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Abstract

Given a mixture between two populations of coins, “pos-

itive” coins that each have—unknown and potentially

different—bias ≥ 1
2

+ ∆ and “negative” coins with bias

≤ 1
2
− ∆, we consider the task of estimating the fraction

ρ of positive coins to within additive error ε. We achieve

an upper and lower bound of Θ( ρ
ε2∆2 log 1

δ
) samples for a

1−δ probability of success, where crucially, our lower bound

applies to all fully-adaptive algorithms. Thus, our sample

complexity bounds have tight dependence for every relevant

problem parameter. A crucial component of our lower bound

proof is a decomposition lemma (Lemma 5.2) showing how

to assemble partially-adaptive bounds into a fully-adaptive

bound, which may be of independent interest: though we

invoke it for the special case of Bernoulli random variables

(coins), it applies to general distributions. We present sim-

ulation results to demonstrate the practical efficacy of our

approach for realistic problem parameters for crowdsourcing

applications, focusing on the “rare events” regime where ρ

is small. The fine-grained adaptive flavor of both our algo-

rithm and lower bound contrasts with much previous work

in distributional testing and learning.

1 Introduction

We consider a natural statistical estimation task, mo-
tivated by a practical setting, with an intriguing adap-
tive flavor. We provide a new adaptive algorithm and a
matching fully adaptive lower bound, tight up to mul-
tiplicative constants.

In our problem setting, there is a universe of coins
of two types: positive coins each have a (potentially
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contributing to the simulation results in this work. We thank
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lower bounds, which led to the current tight results. This work is
partially supported by NSF award IIS-1562657. In addition, Paul
Valiant is partially supported by NSF award DMS-1926686, and
indirectly supported by NSF award CCF-1900460.

different) probability of heads that lies in the interval
[ 1
2 + ∆, 1], while negative coins lie in the interval

[0, 1
2 −∆], where ∆ ∈ (0, 1

2 ] parameterizes the “quality”
of the coins. Our only access to the coins is by choosing
a coin and then flipping it, without access to the
true biases of the coins. An algorithm in this setting
may employ arbitrary adaptivity—for example, flipping
three different coins in sequence and then flipping the
first coin 5 more times if and only if the results of the
first 3 flips were heads, tails, heads. The challenge is
to estimate the fraction ρ of coins that are of positive
type, to within a given additive error ε, using as few
coin flips (samples) as possible. We assume because
of the symmetry of the problem (between positive and
negative coins) that ρ ≤ 1

2 .
This model arose from a collaboration with col-

leagues in data science and database systems, about
harnessing paid crowdsourced workers to estimate the
“quality” of a database. Our model is a direct theo-
retical analog of the following practical problem, where
sample complexity linearly translates into the amount
of money that must be paid to workers, and thus even
multiplicative factors crucially affect the usefulness of
an algorithm. Given a set of data and a predicate
on the data, the task is to estimate what fraction of
the data satisfies the predicate—for example, estimat-
ing the proportion of records in a large database that
contain erroneous data. After automated tools have la-
beled whatever portion of the data they are capable
of dealing with, the remaining data must be processed
via crowdsourcing, an emerging setting that potentially
offers sophisticated capabilities but at the cost of un-
reliability. Namely, for each data item, one may ask
many human users/workers online whether they think
the item satisfies the predicate, with the caveat that the
answers returned could be noisy. In the case that the
workers have no ability to distinguish the predicate, we
cannot hope to succeed; however, if the histograms of
detection probabilities for positive versus negative data
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have a gap between them (the gap is 2∆ in the model
above), then the challenge is to estimate ρ as accurately
as possible, from a limited budget of queries to work-
ers [15].

A key feature that makes this estimation problem
distinct from many others studied in the literature is
the richness of adaptivity available to the algorithm.
Achieving a tight lower bound in this setting requires
considering and bounding all possible uses of adaptiv-
ity available to an algorithm; and achieving an optimal
algorithm requires choosing the appropriate adaptive in-
formation flow between different parts of the algorithm.
Much of the previous work in the area of statistical esti-
mation is focused on non-adaptive algorithms and lower
bounds; however see [7], and in particular, Sections 4.1
and 4.2 of that work, for a survey of several distribution
testing models that allow for adaptivity. In our setting
there are two distinct kinds of adaptivity that an algo-
rithm can leverage: 1) single-coin adaptivity, deciding
how many times a particular coin should be flipped—a
per-coin stopping rule—in terms of the results of its pre-
vious flips, and 2) cross-coin adaptivity, deciding which
coin to flip next in terms of the results of previous flips
across all coins. Our final optimal algorithm (Section 3)
leverages both kinds of adaptivity. In our tight lower
bound analysis (Section 5), we overcome the technical
obstacles presented by the richness of adaptivity by giv-
ing a reduction (Section 5.1) from fully-adaptive algo-
rithms that leverage both kinds of adaptivity to single-
coin adaptive algorithms that process each coin inde-
pendently, valid for our specific lower bound instance.
We discuss the approaches and challenges of our lower
bound in more detail in Section 1.1.2.

The main algorithmic challenge in this problem is
what we call “uncertainty about uncertainty”: we make
no assumptions about the quality of the coins beyond
the existence of a gap 2∆ between biases of the coins
of different types (centered at 1

2 ). If we relaxed the
problem, and assumed (perhaps unrealistically) that
we know 1) the conditional distribution of biases of
positive coins, and 2) the same for negative coins,
and 3) an initial estimate of the mixture parameter ρ
between the two distributions, then this allows us to
use mathematical programming techniques to construct
an estimation algorithm with sample complexity that is
optimal by construction up to a multiplicative constant.
We show this construction in the full version of this
paper on arXiv [22]. In our original setting, however,
our algorithm must return estimates with small bias,
and be sample-efficient at the same time, regardless of
the bias of the coins, whether they are all deterministic,
or all maximally noisy as allowed by the ∆ parameter, or
some quality in between. While intuitively the hardest

settings to distinguish information theoretically involve
coins with biases as close to each other as possible
(and indeed our lower bound relies on mixtures of only
1
2 ± ∆ coins), settings with biases near but not equal
to 1

2 ± ∆ introduce “uncertainty about uncertainty”
challenges. The two kinds of adaptivity available to the
algorithm allow us to meet these challenges by trading
off, optimally, between 1) investigating a single coin to
reduce uncertainty about its bias, and 2) apportioning
resources between different coins to reduce uncertainty
about the ground truth fraction ρ, which is the objective
of the problem.

1.1 Our Approaches and Results To motivate the
new algorithms of this paper, we start by describing
the straightforward analysis of perhaps the most natural
approach to the problem, which is non-adaptive, based
on subsampling.

Example 1.1. Recall that it takes Ω( 1
∆2 ) samples to

distinguish a coin of bias 1
2 − ∆ from a coin of bias

1
2 + ∆. We can therefore imagine an algorithm that
chooses a random subset of the coins, and flips each
coin Ω( 1

∆2 ) many times. Asking for Θ( 1
∆2 log 1

ε ) flips
from each coin guarantees that all but ε fraction of the
coins in the subset will be accurately classified. Given
an accurate classification of m randomly chosen coins,
we use the fraction of these that appear positive as an
estimate on the overall mixture parameter ρ. Estimating
ρ to within error ε requires m = O( ρε2 ) randomly chosen
coins. Overall, taking Θ( 1

∆2 log 1
ε ) samples from each of

m = Θ( ρε2 ) coins uses Θ( ρ
ε2∆2 log 1

ε ) samples.

As we will see, the above straightforward algorithm
is potentially wasteful in samples by up to a log 1

ε factor,
since it makes Θ( 1

∆2 log 1
ε ) flips for every single coin,

yet—since Ω( 1
∆2 ) samples suffices to label a coin with

constant accuracy—each sample beyond the first Θ( 1
∆2 )

samples from a single coin gives increasing certainty yet
diminishing information-per-coin. If we can save on this
log 1

ε factor without sacrificing impractical constants,
then our approach leads to significant practical savings
in samples, and thus monetary cost—in regimes, such as
crowdsourcing, where gathering data is by far the most
expensive part of the estimation process.

1.1.1 Algorithmic Construction We give two al-
gorithmic constructions. Algorithm 2, which we call
the Triangular Walk algorithm, is single-coin adaptive,
and is theoretically almost-tight in sample complexity.
Second, Algorithm 5 has the optimal sample complex-
ity, by combining the Triangular Walk algorithm with
a new (and surprisingly) non-adaptive component (Al-
gorithm 3).
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The Triangular Walk algorithm (Algorithm 2) is de-
signed for the specific practical parameter regime where
ρ is small: in our earlier crowdsourcing example, prac-
titioners typically preprocess data items by using auto-
mated techniques and heuristics to classify a majority
of the items, before leaving to crowdsourced workers
a small number of items that cannot be automatically
classified. These automated filtering techniques usually
flag significantly more “negative” items than “positive”
items as “unclassifiable automatically”, resulting in a
small fraction ρ of positive items among the ones se-
lected for crowdsourced human classification. The in-
tuition behind our approach, then, is to try to aban-
don sampling (frequent) negative coins as soon as possi-
ble, after Θ( 1

∆2 ) samples, while being willing to investi-
gate (infrequent) positive coins up to depth Θ( 1

∆2 log 1
ε ).

Thus we disproportionately bias our investment of re-
sources towards the rare and valuable regime. Using
techniques from random walk theory, we design a linear
estimator based on this behavior (Algorithm 1), whose
expectation across many coins yields a robust estima-
tor, Algorithm 2, as shown in Theorem 1.1 (restated
and proved in Section 2).

Theorem 1.1. Given coins where a ρ fraction of the
coins have bias ≥ 1

2 + ∆, and 1 − ρ fraction have
bias ≤ 1

2 − ∆, then running Algorithm 2 on t =
Θ( ρε2 log 1

δ ) randomly chosen coins will estimate ρ to
within an additive error of ±ε, with probability at least
1−δ, with an expected sample complexity of O( ρ

ε2∆2 (1+
ρ log 1

ε ) log 1
δ ).

The analysis of Algorithm 2 uses only standard con-
centration inequalities, and thus the big-O notation for
the sample complexity does not hide large constants.
As further evidence of the good practical performance
of Algorithm 2, Section 6 shows simulation-based exper-
imental results, run on settings with practical problem
parameters for crowdsourcing applications. These re-
sults demonstrate the advantages of our algorithm as
compared with the straightforward majority vote al-
gorithm as well as the state-of-the-art algorithm [15]
(which does not enjoy any theoretical guarantees).

As for our second, optimal, algorithmic construction
(Algorithm 5 in Section 3), we combine the adaptive
techniques from the Triangular Walk algorithm with a
non-adaptive estimation component. More concretely,
in the regimes where Algorithm 2 is not optimal, Algo-
rithm 5 uses Algorithm 2 to first give a 2-approximation
of ρ, before using this information to non-adaptively
estimate ρ much more accurately, while keeping the
variance of the estimate small, to control the sample
complexity. The theoretical guarantees of Algorithm 5
are shown in Theorem 1.2 (restated and proved in Sec-

tion 3).

Theorem 1.2. (Informal) Given coins where a ρ
fraction of the coins have bias ≥ 1

2 + ∆, and 1− ρ frac-
tion have bias ≤ 1

2 −∆, then for large enough constant
c, running Algorithm 5 on a budget of B ≥ c ρ

∆2ε2 coin
flips will estimate ρ to within an additive error of ±ε,
with probability at least 2/3. If the algorithm is repeated
Θ(log 1

δ ) times, and the median estimate is returned,
then the probability of failure is at most δ.

1.1.2 Lower Bounds and Discussion Comple-
mentary to our algorithm, we show a matching lower
bound of Ω( ρ

ε2∆2 log 1
δ ) samples for a success probabil-

ity of 1−δ for the problem. Crucially, our bounds match
across choices of all four parameters, ρ, ε,∆, δ. To show
the lower bound, we use the following setup: consider a
scenario where all positive coins have bias exactly 1

2 +∆
and all negative coins have bias exactly 1

2 −∆.
The overall intuition for our lower bound is that,

for each coin, even flipping it enough to learn whether
it is a positive or negative coin will tell us little about
whether the true fraction of positive coins is ρ versus
ρ+ ε, and thus the flow of information to our algorithm
is at most a slow trickle. To capture this intuition, we
aim to decompose the analysis into a sum of coin-by-
coin bounds; however, the key challenge is the cross-coin
adaptivity that is available to the algorithm.

To demonstrate the challenge of tightly analyzing
cross-coin adaptivity, consider the following natural
attempt at a lower bound.

1. Consider flipping a fair coin S to choose between
a universe with ρ fraction of positive coins, versus
ρ+ ε fraction.

2. The aim is to bound the amount of mutual infor-
mation that the entire transcript of an adaptive
coin-flipping algorithm can have with the coin S.

3. Suppose this mutual information can be bounded
by the mutual information of the sub-transcript of
the ith coin with S, summed over all i.

4. Thus consider and bound the amount of mutual
information between the sub-transcript of just coin
i alone, with S; and sum these bounds over all coins
at the end.

While one would intuitively expect the bounds of Step 4
to be small for each single coin, cross-coin adaptivity
allows for each single-coin sub-transcript to encode a
lot of mutual information via its length, which may be
adaptively chosen by the algorithm in light of informa-
tion gathered across all other coins. The amount of
mutual information about S in a sub-transcript may
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be linear in the number of times other coins have been
flipped, implying that summing up such mutual infor-
mation across all coins would yield a bound that use-
lessly grows quadratically with the number of flips, in-
stead of linearly.

Our approach: We show that no fully-adaptive algo-
rithm can distinguish the following two scenarios with
probability at least 1 − δ, using o( ρ

ε2∆2 log 1
δ ) samples:

1) when a ρ fraction of the coins are positive, and 2)
when a ρ + ε fraction of the coins are positive. This is
formalized as the following theorem (Theorem 1.3), and
proved in Section 5.

Theorem 1.3. For ρ ∈ [0, 1
2 ) and ε ∈ (0, 1−2ρ], the fol-

lowing two situations are impossible to distinguish with
at least 1− δ probability using an expected o( ρ

ε2∆2 log 1
δ )

samples: A) ρ fraction of the coins have probability
1
2 + ∆ of landing heads and 1 − ρ fraction of the coins
have probability 1

2 −∆ of landing heads, versus B) ρ+ ε
fraction of the coins have probability 1

2 + ∆ of landing
heads and 1− (ρ+ ε) fraction of the coins have probabil-
ity 1

2 −∆ of landing heads. This impossibility crucially
includes fully-adaptive algorithms.

In Section 5.1, we capture rather generally via Lem-
mas 5.1 and 5.2 the above intuitive decomposition of a
many-coin adaptive algorithm into its single-coin con-
tributions, but via a careful simulation argument that
precludes the kind of information leakage between coins
that we described above. More explicitly, instead of de-
composing a single transcript into many (possibly cor-
related) sub-transcripts, we relate an n-coin transcript
to n separate runs of the algorithm (each on freshly
drawn random coins), where in the ith run, coin i is au-
thentically sampled (from either the ρ scenario or the
ρ + ε scenario), while all the remaining coins are simu-
lated by the algorithm. Crucially, since the remaining
simulated coins do not depend on the “real” scenario,
no cross-coin adaptivity can leak any information about
the real world to coin i, beyond the information gained
from flipping coin i itself.

Furthermore, Lemmas 5.1 and 5.2 apply to a broad
variety of problem settings, where the population of
random variables can be arbitrary and not necessarily
Bernoulli coins. We believe these lemmas are of inde-
pendent interest beyond this work, and can be a useful
tool for proving lower bounds for other problem settings,
for example a Gaussian variant of the current problem,
where instead of being input a noisy yes/no answer on
the positivity of an item, we instead receive a numeri-
cal Gaussian-distributed score with mean, say, > 1 for
positive items and < 0 for negative items.

Given the decomposition lemmas (Lemmas 5.1
and 5.2), completing the lower bound analysis for

the current problem requires upper bounding the
squared Hellinger distance between running any single-
coin adaptive algorithm on the two coin populations
described earlier, with slightly different positive-to-
negative mixture ratios. This forms the bulk (and tech-
nical parts) of the proof of Theorem 1.3.

Non-adaptive bounds: As motivation for the algo-
rithmic results of this paper, it is reasonable to ask,
given Theorem 1.3’s lower bound of Ω( ρ

ε2∆2 log 1
δ ) on

the number of samples for our problem, is it possible
that a non-adaptive algorithm can approach this per-
formance, or is the adaptive flavor of Algorithms 2 or 5
required? In our full paper [22], we describe how the
framework of the “natural attempt” (the numbered list
above) in fact yields a constant probability sample lower
bound for non-adaptive algorithms that is a log 1

ρ fac-
tor higher than that of Theorem 1.3: namely the analog
of Theorem 1.3 for non-adaptive algorithms holds for
Ω( ρ

ε2∆2 log 1
ρ ) samples, in the regime of constant δ, and

when ρ ≥ ε2.
In summary, we have the adaptive and non-adaptive

bounds in Table 1. As shown in Table 1, the non-
adaptive bounds match each other and the adaptive
bounds only in the regime where ρ = Θ(1) (and in
the trivial ε = Θ(1) regime). In the non-constant ρ
regime, the non-adaptive lower bound is asymptotically
larger than the adaptive lower bound, demonstrating
the need for adaptivity in the design of our final optimal
algorithm.

1.1.3 Practical Considerations The keen-eyed
reader might notice that the algorithmic results in The-
orems 1.1 and 1.2 both depend on the unknown ground
truth ρ, so thus these bounds are not immediately invok-
able by a user. We present two approaches to address
this issue.

The first approach is to note that Algorithm 2 can
be interpreted as an anytime algorithm: it can produce
an estimate at any point in its execution. As more
coins are used in Algorithm 2, the estimate simply gains
accuracy. Our full paper [22] discusses this approach in
more detail, and our experiments in Section 6 are also
run using this approach. Because of its simplicity, we
recommend this method in practice.

A complication arising from this approach is the
fact the sample complexity bound of Theorem 1.1 is
an expected sample complexity bound. Thus there are
potential issues introduced by abruptly stopping the
algorithm after a fixed budget of samples, which might
inadvertently introduce bias to the estimate. In our full
paper [22], we also show how to analyze and address
this issue.

The second, theoretically more interesting approach
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Upper Bound Lower Bound

Adaptive O( ρ
ε2∆2 log 1

δ ) (Algorithm 5) Ω( ρ
ε2∆2 log 1

δ ) (Section 5)

Non-adaptive
O( ρ

ε2∆2 log 1
ε log 1

δ ) (Trivial, Example 1.1)
O( 1

ε2∆2 log 1
δ ) (Algorithm 3 for ρ = Θ(1) )

Ω( ρ
ε2∆2 log 1

ρ ) (Full paper, for ρ ≥ ε2 and constant δ)

Table 1: Sample Complexity Upper and Lower Bounds

is to fix a total budget of allowable coin flips, and have
the algorithm “discover” the optimal achievable accu-
racy ε just from interacting with the different coins. Our
presentation and analysis of Algorithm 5, in Section 3,
follows this approach. We point out that Algorithm 2
can also be made to have this theoretical guarantee, as
demonstrated by the invocation of Algorithm 2 in Al-
gorithm 5.

1.2 Related Work A related line of work considers
the scenario where all positive coins have identical bias
(not necessarily greater than 1/2), and negative coins
also have identical bias (strictly less than the positive
coins’ bias), with the ultimate goal of identifying any
single coin that is positive (or “heavy” in the termi-
nology of these works). The problem has been studied
and solved optimally in the context where the biases
and positive-negative proportions are known [13], and
also when none of this information is known [27, 21].
Such problems may be seen as a special case of bandit
problems.

Another related line of work concerns the learning
of distributions of (e.g. coin) parameters over a popula-
tion, which arises in various scientific domains [25, 26,
28, 29, 16, 3]. In particular, the works of Lord [25], and
Kong et al. [34, 37] consider a model similar to ours,
with the crucial difference that each coin is sampled a
fixed number t many times—instead of allowing adap-
tive sampling as in the current work—with the objective
of learning the distribution of biases of the coins in the
universe.

Since an earlier version of this paper was posted on
arXiv, more recent work by Brennan et al. [6] considers
a generalization of our setting, but because of different
motivation and parameterization, both their upper and
lower bounds are not directly comparable with ours.

Our problem also sits in the context of estimation
and learning tasks with noisy or uncalibrated queries.
The noiseless version of our problem would be when
∆ = 1

2 and thus 1
2 ±∆ equals either 0 or 1. That is, all

coins are either deterministically heads or deterministi-
cally tails, and thus estimating the mixture parameter ρ

is equivalent to estimating the parameter of a single coin
with bias ρ, which has a standard analysis. Prior works
have considered noisy versions of well-studied compu-
tational problems, such as (approximate) sorting and
maximum selection under noisy access to pairwise com-
parisons [19, 17] and maximum selection under access to
uncalibrated numerical scores that are consistent with
some global ranking [38].

Furthermore, our problem can be interpreted as a
special case of the “testing collections of distributions”
model introduced by Levi, Ron and Rubinfeld [23, 24],
modulo the distinction between testing and parameter
estimation. In their model, a collection of m distribu-
tions (D1, . . . , Dm) (over the same domain) is given to
the tester, and the task is to test whether the collection
satisfies a particular property, where a property in this
case is defined as a subset of m-tuples of distributions.
In the query access model, one is allowed to name an
index i ∈ {1, . . . ,m} and get a fresh sample from the dis-
tribution Di. Our problem can be analogously phrased
in this model, where the distributions are over the do-
main {0, 1}, and the property in question is whether the
fraction ρ of distributions in the collection having bias
≥ 1/2 is greater than some threshold τ .

We highlight other distribution testing models that
allow for adaptive sampling access. For example, in
testing contexts, conditional sampling oracles have been
considered [12, 8, 11, 10, 18, 1], where a subset of
the domain is given as input to the oracle, which in
turn outputs a sample from the underlying unknown
distribution conditioned on the subset. Evaluation
oracles have also been considered [30, 2, 20, 9], where the
testing algorithm has access to an oracle that evaluates
the probability mass function or the cumulative mass
function of the underlying distribution. See the survey
by Canonne [7] for detailed comparisons between the
different standard and specialized access models, along
with a discussion of recent results.

Adaptive lower bounds of problems related to test-
ing monotonicity of high-dimensional Boolean functions
have a somewhat similar setup to ours, where binary
decisions adaptively descend a decision tree according
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to probabilities that depend both on the algorithm and
its (unknown) input that it seeks to categorize [4, 14].
Lower bounds in these works rely on showing that the
probabilities of reaching any leaf in the decision tree
under the two scenarios that they seek to distinguish
are either exponentially small or within a constant fac-
tor of each other. This proof technique is powerful yet
does not work in our setting, as many adaptive algo-
rithms have high-probability outcomes that yield non-
negligible insight into which of the two scenarios we are
in. By contrast, our proof technique involves showing
that, while such “insightful” outcomes may be realized
with high probability, in these cases we must pay a cor-
respondingly high sample complexity cost somewhere
else in the adaptive tree.

A crucial part of our lower bound proof, Lemma 5.2,
involves carefully “decomposing” fully-adaptive (multi-
coin) algorithms into their single-coin components.
Work by Braverman et al. [5] gives a data process-
ing inequality in the context of communication lower
bounds, whose proof uses similar ideas to how we prove
Lemma 5.2.

As described at the beginning of the introduction,
results of this work have practical applications in crowd-
sourcing algorithms in the context of data science and
beyond. Theoretical studies with similar aims to our
own have been undertaken on handling potentially noisy
answers from crowdsourced workers due to lack of ex-
pertise [33, 31], (including this work); in practice it is
also crucial to understand how to incentivize workers to
answer truthfully [32]. Our work also addresses directly
the practical problem proposed by Chung et al. [15],
to issue queries to potentially unreliable crowdsourced
workers in order to estimate the fraction of records con-
taining “wrong” data within a database; here adaptive
queries are a natural capability of the model.

2 The Triangular Walk Algorithm

In this section, we present the Triangular Walk algo-
rithm (Algorithm 2) for the problem, in the regime
where both ρ and the coin biases are unknown. This
is an important subroutine of our main, optimal algo-
rithm; and the Triangular Walk algorithm itself can be
used as an estimator in its own right. We demonstrate
later in Section 6, with simulation results, that this al-
gorithm offers practical advantages over the straightfor-
ward majority vote estimator mentioned in the intro-
duction, as well as the state-of-the-art method used in
practice.

The Triangular Walk algorithm leverages only
single-coin adaptivity, and makes no use of cross-coin
adaptivity. At the heart of our algorithm is an estima-
tor (Algorithm 1) that works coin-by-coin, in the regime

∆ ≥ 1
4 ; subsequently we show how to use this estima-

tor to solve the general problem, with an arbitrary (but
known) ∆.

We describe an asymmetric estimator (Algorithm 1)
that, given sampling access to a single coin of bias p,
returns a real number whose expectation is in [1± ε

2 ] if
p ≥ 3

4 , and whose expectation is in [± ε
2 ] if p ≤ 1

4 . The
estimator is asymmetric in the sense that it will quickly
“give up on” coins with p ≤ 1

4 , taking only a constant
number of samples from them in expectation, while it
will more deeply investigate the rare and interesting case
of p ≥ 3

4 . Below, c will be a constant that emerges from
the analysis, where c log 1

ε coin flips suffice to yield an
empirical fraction of heads within poly(ε) of the ground
truth, p.

Algorithm 1 Single-coin estimate

Given: a coin of bias p, error parameter ε

1. Let n← 0 (representing the total number of coin
flips so far)

2. Let k ← 0 (representing the total number of
observed heads so far)

3. Repeat:

(a) Flip the coin, and increment n← n+ 1

(b) If heads, increment k ← k + 1

(c) If 2k ≤ n, return 0 and halt (majority of
flips are tails, evidence that p is small)

(d) If n = c log 1
ε , return min(4, n

2k−n ) and halt
(enough flips for concentration)

Our overall algorithm robustly combines estimates
from running Algorithm 1 on many coins via the stan-
dard median-of-means technique. To deal with the gen-
eral case when ∆ might be much smaller than 1

4 , we
“simulate a 1

4 -quality coin” by running Algorithm 1 not
on individual flips, but rather on the majority vote of
blocks of Θ( 1

∆2 ) flips; this majority vote will convert a
coin of bias ≤ 1

2 − ∆ to a simulated coin of bias ≤ 1
4 ,

and symmetrically, convert a coin of bias ≥ 1
2 + ∆ to a

simulated coin of bias ≥ 3
4 .

Theorem 1.1. Given coins where a ρ fraction of the
coins have bias ≥ 1

2 + ∆, and 1 − ρ fraction have
bias ≤ 1

2 − ∆, then running Algorithm 2 on t =
Θ( ρε2 log 1

δ ) randomly chosen coins will estimate ρ to
within an additive error of ±ε, with probability at least
1−δ, with an expected sample complexity of O( ρ

ε2∆2 (1+
ρ log 1

ε ) log 1
δ ).

The rest of this section concerns the (relatively
straightforward) proof of Theorem 1.1, via an analysis
of Algorithms 1 and 2; Section 4 instead formulates
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Algorithm 2 Triangular walk algorithm

Given: t coins, quality parameter ∆, error parameter
ε, and failure probability parameter δ

1. For each coin: simulate a new “virtual” coin by
computing the majority of Θ( 1

∆2 ) flips each time
a “virtual” flip is requested; run Algorithm 1 on
each virtual coin, using, inputting ε unchanged, and
record the returned estimates.

2. Partition the returned estimates into Θ(log 1
δ )

groups and compute the mean of each group.

3. Return the median of the Θ(log 1
δ ) means, or 0 if

any of the groups in step 2 are empty.

a more general algorithmic framework that adds some
perspective to Algorithm 1, and whose abstractions will
be crucial to the lower bound analysis in Section 5.

Intuition and analysis of Algorithm 1: Recall that
Algorithm 1 is designed to work for coins of constant
noise-quality ∆, namely, coins have bias either ≤ 1

4 or ≥
3
4 , and nothing in between. Algorithm 1 halts under two
conditions: either the majority of observed flips have
been tails—Step 3(c)—or our budget of coin flips (for
that coin) is exhausted—Step 3(d). The first stopping
condition is designed to make it more likely to halt early
for negative coins (coins with bias p ≤ 1

4 ), even though
all coins may have a significant chance of halting early.
Importantly, the chance of Algorithm 1 halting early
depends on the coin’s bias p, which is a priori unknown.
The output coefficients in Step 3(d) are designed so that
the expected output, given any negative coin (of bias
≤ 1

4 ), is close to 0, and similarly close to 1 given a
positive coin (of bias ≥ 3

4 ). Furthermore, the output
coefficients are all bounded by a constant, which gives
a constant bound on the variance of the estimate.

Lemma 2.1 captures the guarantees we need from
Algorithm 1 in order to analyze the triangular walk
algorithm, Algorithm 2.

Lemma 2.1. If Algorithm 1 is run with a sufficiently
large universal constant c, then the following statements
hold.

1. Given an arbitrary negative coin (having bias p ≤
1
4), the output of Algorithm 1 has expectation in
[± ε

2 ] and variance upper bounded by ε2. Further-
more, the expected sample complexity in this case
is upper bounded by a constant.

2. Given an arbitrary positive coin (having bias p ≥
3
4), the output of Algorithm 1 has expectation in
[1 ± ε

2 ] and variance upper bounded by a constant.

The expected sample complexity in this case is
(trivially) upper bounded by c log 1

ε .

The overall expected sample complexity, when the frac-
tion of positive coins is ρ, is O(1 + ρ log 1

ε ).

Proof. (Sketch) The only nontrivial element of the
analysis is understanding the probability that n coin
flips of a p-biased coin will produce k heads, without
any initial sequence of flips having at least as many
tails as heads. This is the product of the Binomial
probability that n flips of a p-biased coin will produce
k heads, together with the random walk fact known as
the “Ballot Theorem”, which states that the fraction of
sequences of length n containing k heads whose initial
segments are all majority-heads equals 2k−n

n .
From this result, the claims of the lemma all follow

from trivial calculations, given a large enough constant
c is chosen so as to guarantee that n = c log 1

ε flips of
a coin with bias p ≥ 3

4 has at most O(ε2) probability
of having fewer than 5

8n heads. For the complete
calculations, please refer to our full paper [22].

Analyzing Algorithm 2: We conclude by proving
Theorem 1.1, which analyzes Algorithm 2.

Proof. [Theorem 1.1] For this proof, we assume that
ρ = Ω(ε2). Otherwise, the case is handled in Step 3 of
Algorithm 2, which returns the valid estimate of 0.

At a high-level, Algorithm 2 runs Algorithm 1
repeatedly on independently chosen coins.

Observe that in Step 1 of Algorithm 2, for each coin
we simulate a new “virtual” coin, by using the majority
vote of Θ(1/∆2) coin flips to compute each requested
coin flip. By Chernoff bounds, if each given coin has bias
either p ≤ 1

2 −∆ or p ≥ 1
2 + ∆, then the corresponding

virtual coin will have bias p ≤ 1
4 and p ≥ 3

4 respectively.
Therefore, by Lemma 2.1, the output of Step 1 for each
coin is a random variable with expectation in [ρ ± ε

2 ].
As for the variance of the output, we do the following
calculation. Let X0 denote the random variable that
is the output of Algorithm 1 when given a random
negative coin, and similarly X1 for a random positive
coin. The output of Algorithm 1, which we call Y , is
thus distributed as X1 with ρ probability and as X0

with 1− ρ probability. The variance of Y is

Var[Y ] = ρVar[X1] + (1− ρ) Var[X0] + Var
i←Bernoulli(ρ)

[E[Xi]]

≤ O(ρ) + (1− ρ)ε2 + ρ(E[X1])2 + (1− ρ)(E[X0])2

≤ O(ρ) + ε2 +O(ρ) +O(ε2)

= O(ρ)

Steps 2 and 3 of Algorithm 2 are the median-
of-means method for estimating the mean of a (real-
valued) random variable. Using t = Θ( ρε2 log 1

δ ) coins,
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each of the Θ(log 1
δ ) groups will have Θ( ρε2 ) coins and

hence outputs from Algorithm 1. By Chebyshev’s in-
equality, with constant probability, the sample mean of

each group’s estimates will be within O(
√

ε2

ρ ) standard

deviations of the expected output of Algorithm 1. The
estimation error is therefore equal to O(ε), with a mul-
tiplicative constant that can be made arbitrarily small
by adjusting the constant in the choice of the number
of coins t. Step 3 computes the median of Θ(log 1

δ )
such sample means, which boosts the success probabil-
ity from constant to 1−δ, via standard uses of Chernoff
bounds.

Lastly, the total expected sample complexity is the
product of 1) the choice of t in the theorem statement,
2) Θ(1/∆2) which is the number of coin flips used
for each majority vote in Step 1, and 3) the sample
complexity of Algorithm 1 as stated in Lemma 2.1,
yielding O( ρ

ε2∆2 (1 + ρ log 1
ε ) log 1

δ ).

While Theorem 1.1 gives ε as input to Algorithm 2
and then asks how many coins are needed to achieve
this ε error, it will be useful as a preliminary step of
our optimal Algorithm 5 to consider the performance of
Algorithm 2 where these two roles for ε are decoupled.
Explicitly, how many coins or samples does it take for
Algorithm 2 to achieve error ε1, when Algorithm 2 is
given ε2 as input? We will use this result in the regime
where the failure probability for Algorithm 2 should be
a constant, and thus for simplicity we omit δ from the
following statement.

Corollary 2.1. Given coins where a ρ fraction of the
coins have bias ≥ 1

2 + ∆, and 1 − ρ fraction have bias
≤ 1

2 − ∆, then, for parameters ε1, ε2 > 0, running
Algorithm 2 on t = Θ( ρ

ε21
) randomly chosen coins

with parameter ε = ε2 will estimate ρ to within an
additive error of ±ε1, with failure probability at most
0.1+O(t ·poly(ε2)), with an expected sample complexity
of O( ρ

ε21∆2 (1 + ρ log 1
ε2

)). Note that the degree of the

polynomial term (in ε2) in the failure probability can be
made arbitrarily high, by choosing a large constant c in
Step 3(d) of Algorithm 1.

The proof is essentially the same as that of Theorem 1.1.
For a given ρ and target accuracy ε1, it is easy to see that
we need t = Θ( ρ

ε21
) coins to estimate ρ to within ±ε1,

even if all examined coins are correctly classified. The
parameter ε2 controls, via its logarithm, the maximum
number of flips with which we examine any single coin.
Namely, an increase in the number of coin flips will
exponentially reduce the bias of the per-coin estimator,
with the corollary aimed at the regime where the ε1
error from the process of sampling coins (as opposed

to flipping coins once they are sampled) dominates the
error.

3 The Main Algorithm

Here we present our main algorithm, Algorithm 5,
analyzed in Theorem 1.2, which uses O( ρ

ε2∆2 log 1
δ )

samples, matching the fully-adaptive lower bound we
prove in Section 5.

Algorithm 5 uses the Triangular Walk estimator
as a subroutine and has a hybrid flavor, combin-
ing both (single-coin) adaptive and non-adaptive tech-
niques, where the algorithm is increasingly adaptive for
smaller values of ρ. Crucially, in the adaptive compo-
nent of Algorithm 5, we use the Triangular Walk esti-
mator to provide a 2-approximation to ρ, and a vari-
ant of the algorithm to “filter” out most negative coins
such that we get a constant ratio of positive vs negative
coins, to reduce variance. The coins “surviving” the fil-
ter are then fed into a new, non-adaptive algorithm (Al-
gorithm 3) that we call “refined sampling”, which like
Algorithm 1 flips different coins a different number of
times, yet the number of flips is chosen non-adaptively ;
the information from different coins is combined in a
subtle way.

As a general motivation, consider taking t coins,
flipping them n times each, and trying to estimate the
fraction of positive coins. For a slightly different setting
that may have cleaner intuition, consider having sam-
ple access to many univariate Gaussian distributions of
bounded variance, some of which have mean ≤ 0 and
some of which have mean ≥ 1, where the goal is to es-
timate the fraction of “positive” Gaussians with as few
samples as possible. If we take n samples from a given
distribution, then testing whether the sample mean is
> 1

2 lets us correctly determine its identity with prob-
ability 1 − exp(−n), incentivizing us to choose a large
n. However, for a fixed budget on the total number
of samples across all distributions, choosing many sam-
ples per distribution means we can only sample from a
limited number of distributions, introducing sampling
errors across distributions (as opposed to within each
distribution), and thus introducing a variance into our
estimate inversely proportional to the number of coins
sampled, and thus O(n/T ) for a total budget of T . This
is the classic bias-variance tradeoff, where larger n in-
duces a better bias but worse variance.

While in many settings, one might try to find an
optimal n that balances these two concerns, the right
answer here is instead to combine the two approaches:
sample some distributions many times, to get a low-
bias signal, and also sample many distributions a few
times, to get a low-variance signal; and combine these
two signals with care. Explicitly, the coefficients in Step
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3 of Algorithm 3 are carefully chosen so that their con-
tributions “telescope” in expectation between distribu-
tions sampled different numbers of times, allowing, es-
sentially, all the high-variance terms to cancel out with-
out worsening the bias.

We first present the non-adaptive component (Al-
gorithm 3) of Algorithm 5 for estimating smooth func-
tions f on the underlying coin bias p, which has con-
stant expected sample complexity, with zero bias, at
the cost of O(1) variance instead of O(ρ) variance as in
Algorithm 2. This will be combined with a single-coin
adaptive “filtering” component such that only an O(ρ)
fraction of coins will be used in running Algorithm 3,
giving an overall O(ρ) variance in Algorithm 5.

Think of the function f as being analogous to the
output coefficient n

2k−n of Algorithm 1—correcting for
a probabilistic filtering mechanism, such that the ex-
pected output of f for those coins that survive filtering
will be essentially 0 for negative coins (p ≤ 1

4 ), 1 for pos-
itive coins (p ≥ 3

4 ), and smoothly transitions between
0 and 1 in between. See later in Definition 3.1 for the
precise instantiation of f(p) we need.

Let Bin(n, p, k) denote the probability that a Bino-
mial distribution with n trials and bias p outputs k.

Algorithm 3 Refined Sampling

Input: sample access to a coin of bias p; target function
f : [0, 1]→ R
1. Choose a number of coin flips n that is a power

of 2, choosing 2i with probability
√

8−1√
8

(2i)−1.5,

where
√

8−1√
8

is the normalizing constant so that the

probabilities sum to 1.

2. Flip the coin n times, and let k be the number of
observed heads.

3. Return n1.5
√

8√
8−1

(
f( kn )−

∑n/2
i=0 f( i

n/2 ) ·
(
n/2
i

)(
n/2
k−i
)
/
(
n
k

))
The sum in Step 3 of the algorithm is omitted if

the power of 2 chosen for the number of coin flips is
n = 1, in which case

(
n/2
i

)
would be undefined. We now

describe the properties of Algorithm 3 in Lemma 3.1.

Lemma 3.1. Given a coin of bias p, and given a func-
tion f : [0, 1] → R that is bounded by a universal con-
stant, and has 2nd derivative bounded by a universal
constant, then Algorithm 3 will return an estimate of
f(p) that has bias 0, variance O(1), and uses O(1) sam-
ples in expectation.

Proof. The expected number of coin flips taken by
Algorithm 3 is the sum of a fixed geometric series, and
is thus O(1) as desired.

We bound the variance of the algorithm by showing
that, for each depth n, the values returned in Step
3 will have magnitude O(n0.5). Consider the sum in
the second term of the expression of Step 3. The
expression

(
n/2
i

)(
n/2
k−i
)
/
(
n
k

)
can be interpreted as: given

a sequence of n coin tosses of which k were heads, if a
random subsequence of length n/2 is chosen, what is the
probability that i heads are chosen. This distribution
has expectation k

2 , and variance< n. Since f has second
derivative bounded by a constant, the difference of f
from f( kn ) is upper and lower bounded by quadratics

centered at k
n . Thus the difference between f( kn ) and

the expected value of f( i
n/2 ) when i is drawn from the

distribution with pmf
(
n/2
i

)(
n/2
k−i
)
/
(
n
k

)
is bounded by a

constant times the variance of the random variable i
n/2 ,

namely O( 1
n ). Therefore, when multiplied by n1.5

√
8−1

, the

output of Step 3 will be bounded by O(n0.5) as desired.

Since in Step 1, n is chosen with probability
√

8−1
n1.5 , the

contribution to the variance from a particular n is at

most
√

8−1
n1.5 O(n0.5)2 = O(n−0.5); summing this bound

over all n that are powers of 2 yields a constant, O(1),
variance, since geometric series converge.

To analyze the expectation of the values returned in
Step 3 of Algorithm 3, we show that it telescopes across
the different depths n. Namely, consider the expected
contribution just of the second (sum) term at level n,

−
∑n
k=0 Bin(n, p, k)

∑n/2
i=0 f

(
i
n/2

)
·
(
n/2
i

)(
n/2
k−i
)
/
(
n
k

)
. The

coefficient in this expression of a given f( i
n/2 ) equals

−
∑n
k=0 Bin(n, p, k)

(
n/2
i

)(
n/2
k−i
)
/
(
n
k

)
; from the discussion

at the start of the proof, the kth term of this sum can
be reinterpreted as the probability that, in n tosses
of a coin of bias p, we have k heads total, and i
heads among the first n/2 tosses; summed over all k
this is clearly just the probability that i heads will be
observed among n/2 tosses, namely Bin(n2 , p, i). Thus
the expected value of the sum term of Step 3 at level n is

−
∑n/2
i=0 Bin(n2 , p, i)f( i

n/2 ), which is exactly the negation

of the expectation of the first term of Step 3, at level

n/2. (The multiplier n1.5
√

8√
8−1

in Step 3 is exactly canceled

out by the probability of choosing n in Step 1.)
Thus the expected output of the algorithm, consid-

ering only contributions up to some depth n = 2i, col-
lapses to just the expectation of the first term of Step
3 at the deepest level, n. This expected output is thus∑n
k=0 f( kn ) · Bin(n, p, k), namely the expected value of

f( kn ) when k is drawn from a binomial distribution with
n trials and bias p. Since the binomial distribution
Bin(n, p, ·) has expectation pn and variance < n, and
since f has 2nd derivative bounded by a constant, we
have that this expectation converges to f(p) for large n;
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namely, |f(p)−
∑n
k=0 f( kn ) ·Bin(n, p, k)| = O( 1

n ). Thus,
as n goes to infinity, we see that the expected output of
Algorithm 3 converges to f(p), as claimed.

We now give a new non-adaptive algorithm, Algo-
rithm 4, in order to motivate the choice of f(p) that we
use for Algorithm 3 within Algorithm 4. Algorithm 4
will be a major component of our final algorithm, Algo-
rithm 5.

Algorithm 4 Optimal Algorithm given an estimate ρ̂

Given: A total budget B of coin flips, quality parame-
ter ∆, and an estimate ρ̂ that is within a factor of 2 of
ρ

1. Run the following on t = Θ(∆2B) randomly drawn
coins. For each coin: simulate a new “virtual” coin
by computing the majority of Θ( 1

∆2 ) flips each time
a “virtual” flip is requested, so that each virtual
coin will have probability either p ≤ 1

4 or p ≥ 3
4 .

(a) For each virtual coin, flip it at most d =
Θ(log 1

ρ̂ ) times but stop if at any point the
majority of flips are tails.

(b) If the previous step did not stop early, then
run Algorithm 3 for the function fd(p) of
Definition 3.1.

2. Return 1
t times the sum of all the values output by

Algorithm 3 in Step 3(b).

As mentioned above, the choice of f(p) is a cor-
rection for the filtering mechanism. Concretely, in Al-
gorithm 4, Step 2(a) will stop early on negative coins
with probability that is increasingly high for smaller ρ,
significantly reducing the number of coin flips; and in
Step 2(b) we exactly compensate for this (a priori) un-
known early stopping probability by running the unbi-
ased Algorithm 3 on an appropriately chosen function
fd(p) that is exactly the inverse of this early stopping
probability, for positive coins, and 0 for negative coins:

Definition 3.1. Given a depth d, let fd(p) : [0, 1]→ R
be defined to equal 0 for p ≤ 1

4 ; and for p ≥ 3
4 , let

fd(p) equal 1 divided by the probability that a sequence
of d flips of a coin of bias p never has a majority-tails
initial sequence; for 1

4 < p < 3
4 , let fd(p) be chosen so

as to smoothly connect the regions p ≤ 1
4 and p ≥ 3

4 so
that fd(p) has second derivative bounded by a universal
constant (independent of d).

With this choice of f(p), we state and prove Propo-
sition 3.1, which gives the soundness and sample com-
plexity bounds for Algorithm 4.

Proposition 3.1. On input 1) a budget B = O( ρ
ε2∆2 )

of coin flips, 2) the quality parameter ∆ and 3) a 2-
approximation ρ̂ of ρ, Algorithm 4 returns an estimate
of ρ that has additive error at most ε with probability at
least 0.99, using at most B coin flips.

Proof. We first show the expected output of Algo-
rithm 4 equals ρ. For each positive coin, Step 1 trans-
forms it into a “virtual” coin of probability p ≥ 3

4 ; this
coin will “survive” Step 1(a) with probability exactly
1/fd(p), by definition of fd(p) in Definition 3.1. Thus
Algorithm 3 will return an estimate of fd(p), with bias 0.
Multiplying through by the survival probability 1/fd(p),
and by the probability ρ that a positive coin will be
drawn, we see that, over t coins, the expected contribu-
tion to the estimate from Step 2 of the positive coins will
be ρ. For each negative coin, by definition fd(p) = 0, so
the expected contribution from these coins, added over
all ≤ t of them, and scaled by 1

t in Step 2, will be 0.
To bound the variance of the output of Step 2, we

note that at most a 2ρ fraction of the coins reach Step
1(b): a ρ fraction of the coins are positive; meanwhile,
negative coins, where p ≤ 1

4 , have exp(−d) probability
of surviving Step 1(a), which can be made ≤ ρ since
d = Θ(log 1

ρ̂ ). Thus the output returned in Step 2 is 1
t

times the sum of t independent trials of a process that,
with probability ≤ 2ρ outputs a random variable whose
expected squared magnitude is bounded by a constant
(by Lemma 3.1). For t = Θ( ρε2 ), the expected squared
magnitude—and hence the variance—of the output of
the algorithm is thus bounded by O( tρt2 ) = O(ε2).
Thus by Chebyshev’s inequality, Step 2 will return
an estimate accurate to within O(ε), with constant
probability.

Lastly, we need to verify that Step 1 will exceed the
coin flip budget only with small constant probability. It
suffices, using a Markov’s inequality argument, to bound
the expected number of coin flips used in the steps.
We consider the number of (“virtual”) flips from Step
1(a), and also Step 1(b), and then multiply by Θ( 1

∆2 ) as
described in Step 1. For a negative coin, the expected
number of flips until a majority-tails initial sequence is
observed in Step 1(a) is constant by standard random
walk analysis, leading to an O(∆2B) term; for positive
coins, there are on average O(ρ∆2B) of them, so we
could afford to flip each O( 1

ρ ) times, but Step 1(a) uses

only at most d = Θ(log 1
ρ̂ ) flips. Step 1(b) is run on an

expected ≤ 2ρ fraction of the coins, as explained above;
and by Lemma 3.1, Algorithm 3 takes O(1) expected
samples, for a total bound of O(ρ∆2B) virtual flips from
Step 1(b). (Algorithm 3 could thus afford to take up to
O( 1

ρ ) samples on average, so, interestingly, there is a lot

of slack here.)
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Thus in total we use O(∆2B) = O( ρε2 ) virtual
flips, each requiring Θ(1/∆2) real flips, corresponding to
expected sample complexity of O(B) = O( ρ

ε2∆2 ).

Having analyzed Algorithm 4, we can now present
our final optimal algorithm, stated as Algorithm 5.
The theoretical guarantees are given in Theorem 1.2,
restated and proved below.

We stress again that, in our presentation of Algo-
rithm 5, the error parameter ε (of Theorem 1.2) is not
known, since it depends on the budget B and the un-
known ground truth ρ, yet the returned estimate will
have this optimal ε accuracy regardless. This is achieved
by Algorithm 5’s calls to Algorithm 2 and Algorithm 4,
which collectively cover all regimes of how ρ and ε relate
to each other, yielding optimal error guarantees in each
case.

Algorithm 5 Optimal Algorithm

Given: A total budget B of coin flips and quality
parameter ∆

1. Use Algorithm 2 in Section 2 on O(∆2B) many
coins (a small fraction of B), using an “ε” that
is Θ(1/(∆2B)), and a constant δ. Let ρ̂ be the
returned estimate of ρ.

(a) If Algorithm 2 ever tries to use more than B/4
coin flips total, then terminate Algorithm 2
and move onto the next step.

(b) Otherwise, return the estimate produced by
Algorithm 2.

2. Use Algorithm 2 on Θ(
√

∆2B) freshly drawn coins,
using again an “ε” that is Θ(1/(∆2B)), and a
constant δ. The returned estimate ρ̂ will be a 2-
approximation to ρ. If in this step, Algorithm 2
tries to use more than B/4 coin flips, terminate
and fail, which happens only with small constant
probability.

3. Run Algorithm 4 on input B/2, ∆, and ρ̂, and
return its answer.

4. (If a sub-constant failure probability δ is desired,
then repeat the entire algorithm Θ(log 1

δ ) times
and return the median of the outputs, ignoring
invocations that failed.)

Theorem 1.2. Given coins where a ρ fraction of the
coins have bias ≥ 1

2 + ∆, and 1 − ρ fraction have bias
≤ 1

2−∆, then running Algorithm 5 on a budget of B coin
flips will estimate ρ to within an additive error of ±ε,
with probability at least 2/3, where ε is implicitly defined
by the relation B = Θ( ρ

∆2ε2 ) based on the unknown

ground truth ρ. If the algorithm is repeated Θ(log 1
δ )

times, and the median estimate is returned, then the
probability of failure is at most δ.

Proof. Given the fixed total sample complexity budget
of B coin flips, and fixing the unknown ground truth ρ,
the target additive error parameter ε is defined by the
sample complexity equation B = Θ( ρ

ε2∆2 ). There are
two cases, either log 1

ε ≤ c/ρ for some sufficiently small
universal constant c (in which case we show that, with
high probability, Step 1 will output a correct answer and
then halt), or the inequality is in the opposite direction
(in which case, with high probability, either Step 1 still
produces a correct answer and halts, or Steps 2 and 3
will output a correct answer).

In the case where log 1
ε ≤ c/ρ, we use Corollary 2.1

with parameters ε1 = ε and ε2 = Θ( 1
∆2B ) = Θ( 1

t ):
Algorithm 2 will have error ±ε, except with failure
probability 0.1 + O(t · poly(ε2)) = 0.1 + O(t · poly(1

t )),
where, as noted in Corollary 2.1, we may make the
polynomial superlinear to make this failure probability
0.1 + o(1). Further, the expected sample complexity
is O( ρ

ε21∆2 ) = O(B) in the case where log 1
ε ≤ c/ρ,

so by Markov’s inequality, for appropriate constants
we can ensure that Algorithm 2 uses ≤ B/4 samples
with high constant probability. Thus in this case, the
algorithm will correctly terminate in Step 1(b) with high
probability.

Next, we analyze the case where log 1
ε ≥ c/ρ. By

Corollary 2.1, as above, if Step 1(b) is reached then
its answer will be ε-accurate except with some small
constant probability. Otherwise, since Steps 2 and 3 are
statistically independent of Step 1, we can just analyze
these steps for the case log 1

ε ≥ c/ρ, ignoring what
happened in Step 1.

We first claim that Step 2 will return a 2-
approximation ρ̂ of ρ with high constant probability. As
before, we use Corollary 2.1 with ε2 = ε; since (from the
algorithm and the parameters of the theorem) this step

uses t = Θ(
√

∆2B) = Θ(
√
ρ

ε ) coins, solving the equa-

tion t = Θ( ρ
ε21

) of the Corollary yields ε1 = Θ(
√
ε
√
ρ) =

O(
√
ε). Since we are in the regime where log 1

ε ≥ c/ρ,

we have that ε1 = O(
√
ε) ≤ O(e−c/ρ) � ρ/2 for suffi-

ciently small ρ, meaning that we will approximate ρ to
within ±ρ/2, giving us a 2-approximation. The fail-
ure probability is 0.1 + o(1) as above. From Corol-
lary 2.1, the expected sample complexity, in our case
log 1

ε ≥ c/ρ will be O( ρ
ε21∆2 ρ log 1

ε2
); substituting in the

definitions of ε1, ε2 yields O(ρ
3/2

ε∆2 log 1
ε ). Since ρ = O(1)

and log 1
ε = o( 1

ε ) this expected sample complexity is
thus O( ρ

ε2∆2 ) = O(B) and Markov’s inequality implies
the algorithm exceeds its sample bound in Step 2 with
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an arbitrarily small constant probability.
We conclude by invoking Proposition 3.1 to show

that the estimate returned in Step 3 by Algorithm 4
is accurate to within additive error ε except with small
constant probability.

4 Characterizing Single-Coin Algorithms

As a crucial first step towards the lower bounds of Sec-
tion 5 that analyze how information from many different
coins may interact, in this section we describe a unified
framework for characterizing (adaptive) algorithms that
flip only a single coin. Section 5.1 will then show a gen-
eral structural result describing how any adaptive multi-
coin algorithm may be broken into single-coin subrou-
tines that may then be analyzed in light of the charac-
terization of this section.

The most general form of an adaptive single-coin
algorithm is a decision tree, where each node is a coin
flip, and has two outgoing edges denoting the outcome
of the coin flip, heads or tails; the current node captures
the outcome of the entire sequence of coin flips so far,
and thus for each node, a generic algorithm specifies a
probability of halting, versus continuing from that node.

Via a (standard) symmetrization argument, instead
of considering the state of the algorithm to be an
arbitrary sequence of coin flips, we instead aggregate
this information into a pair (n, k) representing the
number of coin flips, and the number of heads observed
so far. In outline, one may prove by induction on the
number of coin flips n that any such decision tree may
be “symmetrized” so that its stopping probability at
each node (n′ ≤ n, k) depends only on n′ and k, while
preserving, for any underlying coin bias p, the total
probability of hitting the set of decision tree nodes that
represent observing k total heads out of n′ flips. The
inductive step relies on the fundamental property that,
conditioned on observing exactly k heads out of n′ coin
flips, the distribution over all such sequences of coin flips
is independent of the coin bias p, and depends only on
the stopping probabilities along each of the

(
n
k

)
paths in

the decision tree. This is a direct generalization of the
analogous observation in the triangular walk algorithm
section (Section 2), and is analyzed in slightly different
form in Equation 4.1 below.

We thus consider single-coin algorithms as random
walks (Algorithm 6) on the structure of the Pascal
Triangle, in which the states are represented by pairs
(n, k), where n is the total number of flips of the coin so
far, and k ≤ n is the number of “heads” responses.
At each state (n, k), the algorithm terminates with
some probability γn,k, else the algorithm may request a
further coin flip and continue the walk. The collection
of parameters γn,k we call a stopping rule, and specifies

that algorithm’s behavior.

Algorithm 6 Triangular Walk

Input: a coin of bias p

1. Initialize state (n, k) to (0, 0).

2. Repeat until termination:

(a) With probability γn,k, terminate and output
(n, k).

(b) Otherwise, sample one more coin flip. Incre-
ment n, and increment k by the result of the
flip (0 or 1).

This formulation of single-coin algorithms, which
we call a triangular walk, reveals structure that will be
useful to the rest of the analysis of this paper. In partic-
ular, since the overall objective of running an adaptive
coin-flipping algorithm is to recover information about
the bias p of the coin (while minimizing expected sam-
ple complexity), it is fortuitous (as we will see) that
the outcome of such an algorithm depends on p in an
unexpectedly transparent way. This is given in Defini-
tion 4.1.

Definition 4.1. Given a stopping rule {γn,k}, we de-
fine coefficients {αn,k}, {βn,k}, and {ηn,k}, so that, for
any p ∈ [0, 1], the triangular walk with stopping rule
{γn,k} on a coin of bias p, the coefficients have the se-
mantics: αn,kp

k(1−p)n−k represents the probability that
the walk terminates at (n, k), with all such probabilities
summing to 1; βn,kp

k(1−p)n−k represents the probabil-
ity that the triangular walk encounters (n, k), whether
or not it terminates there, and ηn,kp

k(1 − p)n−k is the
probability that the triangular walk encounters (n, k) but
does not terminate there. Each of these reparameteri-
zations of the stopping rule may be derived from {γn,k}
using the following relations.

β0,0 = 1(4.1)

βn+1,k+1 = βn,k+1 · (1− γn,k+1) + βn,k · (1− γn,k)

αn,k = βn,k · γn,k
ηn,k = βn,k − αn,k ( = βn,k · (1− γn,k) ).

Consider the original setting, where one has a uni-
verse of (different) coins; one might repeatedly run a
single-coin algorithm on coins drawn from the universe,
and somehow combine their outputs into a final answer.
There are many conceivable ways of aggregating the out-
puts of single-coin algorithms into an estimate, and the
lower bounds of Section 5 consider them all. However,
a particularly natural and powerful approach is to con-
struct a linear estimator, namely to have the single-coin
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algorithm output a real number coefficient vn,k at each
termination node, with the overall algorithm estimating
the expected output of the single-coin algorithm, across
the coins in the universe. Algorithm 2 works this way,
using the median-of-means method (instead of taking
the sample mean) to estimate the expected output of
Algorithm 1. Such linear estimators are surprisingly
flexible, and are known to be optimal in certain classes
of estimation tasks [36].

5 Fully-adaptive lower bounds

We show in this section that Algorithm 5 is optimal
in all four problem parameters ρ, ε, ∆ and δ, even
when compared to all fully-adaptive algorithms that are
adaptive across different coins. In particular, we show
the following indistinguishability result (Theorem 1.3).

Theorem 1.3. For ρ ∈ [0, 1
2 ) and ε ∈ (0, 1 − 2ρ],

the following two situations are impossible to distin-
guish with at least 1 − δ probability using an expected
o( ρ
ε2∆2 log 1

δ ) samples: A) ρ fraction of the coins have
probability 1

2 + ∆ of landing heads and 1− ρ fraction of
the coins have probability 1

2−∆ of landing heads, versus
B) ρ+ ε fraction of the coins have probability 1

2 + ∆ of
landing heads and 1− (ρ+ ε) fraction of the coins have
probability 1

2 − ∆ of landing heads. This impossibility
crucially includes fully-adaptive algorithms.

With the algorithmic result of Theorem 1.2, this
lower bound is therefore tight to within a constant
factor. We note that the restrictions ρ < 1

2 and
ε ≤ 1 − 2ρ reflect the symmetry of the problem, where
the pair ρ, ρ+ ε is exactly as hard to distinguish as the
pair 1 − ρ − ε, 1 − ρ, yielding analogous results for the
symmetric parameter regime.

Example 5.1. Even in the constant failure probability
regime, the Ω( ρ

ε2∆2 ) lower bound requires significant
analysis, forming the bulk of the remainder of this
paper, but two special cases have direct proofs. When
∆ = Θ(1) we can prove a Ω( ρε2 ) lower bound without
the ∆ dependence: consider the case where all coins
are unbiased and perfect, meaning that the only source
of randomness is from the mixture of coins, which is
itself a Bernoulli distribution of bias either ρ or ρ + ε.
We quote the standard fact that, in order to estimate a
Bernoulli coin flip of bias ρ to up to additive ε, we need
Ω( ρε2 ) samples to succeed with constant probability; this
can be proven by a standard (squared) Hellinger distance
argument. On the other hand, it is also straightforward
to prove a 1

∆2 lower bound (covering the regime where
ρ and ε are constant): consider the easiest regime for
ρ and ε, where ρ = 0 and ε = 1; thus coins either all
have 1

2 + ∆ bias or all have 1
2 −∆ bias. To distinguish

whether we have access to positive coins or negative
coins requires Ω( 1

∆2 ) samples.

In order to show Theorem 1.3, we use the Hellinger
distance and KL-divergence between probability distri-
butions as proxies for bounding the total variation dis-
tance.

Definition 5.1. (Hellinger Distance) Given two
discrete distributions P and Q, the Hellinger distance
H(P,Q) between them is

1√
2

√∑
i

(
√
pi −

√
qi)2 =

√
1−

∑
i

√
piqi

Definition 5.2. (KL-divergence) Given two dis-
crete distributions P and Q, the KL-divergence
DKL(P ||Q) between them is∑

i

pi log
pi
qi

The following facts capture how the Hellinger dis-
tance and KL-divergence can be used to show sample
complexity lower bounds.

Fact 5.1. (Chapter 2.4, [35]) For any two distribu-
tions P and Q over the same domain, we have

`1(P,Q) ≤
√

2H(P,Q)

and furthermore, for any event E,

P (E) +Q(Ē) ≥ 1

2
e−DKL(P ||Q)

The second inequality is also known as the high-
probability Pinsker inequality.

Recall from the introduction that, the main chal-
lenge in proving a general lower bound for our prob-
lem lies in analyzing the two kinds of adaptivity that
algorithms may employ that were both absent in the
special cases of Example 5.1. Explicitly, when taking
samples from a given coin, we can choose whether to
ask for another sample based on A) previous results of
this coin, and also B) previous results of all the other
coins. This first kind of adaptivity, “single-coin adaptiv-
ity”, is crucially used in the algorithms presented in the
rest of the paper (e.g. the “shape” of the stopping rule
for our triangular-walk algorithms); in Proposition 5.1
we analyze the best possible performance of such tri-
angular stopping rules. The most interesting part of
the proof of Theorem 1.3 consists of showing that the
second kind of adaptivity (cross-coin adaptivity) can-
not help in the lower bound setting, which we analyze
via general Hellinger distance/KL-divergence inequali-
ties (Lemmas 5.1 and 5.2) in Section 5.1.
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5.1 Reduction to Single-Coin Adaptive Algo-
rithms In this section, we give two related but dis-
tinct reductions to single-coin adaptive algorithms. The
first is a general decomposition (“direct sum”) inequal-
ity that decomposes the squared Hellinger distance of
running a fully-adaptive algorithm on two different coin
populations into the sum of squared Hellinger distances
of running single-coin adaptive algorithms on the two
coin populations. This inequality will lead to a constant
probability sample complexity lower bound. The second
inequality instead decomposes the KL divergence into (a
constant times) a sum of squared Hellinger distances,
however with an additional slight restriction that the
two coin populations being considered must be very
close to each other. The upside to using this second in-
equality is that, an upper bound on the KL divergence
combined with the high probability Pinsker inequality
allows us to obtain a high probability sample complexity
lower bound, which in particular is tight in all parame-
ters of the problem, up to a multiplicative constant.

Both of the following inequalities are applicable to
populations of variables beyond Bernoulli coins. We be-
lieve that the general inequalities are of independent
interest to the community, since they would be appli-
cable and useful for proving lower bounds on a variety
of scenarios involving, for example, a Gaussian variant
of the current problem, where instead of getting yes/no
answers on the positivity of an item, one gets a real-
valued score which correlates with the positivity of the
item.

We phrase both lemmas as upper bounds on dis-
tances between distributions of the transcript of an al-
gorithm, which when combined with the data process-
ing inequality immediately yields upper bounds on dis-
tances between distributions of the algorithm’s output.
See, for example, the very end of the proof of Theo-
rem 1.3.

Lemma 5.1. Consider a problem setting where there is
a collection of random variables, and an adaptive algo-
rithm can draw variables from the collection and draw
independent samples from the drawn variables. Now
consider an arbitrary algorithm that iteratively sam-
ples from random variables drawn from the collection,
choosing each subsequent variable to sample in an arbi-
trary adaptive manner based on the results of previous
sample outcomes. Suppose the algorithm terminates al-
most surely. Consider two arbitrary collections of ran-
dom variables, denoted by distributions A and B over
the set of possible random variables. Let H2

full be the
squared Hellinger distance between the transcript of a
single run of the algorithm where 1) the random vari-
ables are drawn from A versus where 2) the random
variables are drawn from B. Furthermore, let H2

i be

the squared Hellinger distance between the two scenar-
ios, but instead of running the algorithm as is, we only
use random variable i (as drawn either from A or B
depending on the scenario) and simulate all other ran-
dom variables as independent random variables that are
themselves drawn from the mixture distribution A2 + B

2 .
Then

H2
full ≤

∑
variable i

H2
i

Proof. It suffices to prove the result for deterministic al-
gorithms, since squared Hellinger distance is linear with
respect to mixtures of distributions with distinct out-
comes, and a randomized algorithm is simply a mixture
of deterministic algorithms which also records which of
the algorithms the random coins picked. Furthermore,
the following proof is phrased in terms of the special case
where the collection of random variables are Bernoulli
coins (which is the setting considered in this paper).
Barring measure-theoretic formalization issues that we
do not discuss, the proof generalizes directly to popula-
tions of arbitrary random variables.

A deterministic fully-adaptive algorithm is a deci-
sion tree, where each node is labeled by the identity
of the coin the algorithm chooses to flip next condi-
tioned on reaching this node, and each edge out of a
node is labeled by a heads or tails result for this coin.
We can view a run of the algorithm as follows: 1) first
draw all the random coins from either A or B depending
on the scenario, and then 2) flip these coins according
to this fully-adaptive algorithm—we view choosing the
coins from A or B as happening at the beginning since
all these samples are free and only the coin flips them-
selves are counted. After step 1, fixing the bias of each
coin, the probability of ending up at the ith leaf of the
decision tree is simply the probability (over coin flips)
that every edge along the path from the root to that
leaf is followed. Note that each edge is a probabilistic
event depending on only one coin. Therefore, this prob-
ability can be factored into a product of probabilities,
one term for each of the coins. For example, suppose
the path to leaf i involves coin j returning 5 heads in
a row, then getting some particular sequence from flip-
ping some other coins, then coin j returning another 2
heads followed by 3 tails. Then, if coin j has bias pj , it
contributes p5+2

j (1− pj)3 to the probability product.

We denote by qAj,i the expected contribution of
coin j to the probability product for leaf i, over the
randomness of A on the bias of coin j. In the previous
example, qAj,i would be equal to Ep←A[p7(1 − p)3]. We

similarly define qBj,i. Explicitly, for leaf i and coin j, qAj,i
is the expectation (over p drawn from A) of p to the
exponent of the number of “heads” edges on the path
from the root to node i in the decision tree, times (1−p)
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to the exponent of the number of “tails” edges on this
path.

Using this notation, the probability of the algorithm
reaching leaf i, when the coins are sampled from dis-
tribution A, would be

∏
coin j q

A
j,i, since each coin is

sampled from A independently; let
∏

coin j q
B
j,i be the

respective probability for sampling from B.
Since the total probability of reaching all leaves

i must equal 1, this expression yields the immediate
corollary, that for any distribution A over [0, 1],

(5.2)
∑
leaf i

∏
coin j

qAj,i = 1

We can now express the squared Hellinger distance
with this notation. For any two distributions a and
b, 1 minus their squared Hellinger distance can be
rewritten as

∑
i

√
aibi. In our context, the summation

is over leaves i, and thus the squared Hellinger distance
between the two scenarios in question is

(5.3) H2
full = 1−

∑
leaf i

√ ∏
coin j

qAj,i
∏

coin j

qBj,i

Since qAj,i and qBj,i are both non-negative, we simplify
the summand as

(5.4) √ ∏
coin j

qAj,i
∏

coin j

qBj,i

=

 ∏
coin j

qAj,i + qBj,i
2

 ∏
coin j

2
√
qAj,iq

B
j,i

qAj,i + qBj,i


≥

 ∏
coin j

qAj,i + qBj,i
2

1−
∑

coin j

1−
2
√
qAj,iq

B
j,i

qAj,i + qBj,i


where the inequality holds because each

2
√
qAj,iq

B
j,i

qAj,i+q
B
j,i

is less

than or equal to 1 by the AM-GM inequality (and at
least 0), and therefore we can apply the union bound
by treating each term as a probability—namely, for any
xj ∈ [0, 1] we have

∏
j xj ≥ 1−

∑
j(1− xj).

Observe that our definition of q, being an expecta-
tion, is thus linear in the distribution in its superscript,

and thus 1
2 (qAj,i + qBj,i) = q

A
2 +B2
j,i , and therefore the right

hand side of the inequality can be rewritten as

(5.5)

 ∏
coin j

q
A
2 +B2
j,i

1−
∑

coin j

1−

√
qAj,iq

B
j,i

q
A
2 +B2
j,i



Thus the sum of Equation 5.5 over all leaves is at
most 1−H2

full. We simplify the summation by changing
the summation variable in Equation 5.5 from j to k,
and distributing the initial product so as to form three
additive terms (the “j 6= k” in the bounds of the last
product below is because the j = k term gets canceled
by the denominator from the last term in Equation 5.5):∑

leaf i

∏
coin j

q
A
2 +B2
j,i

− ∑
coin k

∑
leaf i

∏
coin j

q
A
2 +B2
j,i


−
∑

coin k

∑
leaf i

 ∏
coin j 6= k

q
A
2 +B2
j,i

√qAk,iqBk,i


We know by Equation 5.2 that(∑
leaf i

∏
coin j q

A
2 +B2
j,i

)
= 1, and so the sum can

be written as

1−
∑

coin k

1−
∑
leaf i

 ∏
coin j 6= k

q
A
2 +B2
j,i

√qAk,iqBk,i


which by definition of Hk is equal to 1 −
∑

coin kH
2
k :

by Equation 5.3, 1 minus the squared Hellinger dis-
tance between the view of the algorithm when the
kth coin is from A versus from B, where all remain-
ing coins are drawn from the mixture A2 + B

2 equals∑
leaf i

(∏
coin j 6= k q

A
2 +B2
j,i

)√
qAk,iq

B
k,i.

Summarizing, we have shown that 1 − H2
full ≥

1−
∑

coin kH
2
k , from which the lemma statement follows.

We now give the KL-divergence decomposition
lemma (Lemma 5.2) which will yield a tight high proba-
bility sample complexity lower bound, but makes a fur-
ther assumption than Lemma 5.1 that the two coin pop-
ulations are close to each other. As a note, the definition
of H2

i is slightly different in this lemma from the defini-
tion in Lemma 5.1, and is not a typographical mistake.

Lemma 5.2. Consider an arbitrary algorithm that it-
eratively flips coins from a collection of coins, choos-
ing each subsequent coin to flip in an arbitrary adaptive
manner based on the results of previous flips. Suppose
the algorithm terminates almost surely. Consider two
arbitrary mixtures of coins, denoted by distributions A
and B over the coin bias [0, 1]. Let Dfull be the KL-
divergence between the transcript of a single run of the
algorithm where 1) the coins are drawn from the mixture
ρA+ (1−ρ)B versus where 2) the coins are drawn from
(ρ+ε)A+(1−ρ−ε)B, where ρ ∈ [0, 1

2 ), ε ∈ (0, 1−2ρ] and
ε < ρ. Furthermore, let H2

i be the squared Hellinger dis-
tance between the two scenarios, but instead of running
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the algorithm as is, we only use coin i (as drawn either
from the ρ-fraction mixture or the (ρ+ ε)-fraction mix-
ture depending on the scenario) and simulate all other
coins as independent coins drawn from the ρ-fraction
mixture. Then

Dfull = O

(∑
coin i

H2
i

)

The proof of Lemma 5.2 is similar to that of
Lemma 5.1 by viewing algorithms as decision trees,
with the crucial difference that, rather than using the
AM-GM inequality, Lemma 5.2 instead bounds the KL-
divergence via a quadratic bound log(1 + x) ≥ x − x2,
valid for x ∈ [− 1

2 , 1].
For the lower bound proof at hand, we show Corol-

lary 5.1 in the next subsection, which upper bounds
the squared Hellinger distance for single-coin adaptive
algorithms by a quantity that is proportional to the ex-
pected number of samples taken by the algorithm.

Corollary 5.1. Consider an arbitrary single-coin
adaptive algorithm. Let H2 be the squared Hellinger
distance between a single run of the algorithm where 1)
a coin with bias 1

2 + ∆ is used with probability ρ and a
coin with bias 1

2 −∆ is used otherwise, versus a run of
the algorithm where 2) a coin with bias 1

2 + ∆ is used
with probability ρ+ ε and a coin with bias 1

2 −∆ is used
otherwise. Furthermore, let Eρ[n] and Eρ+ ε

2
[n] be the

expected number of coin flips during a run of the algo-
rithm where we use a 1

2 + ∆ coin with probability ρ and
ρ+ ε

2 respectively, and a 1
2−∆ coin otherwise. If all of ρ,

ε, ∆ and ε/ρ are smaller than some universal absolute
constant, then

max

[
H2

Eρ[n]
,

H2

Eρ+ ε
2
[n]

]
= O

(
ε2∆2

ρ

)
Using Corollary 5.1 and Lemma 5.2, we now com-

plete the proof of the main high probability indistin-
guishability result (Theorem 1.3) for fully-adaptive al-
gorithms. We note again that Lemma 5.1, which is ap-
plicable to more general coin populations with fewer re-
strictions than Lemma 5.2, can be used to derive a con-
stant probability sample complexity lower bound with
essentially the same proof as follows, with the exception
that we would use the Hellinger distance inequality in
Fact 5.1 instead of the high-probability Pinsker inequal-
ity.

Proof. [Theorem 1.3]
Letting A of be a population of coins that all have

1
2 + ∆ probability, with B a population of coins that
all have 1

2 − ∆ probability, our goal is to show the

indistinguishability of ρA + (1 − ρ)B from (ρ + ε)A +
(1−ρ− ε)B. We apply Lemma 5.2 and use the lemma’s
conclusion, that Dfull = O

(∑
coin iH

2
i

)
.

Next, for each i, the quantity H2
i of Lemma 5.2

describes the squared Hellinger distance between an
induced single-coin algorithm run on a single coin from
scenario A versus B respectively (with the remaining
coins being simulated, from scenario A with a ρ-fraction
mixture). We thus bound H2

i from Corollary 5.1. As in
the corollary, let Ei,ρ[n] denote the expected number
of samples from coin i when running the induced
algorithm (for coin i) on a mixture that uses a 1

2 + ∆
coin with probability ρ and a 1

2 − ∆ coin otherwise.

Thus Corollary 5.1 yields that H2
i = O( ε

2∆2

ρ ) · Ei,ρ[n].
Summing, combined with the result from Lemma 5.2
above, yields

Dfull ≤ O
(
ε2∆2

ρ

)
·
∑

coin i

Ei,ρ[n]

Crucially, the sum (over choice of coin i) of the
expected number of flips Ei,ρ[n] (when running the
algorithm induced for coin i) can be viewed in a different
way: the ith term is exactly the expected number of
times that coin i is flipped when running the overall
algorithm where every coin is drawn from the ρ-fraction
mixture in scenario A. Namely, this sum counts the
total expected number of coin flips (across all coins i),
for the algorithm run in the setting where all coins
are drawn from the ρ-fraction mixture. Thus, for an
algorithm that uses o( ρ

ε2∆2 log 1
δ ) flips in expectation,

we conclude that

Dfull ≤ O
(
ε2∆2

ρ

)
· o
(

ρ

ε2∆2
log

1

δ

)
= o

(
log

1

δ

)
We conclude by using the high-probability Pinsker

inequality. In the notation of the inequality, given an
algorithm that attempts to classify whether it is in sce-
nario A or B, let P,Q respectively be the distribu-
tions of its output in scenarios A,B respectively; let
E be the event that the algorithm outputs “scenario
B”. Then the probability that the algorithm is wrong is
P (E) +Q(Ē). By the high-probability Pinsker inequal-
ity this failure probability is at least 1

2e
−DKL(P ||Q) ≥

1
2e
−Dfull ≥ 1

2e
−o(log 1

δ ) = 1
2δ
o(1) � δ as desired, where

the first inequality is the data processing inequality for
KL-divergence.

5.2 Upper Bounding the Squared Hellinger
Distance for Single-Coin Adaptive Algorithms
In this section, we prove Corollary 5.1, though signifi-
cant technical details are deferred to the full paper [22].
Explicitly, we analyze a simplified scenario in Propo-
sition 5.1, after discussing why each of the simplifying
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assumptions does not give up generality, and cannot af-
fect the key “squared Hellinger distance per sample”
quantity by more than a constant factor.

1. Consider a single-coin algorithm. We restrict our
attention to algorithms that only stop once they
have seen a number of coin flips that is exactly a
power of 2. Any stopping rule S that potentially
stops in between powers of 2 could be converted
into an almost-equivalent rule S′ by collecting coin
flips up to the next power of 2 and discarding
them as necessary so as to simulate S: this will
sacrifice at most a factor of 2 in sample complexity,
and can only increase our Hellinger distance (since
discarding data is a form of “data processing” and
thus we may apply the data processing inequality).
Thus the new S′ will have “squared Hellinger
distance per sample” at least half that of S.

2. By standard symmetrization arguments, a single-
coin algorithm can always be implemented such
that decisions only depend on the number of flips
for a coin as well as the number of observed “heads”,
as opposed to the explicit sequence of heads/tails
observations. Thus we restrict our attention to
stopping rules in the sense of Algorithm 6, spec-
ified in full generality by a triangle of stopping co-
efficients {γn,k}.

3. There is in some sense a “phase change” once an
algorithm has received Ω( 1

∆2 ) samples from a single
coin: after this point, the algorithm might have
good information about whether the coin is of type
1
2 + ∆ versus type 1

2 −∆, and might productively
make subtle adaptive decisions after this point.
We restrict our analysis to the regime where no
coin is flipped more than 10−8/∆2 times: formally,
we show an impossibility result in the following
stronger setting, where we assume that whenever a
single coin is flipped 10−8/∆2 times, then the coin’s
true bias (either 1

2 + ∆ or 1
2 − ∆) is immediately

revealed to the algorithm. Thus any coin flips
beyond 10−8/∆2 that an algorithm desires can
instead be simulated at no cost.

Formally, an impossibility result in this setting with
“advice” (Proposition 5.1) implies the analogous re-
sult in the original setting (Corollary 5.1) by the
data processing inequality for Hellinger distance
(since Hellinger distance is an f -divergence): sim-
ulating additional coin flips in terms of “advice” is
itself “data processing”, and thus can only decrease
the Hellinger distance. Thus the setting without
advice has smaller-or-equal Hellinger distance, and
uses greater-or-equal number of samples, and hence

the bound on their ratio in Proposition 5.1 implies
the corresponding bound in Corollary 5.1.

Proposition 5.1. Consider an arbitrary stopping rule
{γn,k} that 1) is non-zero only for n that are powers
of 2, and 2) γ10−8/∆2,k = 1 for all k, that is the
random walk always stops if it reaches 10−8/∆2 coin
flips. Suppose that given a coin, after a random walk
on the Pascal triangle according to the stopping rule, the
position (n, k) that the walk ended at is always revealed,
and furthermore, if n = 10−8/∆2, then the bias of the
coin is also revealed. Let H2 be the squared Hellinger
distance between a single run of the above process where
1) a coin with bias 1

2 + ∆ is used with probability ρ and
a coin with bias 1

2 − ∆ is used otherwise versus 2) a
coin with bias 1

2 + ∆ is used with probability ρ+ ε and a
coin with bias 1

2−∆ is used otherwise. Furthermore, let
Eρ[n] and Eρ+ ε

2
[n] be the expected number of coin flips

during a run of the algorithm where we use a 1
2 +∆ coin

with probability ρ and ρ + ε
2 respectively, and a 1

2 − ∆
coin otherwise. If all of ρ, ε, ∆ and ε/ρ are smaller
than some universal absolute constant, then

max

[
H2

Eρ[n]
,

H2

Eρ+ ε
2
[n]

]
= O

(
ε2∆2

ρ

)
It remains to prove Proposition 5.1. For the rest

of the section, we shall use the notation h+
n,k = ( 1

2 +

∆)k( 1
2 − ∆)n−k and h−n,k = ( 1

2 − ∆)k( 1
2 + ∆)n−k for

convenience. The proofs for upper bounding H2

Eρ[n] and

H2

Eρ+ ε
2

[n] are essentially the same, and here we give a

high-level description for bounding the former.
The first step in the proof is the following lemma

that writes out the squared Hellinger distance induced
by a given stopping rule {γn,k}, whose proof can be
found in the full paper. The expression in Lemma 5.3
avoids square roots and in other ways simplifies aspects
of the squared Hellinger distance by estimating terms
to within a constant factor, which is folded into a mul-
tiplicative “big-Θ” term at the start of the expression.
The two lines in the expression below capture the dif-
ferent forms of the Hellinger distance for stopping be-
fore the last row versus at the last row—recall that
we prove impossibility under the stronger model where,
upon reaching the last row the algorithm receives the
true bias of the coin (as “advice”). Thus the squared
Hellinger distance coefficients from elements of the last
row are typically much larger than for other rows, cap-
turing the cases when this advice is valuable. Recall
from Definition 4.1 that {αn,k} is defined from the stop-
ping rule {γn,k}, so that when multiplied by h+

n,k or h−n,k
respectively, it equals the probability of encountering
(n, k) without necessarily stopping there, in the cases of
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positive and negative bias respectively.

Lemma 5.3. Consider the two probability distributions
in Proposition 5.1 over locations (n, k) in the Pascal
triangle of depth 10−8/∆2 and bias p ∈ { 1

2 ± ∆},
generated by the given stopping rule {γn,k} in the two
cases 1) a coin with bias 1

2 + ∆ is used with probability
ρ and a coin with bias 1

2 − ∆ is used otherwise versus
2) a coin with bias 1

2 + ∆ is used with probability ρ+ ε
and a coin with bias 1

2 −∆ is used otherwise. If ε/ρ is
smaller than some universal constant, then the squared
Hellinger distance between these two distributions can
be written as

Θ(ε2) ·[ ∑
n< 10−8

∆2

k∈[0..n]

αn,k(ρh+
n,k + (1− ρ)h−n,k)

(h+
n,k − h

−
n,k)2

(ρh+
n,k + (1− ρ)h−n,k)2

+
∑

n= 10−8

∆2

k∈[0..n]

αn,k(ρh+
n,k + (1− ρ)h−n,k)

h+
n,k

ρ + h−n,k

ρh+
n,k + (1− ρ)h−n,k

]

Intuitively, Lemma 5.3 breaks up the squared
Hellinger distance into its contributions from each loca-
tion (n, k) in the triangle, with the coefficient αn,k de-
pending on the stopping rule (proportional to the algo-
rithm’s probability of stopping at location (n, k) ), and
the remaining portion of the expression depending only
on n, k,∆, ρ, with the ε dependence already factored out
in the initial Θ(ε2) term.

The rest of the analysis uses the above tools to
upper bound the squared Hellinger distance per sam-
ple. For concrete details and calculations, please refer
to full paper [22]. The high level idea of the analysis
is to split the expression of Lemma 5.3 for the total
squared Hellinger distance per sample into three com-
ponents, with the contribution from each location (n, k)

assigned to either 1) the last row n = 10−8

∆2 , 2) a “high

discrepancy region” where h+
n,k/h

−
n,k ≥ 1/ρ0.1 which is

towards the right of the triangle, potentially contribut-
ing large amounts to the squared Hellinger distance and
3) a “central” region that is the rest of the triangle.
The last row, because of the nature of “advice”, clearly
needs its own analysis. As for the rest of the triangle,
we divide it into the “central” and “high discrepancy”
regions, and bound their contributions to the squared
Hellinger distance per sample using different strategies.
For the central region, the key insight is that the squared
Hellinger distance term is bounded by a well-behaved
quadratic function in that region. On the other hand,
for the high discrepancy region, the key observation is

that the region is defined such that it is a large number
of standard deviations away from where a non-stopping
random walk on the Pascal triangle should concentrate,
and thus it is very unlikely for the algorithm to enter
that region. We take additional care to show that, for
any stopping rule used by any algorithm, it cannot suf-
ficiently skew the distribution of where the walk ends
up—for example, while the distribution might skew to
the right if the algorithm stops whenever it enters the
“left” side of the triangle, we show that this cannot sig-
nificantly save on expected sample complexity nor sub-
stantially increase the squared Hellinger distance per
sample. The analysis for the high discrepancy region
makes crucial use of our simplifying assumption that the
stopping rule only stops at powers of 2 coin flips, letting
us analyze large sequences of coin flips at a time, where
we may take advantage of the tight concentration of the
Binomial distribution over sufficiently many coin flips to
bound the effect of any skewing-towards-the-right that
can be introduced by the stopping rule.

In the full paper [22], we show that for each of
the respective regions, their contribution to the squared
Hellinger distance, divided by the expected sample
complexity, is at most O(ε2∆2/ρ). Summing up the
three terms is an upper bound on the total squared
Hellinger distance per expected sample of O(ε2∆2/ρ),
completing the proof of Proposition 5.1.

6 Experimental Results

We give simulation results to demonstrate the practical
efficacy of our proposed algorithm. In our experimental
setups, we compare the convergence rates of 1) our
algorithm (“T-WALK (15)” on the plots), 2) the natural
majority vote method mentioned in the Introduction
(“VOTING” on the plots) and 3) the “SWITCH”
method proposed in previous work by Chung et al. [15]
which has been observed to perform well in practice,
but does not have a theoretical analysis. For our
algorithm, we choose the maximum number of flips
for a single coin to be 15 (= c log 1

ε ) in Algorithm 1.
We also make the assumption that the noise parameter
satisfies ∆ ≥ 0.3, meaning that we can use Algorithm 1
directly instead of using Algorithm 2 to simulate virtual
coins before feeding them into Algorithm 1. To further
improve the practical performance of Algorithm 1, we
ran a local search method to improve on the non-zero
output coefficients in Step 3(d) of Algorithm 1, using
the assumption that ∆ ≥ 0.3. Concretely, recall that
we output a non-zero coefficient when the maximum
number of coin flips (15) has occurred and the majority
of coin flips has been heads. Thus for k ∈ {8, . . . , 15},
we output 8: 0, 9: 6.913, 10: 5.032, 11: 2.101, 12:
0.636, 13: 1.965, 14: 1.016, 15: 1.009. We note again
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Figure 1: Experimental Results

that these coefficients are reusable in practice, as long
as the ∆ ≥ 0.3 assumption can be made.

For a more detailed discussion concerning the im-
plementation of Algorithm 1 in practice, please refer to
our full paper [22].

Figure 1 presents the experimental results, for “coin
quality” ∆ = 0.3 or 0.4, and ground truth fraction of
positive coins ρ taking representative values 0.01, 0.03,
or 0.1. For each plot, the x-axis corresponds to the
number of coin flips, with all algorithms eventually
converging to the ground truth for enough coin flips.
Standard deviation bars are computed over 10 runs of
each different setting.

In all cases, our algorithm (plotted in yellow) per-
forms close to the ground truth (horizontal black line),
while the alternative algorithms take longer to converge,
or have high variance, as depicted by the error bars. In
particular, as discussed in the introduction, our adap-
tive methods have the most potential for improvement
in the more challenging and more practical regime where
ρ is small (left plots), and where ∆ is smaller (top row).
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