n-grams from
unique word forms in the set {fθ(x) | x ∈ U}. We
use unique word forms because unknown words
are likely rare, and using count-based word forms
would undesirably shift the probability mass to-
wards more frequent words.

Thus, we are able to leverage the benefits of
the word-level model on “known words" and the
character-level model to score “unknown words"
to influence the post-correction model to predict
frequent known words while accounting for cases
where there may be many unknown words (such as
if the language has rich morphology).

5.3 Efficient scoring with the WFSA

The constructed WFSA has states to score character
sequences that form known words and an unknown
word state that relies on a character n-gram LM to
score unknown sequences.

During inference, we independently score the
next character through the known word model and
the unknown word model and then choose the best
scoring path. This formulation has two advantages:
(1) separate scoring allows us to compactly rep-
resent the WFSA states for known words and (2)
instead of representing the character n-gram LM di-
rectly in the WFSA, leading to the number of states
exponentially increasing with n, we can use highly-

5We use n = 6 in this paper. We experimented with
different values of n in early experiments but found that n = 6
gave us the best results for all languages in our dataset.

optimized LM toolkits such as KenLM (Heafield
et al., 2013) for scoring unknown words.

Known Word Model Consider the WFSA with
only known word states. We apply standard al-
gorithms for determinization and minimization on
these states, which leads to an efficient and com-
pact representation of the count-based language
model (Mohri, 1996). As shown in Figure 2(b), the
resultant minimized WFSA has several properties
useful for our decoding method, discussed below.

Determinization ensures that each state has at
most one outgoing transition that consumes a given
input symbol, and minimization eliminates redun-
dant states and transitions, reducing the time and
space needed to process an input sequence.

Further, minimization includes pushing the tran-
sition weights towards the start state of the WFSA
as much as possible (Mohri et al., 2002). This
lends itself well to our method since inference in
the OCR post-correction model is performed with
beam search; if the cost of a path is established
closer to the start state, unfavorable hypotheses can
be pruned at an earlier timestep, which allows us
to avoid search errors more effectively within an
approximate search algorithm like beam search.

Lastly, since each state in the WFSA has at most
one outgoing transition for each symbol, the tran-
sition scores can be precomputed and stored as a
matrix, allowing efficient retrieval during decoding.

At decoding timestep t, let the previous timestep
score from the known word model be known(yt−1)
and the current WFSA state be st−1. The score for
predicting the next character yt is the weight of the
transition from state st−1 that consumes yt in the



minimized WFSA (see Figure 2(b)). Thus,

known(yt) = known(yt−1) + scorewfsa(yt | st−1)

where known(y0) = 0. If yt does not continue the
path of any known word, then scorewfsa(yt) is inf .

Unknown Word Model We use the probability
pchar from the character n-gram language model
to score unknown words. In general, at decoding
timestep t, the unknown model score for yt will be:

unk(yt) = unk(yt−1)− log pchar(yt | yt−1, . . . , yt−n)

However, if yt−1 ∈ B (i.e., the previous word is
complete) or t = 0, the WFSA is currently in the
start state. To begin an unknown word, we also
need to add the weight of entering the unknown
word state to unk(yt), i.e., − log pword(<unk>).

Best Scoring Path The scores are in the tropical
semiring (negative log probabilities). At timestep
t, the best score for yt from the lexical models is:

scorelex(yt) = min(known(yt), unk(yt)) (2)

During decoding, we keep track of both the
known and unknown model scores for the current
word being generated in the hypothesis. When the
word is completed (when yt ∈ B), both the known
and unknown word models return to the start state
of the WFSA (see Figure 2). Since the two paths
are in the same state and are thus indistinguishable
with respect to future predictions in the hypothesis,
we choose the best scoring path to continue decod-
ing. This is known as hypothesis recombination.

The WFSA framework, thus, allows us to effi-
ciently represent the word-level LM in a manner
that scores symbols at the character-level and ac-
counts for unknown words. This enables joint infer-
ence with the character-level LSTM decoder in the
OCR post-correction model, as discussed below.

5.4 Joint Decoding with the LSTM
At decoding timestep t, let plstm(yt) be the prob-
ability of generating a character yt based on the
LSTM decoder’s hidden state (Equation 1). We
also compute scorelex(yt), which is a negative log
probability, as defined in Equation 2. The final
probability of predicting yt is obtained through
linear interpolation between these two scores,6

weighted by a hyperparameter λ:

p(yt) = (1− λ) · plstm(yt) + λ · plex(yt) (3)
6We leave other interpolation techniques like log-linear

interpolation as potential future work.

where plex(yt) = exp (−scorelex(yt)).
This joint decoding strategy is applied when per-

forming inference with beam search using a trained
OCR post-correction model. When used in combi-
nation with self-training, the predictions made by
the model improve as we repeat the self-training
process, iteratively improving the count-based LM
and resulting in a better distribution of plex(yt).

6 Experiments

In this section, we present experiments with our
semi-supervised post-correction method on four
typologically diverse endangered languages.

6.1 Datasets

We use the OCR post-correction dataset from Ri-
jhwani et al. (2020) which contains transcribed
documents in three endangered languages: Ainu,
Griko, and Yakkha. Additionally, in this paper,
we create a similar dataset in the endangered lan-
guage Kwak’wala. We describe the datasets below,
including the sizes of the gold transcribed and unan-
notated sets we use for semi-supervised training:

Ainu (ain) is a severely endangered language
from northern Japan. The dataset contains pages
from a book of Ainu epic poetry (Kindaichi, 1931).
The Ainu text is written in the Latin script. The
dataset contains 816 manually transcribed lines as
well as 7,646 lines without gold transcriptions.

Griko (grk), an endangered Greek dialect spo-
ken in southern Italy, is written with a combination
of Latin and Greek alphabet. The document in
the dataset is a book of Griko folk tales (Stomeo,
1980). There are 807 and 3,084 sentences with and
without gold transcriptions, respectively.

Yakkha (ybh) is an endangered language spo-
ken in Nepal and is written in the Devanagari script.
The dataset contains transcriptions of three chil-
dren’s books (Schackow, 2012). In total, there are
159 manually transcribed sentences and no unanno-
tated lines in the dataset. Therefore, as the unanno-
tated set, we use the first pass OCR on the valida-
tion and test sets in a transductive learning setting
(≈ 30 sentences: see Section 6.2 for data splits).

Kwak’wala (kwk) is spoken on Northern Van-
couver Island, nearby small islands, and the oppos-
ing mainland. The language is severely endangered,
with estimates of ≈150 first-language speakers, all
over the age of 70. The Kwak’wala language in-
cludes 42 consonantal phonemes (twice as many
as English) and a wide range of allophonic vow-



els. Several writing systems exist: including the
U’mista, Liq’wala, and Boas orthographies.

The Boas orthography (Boas, 1900) was devel-
oped by anthropologist Franz Boas. It was used in
the extensive documentation of the Kwak’wala lan-
guage and its speakers produced by Boas in collabo-
ration with native-speaker George Hunt. The Boas
writing system uses Latin script characters as well
as diacritics and digraphs to represent phonemic
differences. Although the Boas orthography is not
widely used today, the cultural and linguistic mate-
rials previously written by Boas are of tremendous
value to community-based researchers. However,
they are minimally accessible since they currently
exist only as non-searchable scanned images.

In consultation with members of language revi-
talization projects in three Kwakiutl communities
(Tsulquate, Fort Rupert, Quatsino), we focus on
digitizing these significant cultural resources. We
create a dataset with pages from the “Ethnology of
the Kwakiutl” (Boas, 1921), containing 262 gold-
transcribed lines and 2,255 unannotated lines.

6.2 Experimental Setup

Data Splits We follow Rijhwani et al. (2020)
and perform 10-fold cross-validation for all exper-
iments. For each language, the gold-transcribed
data is split into 10 segments, and for each cross-
validation fold, eight segments are used for training,
one for validation, and one for testing.

Metrics We evaluate our systems in terms of
character error rate (CER) and word error rate
(WER), both standard metrics for measuring
OCR and OCR post-correction performance (Berg-
Kirkpatrick et al., 2013; Schulz and Kuhn, 2017).
CER is the character-level edit distance between
the predicted text and the corresponding gold tran-
scription, divided by the total number of characters
in the gold transcription. WER is similar but is cal-
culated at the word-level. For readability, we report
CER and WER as percentages for all experiments.

Methods In our experiments, we compare the
performance of the following methods:

• FIRST-PASS: To obtain the first pass OCR tran-
scription, we experiment with two existing OCR
systems: Google Vision (Fujii et al., 2017) and
Ocular (Berg-Kirkpatrick et al., 2013).

For each language, we choose the best perform-
ing first pass system, the details of which are in

Section 6.4. We use Ocular for Kwak’wala and
Google Vision for Ainu, Griko, and Yakkha.

• BASE: The current state-of-the-art in OCR post-
correction for endangered language texts (Rijh-
wani et al. (2020); described in Section 3).

• SEMI-SUPERVISED: Our proposed method as
described in Sections §4 and §5.

Implementation The neural post-correction
models are implemented using the DyNet neural
network toolkit (Neubig et al., 2017). The WFSA
is implemented using the MFST Python wrapper
on OpenFST (Francis-Landau, 2020), and we use
the KenLM toolkit (Heafield et al., 2013) to train
and query the character n-gram language model.
Following Rijhwani et al. (2020), results reported
are the average of five randomly seeded runs (i.e.,
five runs for each of the 10 cross-validation folds).

6.3 Main Results

Table 1 shows the performance of the baselines and
our proposed semi-supervised approaches for the
four languages in the dataset. For all languages,
using semi-supervised learning leads to substantial
reductions in both CER and WER.

We note that we did a hyperparameter search
over the number of self-training iterations and the
weight of the WFSA λ, and Table 1 presents the
best models based on the validation set WER. Ex-
tensive analysis of these factors is in Section 6.6.

First, we note that the BASE post-correction
method improves error rates over the first pass for
all languages. With our proposed semi-supervised
learning method, combining self-training with
lexically-aware decoding leads to the best perfor-
mance across all the languages, with error rate re-
ductions in the range of 15%-29%.

This is especially noticeable in Ainu, where us-
ing either self-training or lexical decoding inde-
pendently results in worse performance than the
BASE system, but jointly using them improves the
CER by 21%. For the other languages, the indepen-
dent components improve over the base model but
less so than their combination. This indicates the
complementary nature of the two components: the
language model used for lexically-aware decoding
is improved by self-training. In turn, it reinforces
correctly predicted words to counteract the influ-
ence of incorrect pseudo-annotated instances.



% Character Error Rate % Word Error Rate

Model ain grk ybh kwk ain grk ybh kwk

FIRST-PASS 1.34 3.27 8.90 7.90 6.27 15.63 31.64 38.22

BASE 0.80 1.70 8.44 4.97 5.19 7.51 21.33 27.65

SEMI-SUPERVISED

Self-Training 0.82 1.45 7.20 4.00 5.31 6.47 18.09 23.98

Lexical Decoding 0.81 1.51 7.56 4.28 5.18 6.60 19.13 25.09

Both 0.63 1.37 5.98 3.82 4.43 6.36 16.65 22.61

Error Reduction
(︁BASE−Both

BASE

)︁
21% 19% 29% 23% 15% 15% 22% 18%

Table 1: Our semi-supervised approach improves performance over the baselines (10-fold cross-validation averaged
over five randomly seeded runs). “Self-Training” and “Lexical Decoding” refer to experiments where we use these
methods independently. “Both” refers to their combination. We highlight the best model for each language.

% Character Error Rate % Word Error Rate

OCR System ain grk ybh kwk ain grk ybh kwk

Ocular 10.49 4.58 75.60 7.90 47.47 15.71 99.37 38.22

Google Vision 1.34 3.27 8.90 21.12 6.27 15.63 31.64 82.08

Table 2: First pass OCR system performance. If the language’s script is not covered by Google Vision (as for
Kwak’wala), then Ocular results in better recognition. Otherwise, Google Vision OCR is usually significantly better.

6.4 First Pass OCR Systems

We experiment with two existing OCR systems to
obtain a first pass transcription on our dataset. The
first of these is the Google Vision system (Fujii
et al., 2017; Ingle et al., 2019). This large-scale
OCR model supports 60 languages in 27 scripts –
these are primarily higher-resourced languages and
do not include our target endangered languages.

The second system is Ocular (Berg-Kirkpatrick
et al., 2013). Ocular uses a generative model to
transcribe scanned documents: the model gener-
ates the image by learning the font of the docu-
ment. Ocular relies on a character n-gram language
model trained on the target language. We initialize
the LM with the small number of gold-transcribed
pages in our dataset. For this, we use the 10-fold
cross-validation setup described in Section 6.2: we
use the training segments to train the Ocular LM
and the test segment to evaluate OCR performance.
The font model has parameters to learn the shape
of each character in the LM vocabulary. After ini-
tialization, the parameters are updated in an unsu-
pervised manner with EM until convergence.

Results are presented in Table 2. We note that
although the Google OCR system is not trained on
our target languages, it is trained on large amounts
of data in high-resource languages that share writ-

ing systems with Ainu, Griko, and Yakkha (Latin,
Greek, Devanagari scripts) and thus, can recognize
characters in these scripts with reasonable accu-
racy.7 On the other hand, the performance is much
worse on Kwak’wala since the system has not been
trained on the Boas orthography.

We find that the performance on Kwak’wala is
considerably better with the Ocular system because
the LM is trained on Kwak’wala text. Thus, un-
like Google Vision, the model vocabulary contains
the Boas writing system’s alphabet. On the other
hand, Ocular’s performance on Ainu and Griko is
worse than Google Vision, likely due to the min-
imal data available for training it. Moreover, the
performance is correlated with the word overlap
between test data and the data used for training the
LM, demonstrating Ocular’s reliance on a strong
language model – the word overlap is 73% for
Griko, 56% for Kwak’wala, and 48% for Ainu.

Finally, we find that Ocular does not perform
well on the Yakkha dataset. This is because the de-
sign of Ocular’s font model does not work with how
the Devanagari script is written. More specifically,
when a vowel diacritic is applied to a consonant,
the characters are combined: e.g., क     ◌ा     का+क     ◌ा     का=क     ◌ा     का . In
Unicode, this is represented by two characters “क     ◌ा     का"

7See Rijhwani et al. (2020) for a more detailed analysis.



Known Word Unknown Word % Character Error Rate % Word Error Rate
Model Model ain grk ybh kwk ain grk ybh kwk

CHARLM (not needed) 0.64 1.43 6.22 3.85 4.50 6.44 16.78 22.90

WORDLM Character uniform 0.64 1.42 6.12 3.95 4.50 6.39 16.71 23.11

OURS Character n-gram 0.63 1.37 5.98 3.82 4.43 6.36 16.65 22.61

Table 3: A more informed unknown word model (character n-gram) in combination with the word-level known
word model consistently performs better than the alternatives for all four languages in our dataset.

and “क     ◌ा     का”, where the dotted circle is the character
combination marker in the Unicode Standard.8

However, since Ocular’s font model operates at
the character-level, it tries to generate the images of
these two characters separately. Generating the dia-
critic “क     ◌ा     का” on its own is not meaningful: the dotted
circle never appears in the input image because it
is supposed to be combined. Thus, the font model
is unable to converge as it cannot handle character
combinations when generating the image.

6.5 Comparing Language Models

Our proposed decoding method uses a count-based
word-level LM in combination with a character n-
gram LM to compute plex for joint decoding with
the LSTM decoder (Equation 3). In this section,
we substitute this model with two other variants of
count-based LMs to compute plex:

• CHARLM: We use a character 6-gram lan-
guage model on the model predictions from self-
training {fθ(x) | x ∈ U}, estimated with modi-
fied Kneser-Ney smoothing.

• WORDLM: We use the word-level LM described
in Section 5.1, but do not use a character n-gram
model for unknown words. Instead, we score un-
known words with a simple uniform probability
over all characters in the vocabulary.

We tune λ on the validation set for each model in-
dependently and report results with the best setting
in Table 3. Using either CHARLM or WORDLM
for lexically-aware decoding improves the error
rates with respect to the BASE model. The word-
level model performs better for all languages ex-
cept Kwak’wala, likely due to the large percentage
of unknown words in this language. We also see
that our proposed method, which leverages a count-
based word-level LM for known words combined

8https://www.unicode.org/versions/
Unicode13.0.0/ch02.pdf

Lang. LM Known Unknown
Code Coverage BASE OURS BASE OURS

ain 0.97 0.95 0.98 0.08 0.25

grk 0.94 0.89 0.96 0.51 0.71

ybh 0.68 0.90 0.95 0.51 0.59

kwk 0.59 0.89 0.92 0.50 0.58

Average 0.80 0.91 0.95 0.40 0.53

Table 4: Our method improves over the base model on
words that are both known and unknown to the WFSA.
We show the fraction of known test words, and the frac-
tion of correctly predicted known and unknown words.

with a character-level LM for scoring unknown
words, results in the best performance overall.

Although not observed in our dataset, we note
that some printed materials have a high degree of
spelling variation or contain texts for which word
tokenization is difficult. In such cases, the word-
level model may not be as effective, but CHARLM
can still be used with the proposed lexically-aware
decoding framework to obtain improved perfor-
mance over the baseline method.

6.6 Analysis

We analyze specific components of our model to un-
derstand the advantages of our proposed approach.

Known vs. Unknown Words We first identify
the source of the improvements that our approach
makes over the baseline. Table 4 presents the frac-
tion of correctly predicted words, split on whether
these words are “known" to the WFSA (i.e., in the
vocabulary of the word-level LM) or “unknown".
Intuitively, we expect that decoding with the WFSA
will improve prediction on the known words.

Compared to the baseline, our method improves
on words known to the WFSA, moving from 91%
to 95% accuracy on average. Our method also im-
proves unknown word prediction over the baseline
from an average accuracy of 40% to 53%. In cases

https://www.unicode.org/versions/Unicode13.0.0/ch02.pdf
https://www.unicode.org/versions/Unicode13.0.0/ch02.pdf
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Figure 3: The weight of the WFST during joint decoding
can affect word error rate (sometimes significantly, as
in Griko; top). All other hyperparameters are kept equal
and correspond to the best systems in each language.
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Figure 4: Integrating lexically-aware decoding through
interpolation with a WFSA (red lines) aids self-training
in improving WER across iterations. Black dashed lines
correspond to self-training without lexical decoding.

like Kwak’wala, where, due to the rich morphology
of the language, more than 40% of the test words
are unseen, including an unknown word model in
the WFSA is particularly important.

WFSA Weight One of the important hyperpa-
rameters of our lexically-aware method is the
weight that we place on the WFSA score during
inference (λ in Equation 3). Specifically, in the
case of Griko, we find that the value of this hyper-
parameter can significantly affect performance. As
shown in Figure 3, high weights of λ (i.e., more
weight on the WFSA) lead to suboptimal WER,
while lower λ leads to much better performance.

This hyperparameter is less important in the
other three languages, leading to smaller variations
in performance. As an example, we depict the ef-
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Figure 5: Even a small amount of unannotated data is
useful for our semi-supervised method, improving WER
over BASE (WER=7.51) in (a). Varying the size of gold-
annotated data has a stronger effect on post-correction
performance in (b). Results are shown with Griko.

fect on Yakkha in Figure 3, where increasing λ
does not affect performance as much as in Griko.

Self-Training Iterations The evolution of WER
across 5 self-training iterations for Ainu and
Yakkha is shown in Figure 4. Particularly for Ainu,
we see that combination with lexically-aware de-
coding is crucial for the success of self-training.
For Yakkha, self-training does improve perfor-
mance independently but is more effective when
lexically-aware decoding is used (error rates on
Griko and Kwak’wala follow a similar trend).

Dataset Size We study the effect of varying the
amount of gold-transcribed and unannotated data
used for training. The WER when varying the size
of the Griko datasets is shown in Figure 5 (the size
of each set is varied while keeping the other set at
its full size). We see that reducing the amount of
gold-transcribed data worsens WER significantly.
On the other hand, reducing the unannotated data
has a smaller effect: even with a little unannotated
data, our method improves over the BASE model.

Error Rate in the First Pass OCR To evalu-
ate how the error rate in the first pass OCR tran-
scription affects subsequent post-correction, we
measure the performance of our proposed method
when applied to first pass outputs from two OCR
systems: Google Vision and Ocular (described in
Section 6.4). Figure 7 shows the WER on the
Kwak’wala dataset. We see that, although Google
Vision has a much higher first pass error rate than
Ocular, the post-correction model improves perfor-



Errors fixed by our method Errors introduced by our method
(a) Griko (b) Kwak’wala (c) Yakkha (d) Kwak’wala
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ङोटे!"  #$

Figure 6: Our post-correction model fixes many of the first pass OCR errors that the base model does not fix such
as (a) and (b). In rare cases, our method introduces errors into the transcription such as (c) and (d).

mance over both OCR systems. We also note that
the relative error reduction is higher for the Google
Vision system (68%) than for Ocular (41%), likely
because the Ocular LM is trained on the same data
as the post-correction model.

Qualitative Analysis In Figure 6, we show ex-
amples of errors fixed as well as errors introduced
by our post-correction model as compared to the
baseline system. In Figure 6 (a) and (b), we see
that although the baseline corrects some of the er-
rors in the first pass OCR, it also introduces errors
such as extra diacritics and incorrect substitutions.
Using our proposed method leads to an error-free
transcription of these images. However, in Fig-
ure 6 (c) and (d), we see that our method occa-
sionally introduces errors in predictions. Specifi-
cally, although the model fixes the first pass errors,
it generates words that are considerably different
from the target. Such errors likely occur when the
model follows an incorrect path in the WFSA dur-
ing lexically-aware decoding. Since we are using
beam search, the correct path cannot be recovered
if it was pruned at an earlier timestep.

7 Related Work

OCR post-correction is well-studied in the high-
resource setting, particularly for English. Re-
cent methods primarily use neural encoder-decoder
models (Dong and Smith, 2018; Rigaud et al., 2019;
Hämäläinen and Hengchen, 2019). There has been
relatively little work on lower-resourced languages.
Kolak and Resnik (2005) present a probabilistic
edit distance model for post-correction on Cebuano
and Igbo, and Krishna et al. (2018) use a sequence-
to-sequence model with a copy mechanism for im-
proved performance on Romanized Sanskrit OCR.

While existing neural post-correction methods
do not rely on lexical information, some earlier
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Figure 7: Our post-correction model significantly im-
proves recognition accuracy over different first pass
OCR systems that have varied error rates (Google Vi-
sion and Ocular). Results are shown with Kwak’wala.

methods use dictionaries to improve performance.
For example, Tong and Evans (1996) and Niklas
(2010) use lexicons in combination with n-gram
context to generate post-correction candidates for
erroneous words. These methods are typically eval-
uated on English and assume the presence of high-
coverage lexicons (Schulz and Kuhn, 2017), mak-
ing them difficult to adapt to endangered languages.

Related to our decoding method are models that
incorporate lexical knowledge into neural machine
translation models. Arthur et al. (2016) propose
adding a dictionary for translating low-frequency
words and Zhang et al. (2018) improve decoding
by upweighting translations that contain relevant
words. Additionally, there are methods which add
hard lexical constraints by forcing predictions to
contain user-specified words and phrases (Hokamp
and Liu, 2017; Post and Vilar, 2018).

Lastly, we note that our proposed approach com-
bines information from a neural model and a finite-
state machine to leverage the advantages of both.



In a similar direction, Rastogi et al. (2016) and
Lin et al. (2019) design finite state architectures
with paths weighted by contextual features from an
LSTM. These methods use joint parameterizations
of the models and are thus more complex to train
(particularly in the low-resource setting) than the
joint decoding method we propose in this paper.

8 Conclusion

Digitization at scale for documents in under-
represented languages is a promising avenue to-
wards tackling one aspect of their marginalization,
the lack of data. With this work, we take a step to-
wards better digitization for extremely data-scarce
scenarios. We develop a semi-supervised method
that combines self-training with lexically-aware de-
coding, reducing error rates by up to 29% over a
state-of-the-art OCR post-correction model on four
typologically diverse endangered languages.

In future work, we plan to expand our method
to take advantage of additional outputs of the
language documentation process. For example,
documentary linguists typically collect word lists
(which range from lists of common words like the
Swadesh lists (Swadesh, 1955) to domain-specific
vocabularies). Using such word lists within the
lexically-aware decoding framework could further
improve performance and enable the application of
our technique to even lower-resourced languages.

Additionally, the improvements we achieve
through semi-supervised learning are potentially
orthogonal to the improvements Rijhwani et al.
(2020) achieve by incorporating information from
translations of the target text. As future work, we
plan to investigate the combination of these two
approaches in an attempt to utilize all available
sources of information to improve performance.

Finally, while using a character-level n-gram LM
improves performance on unknown words, it does
not explicitly utilize morphological structure to
generate unseen inflections of words. In the future,
we plan to incorporate morphological analysis dur-
ing post-correction decoding, which will be helpful
for morphologically rich endangered languages.
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